(完整版)人教版数学选修1-2知识点总结

合集下载

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

数学选修1至2知识点总结

数学选修1至2知识点总结

数学选修1至2知识点总结一、选修11. 一次函数一次函数是数学中的一种基本类型的函数,其一般形式为y=ax+b,其中a,b为常数且a≠0。

一次函数的图像是一条通过原点的直线,斜率a表示直线的倾斜程度,常数b表示直线与y轴的交点。

在数学上,一次函数是一种简单串直线函数,但它在实际应用中有着广泛的用途,如经济学、物理学等领域均可利用一次函数来描述问题。

2. 二次函数二次函数是一种常见的函数类型,其一般形式为y=ax²+bx+c,其中a,b,c为常数且a≠0。

二次函数的图像是一条开口向上或向下的抛物线,其开口方向取决于a的正负。

二次函数对应的抛物线有着许多特性,如顶点坐标、对称轴、焦点、直焦距等,这些特性能够帮助我们更好地理解二次函数的性质。

3. 多项式函数多项式函数是由常数组成的数列f(n),在数学中,n是一个变量,它的值可以是实数或者复数,但不是整数或负数,并有定义域。

封闭整数或负数的情况是另一种基于变量方面的数列。

4. 分式函数分式函数是由两个多项式相除而得到的函数,分母不能取0。

5. 指数函数、对数函数指数函数和对数函数是常见的特殊函数类型,它们在数学和实际应用中都有着重要的作用。

指数函数的一般形式是y=a^x,其中a为底数,x为指数,而对数函数的一般形式是y=loga(x),其中a为底数,x为真数。

指数函数和对数函数之间存在着互为反函数的关系,它们在代数、几何、概率等方面均有广泛的应用。

6. 三角函数三角函数是用于描述角度与变化的函数,常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在三角学和实际问题中都有着重要的应用。

三角函数不仅能够描述角度的变化,还能够描述周期性的现象,如振动、波动等。

7. 数列与数学归纳法数列是由一系列按照一定规律排列的数构成的序列,数学归纳法是一种证明数学命题的常用方法。

数列与数学归纳法是数学中重要的概念和方法,它们在数学分析、组合数学、离散数学等领域都有着广泛的应用。

人教版高中数学知识点汇总(全册版)

人教版高中数学知识点汇总(全册版)
(3)求函数的定义域时,一般遵循以下原则:
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.

