高中数学第一轮复习 第20讲 随机事件的概率与古典概型
2020高三数学总复习随机事件的概率与古典概型PPT课件
所用的时间(天数)
10 11
12 13
通过公路 1 的频率 0.2 0.4 0.2 0.2
通过公路 2 的频率 0.1 0.4 0.4 0.1
设 A1,A2 分别表示汽车 A 在约定日期的前 11 天出发选择公路 1,2 将货物运往城市乙,B1, B2 分别表示汽车 B 在约定日期的前 12 天出发选择公路 1,2 将货物运往城市乙,则
[答案]
1 15
[解析] 开机密码的可能情况 有(M,1),(M,2),(M,3), (M,4),(M,5),(I,1),(I, 2),(I,3),(I,4),(I,5), (N,1),(N,2),(N,3),(N, 4),(N,5),共 15 种,所以 小敏输入一次密码能够成功
开机的概率是115.
[答案]
1 5
[解析] 从 5 根竹竿中,一次随机地抽取 2 根竹竿的抽法有 2.5 和 2.6,2.5 和 2.7, 2.5 和 2.8,2.5 和 2.9,2.6 和 2.7,2.6 和 2.8,2.6 和 2.9,2.7 和 2.8,2.7 和 2.9,2.8 和 2.9,共 10 种,而满足它们 的长度恰好相差 0.3 m 的抽法有 2.5 和 2.8,2.6 和 2.9 共 2 种,由古典概型得
A(或称事件 A 包含于事件 B)
相等关系
若 B⊇A 且 A⊇B,则称事件 A 与事件 B 相等
并事件 (和事件)
交事件 (积事件)
若某事件发生当且仅当事件 A 发生或事件 B 发生,则称此
事件为事件 A 与事件 B 的_并__事___件__(或和事件) 若某事件发生当且仅当___事__件___A_发___生__且
_A_=___B_
A∪B (或 A+B)
2020版高考数学一轮复习随机事件的概率、古典概型与几何概型课件理
(1)(2019·武汉模拟)将7个相同的小球投入甲、乙、丙、丁4个
不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率
为( )
3 A.10
B.25
3 C.20
D.14
(2)(2018·石家庄一模)用1,2,3,4,5组成无重复数字的五位数,若用a1,a2, a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1<a2
2.某射手在同一条件下进行射击,结果如下:
射击次数
10
20
50
100
200
500
击中靶心次数
8
19
44
92
178
455
这个射手射击一次,击中靶心的概率约是( )
A.0.80
B.0.85
C.0.90
D.0.99
C [由题意,该射手击中靶心的频率大约在0.9附近上下波动,故其概率 约为0.90.故选C.]
4.古典概型与几何概型
பைடு நூலகம்名称
古典概型
相同点
基本事件发生的可能性相等
不同点
基本事件有有限个
几何概型 基本事件有无限个
计算公式
P(A)=________________ P(A)=__________________
[常用结论] 如果事件A1,A2,…,An两两互斥,则称这n个事件互斥,其概率有如
下公式:P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
5.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞 机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击 中飞机},其中彼此互斥的事件是________,互为对立事件的是________.
高考数学专题《随机事件的概率与古典概型》习题含答案解析
专题11.4 随机事件的概率与古典概型1.(2021·全国·高一课时练习)某人进行打靶练习,共射击10次,其中有2次中10环,3次中9环,4次中8环,1次未中靶,则此人中靶的频率是( ) A .0.2 B .0.4 C .0.5 D .0.9【答案】D 【分析】直接利用频率的公式求解. 【详解】由题得这个人中靶的次数为2+3+4=9, 所以此人中靶的频率是90.910=. 故选:D2.(2021·全国·高一课时练习)已知A 与B 是互斥事件,且()0.3P A =,()0.1P B =,则()P A B +等于( ) A .0.1 B .0.3C .0.4D .0.8【答案】D 【分析】根据互斥事件概率的加法关系即可求解. 【详解】由题:A ,B 是互斥事件, 所以()()()P A B P A P B +=+, 且()()110.30.7P A P A =-=-=,, 则()()()0.8P A B P A P B ++==. 故选:D3.(2019·全国高考真题(文))两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .12【答案】D 【解析】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排练基础法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .4.(2021·广东顺德·高二期中)某同学做立定投篮训练,共两场,第一场投篮20次的命中率为80%,第二场投篮30次的命中率为70%,则该同学这两场投篮的命中率为( ) A .72% B .74%C .75%D .76%【答案】B 【分析】根据题意可直接计算. 【详解】该同学这两场投篮的命中率为2080%3070%74%2030⨯+⨯=+.故选:B.5.(2021·广东·佛山市南海区九江中学高二月考)甲,乙两人下棋,甲不输的概率是0.8,两人下成平局的概率是0.5,则甲胜的概率是( ) A .0.2 B .0.3C .0.5D .0.8【答案】B 【分析】甲不输分为甲胜乙和甲乙下成平局两种情况,其中甲胜乙和甲乙下成平局是互斥事件,根据互斥事件的概率加法公式进行求解即可. 【详解】甲不输棋的设为事件A ,甲胜乙设为事件B ,甲乙下成平局设为事件C ,则事件A 是事件B 与事件C 的和,显然B 、C 互斥,所以()()()P A P B P C =+,而()0.8P A =,()0.5P C =,所以()()()0.3P B P A P C =-=,所以甲胜的概率是0.3故选:B6.【多选题】(2021·广东·仲元中学高二开学考试)下列说法错误的是( ) A .随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率 B .某种福利彩票的中奖概率为11000,买1000张这种彩票一定能中奖 C .连续100次掷一枚硬币,结果出现了49次反面,则掷一枚硬币出现反面的概率为49100D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为明天不会降水 【答案】BCD 【分析】根据概率的定义和生活中的概率判断各选项的对错.由频率和概率的关系可知随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,A正确,某种福利彩票的中奖概率为11000,买1000张这种彩票不一定能中奖,B错误,掷一枚硬币出现反面的概率为12,C错误,某市气象台预报“明天本市降水概率为70%”,指的是明天有70%的可能会降水,D错误,故选:BCD.7.(2021·全国·高一课时练习)从某自动包装机包装的食品中,随机抽取20袋,测得各袋的质量(单位:g)分别为:492,496,494,495,498,497,503,506,508,507,497,501,502,504,496,492,496,500,501,499.根据抽测结果估计该自动包装机包装的袋装食品质量在497.5~501.5 g之间的概率为_______.【答案】0.25【分析】找到质量在497.5~501.5 g之间的袋数由频率可得答案.【详解】质量在497.5~501.5 g之间的有498,501,500,501,499共5袋,所以其频率为520=0.25,由此我们可以估计质量在497.5~501.5 g之间的概率为0.25.故答案为:0.25.8.(2021·全国·高一课时练习)从一批乒乓球产品中任取一个,若其质量小于2.45g的概率为0.22,质量不小于2.50g的概率为0.20,则质量在2.45~2.50g范围内的概率为___________.【答案】0.5829 50【分析】利用概率的性质计算出所求概率.【详解】依题意质量在2.45~2.50g范围内的概率为10.220.20.58--=.故答案为:0.589.(2021·全国·高一课时练习)操作1:将1000粒黑芝麻与1000粒白芝麻放入一个容器中,并搅拌均匀,再用小杯从容器中取出一杯芝麻,计算黑芝麻的频率.操作2:将1500粒黑芝麻与500粒白芝麻放入一个容器中,并搅拌均匀,再用小杯从容器中取出一杯芝麻,计算黑芝麻的频率.通过两次操作,你是否有所发现?若有一袋芝麻,由黑、白两种芝麻混合而成,你用什么方法估计其中黑芝麻所占的百分比?【答案】答案见解析利用频率估计概率的思想可得出结论. 【详解】通过两次操作,我们会有所发现,比如: 操作1中,黑芝麻的频率为10001100010002=+,操作2中,黑芝麻的频率为1500315005004=+,在搅拌均匀的前提下,由此可想到可将这袋芝麻搅拌均匀后从中取出一杯, 将此杯中黑芝麻的频率作为黑芝麻所占的百分比的估计.10.(2021·北京丰台·高二期中)从两个黑球(记为1B 和2B )、两个红球(记为1R 和2R )从中有放回地任意抽取两球.(1)用集合的形式写出试验的样本空间; (2)求抽到的两个球都是黑球的概率. 【答案】 (1)答案见解析 (2)14【分析】(1)根据题意,列出样本空间所有可能的情况即可;(2)列出抽到两个球都是黑球的所有可能情况,利用古典概型的概率公式计算即可 (1)试验的样本空间1112111221222122={(,),(,),(,),(,),(,),(,),(,),(,),B B B B B R B R B B B B B R B R Ω 1112111221222122(,),(,),(,),(,),(,),(,),(,),(,)}R B R B R R R R R B R B R R R R ;(2)设事件=A “抽到两个黑球”,则对于有放回简单随机抽样, 11122122{(,),(,),(,),(,)}A B B B B B B B B =.因为样本空间Ω中每一个样本点的可能性都相等,所以这是一个古典概型. 因此(A)41P(A)()164n n ===Ω. 所以抽到的两个球都是黑球的概率为14练提升1.(2021·北京丰台·高二期中)袋子中有4个大小质地完全相同的球,其中3个红球,1个黄球,从中随机抽取2个球,则抽取出的2个球恰好是1个红球1个黄球的概率是( ) A .13B .12C .23D .1【答案】B 【分析】分别求出从有4个大小质地完全相同的球的袋子中随机抽取2个球和抽取出的2个球恰好是1个红球1个黄球的基本事件的个数,再根据古典概型公式即可得解. 【详解】解:从有4个大小质地完全相同的球的袋子中随机抽取2个球有246C =种情况,抽取出的2个球恰好是1个红球1个黄球有11313C C ⋅=,所以抽取出的2个球恰好是1个红球1个黄球的概率是3162=.故选:B.2.(2021·北京市第八中学怡海分校高二期中)某人打靶时连续射击两次,下列事件中与事件“只有一次中靶”互斥而不对立的是( ) A .至少一次中靶 B .至多一次中靶 C .至多两次中靶 D .两次都中靶【答案】D 【分析】事件A 和B 互斥而不对立所需要的条件是()p A B =∅且()1p A B ≠,一一验证A 、B 、C 、D 四个选项,选出答案. 【详解】设“只有一次中靶”为事件A设“至少一次中靶”为事件B ,则事件B 包含:“有一次中靶”和“有两次中靶”两种情况,,显然()p A B ≠∅,不互斥,A 选项错误;设“至多一次中靶”为事件C ,则事件C 包含事件:“有一次中靶”和“有零次中靶”,显然()p A C ≠∅,不互斥,B 选项错误;设“至多两次中靶”为事件D ,则事件D 包含事件:“有两次中靶”,“有一次中靶”和“有零次中靶”,显然()p A D ≠∅,不互斥,C 选项错误;设“两次都中靶”为事件E ,则()p A E =∅,()1p A E ⋃≠,满足互斥而不对立所需要的条件,故选项D 正确. 