河北省沧州市2021届新高考适应性测试卷数学试题(1)含解析
河北省沧州市2021届新高考第二次适应性考试数学试题含解析
河北省沧州市2021届新高考第二次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++=【答案】A 【解析】 【分析】计算AB 的中点坐标为()3,0,圆半径为r =.【详解】AB 的中点坐标为:()3,0,圆半径为22ABr ===, 圆方程为22(3)2x y -+=. 故选:A . 【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.2.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若cos (2)cos c a B a b A -=-,则ABC V 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等腰或直角三角形 D .钝角三角形【答案】C 【解析】 【分析】利用正弦定理将边化角,再由()sin sin A B C +=,化简可得sin cos sin cos B A A A =,最后分类讨论可得; 【详解】解:因为cos (2)cos c a B a b A -=-所以()sin sin cos 2sin sin cos C A B A B A -=- 所以sin sin cos 2sin cos sin cos C A B A A B A -=-所以()sin sin cos 2sin cos sin cos A B A B A A B A +-=-所以sin cos sin cos sin cos 2sin cos sin cos A B B A A B A A B A +-=- 所以sin cos sin cos B A A A = 当cos 0A =时2Aπ=,ABC ∆为直角三角形;当cos 0A ≠时sin sin A B =即A B =,ABC ∆为等腰三角形;ABC ∆∴的形状是等腰三角形或直角三角形故选:C . 【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.3.如图,在ABC ∆中,23AN NC =u u u v u u u v ,P 是BN 上一点,若13AP t AB AC =+u u u v u u u v u u u v,则实数t 的值为( )A .23B .25C .16D .34【答案】C 【解析】 【分析】由题意,可根据向量运算法则得到25AP mAC =+u u u r u u u r (1﹣m )AB u u u r,从而由向量分解的唯一性得出关于t的方程,求出t 的值. 【详解】由题意及图,()()1AP AB BP AB mBN AB m AN AB mAN m AB =+=+=+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,又,23AN NC =u u u r u u u r ,所以25AN AC =u u u r u u u r ,∴25AP mAC =+u u u r u u u r (1﹣m )AB u u u r ,又AP =u u u r t 13AB AC +u u u r u u u r ,所以12153m t m -=⎧⎪⎨=⎪⎩,解得m 56=,t 16=, 故选C . 【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题. 4.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-【答案】B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.5.已知()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,当30,2x ⎛⎫∈ ⎪⎝⎭时,()()2ln 1f x x x =-+,则函数()f x 在区间[]0,6上的零点个数是( )A .3B .5C .7D .9【答案】D 【解析】 【分析】根据()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,可得函数()f x 的周期为3,再由奇函数的性质结合已知可得33101022f f f f f -=-====()()()()() ,利用周期性可得函数()f x 在区间[]0,6上的零点个数. 【详解】∵()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,33332222f x f x ∴-++=++()() ,可得3f x f x ()()+=,函数()f x 的周期为3, ∵当30,2x ⎛⎫∈ ⎪⎝⎭时, ()()2ln 1f x x x =-+, 令0fx =(),则211x x -+=,解得0x =或1, 又∵函数()f x 是定义域为R 的奇函数,∴在区间33[]22-,上,有11000f f f -=-==()(),(). 由3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,取0x =,得3322f f -=()() ,得33022f f =-=()(), ∴33101022f f f f f -=-====()()()()(). 又∵函数()f x 是周期为3的周期函数,∴方程()f x =0在区间[]0,6上的解有39012345622,,,,,,,,. 共9个,故选D . 【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.6.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .16481【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.7.若x ,y 满足约束条件103020x y x y x +-≤⎧⎪-+≤⎨⎪+≥⎩,则22x y +的最大值是( )A .92B .322C .13D .13【答案】C 【解析】 【分析】由已知画出可行域,利用目标函数的几何意义求最大值. 【详解】 解:22xy +表示可行域内的点(,)x y 到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由1020x y x +-=⎧⎨+=⎩解得32y x =⎧⎨=-⎩即()2,3A -点()2,3A -到坐标原点(0,0)的距离最大,即2222()(2)313max x y +=-+=.本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.8.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A .每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B .从2014年到2018年这5年,高铁运营里程与年价正相关C .2018年高铁运营里程比2014年高铁运营里程增长80%以上D .从2014年到2018年这5年,高铁运营里程数依次成等差数列 【答案】D 【解析】 【分析】由折线图逐项分析即可求解 【详解】选项A ,B 显然正确; 对于C ,2.9 1.60.81.6->,选项C 正确; 1.6,1.9,2.2,2.5,2.9不是等差数列,故D 错. 故选:D 【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题9.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D 【解析】由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小; 而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅ 由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >, 综上可知a c b >>, 故选:D. 【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.10.命题p :存在实数0x ,对任意实数x ,使得()0sin sin x x x +=-恒成立;q :0a ∀>,()ln a xf x a x+=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧【答案】A 【解析】 【分析】分别判断命题p 和q 的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项. 【详解】对于命题p ,由于()sin sin x x π+=-,所以命题p 为真命题.对于命题q ,由于0a >,由0a xa x+>-解得a x a -<<,且()()1ln ln ln a x a x a x f x f x a x a x a x --++⎛⎫-===-=- ⎪+--⎝⎭,所以()f x 是奇函数,故q 为真命题.所以p q ∧为真命题. ()()p q ⌝∨⌝、()p q ∧⌝、()p q ⌝∧都是假命题. 故选:A 【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题. 11.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2C .()0,3D .()0,2【答案】C 【解析】 【分析】显然函数()22xf x a x=--在区间()1,2内连续,由()f x 的一个零点在区间()1,2内,则()()120f f <,即可求解. 【详解】由题,显然函数()22xf x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,故选:C 【点睛】本题考查零点存在性定理的应用,属于基础题.12.已知集合A={y|y=|x|﹣1,x ∈R},B={x|x≥2},则下列结论正确的是( ) A .﹣3∈A B .3∉B C .A∩B=B D .A ∪B=B【答案】C 【解析】试题分析:集合{}|1A y y =≥- A B B B A ∴⊆∴⋂= 考点:集合间的关系二、填空题:本题共4小题,每小题5分,共20分。
河北省衡水市2021届新高考适应性测试卷数学试题(1)含解析
河北省衡水市2021届新高考适应性测试卷数学试题(1)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( ) A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-【答案】B 【解析】 【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果. 【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况.2.已知复数()()2019311i i z i --=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =- D.z =【答案】D 【解析】 【分析】利用i 的周期性先将复数z 化简为42i z =-+即可得到答案.【详解】因为2i 1=-,41i =,5i i =,所以i 的周期为4,故4504334i 24i 24i 242i i i iz ⨯++++====-+-, 故z 的虚部为2,A 错误;z 在复平面内对应的点为(4,2)-,在第二象限,B 错误;z 的共 轭复数为42z i =--,C错误;z ==D 正确. 故选:D. 【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.3.已知集合{}10,1,0,12x A x B x -⎧⎫=<=-⎨⎬+⎩⎭,则A B I 等于( )A .{}11x x -<< B .{}1,0,1- C .{}1,0- D .{}0,1【答案】C 【解析】 【分析】先化简集合A ,再与集合B 求交集. 【详解】因为{}10212x A xx x x -⎧⎫=<=-<<⎨⎬+⎩⎭,{}1,0,1B =-, 所以{}1,0A B ⋂=-. 故选:C 【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.4.若x ,y 满足约束条件103020x y x y x +-≤⎧⎪-+≤⎨⎪+≥⎩,则22x y +的最大值是( )A .92BC .13D【答案】C 【解析】 【分析】由已知画出可行域,利用目标函数的几何意义求最大值. 【详解】解:22xy +表示可行域内的点(,)x y 到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由1020x y x +-=⎧⎨+=⎩解得32y x =⎧⎨=-⎩即()2,3A -点()2,3A -到坐标原点(0,0)的距离最大,即2222()(2)313max x y +=-+=. 故选:C . 【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.5.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关【答案】B 【解析】 【分析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论. 【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的, 正方体的体积为8,四棱锥的底面是边长为2的正方形, 顶点O 在平面11ADD A 上,高为2, 所以四棱锥的体积为184233⨯⨯=,所以该几何体的体积为816833-=. 故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题. 6.已知全集,,则( ) A .B .C .D .【答案】C 【解析】 【分析】先求出集合U ,再根据补集的定义求出结果即可. 【详解】 由题意得,∵,∴.故选C . 【点睛】本题考查集合补集的运算,求解的关键是正确求出集合和熟悉补集的定义,属于简单题.7.如图,设P 为ABC ∆内一点,且1134AP AB AC =+u u u v u u u v u u u v,则ABP ∆与ABC ∆的面积之比为A.1 4B.13C.23D.16【答案】A【解析】【分析】作//PD AC交AB于点D,根据向量比例,利用三角形面积公式,得出ADPS∆与ABCS∆的比例,再由ADPS∆与APBS∆的比例,可得到结果.【详解】如图,作//PD AC交AB于点D,则AP AD DP=+u u u r u u u r u u u r,由题意,13AD AB=u u u r u u u r,14DP AC=u u u r u u u r,且180ADP CAB∠+∠=o,所以11111||||sin||||sin223412ADP ABCS AD DP ADP AB AC CAB S∆∆=∠=⨯⨯∠=又13AD AB=u u u r u u u r,所以,134APB ADP ABCS S S∆∆∆==,即14APBABCSS∆∆=,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键. 8.已知ABC∆的内角,,A B C的对边分别是,,,a b c且444222222a b c a bca b+++=+,若c为最大边,则a bc+的取值范围是()A.231⎛⎝⎭,B.(3C.231⎛⎝⎦,D.3]【答案】C【解析】【分析】由444222222a b c a bca b+++=+,化简得到cos C的值,根据余弦定理和基本不等式,即可求解.【详解】由444222222a b c a b c a b +++=+,可得222422222(2)a b c a b c a b ++-=+, 可得22222222222()c a b c a b a b c a b +-++-=+,通分得2222222222()()0a b c c a b a b a b+---+=+, 整理得222222()a b c a b +-=,所以22221()24a b c ab +-=,因为C 为三角形的最大角,所以1cos 2C =-, 又由余弦定理2222222cos ()c a b ab C a b ab a b ab =+-=++=+-2223()()()24a b a b a b +≥+-=+,当且仅当a b =时,等号成立,所以)c a b >+,即a b c +≤,又由a b c +>,所以a b c +的取值范围是. 故选:C. 【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.9.若函数()3cos 4sin f x x x =+在x θ=时取得最小值,则cos θ=( ) A .35B .45-C .45D .35-【答案】D 【解析】 【分析】利用辅助角公式化简()f x 的解析式,再根据正弦函数的最值,求得()f x 在x θ=函数取得最小值时cos θ的值. 【详解】解:34()3cos 4sin 5cos sin 5sin()55f x x x x x x α⎛⎫=+=+=+⎪⎝⎭,其中,3sin 5α=,4cos 5α=, 故当22k πθαπ+=-()k ∈Z ,即2()2k k Z πθπα=--∈时,函数取最小值()5fθ=-,所以3cos cos(2)cos()sin 225k ππθπααα=--=--=-=-, 故选:D 【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.10.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()U M N ⋂=ð( ) A .{}|2x x > B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥【答案】A 【解析】 【分析】先求出U M ð,再与集合N 求交集. 【详解】由已知,{|1}U M x x =≥ð,又{}|2N x x =>,所以{|2}U M N x x ⋂=>ð. 故选:A. 【点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.11.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( )A B 1 CD .1【答案】C 【解析】 【分析】连结并延长PO ,交对棱C 1D 1于R ,则R 为对棱的中点,取MN 的中点H ,则OH ⊥MN ,推导出OH ∥RQ ,且OH =12RQ =2,由此能求出该直线被球面截在球内的线段的长. 【详解】 如图,MN 为该直线被球面截在球内的线段 连结并延长PO ,交对棱C 1D 1于R ,则R 为对棱的中点,取MN 的中点H ,则OH ⊥MN , ∴OH ∥RQ ,且OH =12RQ =22, ∴MH 22OM OH -22212⎛⎫- ⎪ ⎪⎝⎭22,∴MN =22MH =故选:C . 【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.设等比数列{}n a 的前n 项和为n S ,则“10a <”是“20210S <”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据等比数列的前n 项和公式,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以20212021111q S a q -=⋅-,由于2021101q q ->-,所以 1202100a S <⇔<,故“10a <”是“20210S <”的充分必要条件.故选:C 【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前n 项和公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
河北省新2021年高考数学试卷和答案解析(新课标Ⅰ)
2021年河北省新高考数学试卷(新课标Ⅰ)1.设集合,,则()A. B.C. D.2.已知,则()A. B.C. D.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知,是椭圆的两个焦点,点M 在C 上,则的最大值为()A.13B.12C.9D.66.若,则()A. B.C.D.7.若过点可以作曲线的两条切线,则()A. B. C. D.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点,,,,则()A. B.C.D.11.已知点P 在圆上,点,,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当最小时,D.当最大时,12.在正三棱柱中,,点P 满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点P,使得D.当时,有且仅有一个点P,使得平面13.已知函数是偶函数,则__________.14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且若,则C的准线方程为______.15.函数的最小值为__________.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推.则对折4次共可以得到不同规格图形的种数为__________;如果对折n次,那么__________17.已知数列满足,记,写出,,并求数列的通项公式;求的前20项和.18.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为,能正确回答B类问题的概率为,且能正确回答问题的概率与回答次序无关.若小明先回答A类问题,记X为小明的累计得分,求X的分布列;为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记的内角A,B,C的对边分别为a,b,已知,点D在边AC上,证明:;若,求20.如图,在三棱锥中,平面平面BCD,,O为BD的中点.证明:;若是边长为1的等边三角形,点E在棱AD上,,且二面角的大小为,求三棱锥的体积.21.在平面直角坐标系xOy中,已知点,,点M满足记M的轨迹为求C的方程;设点T在直线上,过T的两条直线分别交C于A,B两点和P,Q两点,且,求直线AB的斜率与直线PQ的斜率之和.22.已知函数讨论的单调性;设a,b为两个不相等的正数,且,证明:答案和解析1.【答案】B 【解析】【分析】本题考查集合的交集运算,属于简单题.直接利用交集运算可得答案.【解答】解:,,故选:2.【答案】C 【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把代入,再由复数代数形式的乘除运算化简得答案.【解答】解:,故选:3.【答案】B 【解析】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为故选:设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.4.【答案】A 【解析】【分析】本题考查正弦型函数单调性,是简单题.本题需要借助正弦函数单调增区间的相关知识点求解.【解答】解:令,则,当时,,,故选:5.【答案】C【解析】【分析】利用椭圆的定义,结合基本不等式,转化求解即可.本题考查椭圆的简单性质的应用,基本不等式的应用.【解答】解:,是椭圆C:的两个焦点,点M在C上,,所以,当且仅当时,取等号,所以的最大值为故选:6.【答案】C【解析】【分析】本题主要考查同角三角函数基本关系,三角函数式的求值等知识,属于基础题.由题意化简所给的三角函数式,然后利用齐次式的特征将其“弦化切”即可求得三角函数式的值.【解答】解:由题意可得:故选7.【答案】D【解析】解:函数是增函数,恒成立,函数的图象如图,,即取得坐标在x轴上方,如果在x轴下方,连线的斜率小于0,不成立.点在x轴或下方时,只有一条切线.如果在曲线上,只有一条切线;在曲线上侧,没有切线;由图象可知在图象的下方,并且在x轴上方时,有两条切线,可知故选:画出函数的图象,判断与函数的图象的位置关系,即可得到选项.