数学选修12知识点总结

数学选修12知识点总结

数学选修12知识点总结引言数学选修12是高中数学的一门选修课程,它主要涵盖了高等数学、线性代数和概率统计等方面的内容。

该课程的学习对于打好数学基础,提高数学知识的应用能力、推理能力和解决问题的能力具有重要意义。

本文将对数学选修12的知识点进行总结和回顾。

1. 高等数学1.1 二次函数二次函数是一种常见的函数形式,其一般式为:y=ax2+bx+c。

在学习二次函数时,我们需要了解它的性质和图像特征,掌握求解二次函数的根、顶点和对称轴等重要知识点。

1.2 三角函数三角函数包括正弦函数、余弦函数和正切函数等,它们在三角形的计算、周期性变化等方面有着广泛的应用。

在学习三角函数时,我们需要掌握它们的定义、性质,以及它们之间的相互关系。

1.3 指数函数与对数函数指数函数和对数函数是数学中非常重要的函数形式,它们在科学计算、金融领域等方面具有广泛的应用。

在学习指数函数和对数函数时,我们需要了解它们的定义、性质,以及指数函数和对数函数之间的互逆关系。

1.4 导数与微分导数是描述函数变化率的重要工具,微分则是导数的运算方法。

在学习导数与微分时,我们需要了解导数的定义、求导法则,以及微分的概念与运算规则。

掌握导数与微分的知识有助于我们进一步理解函数的性质与曲线的变化情况。

2. 线性代数2.1 向量与矩阵向量和矩阵是线性代数的基本概念,它们在几何、物理等领域有着广泛的应用。

在学习向量与矩阵时,我们需要了解它们的定义、性质,掌握向量的加法、点积与叉积等运算规则,以及矩阵的乘法、转置和逆等运算法则。

2.2 线性方程组线性方程组是线性代数中的重要内容,在许多实际问题中都可以用线性方程组来描述和求解。

在学习线性方程组时,我们需要了解方程组的概念、特解与通解的关系,熟练掌握高斯消元法和矩阵的求逆法等解线性方程组的方法。

2.3 矩阵的特征值与特征向量矩阵的特征值与特征向量是矩阵理论中的重要概念,它们在矩阵的对角化、矩阵乘法的简化等方面具有重要作用。

高中数学选修1-1、1-2、4-4知识点高考复习总结

高中数学选修1-1、1-2、4-4知识点高考复习总结

选修1-1、1-2数学知识点 选修1-1数学知识点第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线与方程1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

人教版数学选修1-2知识点总结

人教版数学选修1-2知识点总结

数学 选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立. (2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B = 通过观察得到右表所示数据: 并将形如此表的表格称为2×2列联表.(2)独立性检验 根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章框图1.流程图流程图是由一些图形符号和文字说明构成的图示.流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清晰.2.结构图一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结构图,分类结构图及知识结构图等.第三章推理与证明1.推理⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)

人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)

人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。

2.理解复数相等的充要条件。

3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。

4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。

5. 会进行复数乘法和除法运算。

【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。

要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。

2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。

全体复数所成的集合叫做复数集,用字母C 表示。

要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。

分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。

) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。

数学选修12知识点总结

数学选修12知识点总结

数学选修12知识点总结数学选修12主要包括数列与数学归纳法、向量与立体几何、概率与数理统计、数学思维方法与解决问题、解析几何与三角函数、矩阵与行列式、数学建模和运筹学等内容。

以下是对这些知识点的总结:数列与数学归纳法:数列是一系列按照某种规律排列的数的集合。

常见的数列有等差数列、等比数列、斐波那契数列等。

数学归纳法是一个证明数学命题的方法,通过证明当数值从一个整数开始与结论成立时,当数值增加一个单位时结论依然成立,以此类推。

向量与立体几何:向量是表示有大小和方向的量,常用于表示力、速度、加速度等物理量。

向量的运算包括加法、减法、数量乘法、点乘法、叉乘法等。

立体几何是研究三维空间中的图形和关系的数学分支,包括点、直线、平面、多面体等的性质和运算。

概率与数理统计:概率是描述随机事件发生可能性的数学工具,概率的计算方法包括频率法、古典概型和几何概型等。

数理统计是通过对概率的推断与建模来研究和分析随机事件的规律性,包括描述统计、参数估计、假设检验等。

数学思维方法与解决问题:数学思维方法的培养是数学学习的重要目标,包括归纳法、演绎法、递增法、递归法、抽象法等。

解决问题的方法包括列方程、制表、归纳法、数学模型等,以及利用数学软件、实验、图表等辅助工具。

解析几何与三角函数:解析几何是通过代数方法研究几何问题,包括平面直角坐标系中的直线、圆、椭圆、双曲线等;三角函数是描述角度和旋转的函数,包括正弦、余弦、正切等,并可以用于求解三角函数方程和三角函数的性质。

矩阵与行列式:矩阵是数学中的一种常用工具,用于表示一组数按照矩形排列的形式,矩阵的运算包括加法、减法、数乘、矩阵乘法、转置、秩等。

行列式是一个确定一个方阵的一个标量值,用于求解线性方程组、计算矩阵的逆等。

数学建模与运筹学:数学建模是将实际问题转化为数学模型,通过分析模型来求解问题的方法和过程,包括选择变量、建立方程、求解问题等。

运筹学是研究如何优化资源配置和决策方案,通过数学方法来求解实际问题。

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结知识点总结选修1-2知识点总结第一章统计案例1 .线性回归方程① 变量之间的两类关系:函数关系与相关关系;② 制作散点图,判断线性相关关系 ③ 线性回归方程:y bx a (最小二乘法)a y bx注意:线性回归直线经过定点(x,y ).2. 相关系数(判定两个变量线性相关性)n n2 2(X i x)2(y i y)2i 1i 1注:⑴r >0时,变量x,y 正相关;r <0时,变量x, y 负相关;⑵①|r |越接近于1,两个变量的线性相关性越强;②|r|接近 于0时,两个变量之间几乎不存在线性相关关系。