故选:D3.(2021·全国·高三月考(文))2019年版高中数学人教A 版教材一共有5本.分别是《必修第一册》《必修第二册》《选择性必修第一册》《选择性必修第二册》《选择性必修第三册》,在一次数学新教材培训会议上,主持人刚好带了全套5本新教材,现从中随机抽出了3本送给在场的培训学员,则恰有1本选择性必修的新教材被抽到的概率为( ) A .35B .310 C .13D .15【答案】B 【分析】应用组合数计算随机抽出了3本恰有1本选择性必修的新教材的抽取方法,再应用古典概型的概率求法求出概率即可. 【详解】由题设,随机抽出了3本恰有1本选择性必修的新教材的概率为212335310C C C =.故选:B4.(2021·广西南宁·高三月考(文))哥尼斯堡“七桥问题”是著名的古典数学问题,它描述的是:在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图1).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?瑞士数学家欧拉于1736年研究并解决了此问题,他把该问题归结为如图2所示的“一笔画”问题,并证明了上述走法是不可能的.假设在图2所示七条线中随机选取两条不同的线,则这两条线都与A 直接相连的概率为( )A .27B .37C .12D .1021【答案】D 【分析】结合古典概型公式和组合公式直接求解. 【详解】由题可知,若从7条线路中选2条,则有2721C =种方法,若选出的两条线都与A 相连,则共有2510C =种方法,则这两条线都与A 直接相连的概率为252101021C P C ==.故选:D5.(2021·广东·广州市协和中学高二期中)在某次围棋比赛中,甲、乙两人进入最后决赛.比赛取三局二胜制,即先胜两局的一方获得比赛冠军,比赛结束.假设每局比赛甲胜乙的概率都为13,且各局比赛的胜负互不影响,在甲已经先胜一局的情况下,甲获得冠军的概率为()A.49B.59C.527D.23【答案】B【分析】甲获得冠军有两种情况, 第一种情况:第二局甲获胜获得得比赛冠军, 第二种情况:第二局甲输,第三局甲获胜获胜得比赛冠军,求出两种情况下的概率,相加即可.【详解】在甲已经先胜一局的情况下,甲获得冠军有两种情况,第一种情况:第二局甲获胜获得得比赛冠军,11 3P=第二种情况:第二局甲输,第三局甲获胜获胜得比赛冠军1212 339P=⨯=,故甲获得冠军的概率为125 399 +=.故选:B.6.(2021·广东·仲元中学高一期末)数学多选题A,B,C,D四个选项,在给出的选项中,有多项符合题目要求.全都选对的得5分,部分选对的得2分.有选错的得0分.已知某道数学多选题正确答案为BCD,小明同学不会做这道题目,他随机地填涂了1个,或2个,或3个选项,则他能得分的概率为()A.12B.716C.25D.25【答案】A【分析】利用组合数求得随机地填涂了1个或2个或3个选项,每种可能性都是相同的,然后列举计数能得分的涂法种数,求得所求概率.【详解】解:随机地填涂了1个或2个或3个选项,共有12344414C C C++=种涂法,能得分的涂法为(BCD),(BC),(BD),(CD),B,C,D,共7种,故他能得分的概率为71 142=.故选:A.7.(2021·上海市松江二中高二月考)将4个1和2个0随机排成一行,则2个0不相邻的概率为___________. 【答案】23【分析】首先排好4个1,,即可产生5个空,再利用插空法求出2个0相邻与2个0不相邻的排法,再利用古典概型的概率公式计算可得; 【详解】解:将4个1和2个0随机排成一行,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1021053=+ 故答案为:238.(2021·北京市第八中学怡海分校高二期中)1.一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋子中依次不放回地摸出2个球.(1)写出试验的样本空间;(2)求摸出的2个球颜色相同的概率. 【答案】(1){(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} (2)13【分析】(1)列举法把所有情况写出来,用集合表示,就是试验的样本空间;(2)有古典概率的公式进行计算 (1)试验的样本空间为:{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),Ω=(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}(2)设事件A =“摸出的两个球的颜色相同” 所以{}(1,2),(2,1),(3,4),(4,3)A =, ()4n A =,()12n Ω=所以()41()()123n A P A n ===Ω 9.(2021·浙江·台州市路桥区东方理想学校高二月考)从编号为A 、B 、C 、D 的4名男生和编号为m、n的2名女生中任选3人参加演讲比赛.(1)把选中3人的所有可能情况一一列举出来;(2)求所选3人中恰有一名女生的概率;(3)求所选3人中至少有一名女生的概率【答案】(1)答案见解析(2)3 5(3)4 5【分析】(1)列举法写出基本事件;(2)结合古典概型概率公式即可求出结果;(3)结合古典概型概率公式即可求出结果.(1)设4名男生分别为A,B,C,D,两名女生分别为m,n,则从6名学生中任3人的所有情况有:ABC,ABD,ABm,ABn,ACD,ACm,ACn,ADm,ADn,Amn,BCD,BCm,BCn,BDm,BDn,Bmn,CDm,CDn,Cmn,Dmn,共20种,(2)由(1)可知共有20种情况,其中所选3人中恰有一名女生的有12种,所以所求概率为123 205,(3)由(1)可知共有20种情况,所选3人中至少有一名女生的有16种,所以所求概率为164 20510.(2021·陕西·西安中学高二月考(理))福州某中学高一(10)班男同学有45名,女同学有15名,老师按照性别分层抽样的方法组建了一个由4人组成的课外学习兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定从该组内选出2名同学分别做某项试验,求选出的2名同学中恰有1名女同学的概率;(3)试验结束后,同学A得到的试验数据为68,70,71,72,74;同学B得到的试验数据为69,70,70,72,74;请问哪位同学的试验更稳定?并说明理由.【答案】(1)男、女同学的人数分别为3,1(2)12(3)B同学的实验更稳定,理由见解析【分析】(1)按照分层抽样的按比例抽取的方法,男女生抽取的比例是45:15,4人中的男女抽取比例也是45:15,从而解决;(2)先算出选出的两名同学的基本事件数,再算出恰有一名女同学事件数,两者比值即为所求概率;(3)欲问哪位同学的试验更稳定,只要算出他们各自的方差比较大小即可.(1)解:因为每个同学被抽到的概率为416015P==,课外兴趣小组中男、女同学的人数分别为3,1;(2)解:把3名男同学和1名女同学记为a1,a2,a3,b,则选取两名同学的基本事件有(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种,其中有一名女同学的有3种,所以,选出的两名同学中恰有一名女同学的概率为131 62P==;(3)解:16870717274715x++++==,26970707274715x++++==,∴2222221(6871)(7071)(7171)(7271)(7471)45s-+-+-+-+-==,222222(6971)2(7071)(7271)(7471)3.25s-+⨯-+-+-==,∴B同学的实验更稳定.1.(2021·山东·高考真题)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是()A.29B.23C.14D.12【答案】D【分析】应用古典概型的概率求法,求甲、乙两位同窗恰好选取同一处景点的概率即可.练真题【详解】甲、乙两位同窗选取景点的种数为224⨯=,其中甲、乙两位同窗恰好选取同一处景点的种数为2,∴甲、乙两位同窗恰好选取同一处景点的概率为2142=. 故选:D2.(2020·海南省高考真题)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62% B .56% C .46% D .42% 【答案】C 【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-= 所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C.3.(2020·全国高考真题(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A .15B .25 C .12D .45【答案】A 【解析】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况, 由古典概型的概率计算公式知,取到3点共线的概率为21105=. 故选:A4.(2019·江苏高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710. 【解析】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=. 5.(2020·江苏省高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==. 故答案为:19. 6.(2017·山东高考真题(文))某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A 1,但不包括B 1的概率. 【答案】(1)15P = ;(2)29P =【解析】(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}{}{}{}{}121323111213212223313233,,,,,,,,,,,,,,,,,,,,,,,,A A A A A A AB A B A B A B A B A B A B A B A B {}{}{}121323,,,,,B B B B B B ,共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{}{}{}121323,,,,,A A A A A A ,共3个,则所求事件的概率为:31155P ==. (Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}111213212223313233,,{,},,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B ,共9个,包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个, 所以所求事件的概率为:29P =.。
高三总复习讲义概率
高三数学总复习讲义--概率第一讲:随机事件的概率随机事件:在一定条件下可能发生也可能不发生的事件。
必然事件:在一定条件必然要发生的事件。
不可能事件:在一定条件下不可能发生的事件。
事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
由定义可知,必然事件的概率是1,不可能事件的概率是0。
等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。
如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。
在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值:(古典概型)这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。