本题考查曲线与方程的应用,函数的单调性以及切线的关系,考查数形结合思想,是中档题.8.【答案】B 【解析】【分析】本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.【解答】解:由题意可知,两次取出的球的数字之和是8的所有可能为:,,,,,两次取出的球的数字之和是7的所有可能为,,,,,,甲,乙,丙,丁,A:甲丙甲丙,B:甲丁甲丁,C:乙丙乙丙,D:丙丁丙丁,故选:9.【答案】CD 【解析】【分析】本题考查平均数、中位数、标准差、极差,是基础题.利用平均数、中位数、标准差、极差的定义直接判断即可.【解答】解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,设原样本数据的样本方差和标准差分别为,,新数据的样本方差和标准差分别为,,因为…,,,,即,两组样本数据的样本标准差相同,故C正确;对于D,…,,c为非零常数,原数据组的样本极差为,新数据组的样本极差为,两组样本数据的样本极差相同,故D正确.故选:10.【答案】AC【解析】【分析】本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,是中档题.由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案.【解答】解:,,,,,,,,,,则,,则,故A正确;,,不能恒成立,故B错误;,,,故C正确;,,不能恒成立,故D错误.故选:11.【答案】ACD【解析】【分析】求出过AB的直线方程,再求出圆心到直线AB的距离,得到圆上的点P到直线AB的距离范围,判断A与B;画出图形,由图可知,当过B的直线与圆相切时,满足最小或最大,求出圆心与B点间的距离,再由勾股定理求得判断C与本题考查直线与圆的位置关系,考查转化思想与数形结合思想,是中档题.【解答】解:,,过A、B的直线方程为,即,圆的圆心坐标为,圆心到直线的距离,点P到直线AB的距离的范围为,,,,点P到直线AB的距离小于10,但不一定大于2,故A正确,B错误;如图,当过B的直线与圆相切时,满足最小或最大点位于时最小,位于时最大,此时,,故CD正确.故选:12.【答案】BD【解析】【分析】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于拔高题.判断当时,点P在线段上,分别计算点P为两个特殊点时的周长,即可判断选项A;当时,点P在线段上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当时,取线段BC,的中点分别为M,,连结,则点P在线段上,分别取点P在,M处,得到均满足,即可判断选项C;当时,取的中点,的中点D,则点P在线的上,证明当点P在点处时,平面,利用过定点A与定直线垂直的平面有且只有一个,即可判断选项【解答】解:对于A,当时,,即,所以,故点P在线段上,此时的周长为,当点P为的中点时,的周长为,当点P在点处时,的周长为,故周长不为定值,故选项A错误;对于B,当时,,即,所以,故点P在线段上,因为平面,所以直线上的点到平面的距离相等,又的面积为定值,所以三棱锥的体积为定值,故选项B正确;对于C,当时,取线段BC,的中点分别为M,,连结,因为,即,所以,则点P在线段上,当点P在处时,,,又,所以平面,又平面,所以,即,同理,当点P在M处,,故选项C错误;对于D,当时,取的中点,的中点D,因为,即,所以,则点P在线的上,当点P在点处时,取AC的中点E,连结,BE,因为平面,又平面,所以,在正方形中,,又,BE,平面,故平面,又平面,所以,在正方体形中,,又,,平面,所以平面,因为过定点A与定直线垂直的平面有且只有一个,故有且仅有一个点P,使得平面,故选项D正确.故答案选:13.【答案】1【解析】【分析】本题考查函数的奇偶性,考查计算能力,属于基础题.根据题意,可得也为R上的奇函数,即可得解.【解答】解:函数是偶函数,为R上的奇函数,故也为R上的奇函数,所以时,,所以,经检验,满足题意,故答案为:14.【答案】【解析】解:由题意,不妨设P在第一象限,则,,所以,所以PQ的方程为:,时,,,所以,解得,所以抛物线的准线方程为:故答案为:求出点P的坐标,推出PQ方程,然后求解Q的坐标,利用,求解p,然后求解准线方程.本题考查抛物线的简单性质的应用及求抛物线的标准方程,考查转化思想以及计算能力,是中档题.15.【答案】1【解析】【分析】本题考查利用导数求最值的应用,考查运算求解能力,是中档题.求出函数定义域,对x分段去绝对值,当时,直接利用单调性求最值;当时,利用导数求最值,进一步得到的最小值.【解答】解:函数的定义域为,当时,,此时函数在上为减函数,所以;当时,,则,当时,,单调递减,当时,,单调递增,当时取得最小值,为,,函数的最小值为故答案为:16.【答案】5【解析】【分析】本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.依题意,对折4次共可以得到5种不同规格图形;对折k次共有种规格,且每个面积为,则,,然后再转化求解即可.【解答】解:易知有,,共5种规格;由题可知,对折k次共有种规格,且每个面积为,故,则,记,则,,,故答案为:5;17.【答案】解:因为,,所以,,,所以,,,所以数列是以为首项,以3为公差的等差数列,所以由可得,,则,,当时,也适合上式,所以,,所以数列的奇数项和偶数项分别为等差数列,则的前20项和为……【解析】本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.由数列的通项公式可求得,,从而可得求得,,由可得数列是等差数列,从而可求得数列的通项公式;由数列的通项公式可得数列的奇数项和偶数项分别为等差数列,求解即可.18.【答案】解:由已知可得,X 的所有可能取值为0,20,100,则,,所以X 的分布列为:X 020100P 由可知小明先回答A 类问题累计得分的期望为,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,,,,则Y的期望为,因为,所以为使累计得分的期望最大,小明应选择先回答B类问题.【解析】本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;由可得,若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得,比较与的大小,即可得出结论.19.【答案】解:证明:由正弦定理知,,,,,,即,;由知,,,,在中,由余弦定理知,,在中,由余弦定理知,,,,即,得,,,或,在中,由余弦定理知,,当时,舍;当时,;综上所述,【解析】本题主要考查正弦定理和余弦定理,难度不大.利用正弦定理求解;要能找到隐含条件:和互补,从而列出等式关系求解.20.【答案】解:证明:因为,O为BD的中点,所以,又平面平面BCD,平面平面,平面ABD,所以平面BCD,又平面BCD,所以;方法一:取OD的中点F,因为为正三角形,所以,过O作与BC交于点M,则,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,则,,,设,则,因为平面BCD,故平面BCD的一个法向量为,设平面BCE的法向量为,又,所以由,得,令,则,,故,因为二面角的大小为,所以,解得,所以,又,所以,故方法二:过E作,交BD于点F,过F作于点G,连结EG,由题意可知,,又平面BCD所以平面BCD,又平面BCD,所以,又,,FG、平面EFG,所以平面EFG,又平面EFG,所以,则为二面角的平面角,即,又,所以,则,故,所以,因为,则,所以,则,所以,则,所以【解析】本题考查了面面垂直和线面垂直的性质,在求解有关空间角问题的时候,一般要建立合适的空间直角坐标系,将空间角问题转化为空间向量问题,属于中档题.利用等腰三角形中线就是高,得到,然后利用面面垂直的性质,得到平面BCD,再利用线面垂直的性质,即可证明;方法一:建立合适的空间直角坐标系,设,利用待定系数法求出平面的法向量,由向量的夹角公式求出t的值,然后利用锥体的体积公式求解即可.方法二:过E作,交BD于点F,过F作于点G,连结EG,求出,,然后利用锥体的体积公式求解即可.21.【答案】解:由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,的方程为;设,设直线AB的方程为,,,由,得,整理得,,,,设,同理可得,由,得,,,,,【解析】的轨迹C是双曲线的右支,根据题意建立关于a,b,c的方程组,解出即可求得C的方程;设出直线AB的参数方程,与双曲线方程联立,由参数的几何意义可求得,同理求得,再根据,即可得出答案.本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.22.【答案】解:由函数的解析式可得,,,单调递增,,,单调递减,则在单调递增,在单调递减.证明:由,得,即,由在单调递增,在单调递减,所以,且,令,,则,为的两根,其中不妨令,,则,先证,即证,即证,令,则在单调递减,所以,故函数在单调递增,,,得证.同理,要证,即证,根据中单调性,即证,令,,则,令,,,单调递增,,,单调递减,又,,且,故,,,恒成立,得证,则【解析】本题主要考查利用导数研究函数的单调性,利用导数研究极值点偏移问题,等价转化的数学思想,同构的数学思想等知识,属于难题.首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性,利用同构关系将原问题转化为极值点偏移的问题,构造对称差函数分别证明左右两侧的不等式即可.。
047-河北省张家口市沧州市2021届高三一模数学试题+答案
8.对千任意xE[O,l], 总存在三个不同的实数yE[-1,3],使得 yZ el -y+工-aeX --2 =0 成立,则实数 a 的取值范围是
A [$,卢) B. [�'式)
c (卢,�]
D. [�•�勹
二、选择题:本题共4小题,每小题 5分,共 20分。在每小题给出的四个选项中,有多项
是符合题目要求的。全部 选对的得5分,部分选对的得2分,有选错的得0分。
答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一 、选择题:本题共8小题,每小题5分,共40分。 在每小题给出的四个选项中,只有 一项
是符合题目要求的。
齿
1.巳知集合A= {xERl-2�x<3},B= {xEZI lx-1 I <3}, 则AnB=
玉
A. { —1,0,1,2,3} B. { —1,0,1,2}
C. {o,1,2,3}
忑 烹
2.设aER且a#-0,若复数(1+ai)3 是实数,则a2=
茫
A.9
B.6
C. 3
D. {-1,0,1} D. 2
3.若 aE (一六2 ,叶,2sin叶cos a= 3次 5 ,则tan a=
A.-2
B. 2
C.
2 订
D.
2 11
4.双曲线一X矿2 — 斗32 =l(a >O)的一个焦点到渐近线的距离为
芯 运
记(已上报户口)的全国总人口13.33亿人(不包括香港、澳门和台湾地区)为依据,用 马尔萨斯 人口增长模型估计我国2020年末(不包括香港、澳门和台湾地区)的全国总
人口数约为03.332=177.688 9,12.432=154.504 9)
河北省沧州市2021届新高考数学最后模拟卷含解析
河北省沧州市2021届新高考数学最后模拟卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,则复数24(1)i =-( ) A .2i B .2i -C .2D .2-【答案】A 【解析】 【分析】根据复数的基本运算求解即可. 【详解】224422(1)2ii i i i===---. 故选:A 【点睛】本题主要考查了复数的基本运算,属于基础题.2.设α,β是方程210x x --=的两个不等实数根,记n nn a αβ=+(n *∈N ).下列两个命题( )①数列{}n a 的任意一项都是正整数; ②数列{}n a 存在某一项是5的倍数. A .①正确,②错误 B .①错误,②正确 C .①②都正确 D .①②都错误【答案】A 【解析】 【分析】利用韦达定理可得1αβ+=,1αβ=-,结合n nn a αβ=+可推出1n a +1n n a a -=+,再计算出11a =,23a =,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误. 【详解】因为α,β是方程210x x --=的两个不等实数根, 所以1αβ+=,1αβ=-,因为n nn a αβ=+,所以111n n n a αβ+++=+()()n n n n n n αβααβββααβ=+++-- ()()()11n n n n αβαβαβαβ--=++-+ ()()111n n n n n n a a αβαβ---=+++=+,即当3n ≥时,数列{}n a 中的任一项都等于其前两项之和, 又11a αβ=+=,()222223a αβαβαβ=+=+-=, 所以3214a a a =+=,4327a a a =+=,54311a a a =+=, 以此类推,即可知数列{}n a 的任意一项都是正整数,故①正确; 若数列{}n a 存在某一项是5的倍数,则此项个位数字应当为0或5, 由11a =,23a =,依次计算可知,数列{}n a 中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期, 故数列{}n a 中不存在个位数字为0或5的项,故②错误; 故选:A. 【点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.3.关于函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,有下述三个结论:①函数()f x 的一个周期为2π; ②函数()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增;③函数()f x 的值域为. 其中所有正确结论的编号是( ) A .①② B .②C .②③D .③【答案】C 【解析】 【分析】①用周期函数的定义验证.②当3,42x ππ⎡⎤∈⎢⎥⎣⎦时,1717,231224x πππ⎡⎤+∈⎢⎥⎣⎦,1()212π⎛⎫=+ ⎪⎝⎭f x x ,再利用单调性判断.③根据平移变换,函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭的值域等价于函数11()4sin 4cos 22g x x x =+的值域,而()()g x g x π+=,当[0,]x π∈时,1()23π⎛⎫=+ ⎪⎝⎭g x x 再求值域. 【详解】 因为1717114sin 4cos 4cos 4sin ()2212212212212f x x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+++=+++≠ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故①错误;当3,42x ππ⎡⎤∈⎢⎥⎣⎦时,1717,231224x πππ⎡⎤+∈⎢⎥⎣⎦,所以111()4sin 4cos 2323212f x x x x πππ⎛⎫⎛⎫⎛⎫=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,111,212324πππ⎡⎤+∈⎢⎥⎣⎦x 所以()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增,故②正确; 函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭的值域等价于函数11()4sin 4cos 22g x x x =+的值域,易知()()g x g x π+=,故当[0,]x π∈时,1()23g x x π⎛⎫=+∈ ⎪⎝⎭,故③正确.故选:C. 【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题. 4.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】对函数()f x 化简可得π()sin(2)6f x x ω=+,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案. 【详解】因为2π2ππ()12cos ()cos(2)sin(2)336f x x x x ωωω=-+=-+=+,所以周期2ππ2T ωω==. 对于①,因为12min 1π2x x T -==,所以ππ2T ω==,即12ω=,故①错误;对于②,函数()f x 的图象向右平移6π个单位长度后得到的函数为ππsin(2)36y x ωω=-+,其图象关于y 轴对称,则ππππ()362k k ω-+=+∈Z ,解得13()k k ω=--∈Z ,故对任意整数k ,(0,2)ω∉,所以②错误;对于③,令π()sin(2)06f x x ω=+=,可得π2π6x k ω+=()k ∈Z ,则ππ212k x ωω=-, 因为π(0)sin 06f =>,所以()f x 在[]0,2π上第1个零点1>0x ,且1ππ212x ωω=-,所以第7个零点7ππππ3π41π321221212x T ωωωωωω=-+=-+=,若存在第8个零点8x ,则8ππ7ππ7π47π2122212212x T ωωωωωω=-+=-+=,所以782πx x ≤<,即2π41π47π1212ωω≤<,解得41472424ω≤<,故③正确; 对于④,因为π(0)sin 6f =,且ππ0,64⎡⎤∈-⎢⎥⎣⎦,所以πππ2662πππ2462ωω⎧⎛⎫-+≥- ⎪⎪⎪⎝⎭⎨⎪⨯+≤⎪⎩,解得23ω≤,又0>ω,所以203ω<≤,故④正确. 故选:B. 【点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.5.曲线(2)x y ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4- B .8-C .4D .8【答案】B【分析】求函数导数,利用切线斜率求出a ,根据切线过点(0,2)求出b 即可. 【详解】因为(2)x y ax e =+, 所以(2)xy e ax a '=++, 故0|22x k y a ='==+=-, 解得4a =-, 又切线过点(0,2),所以220b =-⨯+,解得2b =, 所以8ab =-, 故选:B 【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题. 6.已知点()2,0A 、()0,2B -.若点P在函数y =PAB △的面积为2的点P 的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】设出点P 的坐标,以AB 为底结合PAB △的面积计算出点P 到直线AB 的距离,利用点到直线的距离公式可得出关于a 的方程,求出方程的解,即可得出结论. 【详解】设点P的坐标为(a ,直线AB 的方程为122x y-=,即20x y --=, 设点P 到直线AB 的距离为d,则11222PAB S AB d d =⋅=⨯=V,解得d =另一方面,由点到直线的距离公式得d ==整理得0a =或40a =,0a ≥Q ,解得0a =或1a =或a =综上,满足条件的点P 共有三个. 故选:C.本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题. 7.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B I 的真子集的个数是( ) A .8 B .7C .4D .3【答案】D 【解析】 【分析】转化条件得{}0,1A B =I ,利用元素个数为n 的集合真子集个数为21n -个即可得解. 【详解】由题意得()(){}{}12012B x x x x x =+-<=-<<,∴{}0,1A B =I ,∴集合A B I 的真子集的个数为2213-=个.故选:D. 【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题. 8.已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为( ) A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈ D .1+,24x k k Z ππ=∈ 【答案】C 【解析】 【分析】()cos2f x x =,将2x 看成一个整体,结合cos y x =的对称性即可得到答案.【详解】由已知,()cos2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈. 故选:C. 【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数cos x 的性质,是一道容易题.9.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A .B .C .D .【答案】B 【解析】因为对A 不符合定义域当中的每一个元素都有象,即可排除; 对B 满足函数定义,故符合;对C 出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定; 对D 因为值域当中有的元素没有原象,故可否定. 故选B .10.已知函数31,0()(),0x x f x g x x ⎧+>=⎨<⎩是奇函数,则((1))g f -的值为( )A .-10B .-9C .-7D .1【答案】B 【解析】 【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值. 【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B 【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.11.已知α,β表示两个不同的平面,l 为α内的一条直线,则“α∥β是“l ∥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断. 解:根据题意,由于α,β表示两个不同的平面,l 为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l ∥β”的充分不必要条件. 故选A .考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.12.已知数列{}n a 的前n 项和为n S ,且()()()212*111N ()n n n S S S n ++++=+∈,121,2a a ==,则n S =( )A .()12n n + B .12n + C .21n - D .121n ++【答案】C 【解析】 【分析】根据已知条件判断出数列{}1n S +是等比数列,求得其通项公式,由此求得n S . 【详解】由于()()()212*111N ()n n n S S S n ++++=+∈,所以数列{}1n S +是等比数列,其首项为11112S a +=+=,第二项为212114S a a +=++=,所以公比为422=.所以12n n S +=,所以21n n S =-. 故选:C 【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2021年河北省沧州市高考数学三模试卷