3. 条件概率对于任何两个事件 A 和B,在已知B 发生的条件下,A 发生的概 率称为B 发生时A 发生的条件概率.记为RA B ),其公式为RA B P (ABP (A )其中,nX i y i i 1n2 Xii 1nx y-2nxn__(X i x)(y i y)i 1独立炖检整 绽计炭M一可红件化的回扫分析 「|松件膛 「闹互独立爭件L 曲小二乘法求线性回SJ 方租2 X 2 的独立性故验高中数学选修1-2知识点总结4相互独立事件(1) 一般地,对于两个事件 A , B,如果_RAE) = P (A )P (B ),则 称A B 相互独立.(2) 如果A,A ,…,An 相互独立,则有RAA …A) = _RA)RA)… RA). ⑶ 如果A , B 相互独立,则A 与B,入与B,入与B 也相互独立.5.独立性检验(分类变量关系):(1) 2 X 2列联表设代B 为两个变量,每一个变量 都可以取两个值,变量A :A,A 2瓦;变 量 B : B I ,B 2 B I ;通过观察得到右表所示数据:并将形如此表的表格称为2X 2列联表.(2) 独立性检验根据2X 2列联表中的数据判断两个变量 A , 是否独立的问题叫2X 2列联表的独立性检验.(3) 统计量x 2的计算公式_________ n (ad — be ) 2 ________x 2= (a + b )( e + d )( a + e )(b + d )第二章推理与证明考点一合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推 理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似 (或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想); (3) —般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似 ,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二演绎推理(俗称三段论)0;高中数学选修1-2知识点总结由一般性的命题推出特殊命题的过程,这种推理称为演绎推理考点三数学归纳法:它是一个递推的数学论证方法 • 步骤:A.命题在n=1 (或n 0)时成立,这是递推的基础;B. 假设在n=k 时命题成立C. 证明n=k+1时命题也成立 完成这两步,就可以断定对任何自然数 (或n>=圧,且n N )结论都成立。

人教版高中数学【选修1-2】[知识点整理及重点题型梳理]框图(1)

人教版高中数学【选修1-2】[知识点整理及重点题型梳理]框图(1)

⼈教版⾼中数学【选修1-2】[知识点整理及重点题型梳理]框图(1)⼈教版⾼中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习框图【学习⽬标】1.通过具体实例,进⼀步认识程序框图,了解⼯序的流程图。

2.能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作⽤。

3. 能画出简单问题的结构图,能解读结构图。

【要点梳理】要点⼀、框图的分类本节概念分类如右图:要点⼆、流程图的概念、分类及其关系1. 流程图:由⼀些图形符号和⽂字说明构成的图⽰称为流程图,它常⽤来表⽰⼀些动态过程,通常会有⼀个“起点”,⼀个或多个“终点”.2. 流程图的分类:流程图可分为程序框图与⼯序流程图.3. 程序框图:程序框图就是算法步骤的直观图⽰,算法的输⼈、输出、条件、循环等基本单元构成了程序框图的基本要素,基本要素之间的关系由流程线来建⽴。

要点诠释:程序框图主要⽤于描述算法,⼀个程序的流程图要基于它的算法。

在设计流程图的时候要分步进⾏,把⼀个⼤的流程图分割成⼩的部分,按照三个基本结构,即顺序结构、选择结构、循环结构来局部安排,最后把流程图进⾏部分之间的组装,从⽽完成完整的程序流程图.4.⼯序流程图:流程图可⽤于描述⼯业⽣产的流程,这样的流程图称为⼯序流程图.要点诠释:⼯序流程图(统筹图)⽤于描述⼯业⽣产流程。