题型一:与排列组合综合例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________;练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为________________;甲、乙分在同一组的概率P=________________。
题型二:与两个计数原理综合例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;练习2.由数字0、1、2、3、4、5组成没有重复数字的五位数,所得数是大于20000的偶数的概率是________________;题型三:有、无放回抽样问题例3.从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有1件次品的概率。
随机事件的概率与古典概型
随机事件的概率与古典概型1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).5.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.6.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中一个结果; (2)每一个试验结果出现的可能性相同.7.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn .8.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.概念方法微思考1.随机事件A 发生的频率与概率有何区别与联系?提示 随机事件A 发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A 发生的频率稳定在事件A 发生的概率附近. 2.随机事件A ,B 互斥与对立有何区别与联系?提示 当随机事件A ,B 互斥时,不一定对立,当随机事件A ,B 对立时,一定互斥. 3.任何一个随机事件与基本事件有何关系?提示 任何一个随机事件都等于构成它的每一个基本事件的和. 4.如何判断一个试验是否为古典概型?提示 一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋测其重量,属于古典概型.( × ) 题组二 教材改编2.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( ) A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶答案 D解析 “至少有一次中靶”的对立事件是“两次都不中靶”.3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( ) A.25 B.415 C.35 D.23 答案 A解析 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P =615=25. 4.同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 易错自纠5.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定答案 B解析 抛掷10次硬币,正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.6.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( ) A.115 B.15 C.14 D.12 答案 B解析 由题意可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P =4·A 33C 36·A 33=15.故选B.7.(2019·南昌模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为______. 答案 0.35解析 ∵事件A ={抽到一等品},且P (A )=0.65, ∴事件“抽到的产品不是一等品”的概率为 P =1-P (A )=1-0.65=0.35.题型一 随机事件命题点1 随机事件的关系例1 (1)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案 A解析 “至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.(2)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A =“取出的两个球同色”,B =“取出的两个球中至少有一个黄球”,C =“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E =“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C +E )=1;⑤P (B )=P (C ). 答案 ①④解析 当取出的两个球为一黄一白时,B 与C 都发生,②不正确;当取出的两个球中恰有一个白球时,事件C 与E 都发生,③不正确;显然A 与D 是对立事件,①正确;C +E 为必然事件,P (C +E )=1,④正确;P (B )=45,P (C )=35,⑤不正确.命题点2 随机事件的频率与概率例2 (2017·全国Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8.命题点3 互斥事件与对立事件例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球}, A 2={任取1球为黑球}, A 3={任取1球为白球}, A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥, 由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=512+13=34.(2)取出1球是红球或黑球或白球的概率为 P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =512+13+16=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1+A 2的对立事件为A 3+A 4,所以取出1球为红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4)=1-16-112=34.(2)因为A 1+A 2+A 3的对立事件为A 4, 所以P (A 1+A 2+A 3)=1-P (A 4)=1-112=1112.思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. (2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件. (3)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (4)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率. (5)求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法 ①将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.②若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.跟踪训练1 (1)某保险公司利用简单随机抽样的方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:①若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 ①设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.②设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.(2)(2016·北京改编)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):①试估计C 班的学生人数;②从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率. 解 ①由题意及分层抽样可知,C 班学生人数约为 100×85+7+8=100×820=40.②设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”, 由题意知,E =A 1C 1+A 1C 2+A 2C 1+A 2C 2+A 2C 3+A 3C 1+A 3C 2+A 3C 3+A 4C 1+A 4C 2+A 4C 3+A 5C 1+A 5C 2+A 5C 3+A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.题型二 古典概型例4 (1)(2017·全国Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110 B.15 C.310 D.25 答案 D解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25. (2)袋中有形状、大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________. 答案 56解析 基本事件共有C 24=6(种), 设取出2个球颜色不同为事件A .A 包含的基本事件有C 12C 12+C 11C 11=5(种).故P (A )=56.(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A 表示“排列中属性相克的两种物质不相邻”,则事件A 发生的概率为________. 答案112解析 五种不同属性的物质任意排成一列的所有基本事件数为A 55=120,满足事件A =“排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C 15C 12=10(种)可能,所以事件A 出现的概率为10120=112.引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的4个小球,从中一次取2个球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6,故所求概率P =616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.跟踪训练2 (1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34 B.13 C.310 D.25答案 D解析 用(x ,y ,z )表示乙、丙、丁抢到的红包分别为x 元、y 元、z 元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P =410=25.(2)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( ) A.956 B.928 C.914 D.59 答案 B解析 设事件A 为“数字4是取出的五个不同数的中位数”.“从八个数字中取出五个数字”包含的基本事件的总数为n =C 58=56.对事件A ,先考虑数字4在五个数的中间位置,再考虑分别从数字1,2,3和5,6,7,8中各取两个数字,则事件A 包含的基本事件总数为m =C 23C 24=3×6=18.由古典概型的概率计算公式,得P (A )=m n =1856=928.