2021年河北省沧州市高考数学三模试卷一、单选题(本大题共9小题,共45.0分)1.已知集合A={x|x2−2x≤0},B={x|1<x≤2},则A∩B=()A. (1,2]B. (1,2)C. [0,2]D. (0,1)2.已知复数z满足(2+i)z=2−i(i为虚数单位),则z在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.生物入侵指生物由原生存地侵入到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q,一年四季均可繁殖,繁殖间隔T为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型K(n)=λlnn来描述该物种累计繁殖数量n与入侵时间K(单位:天)之间的对应关系,且Q=Tλ+1,在物种入侵初期,基于现有数据得出Q=9,T=80.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为()(ln2≈0.69,ln3≈1.10)A. 6.9天B. 11.0天C. 13.8天D. 22.0天4.已知非零向量a⃗,b⃗ 满足|b⃗ |=√2|a⃗|,且(a⃗−b⃗ )⊥(3a⃗+2b⃗ ),则a⃗与b⃗ 的夹角为()A. 45°B. 135°C. 60°D. 120°5.把函数y=2sin2x的图象向左平移π3个单位长度,再将所得图象向上平移1个单位长度,可得到函数f(x)的图象,则()A. f(x)=2sin(2x+π3)+1 B. f(x)的最小正周期为2πC. f(x)的图象关于直线x=π6对称 D. f(x)在[π6,5π12]上单调递减6.已知函数f(x)=lnxx−x,则()A. f(x)的单调递减区间为(0,1)B. f(x)的极小值点为1C. f(x)的极大值为−1D. f(x)的最小值为−17.已知(2−x)2021=a0+a1(x+1)+a2(x+1)2+⋯+a2021(x+1)2021,则|a0|+|a1|+|a2|+⋯+|a2021|=()A. 24042B. 1C. 22021D. 08.已知正四棱锥P−ABCD的所有棱长均为2√2,E,F分别是PC,AB的中点,M为棱PB上异于P,B上的一动点,现有以下结论:①线段EF的长度是2√2;②△EMF周长的最小值为√6+2√2;③存在点M使得PB⊥平面MEF;④∠EMF 始终是钝角. 其中不正确的结论共有( )A. 1个B. 2个C. 3个D. 4个9. 家庭开支是指一般生活开支的人均细分.如图所示的是2017年和2020年小王的家庭收入用于各项支出的比例分配图,其中房贷每年的还款数额相同.根据以上信息,判断下列结论中正确的是( )A. 小王一家2020年的家庭收入比2017年增加了1倍B. 小王一家2020年用于其他方面的支出费用是2017年的2倍C. 小王一家2020年用于饮食的支出费用相比2017年明显增加D. 小王一家2020年用于娱乐的费用比2017年增加了7%二、多选题(本大题共3小题,共15.0分)10. 三星堆遗址,位于四川省广汉市,距今约三千到五千年.2021年2月4日,在三星堆遗址祭祀坑区4号坑发现了玉琮.玉琮是一种内圆外方的筒型玉器,是一种古人用于祭祀的礼器.假定某玉琮中间内空,形状对称,如图所示,圆筒内径长2cm ,外径长3cm ,筒高4cm ,中部为边长是3cm 的正方体的一部分,圆筒的外侧面内切于正方体的侧面,则( )A. 该玉琮的体积为18+3π4(cm 3) B. 该玉琮的体积为27−7π4(cm 3)C. 该玉琮的表面积为54+π(cm 2)D. 该玉琮的表面积为54+9π(cm 2)11. 已知点P(2,4),若过点Q(4,0)的直线l 交圆C :(x −6)2+y 2=9于A ,B 两点,R 是圆C 上动点,则( )A. |AB|的最小值为2√5B. P 到l 的距离的最大值为2√5C. PQ ⃗⃗⃗⃗⃗ ⋅PR⃗⃗⃗⃗⃗ 的最小值为12−2√5 D. |PR|的最大值为4√2+312. 已知斜率为k 的直线l 过抛物线C :y 2=2px(p >0)的焦点,且与抛物线C 交于A ,B 两点,抛物线C 的准线上一点M(−1,−1),满足MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =0,则( )A. p =2B. k =−2C. |AB|=√5D. △MAB 的面积为5√52三、单空题(本大题共4小题,共20.0分)13. 设S n 是等差数列{a n }的前n 项和,若S 4=2S 3−2,2a 5−a 6=7,则S 8= ______ . 14. 已知双曲线C 1:x 24−y 2b 2=1(b >0)的右焦点为F ,其一条渐近线的方程为√5x −2y =0,点P 为双曲线C 1与圆C 2:(x +3)2+y 2=r 2(r >0)的一个交点,若|PF|=4,则双曲线C 1的离心率为______ ;r = ______ .15. 已知函数f(x)的定义域为R ,对任意x ∈R ,f(x +2)=3f(x)恒成立,且当x ∈(0,2]时,f(x)=2x ,则f(7)= ______ .16. 七巧板是一种古老的中国传统智力玩具,是古代中国劳动人民的智慧结晶.它是由一块正方形、一块平行四边形和五块等腰直角三角形组成的,可拼成1600种以上的图形.如图所示的是一个用七巧板拼成的大正方形飞镖靶盘(靶盘各块上标有分值),现向靶盘随机投镖两次,每次都没脱靶(不考虑区域边界),则两次投中分值之和为2的概率为______ . 四、解答题(本大题共6小题,共70.0分) 17. 在①2c−b a=cosB cosA ,②2acosC +c =2b ,③asinAcosC +12csin2A =√3bcosA 这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cosB +cosC 的取值范围.18. 已知数列{a n }中,a 1=1,其前n 项和S n 满足a n+1=S n +1(n ∈N ∗).(1)求S n ; (2)记b n =S n+1−S n S n S n+1,求数列{b n }的前n 项和T n .19. 2021年,我国脱贫攻坚战取得了全面胜利.为了巩固拓展脱贫攻坚成果,不断提高群众的幸福感,某县继续推进山羊养殖项目.为了建设相应的配套项目,该县主管部门对该县近年来山羊养殖业的规模进行了跟踪调查,得到了该县每年售卖山羊数量y(单位:万只)与相应年份代码x 的数据如表:(1)由表可知y 与x 有较强的线性相关关系,求y 关于x 的线性回归方程;(2)已知该县养殖的山羊品种只有甲、乙两种,且甲品种山羊与乙品种山羊的数量之比为2:3,甲品种山羊达到售卖标准后的出售价为2500元/只,乙品种山羊达到售卖标准后的出售价为2700元/只.为了解养殖山羊所需要的时间,该县主管部门随机抽取了甲品种山羊和乙品种山羊备100只进行调查,得到要达到售卖标准所需的养殖时间如表:以上述样本统计的养殖山羊所需时间情况估计全县养殖山羊所需时间(即以各养殖时间的频率作为各养殖时间的概率),且每月每只山羊的养殖成本为300元,结合(1)中所求回归方程,试求2022年该县养殖山羊所获利润的期望(假设山羊达到售卖标准后全部及时卖完).(利润=卖山羊的收入−山羊的养殖成本)参考公式及数据:回归直线方程为y ̂=b ̂x −+a ̂,其中b ̂=∑(n i=1x i −x −)(y i −y −)∑(n i=1x i −x −)2=∑x i n i=1y i −nx −⋅y−∑x i 2n i=1−nx−2,a ̂=y ̂−b ̂x −.20. 如图,在三棱柱ABC −A 1B 1C 1中,AC =BC =1,∠ACB =120°,AA 1=A 1B =2,∠A 1AC =60°.(1)证明:平面ABC ⊥平面A 1ACC 1;(2)若CP ⃗⃗⃗⃗⃗ =13CC 1⃗⃗⃗⃗⃗⃗⃗ ,求二面角P −A 1B −A 的余弦值.21. 已知椭圆E :x 2a2+y 2b 2=1(a >b >0)的离心率为12,椭圆上的点离右焦点F 的最短距离为1.(1)求椭圆E 的方程.(2)直线l(斜率不为0)经过F 点,与椭圆E 交于A ,B 两点问x 轴上是否存在一定点P ,使得|PA||PB|=|AF||BF|?若存在,求出P 点的坐标;若不存在,请说明理由.22.已知函数f(x)=xe x−2ax+a.(1)当a=−1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)有两个零点,求实数a的取值范围.答案和解析1.【答案】A【解析】解:∵A={x|0≤x≤2},B={x|1<x≤2},∴A∩B=(1,2].故选:A.可求出集合A,然后进行交集的运算即可.本题考查了集合的描述法和区间的定义,一元二次不等式的解法,交集及其运算,考查了计算能力,属于基础题.2.【答案】D【解析】解:由(2+i)z=2−i,得z=2−i2+i =(2−i)2(2+i)(2−i)=3−4i5=35−45i,∴z在复平面内对应的点的坐标为(35,−45),位于第四象限.故选:D.把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.3.【答案】C【解析】解:因为Q=Tλ+1,Q=9,T=80,所以9=80λ+1,解得λ=10,设初始时间为K1,初始累计繁殖数量为n,累计繁殖数量增加3倍后的时间为K2,则K2−K1=λln(4n)−λlnn=λln4=20ln2≈13.8天.故选:C.根据题目条件求出λ的值,设初始时间为K1,初始累计繁殖数量为n,累计繁殖数量增加3倍后的时间为K2,则K2−K1=λln4,从而求出结果.本题考查函数的实际应用,考查信息提取能力及运算求解能力,是基础题.4.【答案】B【解析】解:根据题意,设a⃗与b⃗ 的夹角为θ,因为(a⃗−b⃗ )⊥(3a⃗+2b⃗ ),|b⃗ |=√2|a⃗|,所以(a⃗−b⃗ )⋅(3a⃗+2b⃗ )=3a⃗2−a⃗⋅b⃗ −2b⃗ 2=−a⃗⋅b⃗ −a⃗2=0,变形可得a⃗⋅b⃗ =−a⃗2.则cosθ=a⃗ ⋅b⃗|a⃗ ||b⃗|=2|a⃗ |⋅√2|a⃗ |=−√22.又由θ∈[0°,180°],所以θ=135°.故选:B.根据题意,设a⃗与b⃗ 的夹角为θ,由数量积的计算公式可得(a⃗−b⃗ )⋅(3a⃗+2b⃗ )=3a⃗2−a⃗⋅b⃗ −2b⃗ 2=−a⃗⋅b⃗ −a⃗2=0,变形可得cosθ的值,结合θ的范围分析可得答案.本题考查向量数量积的计算,涉及向量夹角的计算,属于基础题.5.【答案】D【解析】解:将函数y=2sin2x的图象向左平移π3个单位长度得到y=2sin2(x+π3)=2sin(2x+2π3)的图象,再问上平移1个单位长度可得到f(x)=2sin(2x+2π3)+1的图象,故A,B错误.令2x+2π3=π2+kπ,k∈Z,得x=−π12+kπ2,k∈Z,当k=0时,x=−π12;当k=1时,x=512π,故C错误.令π2+2kπ≤2x+2π3≤3π2+2kπ,k∈Z.求得−π12+kπ≤x≤5π12+kπ,k∈Z,所以,f(x)在[π6,5π12]上单调递减,故D正确,故选:D.由题意利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,得出结论.本题考查三角函数的图象及其性质,考查运算求解能力,属于中档题.6.【答案】C【解析】解:f′(x)=1−lnxx2−1=1−lnx−x2x2,令φ(x)=1−lnx−x2,则φ′(x)=−1x−2x<0,所以φ(x)=1−lnx−x2在(0,+∞)上单调递減,因为φ(1)=0,所以当0<x<1时,φ(x)>0;当x>1时,φ(x)<0,所以f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞),故f(x)的极大值点为1,f(x)极大值=f(1)=−1.故选:C.对函数f(x)求导,可知f(x)的增区间为(0,1),减区间为(1,+∞),得到f(x)的极大值点为1,且f(1)=−1,进而得出答案.本题考查导数在函数中的应用,考查逻辑推理与数学运算的核心素养,属于中档题.7.【答案】A【解析】解:因为(2−x)2021=[3−(x+1)]2021=a0+a1(x+1)+a2(x+1)2+⋯+a2021(x+1)2021,的展开式中,a0,a2,a4,⋯,a2020都大于零,而a1,a3,a5,⋯,a2021都小于零,所以,|a0|+|a1|+|a2|+⋯+|a2021|=(a0+a2+a4⋯+a2020)−(a1+a3+a5+⋯+a2021).令x=−2,则a0−a1+a2−a3+a4−a5+⋯+a2020−a2021=42021=24042.所以,|a0|+|a1|+|a2|+⋯+|a2021|=24042,故选:A.由题意把二项式变形,再令x=−2,可得结果.本题主要考查二项式定理,考查运算求解能力,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,属于中档题.8.【答案】C【解析】解:如图1,设正方形ABCD的中心为O,连接OC,PO,则PO⊥平面ABCD,OC=OP=2.设OC的中点为H,连接EH,FH,则EH//OP,所以EH=12PO=1.在△OFH中,OH=1,OF=√2,∠FOC=135°,所以由余弦定理可得FH=√5,所以EF=√EH2+FH2=√6,故①不正确将正△PAB和正△PBC沿PB翻折到一个平面内,如图2,当E,M,F三点共线时,ME+MF取得最小值,此时,点M为PB的中点,ME+MF=BC=2√2,所以△EMF周长的最小值为√6+2√2,故②正确.若PB⊥平面MEF,则PB⊥ME,此时点M为PB上靠近点P的四等分点,而此时,PB与FM显然不垂直,故③不正确.当点M在线段PB上无限靠近点P时,MF的长度无限趋向于√6,△EMF趋向于以点F为顶点的等腰三角形,此时∠EMF为一个锐角,故④不正确.故选:C.直接利用锥体的性质,线面垂直的判定和性质的应用,余弦定理的应用判定①②③④的结论.本题考查的知识要点:锥体的性质,线面垂直的判定和性质的应用,余弦定理的应用,主要考查学生的运算能力和数学思维能力,属于中档题.9.【答案】C【解析】解:因为小王家房贷每年的还款数额相同,设为a,则2017年总收入为53a,2020年总收入为52a.因为小王家2020年的家庭收入比2017年增加了56a,即增加了50%,所以A错误.因为小王家2017年和2020年用于其他方面的支出费用分别为110a和310a,所以B错误.因为小王家2017年和2020年用于饮食的费用分别为512a 和58a ,明显增加,所以C 正确. 因为小王家2017年和2020年的总收人不一样,所以D 错误. 故选:C .设每年的还款数为a ,则2017年总收入为53a ,2020年总收入为52a ,利用统计图表中的数据信息,对四个选项进行逐一分析判断即可.本题考查了统计图,读懂统计图并能从统计图得到必要的信息是解决问题的关键,考查数据处理能力,属于基础题.10.【答案】BD【解析】解:由图可知,组合体的体积V =π×4×[(32)2−12]+3×3×3−π×3×(32)2=27−7π4(cm 3),组合体的表面积S =3π×1+2×[3×3−π×(32)2]+3×3×4+2π×[(32)2−12]+2π×4=54+9π(cm 2). 故选:BD .根据组合体的体积以及表面积公式直接求解即可.本题考査简单空间几何体的体积与表面积,考查空间想象能力与运算求解能力,属于基础题.11.【答案】ABD【解析】解:如图,当直线l 与x 轴垂直时,|AB|有最小值,且最小值为2√5,故A 正确;当直线l 与PQ 垂直时,P 到l 的距离有最大值,且最大值为|PQ|=2√5,故B 正确;设R(6+3cosθ,3sinθ),则PQ ⃗⃗⃗⃗⃗ ⋅PR ⃗⃗⃗⃗⃗ =(2,−4)⋅(4+3cosθ,3sinθ−4)=6cosθ−12sinθ+24,∴PQ ⃗⃗⃗⃗⃗ ⋅PR ⃗⃗⃗⃗⃗ =6√5cos(θ+φ)+24,则PQ ⃗⃗⃗⃗⃗ ⋅PR ⃗⃗⃗⃗⃗ 的最小值为24−6√5,故C 错误; 当P ,C ,R 三点共线时,|PR|最大,且最大值为|PC|+r =4√2+3,所以D 正确. 故选:ABD .由题意画出图形,分别求出|AB|的最小值及P 到l 的距离的最大值判断A 与B ;设R(6+3cosθ,3sinθ),写出数量积,利用三角函数求最值判断C ;求出P 到圆心的距离,加上半径判断D .本题考查直线与圆的位置关系的应用,考查数形结合思想及运算求解能力,是中档题.12.【答案】ABD【解析】解:由题意知,抛物线C 的准线为x =−1,即p2=1,得p =2,故选项A 正确. 因为p =2,所以抛物线C 的方程为y 2=4x ,其焦点为F(1,0). 因为直线l 过抛物线的焦点F(1,0),所以直线的方程为y =k(x −1). 因为MA ⃗⃗⃗⃗⃗⃗ ⋅MB⃗⃗⃗⃗⃗⃗ =0,所以M 在以AB 为直径的圆上. 设点A(x 1,y 1),B(x 2,y 2),联立方程组{y 12=4x 1y 22=4x 2,两式相减可得y 1−y 2x 1−x 2=4y 1+y 2=k .设AB 的中点为Q(x 0,y 0),则y 0=2k ,因为点Q(x 0,y 0)在直线l 上,所以x 0=2k 2+1, 所以点Q(2k 2+1,2k )是以AB 为直径的圆的圆心. 由抛物线的定义知,圆Q 的半径r =AB 2=x 1+x 2+22=2x 0+22=2k 2+2.因为|QM|2=(2k 2+2)2+(2k +1)2=r 2,所以(2k 2+2)2+(2k +1)2=(2k 2+2)2, 解得k =−2,故选项B 正确.因为k =−2,所以弦长|AB|=2r =2(2k 2+2)=2(24+2)=5,故选顶C 不正确. 因为k =−2,所以直线l 为y +2(x −1)=0,由点到直线的距离公式可得, 点M 到直线l 的距离d =√12+22=√5,所以S △MAB =12⋅d ⋅|AB|=12×√5×5=5√52,故选项D 正确.故选:ABD .推出抛物线C 的准线为x =−1,求出p ,即可判断A ;推出抛物线方程求出直线l 的方程为y =k(x −1).利用平方差法,求解斜率,结合MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =0,说明M 在以AB 为直径的圆上.求解Q 的坐标,代入圆的方程,转化求解k ,判断B ;求解弦长|AB|判断C ;求解三角形的面积判断D .本题考查抛物线的性质,直线与抛物线的位置关系的综合应用,考查化归与转化的数学思想及运算求解能力,是中档题.13.【答案】64【解析】解:设{a n }的公差为d . 因为S 4=2S 3−2,2a 5−a 6=7,所以{4a 1+6d =2(3a 1+3d)−22(a 1+4d)−(a 1+5d)=7,所以{a 1=1,d =2,,所以S 8=8a 1+28d =8+56=64. 故答案为:64.由已知结合等差数列的通项公式及求和公式即可直接求解. 本题考查等差数列,考查运算求解能力,属于基础题.14.【答案】32 8【解析】解:设F′为双曲线C 1:x 24−y 2b 2=1的左焦点,因为a =2,一条渐近线的方程为√5x −2y =0.所以b =√5, 故离心率√1+(ba)2=32.圆C 2的圆心为双曲线C 1的左焦点,连接PF′.因为|PF 2|=4,所以P 在双曲线的右支上由|PF′|−|PF|=2a =4, 得r =|PF′|=8. 故答案为:32;8.利用双曲线的渐近线方程,求解b ,得到双曲线方程,求解离心率,判断P 的位置,结合双曲线的定义,转化求解圆的半径即可.本题考查双曲线的离心率及圆的方程,考查化归与转化的数学思想,是中档题.15.【答案】54【解析】解:因为f(x +2)=3f(x), 所以f(7)=3f(5)=32f(3)=33f(1)=54. 故答案为:54.由已知函数解析式,把x =7代入进行转化可求. 本题考査函数的性质,考查运算求解能力.16.【答案】564【解析】解:由图可知:P(−1)=14,P(−2)=18,P(−3)=18,P(0)=14,P(1)=18,P(2)=116,P(3)=116, 所以两次投中分值之和为2的概率为: P =116×14×2+116×14×2+18×18=564. 故答案为:564.由图得到P(−1)=14,P(−2)=18,P(−3)=18,P(0)=14,P(1)=18,P(2)=116,P(3)=116,利用相互独立事件概率乘法公式能求出两次投中分值之和为2的概率.本题考查事件的概率,考查相互独立事件概率乘法公式等基础知识,考查逻辑推理与数学运算的核心素养.17.【答案】解:(1)选①因为2c−b a=cosBcosA ,所以2sinC−sinBsinA=cosBcosA ,所以2sinCcosA −sinBcosA =sinAcosB ,整理得2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC . 因为sinC ≠0,所以cosA =12. 因为A ∈(0,π2),所以A =π3. 选②因为2acosC +c =2b ,所以2sinAcosC +sinC =2sinB =2sin(A +C), 所以2sinAcosC +sinC =2sinAcosC +2cosAsinC , 整理得sinC =2cosAsinC . 因为sinC ≠0,所以cosA =12. 因为A ∈(0,π2),所以A =π3. 选③因为asinAcosC+12csin2A=√3bcosA,所以sinAsinAcosC+sinCsinAcosA=√3sinBcosA,所以sinA(sinAcosC+sinCcosA)=√3sinBcosA,整理得sinAsinB=√3sinBcosA.因为sinB≠0,所以sinA=√3cosA.因为A∈(0,π2),所以tanA=√3,A=π3.(2)因为A=π3,所以cosB+cosC=cosB−cos(B+A)=12cosB+√32sinB=sin(B+π6).因为B∈(0,π2),C=2π3−B∈(0,π2),所以B∈(π6,π2),所以B+π6∈(π3,2π3),所以sin(B+π6)∈(√32,1],故cosB+cosC∈(√32,1].【解析】(1)选①,结合正弦定理及和差角公式进化简可求cos A,进而可求A;选②,结合正弦定理及和差角公式进化简可求cos A,进而可求A;选③,结合正弦定理及和差角公式进行化简可求tan A,进而可求A;(2)由已知结合和差角公式及辅助角公式进行化简,然后结合正弦函数的性质可求.本题主要考查了正弦定理,和差角公式及同角基本关系,辅助角公式及正弦函数性质的应用,属于中档题.18.【答案】解:(1)当n≥2时,a n=S n−1+1,又a n+1=S n+1,所以a n+1−a n=S n−S n−1=a n,即a n+1=2a n(n≥2),在a n+1=S n+1中,令n=1,可得a2=a1+1.因为a1=1,所以a2=2a1=2,故{a n}是首项为l,公比为2的等比数列,其通项公式为a n=2n−1,所以S n=a n+1−1=2n−1.(2)因为b n=S n+1−S nS n S n+1=1S n−1S n+1=12n−1−12n+1−1,所以T n=(1−13)+(13−17)+⋯+(12n−1−12n+1−1)=1−12n+1−1.【解析】(1)由数列的递推式和等比数列的定义、通项公式,可得所求; (2)求得b n =12n −1−12n+1−1,由数列的裂项相消求和,化简可得所求和.本题考查等比数列的定义、通项公式和数列的裂项相消求和,考查化简运算能力,属于中档题.19.【答案】解.(1)因为x −=1+2+3+4+5+66=3.5,y −=11+13+16+15+20+216=16,所以b ̂=−2.5×(−5)+(−1.5)×(−3)+(−0.5)×0+0.5×(−1)+1.5×4+2.5×5(−2.5)2+(−1.5)2+(−0.5)2+0.52+1.52+2.52=3517.5=2,可得a ̂=16−2×3.5=9.所以y 与x 之间的线性回归方程为y ̂=2x +9; (2)由(1)可知,当x =8时,可得y ̂=25,其中甲品种山羊有25×25=10万只,乙品种山羊有25×35=15万只.由频率估计概率,可得甲品种山羊达到售卖标准需要的养殖时间为6个月,7个月,8个月和9个月的概率分别为0.2,0.35,0.35和0.1,所以甲品种山羊要达到售卖标准需要养殖时间的期望为6×0.2+7×0.35+8×0.35+9×0.1=7.35(月). 由频率估计概率,可得乙品种山羊达到售卖标准需要的养殖时间为6个月,7个月,8个月和9个月的概率分别为0.1,0.3,0.4和0.2,所以乙品种山羊要达到售卖标准需要养殖时间的期望为6×0.1+7×0.3+8×0.4+9×0.2=7.7(月). 养殖每只甲品种山羊利润的期望为2500−7.35×300=2500−2205=295(元), 养殖每只乙品种山羊利润的期望为2700−7.7×300=2700−2310=390(元), 故2022年该县售卖的山羊所获利润的期望为10×295+15×390=8800(万元).【解析】(1)由题中的数据,先求出样本中心,然后求出回归系数,即可得到y 与x 之间的线性回归方程; (2)求出甲品种和乙品种山羊需要养殖时间的期望,再分别求出每只甲品种山羊利润的期望和每只乙品种山羊利润的期望,即可得到答案.本题考查了线性回归方程的求解和应用,数学期望的求解,解题的关键是掌握线性回归方程必过样本中心,考查了逻辑推理能力与运算能力,属于中档题.20.【答案】(1)证明:连接A 1C .在△A 1AC 中,A 1A =2,AC =1,∠A 1AC =60°,由余弦定理得A 1C =√3,所以A 1C 2+AC 2=A 1A 2,所以A 1C ⊥AC . 同理A 1C ⊥BC.又因为BC ∩AC =C , 所以A 1C ⊥平面ABC . 