每⼀个矩形框代表⼀道⼯序,流程线则表⽰两相邻⼯序之间的关系,这是⼀个有向线,⽤于指⽰⼯序进展的⽅向,因此画图时要分清先后顺序,判断是⾮区别,分清流向.特别注意:在程序框图中可以有⾸尾相接的圈图或循环回路,⽽在⼯序流程图上,不允许出现⼏道⼯序⾸尾相接的圈图或循环回路.要点三、程序框图、⼯序流程图的画图与识图1.程序框图的画法:最基本的程序框有四种:起⽌框,输⼊输出框,处理框(执⾏框),判断框.画法要求:(1)使⽤标准的框图符号;(2)框图⼀般按照从上到下、从左到右的顺序画;(3)除判断框外,⼤多数程序框只有⼀个进⼊点和⼀个退出点,判断框是具有超过⼀个退出点的唯⼀符号;(4)⼀种判断框是“是”与“否”两分⽀的判断,⽽且有且仅有两个结果;另⼀种是多分⽀判断,有⼏种不同的结果;(5)在框图符号内描述的语⾔要⾮常简练、清楚.2.⼯序流程图的画法:将⼀个⼯作或⼯程从头⾄尾依先后顺序分为若⼲道⼯序(即⾃顶向下),每⼀道⼯序⽤矩形框表⽰,并在该矩形框内注明此⼯序的名称或代号.两相邻⼯序之间⽤流程线相连.有时为合理安排⼯程进度,还要在每道⼯序框上注明完成该⼯序所需的时间.开始时⼯序流程图可以画得粗疏,然后再对每⼀框逐步细化。

高中数学选修1-2知识点总结61389

高中数学选修1-2知识点总结61389

知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

数学选修1-2知识点及习题 (2)

数学选修1-2知识点及习题 (2)

选修1-2知识点第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定:⑴总偏差平方和:∑=-ni i y y 12)(;⑵残差:∧∧-=i i i y y e ; ⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。

注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。

第二章 推理与证明一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

高中数学选修1-1、1-2、4-1、4-4知识点归纳

高中数学选修1-1、1-2、4-1、4-4知识点归纳
相似三角形的判定: ( 1)两角对应相等,两三角形相似; ( 2)两边对应成比例且夹角相等,两三角形相似; ( 3)三边对应成比例,两三角形相似。
射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项; 两直角边分别是它们在斜边上射影与斜边的比例中项。
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。 圆心角定理:圆心角的度数等于它所对弧的度数。
选修 1- 1、 1-2 数学知识点
第一部分 简单逻辑用语
1. 原命题:“若 p ,则 q ”;逆命题: “若 q ,则 p ”; 否命题:“若 p ,则 q ”;逆否命题: “若 q ,则 p ”
2. 四种命题的真假性之间的关系: ( 1)两个命题互为逆否命题,它们有相同的真假性; ( 2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
3. 若 p 若p
q ,则 p 是 q 的充分条件, q 是 p 的必要条件. q ,则 p 是 q 的充要条件(充分必要条件) .
集合间的包含关系:若 A B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;
若 A=B,则 A 是 B 的充要条件;
4. ⑴全称量词——“所有的” 、“任意一个”等,用“
3. 极坐标与直角坐标的互化:
2 x2 y2 , x y sin , tan
cos , y (x 0) x
3.圆 ( x a) 2 ( y b)2 r 2的参数方程可表示为
x a rcos , ( 为参数 ) .
y b rsin .
2
2
椭圆 x a2
y b2
1 (a b
0) 的参数方程可表示为
x acos , ( 为参数 ) .
nx n

高中数学选修1-2知识点及典型题

高中数学选修1-2知识点及典型题

选 修 1-2 知 识 点 总 结第一章:统计案例一.回归分析的基本思想及其初步应用1.正相关:如果点散布在从左下角到右上角的区域,则称这两个变量的关系为正相关。

2.负相关:如果点散布在从左上角到右下角的区域,则称这两个变量的关系为负相关。

3.回归直线方程的斜率和截距公式:⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a xn x yx n yx x x y yx x b n i i ni ii n i i ini i1221121)()()((此公式不要求记忆)。