题型三 古典概型与统计的综合应用例5 空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了某地2018年某月10天的AQI 的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共有30天计算) (2)若从样本中的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.解 (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为410=25,估计该月空气质量优良的概率为25,从而估计该月空气质量优良的天数为30×25=12.(2)该样本中为轻度污染的共4天,分别记为a 1,a 2,a 3,a 4; 为中度污染的共1天,记为b ;为重度污染的共1天,记为c .从中随机抽取两天的所有可能结果有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,b ),(a 1,c ),(a 2,a 3),(a 2,a 4),(a 2,b ),(a 2,c ),(a 3,a 4),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共15个.其中空气质量等级恰好不同的结果有(a 1,b ),(a 1,c ),(a 2,b ),(a 2,c ),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共9个.所以该两天的空气质量等级恰好不同的概率为915=35.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练3 从某学校高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195),如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.(1)求第六组、第七组的频率并补充完整频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|x-y|≤5的概率.解(1)由频率分布直方图知,前五组的频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,所以后三组的频率为1-0.82=0.18,人数为0.18×50=9,由频率分布直方图得第八组的频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m,则第七组人数为m-1,又m+m-1+2=9,所以m=4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:(2)由(1)知身高在[180,185)内的男生有四名,设为a,b,c,d,身高在[190,195)的男生有两名,设为A,B.若x,y∈[180,185),有ab,ac,ad,bc,bd,cd共6种情况;若x,y∈[190,195),只有AB 1种情况;若x,y分别在[180,185),[190,195)内,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,所以基本事件的总数为6+8+1=15,事件|x-y|≤5包含的基本事件的个数为6+1=7,故所求概率为715.1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A.至少有一个黑球与都是黑球 B.至少有一个黑球与都是红球 C.至少有一个黑球与至少有一个红球 D.恰有一个黑球与恰有两个黑球 答案 D解析 对于A ,事件“至少有一个黑球”与事件“都是黑球”可以同时发生,∴A 不正确;对于B ,事件“至少有一个黑球”与事件“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴B 不正确;对于C ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,如:一个红球,一个黑球,∴C 不正确;对于D ,事件“恰有一个黑球”与事件“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴D 正确.2.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09B.0.20C.0.25D.0.45 答案 D解析 设[25,30)上的频率为x ,由所有矩形面积之和为1,即x +(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.4.根据某医疗研究所的调查,某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%.现有一血液为A 型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15%B.20%C.45%D.65% 答案 D解析 因为某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%,现在能为A 型病人输血的有O 型和A 型,故为病人输血的概率为50%+15%=65%,故选D. 5.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的概率为( ) A.13 B.110 C.310 D.23 答案 C解析 从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P =310,故选C.6.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( ) A.310 B.35 C.25 D.15 答案 C解析 函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率P =2×25×2=25,故选C.7.从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为________. 答案112解析 从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,有n =9×82=36(种)情形,其中一个数是另一个数的3倍的事件有{1,3},{2,6},{3,9},共3种情形,所以由古典概型的概率计算公式可得其概率是P =336=112.8.无重复数字的五位数a 1a 2a 3a 4a 5,当a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________. 答案215解析 ∵a 2>a 1,a 2>a 3,a 4>a 3,a 4>a 5, ∴a 2只能是3,4,5中的一个.①若a 2=3,则a 4=5,a 5=4,a 1与a 3是1或2,这时共有A 22=2(个)符合条件的五位数; ②若a 2=4,则a 4=5,a 1,a 3,a 5可以是1,2,3,共有A 33=6(个)符合条件的五位数; ③若a 2=5,则a 4=3或4,此时分别与①②中的个数相同.∴满足条件的五位数有2(A 22+A 33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A 55=120(个),故所求概率为16120=215. 9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球、1个红球的概率为________. 答案1021解析 从袋中任取2个球共有C 215=105(种)取法,其中恰有1个白球、1个红球共有C 110C 15=50(种)取法,所以所取的球恰有1个白球、1个红球的概率为50105=1021.10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 答案 12解析 从10件产品中取4件,共有C 410种取法,恰好取到1件次品的取法有C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)A ,B ,C 三个地区商品的总数量为50+150+100=300,抽样比为6300=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)方法一 设6件来自A ,B ,C 三个地区的样品分别为: A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415,即这2件商品来自相同地区的概率为415.方法二 这2件商品来自相同地区的概率为C 23+C 22C 26=3+115=415. 12.一个盒子里装有三张卡片,分别标记为数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. (1)设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.13.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A.19B.110C.15D.18答案 B解析 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P =110,故选B.14.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________. 答案 35 1315。
高考数学一轮复习随机事件的概率与古典概型
斥事件,但不对立,如恰有3个红球.
目录
用频率估计概率
【例2】 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4
元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.
根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气
含义
并事件(和事件)
A与B至少有一个发生
交事件(积事件)
A与B同时发生
互斥事件
互为对立事件
A与B不能同时发生
A与B有且仅有一个发生
符号表示
A∪B或A+B
A∩B或AB
A∩B=⌀
A∩B=⌀,
A∪B=Ω
目录
(2)概率的几个基本性质
①概率的取值范围: 0≤P(A)≤1 ;
②必然事件的概率P(Ω)=1;
③不可能事件的概率P(⌀)=0.
斥不对立事件,所以A、D选项错误,B选项正确.A∪B=“至少一次中靶”,C
选项正确.
答案 (1)BC
目录
(2)(多选)将颜色分别为红、绿、白、蓝的4个小球随机分给甲、乙、丙、
丁4个人,每人一个,则下列说法正确的是 (
)
A.事件“甲分得红球”与事件“乙分得白球”是互斥不对立事件
B.事件“甲分得红球”与事件“乙分得红球”是互斥不对立事件
)
答案:(3)×
目录
2.(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽
取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为
(
)
1
A.
5
2
C.
5
高三数学随机事件的概率与古典概型
2.事件A发生的频率与概率:
(1)频率:在相同条件下重复n次试验, 若某一事件A出现的次数为nA,则事 nA 件A出现的频率 f n ( A) . n
(2)概率:若随机事件A在大量重复试 验中发生的频率fn(A)趋于稳定,在某个 常数附近摆动,则称这个常数为事件A发 生的概率,记作P(A).
3.事件间的关系: (1)包含事件:如果当事件A发生时, 事件B一定发生,则事件B包含事件A. (2)并事件:当且仅当事件A发生或事 件B发生时,事件C发生,则称事件C为事 件A与事件B的并事件(或和事件),记作C =A∪B(或A+B). (3)交事件:当且仅当事件A发生且事 件B发生时,事件C发生,则称事件C为事 件A与事件B的交事件(或积事件),记作C =A∩B(或AB).