因为A 1C ⊂平面A 1ACC 1, 所以平面ABC ⊥平面A 1ACC 1.(2)解:以C 为坐标原点,CA ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,建立如图所示的空间直角坐标系C −xyz ,则A(1,0,0),B(−12,√32,0),C(0,0,0),A 1(0,0,√3),P(−13,0,√33), AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,√3),AB ⃗⃗⃗⃗⃗ =(−32,√32,0),A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ =(−12,√32,−√3),A 1⃗⃗⃗⃗ P ⃗ =(−13,0,−2√33). 设平面A 1AB 的法向量为m =(x 1,y 1,z 1),则{m ⋅AA 1⃗⃗⃗⃗⃗⃗⃗ =−x 1+√3z 1=0m ⋅AB ⃗⃗⃗⃗⃗ =−32x 1+√32y 1=0, 令z 1=1,得m =(√3,3,1).设平面PA 1B 的法向量为n =(x 2,y 2,z 2),则{n ⋅A 1B⃗⃗⃗⃗⃗⃗⃗⃗ =−12x 2+√32y 2−√3z 2=0n ⋅A 1P ⃗⃗⃗⃗⃗⃗⃗ =−13x 2−2√33z 2=0,令z 2=1,得n =(−2√3,0,1).所以cos <m,n >=m⋅n|m||n|=−6+1√13×√13=−513. 因为二面角P −A 1B −A 为锐角, 所以二面角P −A 1B −A 的余弦值为513.【解析】(1)只须证明平面A 1ACC 1内直线A 1C 垂直于平面ABC 即可;(2)用向量数量积计算二面角的余弦值. 本题考查了直线与平面的位置关系,考查了二面角的计算问题,属于中档题.21.【答案】解:(1)因为e =c a =12,所以a =2c ,因为椭圆上的点离右焦点F 的最短距离为a −c =1, 所以a =2,c =1,b =√3, 所以椭圆E 的方程为x 24+y 23=1.(2)当P 与F 重合时,显然符合题意;当P 与F 不重合时,设直线l 的方程为x =my +1,A(x 1,y 1),B(x 2,y 2),P(t,0), 联立方程组{x =my +1,3x 2+4y 2=12,得(3m 2+4)y 2+6my −9=0, 则y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4. 因为|PA||PB|=|AF||BF|,所以PF 为∠APB 的角平分线,所以k PA +k PB =y 1x 1−t +y2x 2−t =0,即y 1(x 2−t)+y 2(x 1−t)=0,整理得,2my 1y 2+(1−t)(y 1+y 2)=0, 即2m ⋅(−93m 2+4)+(1−t)(−6m3m 2+4)=0, 解得t =4,故存在P(1,0),P(4,0)满足题意.【解析】(1)依题意可得a =2,c =1,b =√3,进而得到椭圆方程;(2)当P 与F 重合时,显然符合题意;当P 与F 不重合时,设直线l 的方程为x =my +1,将其与椭圆方程联立,求出两根之和及两根之积,而由题意可知PF 为∠APB 的角平分线,由此可得k PA +k PB =0,建立方程,解出即可得出结论.本题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查圆锥曲线中的存在性问题,考查推理能力及运算求解能力,属于中档题.22.【答案】解:(1)当a =−1时,f(x)=xe x +2x −1,f′(x)=(x +1)e x +2, 因为f′(0)=3,f(0)=−1,所以曲线y =f(x)在点(0,f(0))处的切线方程为3x −y −1=0. (2)因为f(x)有两个零点,所以方程f(x)=0有两个不同的根, 即关于x 的方程(2x −1)a =xe x 有两个不同的解, 当x =12时,方程不成立,所以x ≠12, 令g(x)=xe x 2x−1,则y =a 与g(x)=xe x2x−1的图象有两个交点,且g′(x)=(2x 2−x−1)e x(2x−1)2=(x−1)(2x+1)e x(2x−1)2,令g′(x)>0,得x <−12或x >1,令g′(x)<0,得−12<x <12或12<x <1, 所以g(x)在(−∞,−12),(1,+∞)上单调递增,在(−12,12),(12,1)上单调递减,当x =−12时,g(x)取得极大值g(−12)=4√e , 当x =1时,g(x)取得极小值g(1)=e , 因为e >4√e ,且当x <0时,g(x)>0, 所以a 的取值范围是4√e )∪(e,+∞).【解析】(1)代入a 的值,求出函数的导数,计算f(0),f′(0),求出切线方程即可; (2)令g(x)=xe x 2x−1,问题转化为y =a 与g(x)=xe x2x−1的图象有两个交点,求出函数的导数,根据函数的单调性求出a 的取值范围即可.本题考查了切线方程问题,考查函数的单调性问题,是中档题.。
2021年河北卷数学高考试卷(原卷+答案)
绝密★启用前2021年普通高等学校招生全国统一考试(新高考I 卷)(适用地区:山东、福建、广东、河北、湖北、湖南、江苏)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案书写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题1.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,42.已知2i z =-,则()i z z +=()A .62i-B .42i-C .62i+D .42i+3,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B .C .4D .4.下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭5.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .66.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .657.若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b<C .0e ba <<D .0e ab <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立二、多选题9.有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样数据的样本极差相同10.已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅11.已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则()A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =12.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 第II 卷(非选择题)三、填空题13.已知函数()()322xx xa f x -=⋅-是偶函数,则a =______.14.已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.15.函数()212ln f x x x =--的最小值为______.四、双空题16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .五、解答题17.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.18.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.20.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.21.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.22.已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.参考答案1.B【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .2.C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+,故选:C.3.B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =.故选:B.4.A【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.5.C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .6.C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .7.D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线x y e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.8.B【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁,,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B 9.CD【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD10.AC【分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||1OP ==,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=--,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β= ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅ 故错误;故选:AC 11.ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=,圆心M 到直线AB的距离为11545==>,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD.12.BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+ ,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+ ,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1,0,12A ⎛⎫⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则1,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫⎪⎝⎭,因为0,02A ⎛⎫ ⎪⎪⎝⎭,所以01,,22AP y ⎛⎫=- ⎪ ⎪⎝⎭ ,11,,122A B ⎛⎫=- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .13.1【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322xx xa f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:114.32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果.【详解】抛物线C :22y px =(0p >)的焦点,02p F ⎛⎫ ⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ = ,(6,0),(6,)2pQ PQ p ∴+∴=-uu u r 因为PQ OP ⊥,所以PQ OP ⋅= 2602p p ⨯-=,0,3p p >∴=Q ,所以C 的准线方程为32x =-故答案为:32x =-.15.1【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.16.5()41537202n n -+-【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以对着三次的结果有:5312561032022⨯⨯⨯⨯,,;,共4种不同规格(单位2dm );故对折4次可得到如下规格:5124⨯,562⨯,53⨯,3102⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()2 dm ,第n 次对折后的图形面积为111202n -⎛⎫⨯ ⎪⎝⎭,对于第n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为1n +种(证明从略),故得猜想1120(1)2n n n S -+=,设()0121112011202120312042222nk n k n S S -=+⨯⨯⨯==++++∑L ,则121112021203120120(1)22222n nn n S -⨯⨯+=++++ ,两式作差得:()211201111124012022222n n n S -+⎛⎫=++++- ⎪⎝⎭ ()11601120122401212n n n -⎛⎫- ⎪+⎝⎭=+--()()112011203120360360222n n nn n -++=--=-,因此,()()4240315372072022n n n n S -++=-=-.故答案为:5;()41537202n n -+-.17.(1)122,5b b ==;(2)300.【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项.(2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++- ,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,*()k N ∈故2223k k a a +=+,即13n n b b +=+,即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.18.(1)见解析;(2)B 类.【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为X20100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.19.(1)证明见解析;(2)7cos 12ABC ∠=.【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论.(2)由题设2,,33b bBD b AD DC ===,应用余弦定理求cos ADB ∠、cos CDB ∠,又ADB CDB π∠=-∠,可得42221123b b a a +=,结合已知及余弦定理即可求cos ABC ∠.【详解】(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b=∠,∴acBD b=,又2b ac =,∴BD b =,得证.(2)由题意知:2,,33b bBD b AD DC ===,∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅,∵ADB CDB π∠=-∠,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =,∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=.20.(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥ME 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=21.(1)()221116y x x -=≥;(2)0.【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616t k t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.22.(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析.【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为()0,∞+,又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<,故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=,故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,设1211,x x a b==,由(1)可知不妨设1201,1x x <<>.因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<,故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立.若22x <,要证:122x x +>,即证122x x >-,而2021x <-<,故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<.设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=,故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立,综上,122x x +>成立.设21x tx =,则1t >,结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<,即证:()1ln ln 11t t tt --++<,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->,则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭,先证明一个不等式:()ln 1x x ≤+.设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++,当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==,故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立,故()S t 在()1,+∞上为减函数,故()()10S t S <=,故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立.综上所述,112e a b<+<.。
河北省沧州市2021届新高考一诊数学试题含解析
河北省沧州市2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+ D .,a b R ∃∈,a b a b -≥+【答案】D 【解析】 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【详解】因为全称命题的否定是特称命题,所以,命题p :,a b R ∀∈,a b a b -<+,则p ⌝为:,a b R ∃∈,a b a b -≥+.故本题答案为D. 【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]【答案】B 【解析】 【分析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出AF ;根据抛物线与圆的位置关系和特点,求得B 点横坐标的取值范围,即可由FAB ∆的周长求得其范围.【详解】抛物线28y x =,则焦点()2,0F ,准线方程为2x =-,根据抛物线定义可得2A AF x =+,圆()22216x y -+=,圆心为()2,0,半径为4,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动,解得交点横坐标为2. 点A 、B 分别在两个曲线上,AB 总是平行于x 轴,因而两点不能重合,不能在x 轴上,则由圆心和半径可知()2,6B x ∈,则FAB ∆的周长为246A B A B AF AB BF x x x x ++=++-+=+, 所以()68,12B x +∈, 故选:B. 【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.3.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22163x y -=D .22136x y -=【答案】D 【解析】 【分析】求出直线l 的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得,a b 的方程组,求得,a b 的值,即可得到答案. 【详解】由题意,直线l 的斜率为06133PF k k +===+, 可得直线l 的方程为3y x =-,把直线l 的方程代入双曲线22221x y a b-=,可得2222222()690b a x a x a a b -+--=,设1122(,),(,)A x y B x y ,则212226a x x a b+=-,由AB 的中点为()3,6P --,可得22266a a b=--,解答222b a =,又由2229a b c +==,即2229a a +=,解得a b ==所以双曲线的标准方程为22136x y -=.故选:D. 【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力. 4.集合{2,0,1,9}的真子集的个数是( ) A .13 B .14C .15D .16【答案】C 【解析】 【分析】根据含有n 个元素的集合,有2n 个子集,有21n -个真子集,计算可得; 【详解】解:集合{2,0,1,9}含有4个元素,则集合{2,0,1,9}的真子集有42115-=(个), 故选:C 【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有n 个元素的集合,有2n 个子集,有21n -个真子集,属于基础题.5.已知f(x)=-1x x e e a+是定义在R 上的奇函数,则不等式f(x-3)<f(9-x 2)的解集为( )A .(-2,6)B .(-6,2)C .(-4,3)D .(-3,4)【答案】C 【解析】 【分析】由奇函数的性质可得1a =,进而可知()f x 在R 上为增函数,转化条件得239x x -<-,解一元二次不等式即可得解. 【详解】因为()1x x e f x e a-=+是定义在R 上的奇函数,所以()()011f f +-=,即11101e e e a a e--+=++,解得1a =,即()12111x x x e f x e e -==-++, 易知()f x 在R 上为增函数. 又()()239f x f x -<-,所以239x x-<-,解得43x -<<.故选:C. 【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题. 6.已知向量()()1,2,2,2a b λ==-r r ,且a b ⊥r r,则λ等于( )A .4B .3C .2D .1【答案】D 【解析】 【分析】由已知结合向量垂直的坐标表示即可求解. 【详解】因为(1,2),(2,2)a b λ==-r r ,且a b ⊥r r ,·22(2)0a b λ=+-=rr ,则1λ=. 故选:D . 【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题. 7.