4.最小二乘法:求回归直线,使得样本数据的点到它的距离的平方最小的方法。

e :我们把线性回归模型e a bx y ++=,其中b a ,为模型的未知参数,e 称为随机误差。

随机误差a bx y e i i i --=eˆ:我们用回归方程a x b y ˆˆˆ+=中的y ˆ估计a bx +,随机误差)(a bx y e +-=, 所以y y e ˆˆ-=是e 的估计量,故a x b y y y e ii i i i ˆˆˆˆ--=-=,e ˆ称为相应于点),(i i y x 的残差。

2R :∑∑==---=ni ini iy yyy R 12122)()ˆ(1,2R 的表达式中21)(∑=-ni i y y 确定,(1)2R 越大,残差平方和21)ˆ(∑=-ni i yy 越小,即模型的拟合效果越好; (2)2R 越小,残差平方和21)ˆ(∑=-ni i yy 越大,即模型的拟合效果越差。

2R 越接近1,表示回归效果越好。

二.独立性检验的基本思想及其初步应用1.分类变量:这种变量的不同“值”表示个体所属的不同类别的变量。

2.列联表:列出两个分类变量的频数表,称为列联表。

22⨯列联表:2K 的观测值:))()()(()(2d b c a d c b a bc ad n k ++++-=。

0k 表:如果0k k ≥,就推断“Y X ,有关系”,这种推断犯错误的概率不超过α; 否则,在样本数据中没有发现足够证据支持结论“Y X ,有关系”。

数学选修1-2知识点及习题(2)

数学选修1-2知识点及习题(2)

选修1-2知识点第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

}2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定:⑴总偏差平方和:∑=-ni i y y 12)(;⑵残差:∧∧-=i i i y y e ; ⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y 12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。

注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。

:4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。

第二章 推理与证明一.推理: $⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修1- 2知识点总结第一章统计案例
L I星水二藥法求缓性hl*」穴程
剽斯齒个厨机变筮梱
关程度的大小1 .线性回归方程
①变量之间的两类关系:函数关系与相关关系;
②制作散点图,判断线性相关关系
③线性回归方程:y bx a (最小二乘法)
可红性化的回归分祈条件慨常
区辽列诵表的
独立性检壺
n
X i y nx y b —
其中,n 2
X i
i 1
-2
nx
bx
a y
注意:线性回归直线经过定点(x, y).
2 •相关系数(判定两个变量线性相关性)
n
(X i x)(y i y)
i 1
n n
(X i x)2(y i
i 1 i 1
<0时,变量x, y负相关;
|r|
y)2
注:⑴r >0时,变量x, y正相关;
⑵①|r|越接近于1,两个变量的线性相关性越强;② 间几乎不存在线性相关关系。

3•条件概率对于任何两个事件A和B,在已知B发生的条件下,A发生的概率称为B发生时A发生的
p ( AB)
条件概率•记为P(A|B),其公式为P(A|B)= p((A)
接近于0时,两个变量之
4相互独立事件
(1) 一般地,对于两个事件A, B,如果_P(AB)= P(A)P(B),则称A、B相互独立.
(2) 如果A i, A2,…,An 相互独立,则有P(A I A2…A n)= P(A I)P(A2)…P(A n).
(3)如果A, B相互独立,则A与-,-与B,
5.独立性检验(分类变量关系):
(1) 2 2列联表
设代B为两个变量,每一个变量都可以取两
个值,变量A:A,A2A;变量B: B1,B2
通过观察得到右表所示数据:
并将形如此表的表格称为2X2列联表.
(2) 独立性检验
根据2X2列联表中的数据判断两个变量
B是否独立的问题叫2 X列联表的独立性检验.
(3) 统计量x2的计算公式
_ n (ad —be) 2__________ x 2_(a + b)( c+ d) ( a+ e)( b+ d) B1

u
A
6息计
4j b
舄:c d
AW ft+c■+■
—与-也相互独立.
憩我性判断
没宥关联
/>2,706郭鴨的把握判定变量甘有关联
/>3.141供悯的祀掘判定变fi r. B有关联
^>6.635仙%的把握判唐变址4占習关联A,
1•流程图
流程图是由一些图形符号和文字说明构成的图示•流程图是表述工作
方式、工艺流程的一种常用手段,它的特点是直观、清晰.
2.结构图
一些事物之间不是先后顺序关系,而是存在某种逻辑________________
系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结
构图,分类结构图及知识结构图等.
1推理
⑴合情推理:
归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,
然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理
由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