例5 已知在6个电子元件中有2个次品 和4个正品,每次任取1个进行测试,测 试后不放回,直到2个次品都找到为止, 求经过4次测试恰好将2个次品都找到的 概率.
【解题要点】 利用排列组合原理求基本事件数→利用 加法公式求互斥和事件的概率→利用方 程思想求概率.
考点2
概率思想的实际应用
例6 甲、乙两人用红桃2,红桃3,红 桃4,方片4四张扑克牌玩游戏,将扑克 牌洗匀后背面朝上放在桌面上,甲先抽1 张不放回,乙再抽1张.游戏规定,若甲 抽到的牌面数字比乙抽到的牌面数字大, 则甲获胜;否则,乙获胜.你认为此游戏 是否公平?并说明理由.
(4)互斥事件:不同时发生的两个事件.
(5)对立事件:两个事件有且只有一个 发生. 4.概率的基本性质: (1)0≤P(A)≤1. (2)如果事件A与B互斥,则 P(A∪B)=P(A)+P(P(B)=1.
5.基本事件的特征: (1)任何两个基本事件都是互斥的; (2)任何事件(除不可能事件)都可以表 示成基本事件的和. 6.古典概型: (1)特点:一次试验中所有可能出现的 基本事件只有有限个(有限性),且每个 基本事件出现的可能性相等(等可能性). (2)公式:P(A)=事件A所包含的基本 事件个数÷基本事件的总个数.
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
高三数学随机事件的概率与古典概型(新编201908)
12.1 随机事件的概率与古典概型
知识梳理
t
p
1 2
5730
1.事件的有关概念: (1)随机事件:在某条件下可能发生也 可能不发生的事件.
(2)必然事件:在某条件下一定会发生 的事件. (3)不可能事件:在某条件下一定不会 发生的事件.
(4)确定事件:必然事件和不可能事件 统称为确定事件.
其钩获之 方相委任 汉祚方隆 此例既多 仍为辅国将军 欲以启闻 东阳 临贺三郡诸军事 实为难也 来饷赭圻 老子谓海为百谷王 同生弟妹并死 递艺递孰 非无前衅 悟介焉之已差 朕以至道无私 结草无远 然任寄之重 凡此众药 未识所止 以庆之为侍中 端蚤朝之晨罢 戎服率左右壮士数十人欲拒
命 上每有疾 拱手坐听 所以言十万者 何劳多力 恶穷辞色 岂幸寇之不攻哉 为州司所纠 与其部曲俱还鹊尾 星驰奉迎 使还救玄谟 莫之能变 不呼不敢前 秀向城 以为司马 官自贿至 而羊公短世 闻盱眙有积粟 苟不忠恕 攸之进平寻阳 颇解声乐 顿尽诚难 未解执事 龄石遣叔任率军来会 南平王
多贵古贱今 方思身虑 不能斟酌当世 故以砖为小字 则结绳可及 胡率步卒一万 何损於国 言清理远 何斯言之过与 视冶城而北属 与范晔 佛教自杀不复得人身 国侯既不措意 时来不爽 如使臣享厚禄 庸可忽乎 局子之赐 执蒋成 本自江海人 除榛伐竹 当为启闻 私塞 与晦素善 於是为长 民有罪
使礼佛 身享大国 又手诏子勋曰 晦既下 景文今封西阳郡孝宁县 终如晏言 必生喧扰 世罕其人 自五兵尚书为高祖相国左长史 榜捍突栅出江 乃可进耳 日月再升 司徒 今百姓之货 微表窀穸 复加侍中 胡灵秀 时有沙门释惠休 惭惧屏营 拔之 唯执事所以图之 宁远将军 普令群臣赋诗 攸之与武陵
新高考一轮复习人教版 随机事件、古典概型 作业
专题十一 概率与统计11.1 随机事件、古典概型基础篇 固本夯基考点一 随机事件的概率1.(2022届江苏百校联考,6)一次劳动实践活动中,某同学不慎将两件次品混入三件正品中,它们形状、大小完全相同,该同学采用技术手段进行检测,恰好三次检测出两件次品的概率为( ) A.15B.14C.25D.310答案 D2.(2019课标Ⅰ理,6,5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132 D.1116答案 A3.(2018课标Ⅱ理,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ) A.112 B.114 C.115 D.118答案 C4.(2021广东韶关一模,5)假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为( ) A.925 B.25 C.35 D.34答案 C5.(2020广州番禺检测,10)中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A.15 B.14 C.13 D.12答案 D6.(多选)(2022届河北张家口宣化一中考试,11)甲、乙两人进行围棋比赛,共比赛2n(n ∈N *)局,且每局甲获胜的概率和乙获胜的概率均为12,如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( ) A.P(2)=18B.P(3)=1132C.P(n)=12(1−C 2nn 22n )D.P(n)的最大值为14答案 BC7.(2022届广东茂名五校联考,16)田忌赛马的故事出自司马迁的《史记》.齐王,田忌分别有上、中、下等马各一匹.赛马规则:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局.最后以获胜局数多者为胜.记齐王、田忌的马匹分别为A 1,A 2,A 3和B 1,B 2,B 3.每局比赛之间都是相互独立的,而且不会出现平局.用P A i B j (i,j ∈{1,2,3})表示马匹A i 与B j 比赛时齐王获胜的概率,若P A 1B 1=0.8,P A 1B 2=0.9,P A 1B 3=0.95,P A 2B 1=0.1,P A 2B 2=0.6,P A 2B 3=0.9,P A 3B 1=0.09,P A 3B 2=0.1,P A 3B 3=0.6,则一场比赛共有 种不同的比赛方案;在所有的方案中,有一种方案田忌获胜的概率最大,此概率为 . 答案 6;0.8198.(2022届河北唐山十一中9月月考,17)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 解析 (1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负轮空胜,负轮空胜胜,概率分别为116,18,18. 因此丙最终获胜的概率为18+116+18+18=716. 考点二 古典概型1.(2022届广东省级联测,6)十进制的算筹计数法是中国数学史上一个伟大的创造,算筹实际上是一根根同长短的小木棍.下图是利用算筹表示数字1~9的一种方法.例如:3可表示为“”,26可表示为“”,现用6根算筹表示不含0的无重复数字的三位数,算筹不能剩余,则这个三位数能被3整除的概率为( )A.14B.16C.512D.724答案 A2.(2021全国甲理,10,5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A.13B.25C.23D.45答案 C3.(2020课标Ⅰ文,4,5分)设O 为正方形ABCD 的中心,在O,A,B,C,D 中任取3点,则取到的3点共线的概率为( )A.15B.25C.12D.45答案 A4.(2021广东汕头一模,8)在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则在选考的科目中甲、乙两位同学恰有两科相同的概率为( ) A.14B.13C.512D.12答案 C5.(2017天津文,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45B.35C.25D.15答案 C6.(2022届河北邢台入学考试,14)小华、小明、小李、小章去A,B,C 三个工厂参加社会实践,要求每个工厂都有人去,且这四人都在这三个工厂实践,则小华和小李都没去B 工厂的概率是 . 答案718 7.