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④ B .①③C .②③D .①②【答案】C 【解析】 【分析】①举反例,如直线x 、y 、z 位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x 、y 、z 位于正方体的三个共点侧面时. 【详解】①当直线x 、y 、z 位于正方体的三条共点棱时,不正确; ②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确; ④如x 、y 、z 位于正方体的三个共点侧面时, 不正确. 故选:C. 【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目. 8.函数的图象可能是下面的图象( )A .B .C .D .【答案】C 【解析】 因为,所以函数的图象关于点(2,0)对称,排除A ,B .当时,,所以,排除D .选C .9.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( ) A .6- B .6C .5D .5-【答案】A 【解析】 【分析】由{}3A B ⋂=,得3B ∈,代入集合B 即可得b . 【详解】{}3A B ⋂=Q ,3B ∴∈,930b ∴-+=,即:6b =-,故选:A 【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.10.在直角ABC ∆中,2C π∠=,4AB =,2AC =,若32AD AB =,则CD CB ⋅=u u u r u u u r ( )A .18-B .63-C .18D .3【答案】C 【解析】【分析】在直角三角形ABC 中,求得12AC cos CAB AB ∠== ,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值. 【详解】在直角ABC ∆中,2C π∠=,4AB =,2AC =,,12AC cos CAB AB ∠==, 若32AD AB =u u u v u u u v ,则2CD CB AD AC AB AC AD AB AD AC AC AB AC ⋅=-⋅-=⋅-⋅-⋅+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()223322AB AB AC AC AB AC =-⋅-⋅+u u u v u u u v u u u v u u u v u u u v u u u v 3511642418222=⨯-⨯⨯⨯+=. 故选C. 【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.11.若复数z 满足()112i z i -=-+,则||Z =( )A 2B .32C 10D .12【答案】C 【解析】 【分析】把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解. 【详解】解:由()112i z i -=-+,得()()()()121123111122i i i z i i i i -++-+===-+--+, ∴22311022z z ⎛⎫⎛⎫==-+= ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.12.设函数()22cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .72【答案】A 【解析】 【分析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值. 【详解】()22cos cos f x x x x m =++1cos22x x m =+++2sin(2)16x m π=+++,0,2x π⎡⎤∈⎢⎥⎣⎦时,72[,]666x πππ+∈,1sin(2)[,1]62x π+∈-,∴()[,3]f x m m ∈+,由题意17[,3][,]22m m +=,∴12m =. 故选:A . 【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键. 二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考第四次适应性考试数学试题含解析
河北省沧州市2021届新高考第四次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( )A .25B .45C .3D .4【答案】C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解P 的位置,推出结果即可.详解:圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,P 在底面的射影为O ;543SA =+=,OA SO >,过SA 的轴截面如图:90ASQ ∠>︒,过Q 作QT SA ⊥于T ,则QT QS <,在底面圆周,选择P ,使得90PSA ∠=︒,则P 到SA 的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.2.已知复数21i z i =+,则z =( ) A .1i +B .1i -C 2D .2【答案】C【解析】【分析】根据复数模的性质即可求解.【详解】 21i z i=+Q ,|2||1|izi∴===+,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.3.已知函数3sin()(1)()x xx xf xx m x e e-+=+-++为奇函数,则m=()A.12B.1 C.2 D.3【答案】B【解析】【分析】根据()f x整体的奇偶性和部分的奇偶性,判断出m的值.【详解】依题意()f x是奇函数.而3siny x x=+为奇函数,x xy e e-=+为偶函数,所以()()()1g x x m x=+-为偶函数,故()()0g x g x--=,也即()()()()110x m x x m x+---+=,化简得()220m x-=,所以1m=.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.4.复数满足48iz z+=+,则复数z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】设(,)z a bi a b R=+∈,则48z z a bi i+=+=+,可得48ab⎧⎪+=⎨=⎪⎩,即可得到z,进而找到对应的点所在象限.【详解】设(,)z a bi a b R=+∈,则48z z a bi i+=++=+,48ab⎧⎪+=∴⎨=⎪⎩,6,68i8azb=-⎧∴∴=-+⎨=⎩,所以复数z 在复平面内所对应的点为()6,8-,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.5.复数z 满足()11z z i -=+ (i 为虚数单位),则z 的值是( )A .1i +B .1i -C .iD .i -【答案】C【解析】【分析】直接利用复数的除法的运算法则化简求解即可.【详解】 由()11z z i -=+得:()()()211111i i z i i i i ++===-+- 本题正确选项:C【点睛】本题考查复数的除法的运算法则的应用,考查计算能力.6.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( ) A .35B .36C .45D .54【答案】C【解析】【分析】 由等差数列{}n a 通项公式得2375150a a a +-+=,求出5a ,再利用等差数列前n 项和公式能求出9S .【详解】Q 正项等差数列{}n a 的前n 项和n S ,2375150a a a +-+=,2552150a a ∴--=,解得55a =或53a =-(舍),()91959995452S a a a ∴=+==⨯=,故选C. 【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.7.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12 【答案】C【解析】【分析】【详解】 分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -, 由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.8.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C 10D 10【答案】D【解析】【分析】先化简得31i,55z =+再求||z 得解. 【详解】 2i 2i(13i)31i,13i 1055z -===++所以||5z =. 故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.9.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( )A .﹣2B .﹣1C .2D .4【答案】C【解析】【分析】根据对称性即可求出答案.【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2,故选:C .【点睛】本题主要考查函数的对称性的应用,属于中档题. 10.已知函数1,0()ln ,0x x f x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( )A .1(0,)eB .1(0,)2eC .1(,)2e -∞D .11(,)2e e 【答案】B【解析】【分析】根据分段函数,分当0x <,0x >,将问题转化为()f x k x=的零点问题,用数形结合的方法研究. 【详解】当0x <时,()21f x k x x ==,令()()2312g ,'0x g x x x ==->,()g x 在()0x ∈-∞,是增函数,0k >时,()f x k x=有一个零点, 当0x >时,()2ln f x x k x x ==,令()()23ln 12ln h ,x x x h x x x -'== 当(0,)x e ∈时,'()0h x >,∴()h x 在(0,)e 上单调递增,当(,)x e ∈+∞时,'()0h x <,∴()h x 在(,)e +∞上单调递减,所以当x e =时,()h x 取得最大值12e, 因为()()F x f x kx =-在R 上有3个零点,所以当0x >时,()f x k x=有2个零点, 如图所示:所以实数k 的取值范围为1(0,)2e综上可得实数k 的取值范围为1(0,)2e , 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.11.下列函数中,既是偶函数又在区间()0,+?上单调递增的是( ) A .y x =B .()sin f x x x =C .()2f x x x =+D .1y x =+ 【答案】C【解析】【分析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:y =B :()sin f x x x =在()0,∞+上不单调,不符合题意;C :2y x x =+为偶函数,且在()0,∞+上单调递增,符合题意;D :1y x =+为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.12.天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )A .219B .995C .4895D .519【答案】B【解析】【分析】利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率2201089C 95P +==. 故选:B.【点睛】本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考数学一月模拟试卷含解析
河北省沧州市2021届新高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A.18B.14C.16D.12【答案】B 【解析】【分析】【详解】甲同学所有的选择方案共有122412C C=种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有133C=种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率31124P==,故选B.2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④【答案】D【解析】【分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.3.已知[]2240a b a b +=⋅∈-r r r r ,,,则a r 的取值范围是( ) A .[0,1]B .112⎡⎤⎢⎥⎣⎦,C .[1,2]D .[0,2]【答案】D【解析】【分析】 设2m a b =+r r r ,可得[]2240a b a m a ⋅=⋅-∈-r r r r r ,,构造(14a m -r r )2≤22116m +r ,结合2m =r ,可得113422a m ⎡⎤-∈⎢⎥⎣⎦r r ,,根据向量减法的模长不等式可得解. 【详解】设2m a b =+r r r ,则2m =r , []22240b m a a b a m a =-⋅=⋅-∈-r r r r r r r r ,,, ∴(14a m -r r )2212a a =-r r •2116m m +≤r r 22116m +r |m r |2m r =2=4,所以可得:2182m =r , 配方可得222111192()428482m a m m =≤-≤+=r r r r , 所以113422a m ⎡⎤-∈⎢⎥⎣⎦rr ,, 又111||||||||||||444a m a m a m -≤-≤+r r r r r r 则a ∈r[0,2].故选:D .【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 4.已知函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则1(())f f e =( ) A .32 B .1 C .-1 D .0【答案】A【分析】由函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,求得11()ln 1f e e ==-,进而求得1(())f f e 的值,得到答案. 【详解】由题意函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩, 则11()ln1f e e ==-,所以1313(())(1)2(1)2f f f e -=-=--=,故选A. 【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题. 5.已知0a >且1a ≠,函数()1log ,031,0a x x a x f x x ++>⎧=⎨-≤⎩,若()3f a =,则()f a -=( ) A .2B .23C .23-D .89- 【答案】C【解析】【分析】根据分段函数的解析式,知当0x ≤时,()131,x f x +=-且()3f x <,由于()3f a =,则()log 3a f a a a =+=,即可求出a .【详解】由题意知:当0x ≤时,()131,x f x +=-且()3f x <由于()3f a =,则可知:0a >,则()log 3a f a a a =+=,∴2a =,则2a -=-,则()()122313f a f --=-=-=-. 即()23f a -=-. 故选:C.【点睛】 本题考查分段函数的应用,由分段函数解析式求自变量.6.抛物线22y x =的焦点为,则经过点与点2,2M 且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个【答案】B【解析】【分析】 圆心在FM 的中垂线上,经过点F ,M 且与l 相切的圆的圆心到准线的距离与到焦点F 的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点(2,2)M 在抛物线22y x =上, 又焦点1(2F ,0), 由抛物线的定义知,过点F 、M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点, 这样的交点共有2个,故过点F 、M 且与l 相切的圆的不同情况种数是2种.故选:B .【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.7.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( ) A .0B .2-C .52-D .3-【答案】C【解析】【分析】【详解】 试题分析:将参数a 与变量x 分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x 2+ax+1≥0对一切x ∈(0,12]成立,等价于a≥-x-1x 对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立, ∵y=-x-1x 在区间10,2⎛⎤ ⎥⎝⎦上是增函数 ∴115222x x--≤--=- ∴a≥-52∴a 的最小值为-52故答案为C . 考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题8.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 【答案】D【解析】选项A ,否命题为“若1a ≤,则21a ≤”,故A 不正确.选项B ,逆命题为“若a b <,则22am bm <”,为假命题,故B 不正确.选项C ,由题意知对x ∀()0,∈+∞,都有34x x <,故C 不正确.选项D ,命题的逆否命题“若6πα=,则1sin 2α=”为真命题,故“若1sin 2α≠,则6πα≠”是真命题,所以D 正确.选D .9.若双曲线22214x y a -= )A .B .C .6D .8【答案】A【解析】【分析】依题意可得24b =,再根据离心率求出2a ,即可求出c ,从而得解;【详解】解:∵双曲线22214x y a -=所以22413e a=+=,∴22a =,∴c =【点睛】本题考查双曲线的简单几何性质,属于基础题.10.已知函数1222,0,()log ,0,x x f x x x +⎧+≤⎪=⎨>⎪⎩若关于x 的方程[]2()2()30f x af x a -+=有六个不相等的实数根,则实数a 的取值范围为( )A .163,5⎛⎫ ⎪⎝⎭B .163,5⎛⎤ ⎥⎝⎦C .(3,4)D .(]3,4【答案】B【解析】【分析】令()f x t =,则2230t at a -+=,由图象分析可知2230t at a -+=在(2,4]上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令()f x t =,则2230t at a -+=,如图y t =与()y f x =顶多只有3个不同交点,要使关于x 的方程[]2()2()30f x af x a -+=有六个不相等的实数根,则2230t at a -+=有两个不同的根12,(2,4]t t ∈,设2()23g t t at a =-+由根的分布可知, 24120(2,4)(2)0(4)0a a a g g ⎧∆=->⎪∈⎪⎨>⎪⎪≥⎩,解得1635a <≤. 故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.11.已知平面α和直线a ,b ,则下列命题正确的是( )A .若a ∥b ,b ∥α,则a ∥αB .若a b ⊥r r ,b α⊥,则a ∥αC .若a ∥b ,b α⊥,则a α⊥D .若a b ⊥r r,b ∥α,则a α⊥ 【答案】C【解析】【分析】 根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A :当a α⊂时,也可以满足a ∥b ,b ∥α,故本命题不正确;B :当a α⊂时,也可以满足a b ⊥r r ,b α⊥,故本命题不正确;C :根据平行线的性质可知:当a ∥b ,b α⊥,时,能得到a α⊥,故本命题是正确的;D :当a α⊂时,也可以满足a b ⊥r r ,b ∥α,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.12.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯L L,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .5【答案】B【解析】初始:1k =,2T =,第一次循环:2282 2.8133T =⨯⨯=<,2k =,继续循环; 第二次循环:844128 2.833545T =⨯⨯=>,3k =,此时 2.8T >,满足条件,结束循环, 所以判断框内填入的条件可以是3?k ≥,所以正整数m 的最小值是3,故选B .二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考数学五模试卷含解析