归纳推理是由部分到整体,由个别到一般的推理。

②类比推理
由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推
理,称为类比推理,简称类比。

类比推理是特殊到特殊的推理。

⑵演绎推理
从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

演绎推理是由一般到特殊的推理。

三段论”是演绎推理的一般模式,包括:⑴大前提---------------- 已知的一般结论;⑵小前提------------- 所研究的特殊情况;⑶结论------- 根据一般原理,对特殊情况得出的判断。

第二章框图
合情
推理
归纳推理
类比推理
I—
特殊到

I持殊到_
I特殊
结论不
一定正



fflT
算工K知
艺他
流■7



第三章推理与证明
2•证明
(1)直接证明
①综合法
一般地,禾U用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。

综合法又叫顺推法或由因导果法。

②分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。

分析法又叫逆推证法或执果索因法。

⑵间接证明……反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

第四章复数
1•复数的有关概念
(1)把平方等于—1的数用符号i表示,规定i2=- 1,把i叫作虚数单位.
⑵形如a+ bi的数叫作复数(a, b是实数,i是虚数单位).通常表示为z= a+ bi(a, b€ R).
(3)对于复数z= a + bi, a与b分别叫作复数z的 _____________ 与 _______ ,并且分别用Re z与Im z表示. 2•数集之间的关系
复数的全体组成的集合叫作______________________ ,记作C.
3•复数的分类
实数(b= 0)纯虚数(a=0)
虚数(0)
非纯虚数(0)
4•两个复数相等的充要条件
设a, b, c, d都是实数,则a+ bi= c + di,当且仅当 _____________________
复数a + bi
(a, b€ R)
5•复平面
(1)定义:当用________________________ 的点来表示复数时,我们称这个直角坐标平面为复平面.
⑵实轴:__________ 称为实轴.虚轴: _________________ 称为虚轴.
6•复数的模
若z= a + bi(a, b € R),贝U _____________ .
7•共轭复数
(1)定义:当两个复数的实部_______________ ,虚部互为_______________ 时,这样的两个复数叫作互为共轭复数.复数z的共轭复数用______________ 表示,即若z= a+ bi,则z-= ____________________ .
⑵性质:___________ = _____________ = ________________ .
必背结论
1. (1)z=a+bi € R b=0 (a,b€ R) z= z z2>0
⑵ z=a+bi 是虚数0a,b€ R);
⑶ z=a+bi 是纯虚数a=0 且b^0<,b€ R) z+ z = 0 (z工0 z2<0;
(4) a+bi=c+di a=c 且c=d(a,b,c,d€ R);
2. 复数的代数形式及其运算
设z i= a + bi , z2 = c + di (a,b,c,d€ R),贝U:
(1) z i± = (a + b) ±c + d)i ;
(2) z i • z2 = (a+bi) (・c+di)=( ac-bd) + (ad+bc)i;
⑶ZIP = (a bi)(c di)学卑(K0);
(c di )(c di) c d c d
3. 几个重要的结论
2 1 i . 1 i .
(1) (1 i) 2 ;i;i;
1 i 1 i
4n 4n 1 4n 2 4n 3
⑵i 性质:T=4; i 1,i i,i 1,i i ;
.4n . 4n 1 . 4 2 .4n 3
i i i i Q
- 1
⑶z 1 zz 1 z- O
z
m n m n m、nmn m mm
4. 运算律:(1) z z z ;(2)(z ) z ;(3)⑵ Z2) N Z2 (mn N);。

相关文档
最新文档