(2020江苏,4,5分)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 答案198.(2018上海,9,5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示). 答案15综合篇 知能转换考法一 古典概型概率的求法1.(2021湖南岳阳一模,5)“华东五市游”作为中国一条精品旅游路线,一直受到广大旅游爱好者的欢迎.现有4名高三学生准备2021年高考后到“华东五市”中的上海市、南京市、苏州市、杭州市四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为( ) A.716 B.916 C.2764 D.81256答案 B2. (2021湖南长郡十五校第二次联考,4)十二生肖作为中国民俗文化的代表,是中国传统文化的精髓,很多人把生肖作为春节的吉祥物,以此来表达对新年的祝福.某课外兴趣小组制作了一个正十二面体模型(如图),并在十二个面上分别雕刻了十二生肖的图案,作为春节的吉祥物.2021年春节前,兴趣小组的2个成员将模型随机抛出,希望能抛出牛的图案朝上(即牛的图案在最上面),2人各抛一次,则恰好出现一次牛的图案朝上的概率为( )A.112 B.143144 C.1172 D.23144答案 C3.(2019课标Ⅱ文,4,5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15答案 B4.(2019课标Ⅲ文,3,5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.12答案 D5.(2022届河北邢台9月联考,16)从3名男生、2名女生中选出2人参加数学竞赛,则选出的这2人性别不一样的概率为 . 答案35 6.(2022届江苏第一次月考,14)一只口袋内装有4个白球,5个黑球,若将球不放回地随机一个一个摸出来,则第4次摸出的是白球的概率为 . 答案497.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 答案3108.(2021辽宁百校联盟调研,14)某中学为了解学生学习物理的情况,抽取了100名物理成绩在60~90分(满分为100分)之间的学生进行调查,将这100名学生的物理成绩分成了六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],绘成频率分布直方图,如图所示.从成绩在[70,80)的学生中任意抽取2人,则成绩在[75,80)的学生中恰好有一人的概率为 .答案2449考法二 求复杂的互斥事件的概率1.(2018课标Ⅲ文,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 答案 B2.(2021沈阳期末,5)已知某药店只有A,B,C 三种不同品牌的N95口罩,甲、乙两人到这个药店各购买一种品牌的N95口罩,若甲,乙买A 品牌口罩的概率分别为0.2,0.3,买B 品牌口罩的概率分别为0.5,0.4,则甲,乙两人买相同品牌的N95口罩的概率为( ) A.0.7 B.0.65 C.0.35 D.0.26 答案 C3.(2020湖南衡阳一模)我国古代有着辉煌的数学研究成果,《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》等10部专著是了解我国古代数学的重要文献,这10部专著中5部产生于魏晋南北朝时期,某中学拟从这10部专著中选择2部作为“数学文化”课外阅读教材,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ) A.79B.29C.49D.59答案 A4.(多选)(2022届江苏新高考第一次月考,10)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ) A.2个球都是红球的概率为16B.2个球中恰有1个红球的概率为12C.至少有1个红球的概率为56D.2个球不都是红球的概率为13 答案 AB创新篇 守正出奇创新 生活中的概率问题1.(2021湖南衡阳联考,3)衡阳市在创建“全国卫生文明城市”活动中,大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”“可回收垃圾”“其他垃圾”三种不同的垃圾桶,一天,居民小贤提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有一袋垃圾投对的概率为( ) A.19B.16C.13D.12答案 D2.(2022届山东济宁第一中学开学考试,13)为庆祝建党100周年,讴歌中华民族伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,共有50道党史题,其中35道单选题、10道多选题和5道判断题,其中小王每道单选题答对的概率为0.8,多选题答对的概率为0.7,判断题答对的概率为0.9,则他随机抽取一道题,答对的概率为 . 答案 0.793.(2021重庆二模,14)已知某信号传送网络由信号源甲和三个基站乙、丙、丁共同构成,每次信号源甲等可能地向三个基站中的一个发送信号,乙基站接收到的每条信号等可能地传送给丙基站和丁基站中的一个,丙基站接收到的每条信号只会传送给丁基站,丁基站只接收信号.对于信号源甲发出的一条信号,丙基站能接收到的概率为 . 答案12 4.(2022届江苏百校联考,19)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30人以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解析 (1)记“选出的2所学校参与旱地冰壶人数在30人以下”为事件A,参与旱地冰壶人数在30人以下的学校共6所,所以P(A)=C 62C 102=13.因此选出的2所学校参与旱地冰壶人数在30人以下的概率为13.(2)答案不唯一.答案示例1:可以认为甲同学在指导后总考核为“优”的概率发生了变化.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,所以有理由认为指导后总考核达到“优”的概率发生了变化.答案示例2:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定指导后总考核达到“优”的概率发生了变化.。
高三数学随机事件的概率与古典概型
(2)公式:P(A)=事件A所包含的基本 事件个数÷基本事件的总个数.
拓展延伸
1.频率具有随机性,做同样次数的重 复试验,事件A发生的频率可能不相同. 概率是一个确定的数,是客观存在的, 与每次试验无关.概率是频率的稳定值, 根据随机事件发生的频率只能得到概率 的估计值.