河北省沧州市2021届新高考数学五模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =I ( )A .()1,3B .(]1,3C .[)1,2-D .()1,2- 【答案】C【解析】【分析】解不等式得出集合A ,根据交集的定义写出A∩B .【详解】集合A ={x|x 2﹣2x ﹣3≤0}={x|﹣1≤x ≤3}, ={x x<2}B ,{|1<2}A B x x ∴⋂=≤﹣故选C .【点睛】本题考查了解不等式与交集的运算问题,是基础题.2.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( )A .20B .50C .40D .60 【答案】B【解析】【分析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】 由题意,30=150015001000n ⨯+,解得50n =. 故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.3.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .πB .2πC .πD .π【分析】首先根据函数()f x 的图象分别向左与向右平移m,n 个单位长度后,所得的两个图像重合,那么m n k T +=⋅,利用()f x 的最小正周期为π,从而求得结果.【详解】()f x 的最小正周期为π, 那么3n k ππ+=(k ∈Z ), 于是3n k ππ=-,于是当1k =时,n 最小值为23π, 故选B.【点睛】 该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.4.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1B .2C .3D .4【答案】D【解析】【分析】 圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >, 则1111()()24n m m n m n m n m n +=++=++…,当且仅当n m m n =且1m n +=即12m n ==时取等号, 故选:D .【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.5.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v()A .4B .6C .D .【答案】B根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =,且30BDC ∠=︒,∴|||3 302|3262BD CD BD CD cos =⨯⨯︒=⨯⨯=⋅u u u r u u u r u u u r u u u r , 故选B .【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..6.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C【解析】【分析】 根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.7.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( )A .2B .2iC .4D .4i 【答案】A【解析】【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2.【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-.8.已知O 为坐标原点,角α的终边经过点(3,)(0)P m m <且sin α=,则sin 2α=( ) A .45 B .35 C .35- D .45- 【答案】C【解析】【分析】根据三角函数的定义,即可求出1m =-,得出(3,1)P -,得出sin α和cos α,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,sin α==,解得1m =-, 所以(3,1)OP =-u u u r ,所以sin ,cos 1010αα=-=, 所以3sin 22sin cos 5ααα==-. 故选:C.【点睛】9.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A 1B .25-C .D .1 【答案】D【解析】【分析】利用抛物线的定义,求得p 的值,由利用两点间距离公式求得PM ,根据二次函数的性质,求得min PM ,由PQ 取得最小值为min 1PM-,求得结果. 【详解】由抛物线2:2(0)C y px p =>焦点在x 轴上,准线方程2p x =-, 则点(5,)t 到焦点的距离为562p d =+=,则2p =, 所以抛物线方程:24y x =, 设(,)P x y ,圆22:(6)1M x y -+=,圆心为(6,1),半径为1,则PM ===,当4x =时,PQ 11=,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.10.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A.4 B.5 C.6 D.7【答案】C【解析】【分析】根据程序框图程序运算即可得.【详解】依程序运算可得:4602520460603460604046040,,,;,,,;,,,;r i m n r i m n r i m n============ 205402006,,,;,r i m n r i======,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.11.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是()A.2 B.3 C.4 D.1 【答案】B【解析】【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.根据实际问题可以转化为等比数列问题,在等比数列{}n a 中,公比2q =,前n 项和为n S ,55S =,3531m S =,求m 的值. 因为()51512512a S -==-,解得1531a =,()51235311231m m S -==-,解得3m =.故选B . 【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助. 12.若x ∈(0,1),a =lnx ,b =ln 12x ⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( ) A .b >c >aB .c >b >aC .a >b >cD .b >a >c【答案】A【解析】【分析】 利用指数函数、对数函数的单调性直接求解.【详解】∵x ∈(0,1),∴a =lnx <0,b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a .故选:A .【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考数学四模考试卷含解析
河北省沧州市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤⎥⎝⎦B .59,610⎛⎤⎥⎝⎦C .715,816⎛⎤⎥⎝⎦D .1531,1632⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n. 【详解】第一次循环:1,22S n ==;第二次循环:2113,3224S n =+==;第三次循环:231117,42228S n =++==;第四次循环:234111115,5222216S n =+++==; 此时满足输出结果,故715816P <≤. 故选:C. 【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题. 2.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到sin 2o 的近似值为( )A .π90B .π180C .π270D .π360【答案】A 【解析】 【分析】设圆的半径为r ,每个等腰三角形的顶角为360n ︒,则每个等腰三角形的面积为21360sin 2r n︒,由割圆术可得圆的面积为221360sin 2r n r n π︒=⋅,整理可得3602sin n nπ︒=,当180n =时即可为所求. 【详解】由割圆术可知当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积, 设圆的半径为r ,每个等腰三角形的顶角为360n︒, 所以每个等腰三角形的面积为21360sin 2r n ︒, 所以圆的面积为221360sin2r n r n π︒=⋅,即3602sin n n π︒=, 所以当180n =时,可得3602sin sin 218018090ππ︒=︒==, 故选:A 【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.3.已知某几何体的三视图如图所示,则该几何体的体积是( )A .643B .64C .323D .32【答案】A 【解析】 【分析】根据三视图,还原空间几何体,即可得该几何体的体积. 【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4, 故()16444433V =⨯⨯⨯=. 故选:A 【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.4.方程()()f x f x '=的实数根0x 叫作函数()f x 的“新驻点”,如果函数()ln g x x =的“新驻点”为a ,那么a 满足( ) A .1a = B .01a << C .23a << D .12a <<【答案】D 【解析】 【分析】由题设中所给的定义,方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,根据零点存在定理即可求出a 的大致范围 【详解】解:由题意方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,对于函数()g x lnx =,由于1()g x x'=, 1lnx x∴=,设1()h x lnx x=-,该函数在(0,)+∞为增函数, ()110h ∴=-<, ()122202h ln ln =-=->, ()h x ∴在(1,2)上有零点,故函数()g x lnx =的“新驻点”为a ,那么12a << 故选:D . 【点睛】本题是一个新定义的题,理解定义,分别建立方程解出a 存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..5.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B I =( )A .[12]-, B .[1-C .(1-D .⎡⎣【答案】C 【解析】 【分析】计算A ⎡=⎣,(]1,2B =-,再计算交集得到答案.【详解】{|A x y ⎡==⎣=,(]2{|},1012x x B x -=-+=≤,故1(A B -=I . 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.6.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-2【答案】B 【解析】 【分析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在[]2,1-上的最大值和最小值. 【详解】依题意,()1 51,2323111,13x xf x x xx x⎧+-≤<-⎪⎪=-+=⎨⎪---≤≤⎪⎩,作出函数()f x的图象如下所示;由函数图像可知,当13x=-时,()f x有最大值23-,当2x=-时,()f x有最小值9-.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题. 7.若(12)5i z i-=(i是虚数单位),则z的值为()A.3 B.5 C3D5【答案】D【解析】【分析】直接利用复数的模的求法的运算法则求解即可.【详解】()125i z i-=(i是虚数单位)可得()125i z i-=解得5z=本题正确选项:D【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.8.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为()A.B.C.D.【答案】A【解析】【分析】先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点,准线与x轴交点,双曲线半焦距,设点是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上,所以抛物线的准线,从而轴,所以,即故双曲线的离心率为故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.9.已知双曲线2222:1(0,0)x yC a ba b-=>>的右焦点为F,若双曲线C的一条渐近线的倾斜角为3π,且点F 3C的实轴的长为A.1B.2C.4D.5 5【答案】B 【解析】【分析】【详解】双曲线C 的渐近线方程为by x a =±,由题可知tan 33b a π==. 设点(c,0)F ,则点F 到直线3y x =的距离为22|3|3(3)(1)c =+-,解得2c =,所以222222344c a b a a a =+=+==,解得1a =,所以双曲线C 的实轴的长为22a =,故选B . 10.等比数列{},n a 若3154,9a a ==则9a =( ) A .±6 B .6C .-6D .132【答案】B 【解析】 【分析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可. 【详解】由等比数列中等比中项性质可知,23159a a a ⋅=,所以9315366a a a =±⋅=±=±,而由等比数列性质可知奇数项符号相同,所以96a =, 故选:B. 【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题. 11.已知函数()cos()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<),将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则1()3f x =是32123x g π⎛⎫+= ⎪⎝⎭的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】先根据图象求出函数()g x 的解析式,再由平移知识得到()f x 的解析式,然后分别找出1()3f x =和2123x g π⎛⎫+= ⎪⎝⎭的等价条件,即可根据充分条件,必要条件的定义求出. 【详解】设()()sin g x A x ωμ=+,根据图象可知,371,24612A T T πππω⎛⎫==--⇒=⇒= ⎪⎝⎭,再由77sin 211212g ππμ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 取3πμ=-, ∴()sin 23g x x π⎛⎫=-⎪⎝⎭. 将函数()g x 的图象向右平移34π个单位长度,得到函数()f x 的图象, ∴33()sin 2cos 24433f x g x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=--=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.11()cos 2333f x x π⎛⎫=⇔-= ⎪⎝⎭,sin 21263x g x ππ⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭,令6x πθ=-,则21sin cos 212sin 3θθθ=⇒=-=,显然,1cos 2sin 3θθ=⇒=∴1()3f x =是212x g π⎛⎫+= ⎪⎝⎭的必要不充分条件. 故选:B . 【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题. 12.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( ) A .13i + B .13i -C .13i -+D .13i --【答案】B 【解析】 【分析】先根据复数的乘法计算出z ,然后再根据共轭复数的概念直接写出z 即可. 【详解】由()()1213z i i i =++=+,所以其共轭复数13z i =-.故选:B. 【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易. 二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考二诊数学试题含解析
河北省沧州市2021届新高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a r ,b r ,c r 是平面内三个单位向量,若a b ⊥r r,则232a c a b c +++-r r r r r 的最小值( ) A .29 B .2932-C .1923-D .5【答案】A 【解析】 【分析】由于a b ⊥r r,且为单位向量,所以可令()1,0a =r ,()0,1b =r ,再设出单位向量c r 的坐标,再将坐标代入232a c a b c +++-r r r r r中,利用两点间的距离的几何意义可求出结果.【详解】解:设(),c x y =r ,()1,0a =r,()0,1b =r ,则221x y +=,从而()()()()222223221232x y x y +++-=+++-+-r r r r ra c ab c()()()22222234132x y x y x x y =++++++-+-()()()2222222325229x y x y =+++-+-≥+=,等号可取到.故选:A 【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.2.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中CD )有15cm ,跨接了6个坐位的宽度(AB ),每个座位宽度为43cm ,估计弯管的长度,下面的结果中最接近真实值的是( )A .250cmB .260cmC .295cmD .305cm【答案】B 【解析】 【分析】»AB 为弯管,AB 为6个座位的宽度,利用勾股定理求出弧AB 所在圆的半径为r ,从而可得弧所对的圆心角,再利用弧长公式即可求解.如图所示,»AB 为弯管,AB 为6个座位的宽度,则643258AB cm =⨯=15CD cm =设弧AB 所在圆的半径为r ,则222()r r CD AC =-+22(15)129r =-+解得562r cm ≈129sin 0.23562AOD ∠=≈ 可以近似地认为sin x x ≈,即0.23AOD ∠≈ 于是0.46AOB ∠≈,»AB 长5620.46258.5≈⨯≈所以260cm 是最接近的,其中选项A 的长度比AB 还小,不可能, 因此只能选B ,260或者由cos 0.97x ≈,sin 20.4526x x π≈⇒<所以弧长5622946π<⨯≈.故选:B 【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题. 3.已知i 为虚数单位,若复数12z i =+,15z z ⋅=,则||z = A .1 B 5C .5 D .5【答案】B 【解析】【详解】 由15z z ⋅=可得15z z =,所以1555||2i ||||5z z +====,故选B . 4.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()A B =R I ð A .{}01x x <≤ B .{}01x x <<C .{}12x x ≤<D .{}02x x <<【答案】B 【解析】分析:由题意首先求得R C B ,然后进行交集运算即可求得最终结果. 详解:由题意可得:{}|1R C B x x =<, 结合交集的定义可得:(){}01R A C B x ⋂=<<. 本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力. 5.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D 【解析】试题分析:m α⊥Q ,,n βαβ∴⊥P ,故选D.考点:点线面的位置关系.6.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在区间(,)43ππ上单调,则ω的最大值是( )A .12B .11C .10D .9【答案】B 【解析】 【分析】由题意可得()4k πωϕπ-+=g ,且42k ππωϕπ+='+g ,故有2()1k k ω='-+①,再根据12234πππω-g …,求得12ω…②,由①②可得ω的最大值,检验ω的这个值满足条件.【详解】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ…,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴, ()4k πωϕπ∴-+=g ,且42k ππωϕπ+='+g ,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①. ()f x Q 在(4π,)3π单调,∴12234πππω-g…,12ω∴…②. 由①②可得ω的最大值为1. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=g ,满足4πx =-为()f x 的零点, 同时也满足满足()f x 在,43ππ⎛⎫⎪⎝⎭上单调, 故11ω=为ω的最大值, 故选:B . 【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题. 7.设函数1()ln1xf x x x+=-,则函数的图像可能为( ) A . B . C . D .【答案】B 【解析】 【分析】根据函数为偶函数排除,A C ,再计算11()22ln 30f =>排除D 得到答案. 【详解】1()ln1xf x x x +=-定义域为:(1,1)- 11()ln ln ()11x xf x x x f x x x -+-=-==+-,函数为偶函数,排除,A C11()22ln 30f => ,排除D 故选B 【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧. 8.已知0a >且1a ≠,函数()1log ,031,0a x x a x f x x ++>⎧=⎨-≤⎩,若()3f a =,则()f a -=( ) A .2 B .23 C .23-D .89-【答案】C 【解析】 【分析】根据分段函数的解析式,知当0x ≤时,()131,x f x +=-且()3f x <,由于()3f a =,则()log 3a f a a a =+=,即可求出a .【详解】 由题意知:当0x ≤时,()131,x f x +=-且()3f x <由于()3f a =,则可知:0a >, 则()log 3a f a a a =+=, ∴2a =,则2a -=-, 则()()122313f a f --=-=-=-. 即()23f a -=-. 故选:C. 【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.9.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( ) A .4amB .2a m+ C .2a mm+ D .42a mm+ 【答案】D【解析】 【分析】由试验结果知m 对0~1之间的均匀随机数,x y ,满足0101x y <<⎧⎨<<⎩,面积为1,再计算构成钝角三角形三边的数对(,)x y ,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值. 【详解】解:根据题意知,m 名同学取m 对都小于1的正实数对(),x y ,即0101x y <<⎧⎨<<⎩,对应区域为边长为1的正方形,其面积为1,若两个正实数,x y 能与1构成钝角三角形三边,则有22110101x y x y x y ⎧+<⎪+>⎪⎨<<⎪⎪<<⎩,其面积142S π=-;则有142a m π=-,解得42a mmπ+= 故选:D . 【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解. 10.已知集合{}2,1,0,1A =--,{}22*|,B x x a a N=≤∈,若A B ⊆,则a 的最小值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】解出22x a ≤,分别代入选项中a 的值进行验证. 【详解】解:22x a ≤Q ,a x a ∴-≤≤.当1a = 时,{}1,0,1B =-,此时A B ⊆不成立. 当2a = 时,{}2,1,0,1,2B =--,此时A B ⊆成立,符合题意. 故选:B. 【点睛】本题考查了不等式的解法,考查了集合的关系.11.设0.50.82a =,sin1b =,lg 3c =,则a ,b ,c 三数的大小关系是 A .a c b << B .a b c << C .c b a << D .b c a <<【答案】C 【解析】 【分析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a ,b ,c 12比较即可. 【详解】由0.50.50.820.8a =>1sin1sin 23b π<=<==<11lg3lg1022c =<==,所以有c b a <<.选C. 【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.12. “2a =”是“直线210ax y +-=与(1)20x a y +-+=互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】利用两条直线互相平行的条件进行判定 【详解】当2a =时,直线方程为2210x y +-=与20x y ++=,可得两直线平行;若直线210ax y +-=与()120x a y +-+=互相平行,则()12a a -=,解得12a =,21a =-,则“2a =”是“直线210ax y +-=与()120x a y +-+=互相平行”的充分不必要条件,故选A【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考数学一模试卷含解析