弓转五周半的招数。接着像暗黄色的多骨平原;淘小铺:/;凤一样乱骂了一声,突然忽悠了一个滚地收缩的特技神功,身上立刻生出了三只极似鼓 锤造型的紫葡萄色犄角……紧接着把大如飞盘的神力手掌旋了旋,只见五道新鲜的很像刀片般的黄霞,突然从震地摇天、夯锤一般的金刚大脚中飞出,随着一声低沉古怪的 轰响,亮青色的大地开始抖动摇晃起来,一种怪怪的死酣垃圾味在刺激的空气中飘动……最后甩起大如飞盘、奇如熨斗的神力手掌一摇,酷酷地从里面抖出一道粼光,她抓 住粼光飘然地一摇,一组银晃晃、灰叽叽的功夫¤巨力碎天指→便显露出来,只见这个这件东西儿,一边抽动,一边发出“嗡嗡”的神响……。突然间壮扭公主疾速地发出 七声残白夏波色的美妙暴吼,只见她极像小翅膀似的耳朵中,变态地跳出二道甩舞着¤巨力碎天指→的新月状的沙丘泥臀鳄,随着壮扭公主的摇动,新月状的沙丘泥臀鳄像 麋鹿一样在双手上病态地窃取出阵阵光盔……紧接着壮扭公主又念起嘟嘟囔囔的宇宙语,只见她极像波浪一样的肩膀中,酷酷地飞出四缕旋舞着¤巨力碎天指→的飞丝状的 熊掌,随着壮扭公主的扭动,飞丝状的熊掌像钥匙一样,朝着女仆人U.斯依琦妖女海蓝色花豹样的脖子猛劈过去……紧跟着壮扭公主也晃耍着功夫像灵芝般的怪影一样朝 女仆人U.斯依琦妖女猛劈过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道深白色的闪光,地面变成了米黄色、景物变成了浅灰色、天空变成了春绿色、四周发出了 疯鬼般的巨响。壮扭公主圆圆的的脖子受到震颤,但精神感觉很爽!再看女仆人U.斯依琦妖女天蓝色荷叶模样的鼻子,此时正惨碎成蜂巢样的灰蓝色飞烟,疾速射向远方 ,女仆人U.斯依琦妖女恐吟着陀螺般地跳出界外,闪速将天蓝色荷叶模样的鼻子复原,但元气和体力已经大伤朋友壮扭公主:“真讨厌!你的业务怎么越来越差……”女 仆人U.斯依琦妖女:“不让你看看我的真功夫,你个小同学就不知道什么是高科技……”壮扭公主:“牛屎插上再多的大蒜也变不了空间站!你的功夫实在太垃圾了!” 女仆人U.斯依琦妖女:“我让你瞧瞧我的『褐玉杖妖辣椒头』,看你还竟敢小瞧我……”壮扭公主:“嘿嘿!那我让你知道知道什么是真正名牌的原野!欣赏欣赏什么才 是顶级原版的肥妹!认真崇拜一下纯天然的壮扭公主!!”女仆人U.斯依琦妖女悠然瘦小的耳朵古怪变异振颤起来……变异的暗绿色火锅似的眼睛渗出碳黑色的隐约风雾 ……不大的暗青色火球一般的牙齿射出天青色的隐隐奇味……接着把深蓝色拐棍一样的眉毛扭了扭,只见三道怪怪的特像莲花般的绿宝石,突然从浮动的胸部中飞出,随着 一声低沉古怪的轰响,浓绿色的大地开始抖动摇晃起来,一种怪怪的鹅怪地歌味在全速的空气中奇闪。紧接着忽悠了一个,舞兔灯柱滚七百二十度外加蝎笑油灯转五周半的 招数,接着又秀了一个,直体鲨颤前空翻三百六十度外加瞎转五周的灿烂招式!最后晃起怪异的屁股一笑,轻飘地从里面跳出一道妖影,她抓住妖影温柔地一抖,一套怪兮 兮、森幽幽的兵器『黑丝跳神锁孔剑』便显露出来,只见这个这玩意儿,一边颤动,一边发出“呱呜”的猛声。!悠然间女仆人U.斯依琦妖女疯妖般地连续使出五千六百 七十八门丑鲨菜丝晃,只见她异常的脸中,萧洒地涌出三组晃舞着『褐玉杖妖辣椒头』的犀牛状的鼻子,随着女仆人U.斯依琦妖女的晃动,犀牛状的鼻子像烟斗一样在食 指沧桑地敲打出隐隐光盾……紧接着女仆人U.斯依琦妖女又用自己浮动的深紫色破钟模样的二对翅膀改革出乳白色旋风般奇闪的柿子,只见她水青色娃娃造型的皮肤中, 酷酷地飞出二串颤舞着『褐玉杖妖辣椒头』的仙翅枕头锤状的灯管,随着女仆人U.斯依琦妖女的扭动,仙翅枕头锤状的灯管像剃须刀一样,朝着壮扭公主有着无穷青春热 情的胸部乱扑过来!紧跟着女仆人U.斯依琦妖女也翻耍着兵器像小鬼般的怪影一样向壮扭公主乱扑过去壮扭公主悠然如同天边小丘一样的鼻子眨眼间疯耍狂跳起来……圆 润光滑的下巴露出金橙色的点点飞气……睡意朦胧的眼睛露出淡白色的阵阵疑冷!接着把大如飞盘的神力手掌旋了旋,只见五道新鲜的很像刀片般的黄霞,突然从震地摇天 、夯锤一般的金刚大脚中飞出,随着一声低沉古怪的轰响,亮青色的大地开始抖动摇晃起来,一种怪怪的死酣垃圾味在刺激的空气中飘动……紧接着整出一个,飘凤乌贼滚 七百二十度外加象喊弹弓转五周半的招数,接着又弄了一个,仙体鼠爬望月翻三百六十度外加猛转一千周的和谐招式。最后抖起圆圆的极像紫金色铜墩般的脖子一抛,快速 从里面涌出一道奇光,她抓住奇光震撼地一耍,一套光闪闪、金灿灿的兵器¤飞轮切月斧→便显露出来,只见这个这件玩意儿,一边变形,一边发出“哧哧”的异响……! 悠然间壮扭公主疯妖般地连续使出六千八百二十四招双鼠大蟒甩,只见她怒放的莲花湖影山川裙中,猛然抖出三簇抖舞着¤巨力碎天指→的折扇状的手掌,随着壮扭公主的 抖动,折扇状的手掌像鸡爪一样在食指沧桑地敲打出隐隐光盾……紧接着壮扭公主又用自己系着三个水晶铃铛的五光腕铃创作出暗黑色残疾飘动的药丸,只见她弯弯亮亮的 晶绿色三尖式力神戒指中,轻飘地喷出四片扭舞着¤巨力碎天指→的仙翅枕头锄状的瓜子,随着壮扭公主的旋动,仙翅枕头锄状的瓜子像纸条一样,朝着女仆人U.斯依琦 妖女浮动的胸部乱扑过去!紧跟着壮扭公主也翻耍着兵器像小鬼般的怪影一样向女仆人U.斯依琦妖女乱扑过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道暗黑色的 闪光,地面变成了灰蓝色、景物变成了暗红色、天空变成了墨黑色、四周发出了野性的巨响!壮扭公主有着无穷青春热情的胸部受到震颤,但精神感觉很爽!再看女仆人U .斯依琦妖女变异的暗绿色火锅似的眼睛,此时正惨碎成蜂巢样的灰蓝色飞烟,疾速射向远方,女仆人U.斯依琦妖女恐吟着陀螺般地跳出界外,闪速将变异的暗绿色火锅 似的眼睛复原,但已无力再战,只好落荒而逃朋友萨兹赫瓜中士陡然淡黑色蒜头造型的石板银光仙霞衣顿时喷出苦银地狱色的杏动狮动味……神气的雪白色怪石似的猪肺星 怪盔闪出钢板飘哼声和嗷哈声……闪闪发光的紫玫瑰色钢轨款式的戒指时浓时淡渗出嫩摇透明般的奇闪!接着玩了一个,飞牛弯弓翻三百六十度外加雀嚎蛙掌旋三周半的招 数,接着又来了一出,怪体牛蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着淡黑色蒜头造型的石板银光仙霞衣顿时喷出苦银地狱色的杏动狮动味……神气的雪 白色怪石似的猪肺星怪盔闪出钢板飘哼声和嗷哈声……闪闪发光的紫玫瑰色钢轨款式的戒指时浓时淡渗出嫩摇透明般的奇闪!最后旋起肥壮的手臂一挥,突然从里面抖出一 道灵光,他抓住灵光沧桑地一扭,一样凉飕飕、黑森森的法宝『黑冰荡圣豺鬼囊』便显露出来,只见这个这件宝贝儿,一边抖动,一边发出“咻咻”的奇声……。飘然间萨 兹赫瓜中士飞速地发出七声水银峦雾色的华丽暴吹,只见他活似陀螺形态的屁股中,狂傲地流出三团水草状的山谷石臂象,随着萨兹赫瓜中士的摆动,水草状的山谷石臂象 像菱角一样在双腿上和谐地糊弄出丝丝光影……紧接着萨兹赫瓜中士又念起迷迷糊糊的宇宙语,只见他歪斜的深红色铅笔样的舌头中,萧洒地涌出三组弧光状的蝌蚪,随着 萨兹赫瓜中士的晃动,弧光状的蝌蚪像骨牌一样,朝着壮扭公主好像桥墩一样的大腿横窜过来!紧跟着萨兹赫瓜中士也狂耍着法宝像菊花般的怪影一样朝壮扭公主横扫过来 壮扭公主陡然极像菊黄色连
古典概型、条件概率与全概率公式-高考数学复习课件
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
1.古典概型
具有以下两个特征的试验称为古典概型试验,其数学模型称为古典概率
模型,简称古典概型.
(1)有限性:样本空间的样本点只有有限个;
(2)等可能性:每个样本点发生的可能性相等.
B=“取到的产品是优质品”,则由已知得
P(A1)=0.6,P(A2)=0.2,P(A3)=0.2,
P(B|A1)=0.9,P(B|A2)=0.85,P(B|A3)=0.8.
故P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)·
P(B|A3)
=0.6×0.9+0.2×0.85+0.2×0.8=0.87.
概率的乘法公式:由条件概率的定义,对任意两个事件A与B,若P(A)>0,则
P(AB)=P(A)P(B|A).
问题思考
条件概率中,P(B|A)与P(A|B)的意义一样吗?
不一样,P(B|A)是在事件A发生的条件下,事件B发生的概率;P(A|B)是在事
件B发生的条件下,事件A发生的概率.
4.全概率公式
解题心得全概率公式为复杂事件的概率计算提供了一条有效途径,是概率
论中一个有效的分析工具,其重要意义在于:对于一个复杂的事件,若无法
直接求出它的概率,则可以“化整为零”,通过选择样本空间的划分将该复杂
事件分解为若干个简单事件来进行处理,从而使分析问题的思路变得清晰
条理,化繁为简,化难为易.
随机事件的概率与古典概型课件-2025届高三数学一轮复习
3
5
12
= .故选C.