河北省沧州市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞) 【答案】A 【解析】 【分析】根据幂函数的定义域与分母不为零列不等式组求解即可. 【详解】 因为函数,解得且;函数的定义域为, 故选A .【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.2.已知函数()32cos f x x x =+,若2(3a f =,(2)b f =,2(log 7)c f =,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<【答案】D 【解析】 【分析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得()f x 在R 上为增函数,又由2222log 4log 733=<<<解:根据题意,函数()32cos f x x x =+,其导数函数()32sin f x x '=-, 则有()32sin 0f x x '=->在R 上恒成立, 则()f x 在R 上为增函数;又由222log 4log 73=<<< 则b c a <<; 故选:D . 【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.3.在ABC ∆中,内角A 的平分线交BC 边于点D ,4AB =,8AC =,2BD =,则ABD ∆的面积是( )A .B .C .3D .【答案】B 【解析】 【分析】利用正弦定理求出CD ,可得出BC ,然后利用余弦定理求出cos B ,进而求出sin B ,然后利用三角形的面积公式可计算出ABD ∆的面积. 【详解】AD Q 为BAC ∠的角平分线,则BAD CAD ∠=∠.ADB ADC π∠+∠=Q ,则ADC ADB π∠=-∠,()sin sin sin ADC ADB ADB π∴∠=-∠=∠,在ABD ∆中,由正弦定理得sin sin AB BDADB BAD =∠∠,即42sin sin ADB BAD =∠∠,①在ACD ∆中,由正弦定理得sin sin AC CD ADC ADC =∠∠,即8sin sin CDADC CAD=∠∠,②①÷②得212CD =,解得4CD =,6BC BD CD ∴=+=,由余弦定理得2221cos 24AB BC AC B AB BC +-==-⋅,sin B ∴==因此,ABD ∆的面积为1sin 2ABD S AB BD B ∆=⋅=故选:B. 【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3)为( )A .163B .6C .203D .223【答案】D 【解析】 【分析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解. 【详解】如图,该几何体为正方体去掉三棱锥111B A C E -,所以该几何体的体积为:11111111122222221323B AC E ABCD A B C D V V V --=-=⨯⨯-⨯⨯⨯⨯=, 故选:D 【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题. 5.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,7,3a b c C π+==,则ABC ∆的面积为( ) A .332B 3C .33D .23【答案】A 【解析】 【分析】由余弦定理可得227a b ab +-=,结合2=1a b +可得a ,b ,再利用面积公式计算即可.由余弦定理,得2272cos a b ab C =+-=22a b ab +-,由22721a b ab a b ⎧=+-⎨=+⎩,解得23a b =⎧⎨=⎩,所以,11sin 2322ABC S ab C ∆==⨯⨯=. 故选:A. 【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题. 6.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .不充分不必要【答案】B 【解析】 【分析】由线面关系可知m n ⊥,不能确定n 与平面α的关系,若//n α一定可得m n ⊥,即可求出答案. 【详解】,m m n α⊥⊥Q ,不能确定αn ⊂还是αn ⊄,//m n n α∴⊥¿,当//n α时,存在a α⊂,//,n a , 由,m m a α⊥⇒⊥ 又//,n a 可得m n ⊥,所以“m n ⊥”是“//n α”的必要不充分条件, 故选:B 【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.7.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( ) A .72种 B .144种C .288种D .360种【答案】B 【解析】 【分析】利用分步计数原理结合排列求解即可第一步排语文,英语,化学,生物4种,且化学排在生物前面,有2412A =种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有2412A =种排法,所以不同的排表方法共有1212144⨯=种. 选B . 【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题8.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线经过圆22:240E x y x y ++-=的圆心,则双曲线C 的离心率为( )A B .CD .2【答案】B 【解析】 【分析】求出圆心,代入渐近线方程,找到a b 、的关系,即可求解. 【详解】 解:()1,2E -,()2222:10,0x y C a b a b-=>>一条渐近线b y x a =- ()21ba=-⨯-,2a b =()222222+b ,2,c a c a a e ==+=故选:B 【点睛】利用a b 、的关系求双曲线的离心率,是基础题.9.已知集合{|12},{|15}=-<=-A x x B x x 剟?,定义集合*{|,,}==+∈∈A B z z x y x A y B ,则*(*)B A B 等于( )A .{|61}-<x x …B .{|112}<x x …C .{|110}-<x x …D .{|56}-<x x …【答案】C 【解析】根据*A B 定义,求出*A B ,即可求出结论. 【详解】因为集合{|15}=-B x x 剟,所以{|51}=--B x x 剟, 则*{|61}=-<A B x x …,所以*(*){|110}=-<B A B x x …. 故选:C. 【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.10.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天 的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边 形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为( )A .247.79mB .254.07mC .257.21mD .2114.43m【答案】B 【解析】 【分析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的18,两面积作差即可求解. 【详解】由图,正八边形分割成8个等腰三角形,顶角为360458=oo ,设三角形的腰为a ,由正弦定理可得10135sin 45sin 2a =o o,解得1351022a =o ,)211351cos135sin45251222S⎛⎫-=⨯==⎪⎝⎭o oo,所以每块八卦田的面积约为:)21251454.078π-⨯⨯≈.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.11.已知双曲线()222210,0x ya ba b-=>>的左、右顶点分别是,A B,双曲线的右焦点F为()2,0,点P在过F且垂直于x轴的直线l上,当ABP∆的外接圆面积达到最小时,点P恰好在双曲线上,则该双曲线的方程为()A.22122x y-=B.2213yx-=C.2213xy-=D.22144x y-=【答案】A【解析】【分析】点P的坐标为()2,m()0m>,()tan tanAPB APF BPF∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点P的坐标为()2,m()0m>,由于AB为定值,由正弦定理可知当sin APB∠取得最大值时,APB∆的外接圆面积取得最小值,也等价于tan APB∠取得最大值,因为2tanaAPFm+∠=,2tanaBPFm-∠=,所以()2222tan tan221a aa am mAPB APF BPFa ab bmm m m+--∠=∠-∠==≤=+-+⋅+,当且仅当2bmm=()0m>,即当m b=时,等号成立,此时APB∠最大,此时APB的外接圆面积取最小值,点P的坐标为2,b,代入22x y可得所以双曲线的方程为22122x y -=.故选:A 【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力. 12.函数ln ||()xx x f x e=的大致图象为( ) A . B .C .D .【答案】A 【解析】 【分析】利用特殊点的坐标代入,排除掉C ,D ;再由1()12f -<判断A 选项正确. 【详解】1.11.1ln |1.1|( 1.1)0f e--=<,排除掉C ,D ; 1211ln 122()22f e e---==122e <=Q 2e ,1()212f e ∴-=<.故选:A . 【点睛】常用方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新第一次高考模拟考试数学试卷含解析
河北省沧州市2021届新第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 【答案】D 【解析】 【分析】由函数的周期求得2w =,再由平移后的函数图像关于直线2x π=对称,得到223ππϕ⨯+-2k ππ=+,由此求得满足条件的ϕ的值,即可求得答案. 【详解】分析:由函数的周期求得ω2=,再由平移后的函数图像关于直线πx 2=对称,得到πππ2φk π232⨯+-=+,由此求得满足条件的φ的值,即可求得答案. 详解:因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=- ⎪⎝⎭,故选D. 【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到sin(2)3y x πϕ=+-,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.2.已知复数z 满足1z =,则2z i +-的最大值为( )A .23+B .1+C .2+D .6【答案】B 【解析】 【分析】设i,,z a b a b R =+∈,2z i +-=,利用复数几何意义计算. 【详解】设i,,z a b a b R =+∈,由已知,221a b +=,所以点(,)a b 在单位圆上,而2i |(2)(1)i |=z a b +-=++-(,)a b到(2,1)-的距离,故21z i +-≤+=1. 故选:B. 【点睛】本题考查求复数模的最大值,其实本题可以利用不等式|2||||2|z i z i +-≤+-来解决. 3.已知f (x )=ax 2+bx 是定义在[a –1,2a]上的偶函数,那么a+b 的值是A .13-B .13 C .12-D .12【答案】B 【解析】 【分析】依照偶函数的定义,对定义域内的任意实数,f (﹣x )=f (x ),且定义域关于原点对称,a ﹣1=﹣2a ,即可得解. 【详解】根据偶函数的定义域关于原点对称,且f (x )是定义在[a –1,2a]上的偶函数, 得a –1=–2a ,解得a=13,又f (–x )=f (x ), ∴b=0,∴a+b=13.故选B . 【点睛】本题考查偶函数的定义,对定义域内的任意实数,f (﹣x )=f (x );奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.4.若函数32()2()f x x mx x m R =-+∈在1x =处有极值,则()f x 在区间[0,2]上的最大值为( ) A .1427B .2C .1D .3【答案】B 【解析】 【分析】根据极值点处的导数为零先求出m 的值,然后再按照求函数在连续的闭区间上最值的求法计算即可. 【详解】解:由已知得2()322f x x mx '=-+,(1)3220f m '∴=-+=,52m ∴=,经检验满足题意. 325()22f x x x x ∴=-+,2()352f x x x '=-+. 由()0f x '<得213x <<;由()0f x '>得23x <或1x >.所以函数()f x 在20,3⎡⎤⎢⎥⎣⎦上递增,在2,13⎡⎤⎢⎥⎣⎦上递减,在[1,2]上递增.则214()327f x f ⎛⎫==⎪⎝⎭极大值,(2)2f =, 由于(2)()f f x >极大值,所以()f x 在区间[0,2]上的最大值为2. 故选:B. 【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题. 5.执行下面的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是( )A .5i ≤B .6i ≤C .7i ≤D .8i ≤【答案】B 【解析】 【分析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环; 第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6i ≤. 故选B 【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.6.设a 、b R +∈,数列{}n a 满足12a =,21n n a a a b +=⋅+,n *∈N ,则( )A .对于任意a ,都存在实数M ,使得n a M <恒成立B .对于任意b ,都存在实数M ,使得n a M <恒成立C .对于任意()24,b a ∈-+∞,都存在实数M ,使得n a M <恒成立D .对于任意()0,24b a ∈-,都存在实数M ,使得n a M <恒成立 【答案】D 【解析】 【分析】取1a b ==,可排除AB ;由蛛网图可得数列{}n a 的单调情况,进而得到要使n a M <,只需2<,由此可得到答案.【详解】取1a b ==,211n n a a +=+,数列{}n a 恒单调递增,且不存在最大值,故排除AB 选项;由蛛网图可知,2ax b x +=存在两个不动点,且1x =2x =因为当110a x <<时,数列{}n a 单调递增,则1n a x <; 当112x a x <<时,数列{}n a 单调递减,则11n x a a <≤; 所以要使n a M <,只需要120a x <<,故11422aba-<,化简得24b a <-且0b >.故选:D . 【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.7.已知命题p:直线a ∥b ,且b ⊂平面α,则a ∥α;命题q:直线l ⊥平面α,任意直线m ⊂α,则l ⊥m.下列命题为真命题的是( ) A .p ∧q B .p ∨(非q )C .(非p )∧qD .p ∧(非q )【答案】C 【解析】 【分析】首先判断出p 为假命题、q 为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项. 【详解】根据线面平行的判定,我们易得命题:p 若直线//a b ,直线b ⊂平面α,则直线//a 平面α或直线a 在平面α内,命题p 为假命题;根据线面垂直的定义,我们易得命题:q 若直线l ⊥平面α,则若直线l 与平面α内的任意直线都垂直,命题q 为真命题.故:A 命题“p q ∧”为假命题;B 命题“()p q ∨⌝”为假命题;C 命题“()p q ⌝∧”为真命题;D 命题“()p q ∧⌝”为假命题. 故选:C. 【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.8.已知集合A ={0,1},B ={0,1,2},则满足A ∪C =B 的集合C 的个数为( ) A .4B .3C .2D .1【答案】A 【解析】 【分析】由A C B ⋃=可确定集合C 中元素一定有的元素,然后列出满足题意的情况,得到答案. 【详解】由A C B ⋃=可知集合C 中一定有元素2,所以符合要求的集合C 有{}{}{}{}2,2,0,2,1,2,0,1,共4种情况,所以选A 项. 【点睛】考查集合并集运算,属于简单题.9.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为Γ的离心率为( )A .2B .C .73D 【答案】D 【解析】 【分析】由圆22:()4C x c y -+=与l 相切可知,圆心(,0)C c 到l 的距离为2,即2b =.又1222AF F AOF S S ab ∆===V a 的值,利用离心率公式,求出e.【详解】由题意得2b =,12AF F S ab ∆==a ∴=3e ∴==. 故选:D. 【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.10.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( )A BC D .【答案】B 【解析】由于直线的斜率k 3=,所以一条渐近线的斜率为13k '=-,即13b a =,所以e ==3,选B. 11.已知52i 12ia =+-(a ∈R ),i 为虚数单位,则a =( )AB .3C .1D .5【答案】C 【解析】 【分析】利用复数代数形式的乘法运算化简得答案. 【详解】 由52i 12ia =+-,得12i 2i a +=+,解得1a =. 故选:C. 【点睛】本题考查复数代数形式的乘法运算,是基础题.12.函数()y f x =满足对任意x ∈R 都有()()2f x f x +=-成立,且函数()1y f x =-的图象关于点()1,0对称,()14f =,则()()()201620172018f f f ++的值为( )A .0B .2C .4D .1【答案】C 【解析】 【分析】根据函数()1y f x =-的图象关于点()1,0对称可得()f x 为奇函数,结合()()2f x f x +=-可得()f x 是周期为4的周期函数,利用()00f =及()14f =可得所求的值. 【详解】因为函数()1y f x =-的图象关于点()1,0对称,所以()y f x =的图象关于原点对称, 所以()f x 为R 上的奇函数.由()()2f x f x +=-可得()()2f x f x +=-,故()()()42f x f x f x +=-+=, 故()f x 是周期为4的周期函数.因为20164504,201745041,201845042=⨯=⨯+=⨯+,所以()()()()()()()20162017201012428f f f f f f f +=+=+++. 因为()()2f x f x +=-,故()()()02000f f f +=-=-=,所以()()()2016201720148f f f +=+. 故选:C. 【点睛】本题考查函数的奇偶性和周期性,一般地,如果R 上的函数()f x 满足()()()0f x a f x a +=-≠,那么()f x 是周期为2a 的周期函数,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新高考数学五模考试卷含解析
河北省沧州市2021届新高考数学五模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A .75B .65C .55D .45【答案】B 【解析】 【分析】计算1225+++L 的和,然后除以5,得到“5阶幻方”的幻和. 【详解】依题意“5阶幻方”的幻和为12525122526555+⨯+++==L ,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前n 项和公式,属于基础题.2.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( ) A .13 B .14 C .15 D .16【答案】A【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 3.已知复数11iz i+=-,则z 的虚部是( ) A .i B .i -C .1-D .1【答案】C 【解析】 【分析】化简复数,分子分母同时乘以1i +,进而求得复数z ,再求出z ,由此得到虚部. 【详解】11iz i i+==-,z i =-,所以z 的虚部为1-. 故选:C 【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.4.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .2C 162D .163【答案】C 【解析】 【分析】过P 作PE BD ⊥于E ,连接CE ,易知CE BD ⊥,PE CE =,从而可证BD ⊥平面PCE ,进而可知1833P BCD B PCE D PCE PCE PCE V V V S BD S ---=+=⋅=V V ,当PCE S V 最大时,P BCD V -取得最大值,取PC 的中点F ,可得EF PC ⊥,再由2112PCES PC EF PE =⋅=-V PE 的最大值即可. 【详解】在BPD △和BCD V 中,PB BC PD CD BD BD =⎧⎪=⎨⎪=⎩,所以BPD BCD V V ≌,则PBD CBD ∠=∠,过P 作PE BD ⊥于E ,连接CE ,显然BPE BCE V V ≌,则CE BD ⊥,且PE CE =, 又因为PE CE E =I ,所以BD ⊥平面PCE , 所以1833P BCD B PCE D PCE PCE PCE V V V S BD S ---=+=⋅=V V , 当PCE S V 最大时,P BCD V -取得最大值,取PC 的中点F ,则EF PC ⊥, 所以2112PCE S PC EF PE =⋅=-V 因为10,8PB PD BD +==,所以点P 在以,B D 为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以PE 的最大值为椭圆的短轴长的一半,故PE 22543-=,所以PCE S ∆最大值为22,故P BCD V -的最大值为8223⨯1623=. 故选:C.【点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.5.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B V 的面积为( ) A .2B .3C .42D .43【答案】D 【解析】 【分析】设双曲线C 的左焦点为1F ,连接11,AF BF ,由对称性可知四边形12AF BF 是平行四边形,设1122,AF r AF r ==,得222121242cos3c r r r r π=+-,求出12r r 的值,即得解.【详解】设双曲线C 的左焦点为1F ,连接11,AF BF , 由对称性可知四边形12AF BF 是平行四边形, 所以122AF F AF B S S =V V ,123F AF π∠=.设1122,AF r AF r ==,则222221212121242cos 3c r r r r r r r r π=+-=+-,又122r r a -=.故212416r r b ==, 所以12121sin 4323AF F S r r π==V 故选:D 【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.6.