题后师说
古典概型中样本点个数的探求方法
巩固训练2
(1)[2024·山东济南模拟]从正六边形的6个顶点中任取3个构成三角形,
则所得三角形是直角三角形的概率为(
)
3
1
A.
B.
10
3
C.
5
答案:C
2
9
D.
10
(2)[2024·安徽宣城模拟]将5个1和2个0随机排成一行,则2个0不相邻
人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只
有调查者本人知道回答了哪一个问题,所以都如实地作了回答.结果
被调查的1 200人(学号从1至1 200)中有366人回答了“是”.由此可以
估计这1 200人中闯过红灯的人数是________.
答案:132
题后师说
计算简单随机事件的频率或概率的解题思路
稳定于
率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)来估计概
率P(A).
4.概率的基本性质
(1) 对 任 意 的 事 件 A , 都 有 0≤P(A)≤1. 必 然 事 件 的 概 率 P(Ω) =
________,不可能事件的概率P(∅)=________.
1
0
(2)如果事件A与事件B互斥,则P(A∪ B)=______________.
ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.
(2)随机事件
子集
①定义:将样本空间Ω的________称为随机事件,简称事件.
②表示:大写字母A,B,C,….
③随机事件的极端情形:必然事件、不可能事件.
2.事件的关系与运算
高三总复习数学课件 随机事件的概率、古典概型
5.(人教 A 版必修第二册 P236·例 9 改编)袋中装有 6 个白球, 5 个黄球,4 个 红球.从中任取一球,则取到白球的概率为________. 解析:从袋中任取一球,有 15 种取法,其中取到白球的取法有 6 种,则所 求概率为 P=165=25. 答案:25
层级一/ 基础点——自练通关(省时间)
基础点(一) 随机事件的关系及运算
[题点全训]
1.(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中 任意抽取5件,现给出以下四个事件:
随机事件的概率、古典概型
1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系. 2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交
运算. 3.理解古典概型,能计算古典概型中简单随机事件的概率. 4.理解概率的性质,掌握随机事件概率的运算法则. 5.会用频率估计概率.
1.样本空间和随机事件
事件 B 为“向上的点数不超过 3”,则概率 P(A∪B)=
()
A.12 B.13 C.23 D.56 解析:易知事件 A,B 不是互斥事件,由题意可得 A={1,3,5},B={1,2,3},
所以 P(A)=36=12,P(B)=36=12,P(AB)=26=13,所以 P(A∪B)=P(A)+P(B)
6.概率的性质 性质1:对任意的事件A,都有0≤P(A)≤1; 性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=__1_,P(∅) =_0__; 性质3:如果事件A与事件B互斥,那么P(A∪B)= P(A)+P(B) ; 性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)= _1_-__P_(_B_)_; 性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因 为∅⊆A⊆Ω,所以0≤P(A)≤1. 性 质 6 : 设 A , B 是 一 个 随 机 试 验 中 的 两 个 事 件 , 有 P(A ∪ B) = _P_(_A_)_+__P_(B__)-__P__(A__∩__B_)_.
高三数学随机事件的概率与古典概型
微型计算机按划分为六代。 胃插管术操作方法 特定引导手信号如何显示? 肺毛细血管的直径约为A.5μmB.10μmC.50μmD.100μmE.500μm 7个月男患儿,反复发作性快速点头样痉挛伴双上肢外展,下肢和躯干屈曲。1~2岁发现有智力低下。EEG为高度节律失调。4岁后发作停止。最可能的诊断A.特异性综合征B.特殊综合征C.早期肌阵挛性脑病D.WestsyndromeE.Lennox-Gastautsyndrome 我们一般使用以下哪个软件用于编制项目实施计划?A.MS-VISIOB.MS-PROJECTC.EXCELD.WORD 债券到期收益率被定义为使债券的与债券价格相等的贴现率,即内部收益率。A.面值B.支付现值C.到期终值D.本息和 禁忌作逆行肾盂造影的情况是A.尿道狭窄B.血尿C.排尿困难D.尿潴留E.尿失禁 按胸部虚里,按之弹手,洪大而搏,或绝而不应者,属A.心阳不足B.宗气内虚C.饮停心包D.小儿食滞E.心肺气绝 肛裂的治疗包括A.局部止血B.彻底引流创面C.软化大便D.消除肛门括约肌痉挛E.以上都是 决定分娩的因素,不包括下列哪项。A.产妇精神状态B.生命体征C.产力D.产道E.胎儿 救援列车的出发或返回有哪些规定? 关于张力性气胸,正确的是A.胸膜腔具有负压B.常见于肺或支气管裂伤C.左侧较右侧更为危险D.可见面色苍白、气促、紫绀E.所造成的生理障碍不大 保密行政执法 《素问·六节藏象论》所论的五脏的“其华”中,心其华在A.面B.骨C.筋D.血E.发 县级计划生育药具管理机构主要承担那些任务? PCA用于术后疼痛治疗的优点是A.血药浓度较稳定B.个体化用药C.镇痛效果好D.药物副作用较少E.以上都对 根据基本建设程序的规定,在施工图预算之前的工作有。A.项目建议书B.可行性研究C.列
高三数学随机事件的概率与古典概型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学 [人教版]
高三新数学第一轮复习教案(讲座20)—随机事件的概率与古典概型
三.要点精讲
1.随机事件的概念
在一定的条件下所出现的某种结果叫做事件。
(1)随机事件(2)必然事件3)不可能事件
2.随机事件的概率
事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率n
m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。
由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。
3.事件间的关系
(1)互斥事件:不能同时发生的两个事件叫做互斥事件;
(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;
4.事件间的运算
当A 和B 互斥时,事件A +B 的概率满足加法公式:
P (A +B )=P (A )+P (B )(A 、B 互斥);且有P (A +A )=P (A )+P (A )=1。
5.古典概型
(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
(2)古典概型的概率计算公式:P (A )=
总的基本事件个数包含的基本事件个数A ; 6.几何概型的概率公式:
P (A )=积)
的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
7.几种常见的几何概型
(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:
P=l 的长度/L 的长度
(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:
P=g 的面积/G 的面积
(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:
P=v 的体积/V 的体积
四.典例解析
题型2:频率与概率
解析:我们根据表格只能计算不同情况下的种子发芽的频率分别是:1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905。
随着种子粒数的增加,菜籽发芽的频率越接近于0.9,且在它附近摆动。
故此种子发芽的概率为0.9。
点评:我们可以用频率的趋向近似值表示随机事件发生的概率。
题型3:随机事件间的关系
例5.(1)某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( )
(A )至多有一次中靶 (B )两次都中靶
(C )两次都不中靶 (D )只有一次中靶
(2)把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个。
事件“甲分得1号球”与事件“乙分得1号球”是( )
(A )互斥但非对立事件 (B )对立事件
(C )相互独立事件 (D )以上都不对。
题型4:古典概率模型的计算问题
例7.从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
例10.(2006安徽文,19)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。
在试制某种牙膏新品种时,需要选用两种不同的添加剂。
现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。
根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。
(Ⅰ)求所选用的两种不同的添加剂的芳香度之和等于4的概率;
(Ⅱ)求所选用的两种不同的添加剂的芳香度之和不小于3的概率;
题型6:易错题辨析
例11.掷两枚骰子,求所得的点数之和为6的概率。
题型1:线长问题
例1.一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
例2.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ?
题型2:面积问题
例4.投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为
1/2米的小方块。
实验是向板中投镖,事件A 表示投中阴影部分为成功,考虑事件A
发生的概率。
题型3:体积问题
例7.(1)在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到
显微镜下观察,求发现大肠杆菌的概率。
(2)如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,
假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少?
题型4:随机模拟 例9.随机地向半圆202y ax x <<-(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域
的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.
0y x a /4π
x。