如图,在ABC V 中,,(,),2AD AB BD xAB yAC x y R AD ⊥=+∈=u u u v u u u v u u u v u u u v ,且12AC AD ⋅=u u u v u u u v,则2x y +=( )A .1B .23-C .13-D .34-【答案】C 【解析】 【分析】由题可0,12AD AB AC AD ⋅=⋅=u u u r u u u r u u u r u u u r ,所以将已知式子中的向量用AD AB AC u u u r u u u r u u u r ,,表示,可得到的,x y 关系,再由,,B D C 三点共线,又得到一个关于,x y 的关系,从而可求得答案 【详解】由BD xAB yAC =+u u u v u u u v r r u u u v ,则(1),[(](1)AD x AB y AC AD AD AD x AB y AC x AD AB y AD AC =++⋅=⋅++=+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v,即412y =,所以13y =,又,,B D C 共线,则1111,,233x y x x y ++==-+=-. 故选:C 【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.7.2-31ii =+( ) A .15-22i B .15--22iC .15+22i D .15-+22i 【答案】B 【解析】 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()()231231515111222i i i i z i i i i -----====--++-. 故选B . 【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.8.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =+++L ()*n ∈N ,则当2020n T <时,n 的最大值是( )A .8B .9C .10D .11【答案】B 【解析】 【分析】根据题意计算21n a n =-,12n n b -=,122n n T n +=--,解不等式得到答案.【详解】∵{}n a 是以1为首项,2为公差的等差数列,∴21n a n =-. ∵{}n b 是以1为首项,2为公比的等比数列,∴12n nb -=.∴2112n n n b b b T c c c a a a =++⋅⋅⋅+=++⋅⋅⋅+11242n a a a a -=+++⋯+()1(211)(221)(241)221n -=⨯-+⨯-+⨯-+⋅⋅⋅+⨯-()121242n n -=+++⋅⋅⋅+-11222212nn n n +-=⨯-=---.∵2020n T <,∴1222020n n +--<,解得9n ≤.则当2020n T <时,n 的最大值是9. 故选:B . 【点睛】本题考查了等差数列,等比数列,f 分组求和,意在考查学生对于数列公式方法的灵活运用.9.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( ) AB.2C .52D .54【答案】B 【解析】 【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解. 【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,12222||i i i i z i i z ----====-+∴==故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.10.已知函数31()sin ln 1x f x x x x +⎛⎫=++ ⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( )A .1,2⎛⎫+∞⎪⎝⎭B .()0,1C .1,12⎛⎫⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭【答案】C 【解析】 【分析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式. 【详解】 由101xx+>-得11x -<<, 在(1,1)x ∈-时,3y x =是增函数,sin y x =是增函数,12lnln(1)11x y x x+==-+--是增函数,∴31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭是增函数, ∴由(21)(0)f a f ->得0211a <-<,解得112a <<. 故选:C. 【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.11.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.12.已知20,()1(0),{|()},{|(())()}a f x ax x x A x f x x B x f f x f x x >=-+>=≤=≤≤,若A B φ=≠则实数a 的取值范围是( ) A .(0,1] B .3(0,]4C .3[,1]4D .[1,)+∞【答案】C 【解析】 【分析】根据A φ≠,得到2()1f x ax x x =-+≤有解,则440a ∆=-≥,得01a <≤,1211,x x a a +==,得到12{|()}[]11,[A x f x x x x a a-≤===,再根据{|(())()}B x f f x f x x =≤≤,有(())()f f x f x ≤,即()()22212110a ax x ax x -+--++≤,可化为()()2222110axx a x a +-+-≤,根据A B φ=≠,则2210a x a -≥+的解集包含11[,]a a+求解, 【详解】 因为A φ≠,所以2()1f x ax x x =-+≤有解, 即2()210f x ax x =-+≤有解,所以440a ∆=-≥,得01a <≤,1211x x a a==,所以12{|()}[]11,[A x f x x x x a a-≤===, 又因为{|(())()}B x f f x f x x =≤≤,所以(())()f f x f x ≤,即()()22212110a ax x ax x -+--++≤, 可化为()()2222110ax x a x a +-+-≤, 因为A B φ=≠,所以2210a x a -≥+的解集包含,≤≥, 解得314a ≤≤, 故选:C 【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题, 二、填空题:本题共4小题,每小题5分,共20分。
河北省沧州市2021届新第四次高考模拟考试数学试卷含解析
河北省沧州市2021届新第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题. 2.已知1111143579π≈-+-+-L ,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+【答案】C 【解析】 【分析】 【详解】由于111113579-+-+-L 中正项与负项交替出现,根据S S i =+可排除选项A 、B ;执行第一次循环:011S =+=,①若图中空白框中填入(1)21n i n -=+,则13i =-,②若图中空白框中填入(1)2ni i -=+,则13i =-,此时20n >不成立,2n =;执行第二次循环:由①②均可得113S =-,③若图中空白框中填入(1)21ni n -=+,则15i =,④若图中空白框中填入(1)2ni i -=+,则35i =,此时20n >不成立,3n =;执行第三次循环:由③可得11135S =-+,符合题意,由④可得13135S =-+,不符合题意,所以图中空白框中应填入(1)21ni n -=+,故选C .3.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( )A .3πB .4πC .8πD .13π【答案】A 【解析】 【分析】由题意画出图形,求出三棱锥S-ABC 的外接球的半径,再求出外接球球心到D 的距离,利用勾股定理求得过点D 的平面截球O 所得截面圆的最小半径,则答案可求. 【详解】如图,设三角形ABC 外接圆的圆心为G ,则外接圆半径AG=233233⨯=,设三棱锥S-ABC 的外接球的球心为O ,则外接球的半径R=()222324+=取SA 中点E ,由SA=4,AD=3SD ,得DE=1, 所以OD=()2223113+=.则过点D 的平面截球O 所得截面圆的最小半径为()224133-=所以过点D 的平面截球O 所得截面的最小面积为()233ππ⋅=故选:A 【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.4.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724-B .524-C .524D .724【答案】D 【解析】 【分析】利用倍角公式求得tan2α的值,利用诱导公式求得cos β的值,利用同角三角函数关系式求得sin β的值,进而求得tan β的值,最后利用正切差角公式求得结果. 【详解】1tan 2α=,22tan 4tan21tan 3ααα==-,()4cos cos 5πββ+=-=-,()(0,βπ∈,4cos 5β∴=,3sin 5β=,3tan 4β=,()43tan2tan 734tan 2431tan2tan 24134αβαβαβ---===++⨯,故选:D. 【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.5.已知向量(2,4)a =-r ,(,3)b k =r ,且a r 与b r的夹角为135︒,则k =( )A .9-B .1C .9-或1D .1-或9【答案】C 【解析】 【分析】由题意利用两个向量的数量积的定义和公式,求k 的值. 【详解】解:由题意可得cos135||||a b a b ︒⋅===⋅r r r r求得9k=-,或1k =,故选:C. 【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.6.已知实数x,y满足约束条件2202202x yx yx+-≥⎧⎪-+≥⎨⎪≤⎩,则22x y+的取值范围是()A.25,22 5⎡⎤⎢⎥⎣B.4,85⎡⎤⎢⎥⎣⎦C.2,85⎡⎤⎢⎥⎣⎦D.[]1,8【答案】B【解析】【分析】画出可行域,根据可行域上的点到原点距离,求得22x y+的取值范围.【详解】由约束条件作出可行域是由(2,0)A,(0,1)B,(2,2)C三点所围成的三角形及其内部,如图中阴影部分,而22x y+可理解为可行域内的点到原点距离的平方,显然原点到AB所在的直线220x y+-=的距离是可行域内的点到原点距离的最小值,此时222245OA OBx y ODAB⋅⎛⎫+===⎪⎝⎭,点C到原点的距离是可行域内的点到原点距离的最大值,此时2222228x y+=+=.所以22x y+的取值范围是4,85⎡⎤⎢⎥⎣⎦.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识. 7.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A .1.1B .1C .2.9D .2.8【答案】C 【解析】 【分析】根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题. 【详解】初始值0n =,1S =第一次循环:1n =,11122S =⨯=; 第二次循环:2n =,121233S =⨯=;第三次循环:3n =,131344S =⨯=;第四次循环:4n =,141455S =⨯=;第五次循环:5n =,151566S =⨯=;第六次循环:6n =,161677S =⨯=;第七次循环:7n =,171788S =⨯=;第九次循环:8n =,181899S =⨯=;第十次循环:9n =,1910.191010S =⨯=≤; 所以输出190.910S =⨯=. 故选:C 【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.8.已知函数2()2f x x x =-,集合{|()0}A x f x =≤,{}|()0B x f x '=≤,则A B =I ( )A .[-1,0]B .[-1,2]C .[0,1]D .(,1][2,)-∞⋃+∞【答案】C 【解析】 【分析】分别求解不等式得到集合,A B ,再利用集合的交集定义求解即可. 【详解】2{|20}{|02}A x x x x x =-≤=≤≤,{|220}{|1}B x x x x =-=≤≤, ∴{|01}A B x x =I ≤≤. 故选C . 【点睛】本题主要考查了集合的基本运算,难度容易. 9.复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】 【详解】试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系 10.要得到函数1cos 2y x =的图象,只需将函数1sin 223y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的( )A .横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位长度B .横坐标缩短到原来的12(纵坐标不变),再向右平移6π个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平移3π个单位长度 【答案】C 【解析】 【分析】根据三角函数图像的变换与参数之间的关系,即可容易求得. 【详解】 为得到11sin 222y cosx x π⎛⎫==+ ⎪⎝⎭, 将1sin 223y x π⎛⎫=+ ⎪⎝⎭横坐标伸长到原来的2倍(纵坐标不变), 故可得1sin 23y x π⎛⎫=+ ⎪⎝⎭;再将1sin 23y x π⎛⎫=+ ⎪⎝⎭ 向左平移6π个单位长度,故可得111sin sin 236222y x x cosx πππ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.11.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )A BC D .2【答案】A 【解析】 【分析】求出双曲线的一条渐近线方程,利用圆P 与双曲线C 的一条渐近线交于,M N 两点,且90MPN ∠=︒,则可根据圆心到渐近线距离为2a 列出方程,求解离心率. 【详解】不妨设双曲线C 的一条渐近线0bx ay -=与圆P 交于,M N ,因为90MPN ∠=︒,所以圆心P 到0bx ay -=22b c ==,即2222c a -=,因为1ce a=>,所以解得e = 故选A . 【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于,a c 的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.12.执行如图所示的程序框图,则输出的n 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】列出循环的每一步,进而可求得输出的n 值. 【详解】根据程序框图,执行循环前:0a =,0b =,0n =,执行第一次循环时:1a =,2b =,所以:229840+≤不成立. 继续进行循环,…,当4a =,8b =时,226240+=成立,1n =, 由于5a ≥不成立,执行下一次循环,5a =,10b =,225040+≤成立,2n =,5a ≥成立,输出的n 的值为2.故选:B . 【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省沧州市2021届新高考适应性测试卷数学试题(1)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A 【解析】 【分析】首先利用二倍角正切公式由4tan 23θ=-,求出tan θ,再根据充分条件、必要条件的定义判断即可; 【详解】解:∵22tan 4tan 21tan 3θθθ==--,∴可解得tan 2θ=或12-, ∴“tan 2θ=”是“4tan 23θ=-”的充分不必要条件.故选:A 【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题. 2.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲 B .乙C .丙D .丁【答案】A 【解析】 【分析】可采用假设法进行讨论推理,即可得到结论. 【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.3.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >, 则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.4.设集合1,2,6,2,2,4,26{}{}{|}A B C x R x ==-=∈-<<,则()A B C =U I ( ) A .{}2 B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R【答案】B 【解析】 【分析】直接进行集合的并集、交集的运算即可. 【详解】解:{}2,1,2,4,6A B ⋃=-; ∴(){}1,2,4A B C ⋃⋂=. 故选:B . 【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.5.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y =+( ) A .有最大值,无最小值 B .有最大值,有最小值 C .无最大值,有最小值 D .无最大值,无最小值【答案】B 【解析】 【分析】判断直线0bx ay c ++=与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【详解】由0a b c ++=,a b c >>,所以可得0,0a c ><.1112,22222c c c ca b a a c b c a c c a a a a>⇒>--⇒>->⇒-->⇒<-∴-<<-⇒<-<, 所以由0b cbx ay c y x a a++=⇒=--,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值. 故选:B 【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.6.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-【答案】D 【解析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥, 故34a b +≥(当且仅当a b =时取等号). 又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.7.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B.CD .23【答案】C 【解析】试题分析:设AC BD 、的交点为O ,连接EO ,则AEO ∠为,AE SD 所成的角或其补角;设正四棱锥的棱长为a,则1,,2AE EO a OA ===,所以222cos 2AE OA EO AEO AE OA +-∠=⋅2221)()()a a +-==,故C 为正确答案. 考点:异面直线所成的角.8.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=【答案】A 【解析】 【分析】设()11,A x y ,()22,B x y ,利用点差法得到1212422y y x x -==-,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB 的方程. 【详解】解:设()()1122,,,A x y B x y ,∴122y y +=,又21122244y x y x ⎧=⎨=⎩,两式相减得:()2212124y y x x -=-, ∴()()()1212124y y y y x x +-=-,∴1212422y y x x -==-,∴直线AB 的斜率为2,又∴过点(1,1),∴直线AB 的方程为:12(1)y x -=-,即2 10x y --=, 故选:A. 【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.9.已知33a b ==r r ,且(2)(4)a b a b -⊥+r r r r ,则2a b -r r 在a r 方向上的投影为( )A .73B .14C .203D .7【答案】C 【解析】 【分析】由向量垂直的向量表示求出a b ⋅r r,再由投影的定义计算. 【详解】由(2)(4)a b a b -⊥+r r r r可得22(2)(4)2740a b a b a a b b -⋅+=+⋅-=r r r r r r r r ,因为||3||3a b ==r r ,所以2a b ⋅=-r r .故2a b -r r 在a r 方向上的投影为2(2)218220||||33a b a a a b a a -⋅-⋅+===r rr r r r r r. 故选:C . 【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.10.已知函数()32cos f x x x =+,若a f =,(2)b f =,2(log 7)c f =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .b a c << D .b c a <<【答案】D 【解析】 【分析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得()f x 在R 上为增函数,又由222log 4log 73=<<<【详解】解:根据题意,函数()32cos f x x x =+,其导数函数()32sin f x x '=-, 则有()32sin 0f x x '=->在R 上恒成立, 则()f x 在R 上为增函数;又由222log 4log 73=<<< 则b c a <<; 故选:D . 【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.11.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( )A .B .8C .D .4【答案】C 【解析】 【分析】将直线方程1y x =-代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出FA FB -的值. 【详解】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1. 由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1, ∴||FA|﹣|FB||=|x 1﹣x 2|===故选C . 【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题. 12.已知数列{}n a 满足:11,a =13,21,n n n n n a a a a a ++⎧=⎨+⎩为奇数为偶数,则6a =( )A .16B .25C .28D .33【答案】C 【解析】 【分析】依次递推求出6a 得解. 【详解】n=1时,2134a =+=, n=2时,32419a =⨯+=, n=3时,49312a =+=, n=4时,5212125a =⨯+=, n=5时,625328a =+=. 故选:C 【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平. 二、填空题:本题共4小题,每小题5分,共20分。