八年级下16分式的复习课件 (2)
合集下载
八年级数学下册16、2分式的运算16、2、1分式的乘除目标三分式的乘方习题课件新版华东师大版
华师版 八年级
ห้องสมุดไป่ตู้
第16章 分式
16.2. 1
分式的乘除
目标三 分式的乘方
习题链接
温馨提示:点击 进入讲评
1 2D 3A 4A 5B
6D 7 8
答案呈现
1
【教材 x4
P8
练习
T2
变式】计算-xy22的结果是
____y_2___.
2 下列运算正确的是( D ) A.(-a3)2=-a6 B.2a2+3a2=6a2 C.2a2·a3=2a6 D.-2ba2 3=-8ba63
3 下列计算正确的是( A )
A.abm=abmm
B.a+a b2=a2+a2 b2
C.-xy323=xy96 D.23xy4=182xy44
4 下列分式运算,结果正确的是( A )
A.mn54·mn43=mn
B.ab·dc=abdc
C.a2-ab2=a24-a2b2 D.ba3n=ba3+nn
C.x2-2xxyy+y2÷xxy22+-xy22y=x-1 y
D.x2+x2+2x+x 1·xx2--11=x(x+1)
7 计算:
(1)4a2b÷-2ab2·-8ba; 解:原式=4a2b÷4ab22·-8ba= 4a2b·4ab22·-8ba=-2ab4.
(2)x2- xyy22÷(x+y)·x-x y3. 解:原式=(x+yx)22(yx2-y)2·x+1 y·(x-x3y)3= yx2((xx+-yy))=xxy22+-xyy3.
8 有这样一道题: “计算x2-x2-2x+1 1÷xx2-+1x÷1x3的值,其中 x=2”,小 明同学把 x=2 错抄为 x=-2,但是他计算的结 果是正确的,你说这是怎么回事呢?
ห้องสมุดไป่ตู้
第16章 分式
16.2. 1
分式的乘除
目标三 分式的乘方
习题链接
温馨提示:点击 进入讲评
1 2D 3A 4A 5B
6D 7 8
答案呈现
1
【教材 x4
P8
练习
T2
变式】计算-xy22的结果是
____y_2___.
2 下列运算正确的是( D ) A.(-a3)2=-a6 B.2a2+3a2=6a2 C.2a2·a3=2a6 D.-2ba2 3=-8ba63
3 下列计算正确的是( A )
A.abm=abmm
B.a+a b2=a2+a2 b2
C.-xy323=xy96 D.23xy4=182xy44
4 下列分式运算,结果正确的是( A )
A.mn54·mn43=mn
B.ab·dc=abdc
C.a2-ab2=a24-a2b2 D.ba3n=ba3+nn
C.x2-2xxyy+y2÷xxy22+-xy22y=x-1 y
D.x2+x2+2x+x 1·xx2--11=x(x+1)
7 计算:
(1)4a2b÷-2ab2·-8ba; 解:原式=4a2b÷4ab22·-8ba= 4a2b·4ab22·-8ba=-2ab4.
(2)x2- xyy22÷(x+y)·x-x y3. 解:原式=(x+yx)22(yx2-y)2·x+1 y·(x-x3y)3= yx2((xx+-yy))=xxy22+-xyy3.
8 有这样一道题: “计算x2-x2-2x+1 1÷xx2-+1x÷1x3的值,其中 x=2”,小 明同学把 x=2 错抄为 x=-2,但是他计算的结 果是正确的,你说这是怎么回事呢?
华师大版数学八年级下册第16.分式的乘除课件
2xz2 4y2
.
3
a2 2a a2
1
a2 2a 1a2 .
4
3ab a2 a2 b2
a 3b . ab
【解题探究】①分式乘法的方法是:分子与____分_相子乘,
分母与_分__母__相乘,分子的积作为_积__的__分__子__,分母的积作
为_积__的__分__母__.
②根据①的探究完成例1中题:
2
B.
x
9x 2
2
y2
C.
x
2
6x 2 2xy
y2
D.
x2
9x 2 2xy
y2
【解析】选D.
( 3x )2 xy
3x 2 x y2
x2
9x 2 2xy
y2
.
3.下列运算中正确的是( )
A.(
x4 y
)5
x 20 y5
C.( y2 x
)3
y5 x3
B.( 3y 2 2x
)3
9y6 8x3
y3 6
2x 6
y18 64x 6
.
答案: y18
64x6
5.填空:
(
2ab
) 2
9c 4d 2 4a 2 b 2
.
【解析】设括号内的式子为M,则( M )2
2ab
9c4d2 4a 2 b2
.
所以M2=9c4d2,所以M=±3c2d.
答案:±3c2d
6.若 x 1 1,求 x 12 的值.
D.(
2b3 3a 2
)4
16b12 81a8
【解析】选D.A项:(
x4 y
)5
Bxy项250 ;:
华东师大版数学八年级下册16.分式方程及其解法课件(共22张)
视察这个方程与我们学过的一 元一次方程有什么不同?
新课推动
轮船在顺水中航行80千米所需的时间和 逆水航行60千米所需的时间相同.已知水流的 速度是3千米/时,求轮船在静水中的速度.
分析 设轮船在静水中的速度为x千米/时,
根据题意,得
80 60 x3 x3
(*)
概 括 方程(*)中含有分式,并且分母中含 有未知数,像这样的方程叫做分式方程.
概括
上述解分式方程的过程,实质上是将方 程的两边乘以同一个整式,约去分母,把分 式方程转化为整式方程来解.所乘的整式通常 取方程中出现的各分式的最简公分母.
例1
解方程:
1 x1
2 x2 1
解:方程两边同乘以(x2-1), 约去分母,得x+1=2. 解这个整式方程,得x=1.
思考:x=1是不是原分式方 程的解(或根)呢?
当x=1时,原分式方程左边和右边的分母 (x-1)与(x2-1)都是0,方程中出现的 两个分式都没有意义,因此,x=1不是原分式 方程的解,应当舍去.所以原分式方程无解.
概括 在解分式方程时,产生不合适原分式方
程的解(或根),这种根通常称为增根.因此, 在解分式方程时必须进行检验.
如何判定一个值是否为这个分式方程 的根呢?分式方程如何检验呢?
ቤተ መጻሕፍቲ ባይዱ
分式方程的检验
解分式方程进行检验的关键是看所求得 的整式方程的根是否使原分式方程中的分式 的分母为零.有时为了简便起见,也可将它代 入所乘的整式(即最简公分母),看它的值 是否为零.如果为零,即为增根.
例2
解方程:
100 30 x x7
解:方程两边同乘以x(x-7),约
去分母,得 100(x-7)=30x.
新课推动
轮船在顺水中航行80千米所需的时间和 逆水航行60千米所需的时间相同.已知水流的 速度是3千米/时,求轮船在静水中的速度.
分析 设轮船在静水中的速度为x千米/时,
根据题意,得
80 60 x3 x3
(*)
概 括 方程(*)中含有分式,并且分母中含 有未知数,像这样的方程叫做分式方程.
概括
上述解分式方程的过程,实质上是将方 程的两边乘以同一个整式,约去分母,把分 式方程转化为整式方程来解.所乘的整式通常 取方程中出现的各分式的最简公分母.
例1
解方程:
1 x1
2 x2 1
解:方程两边同乘以(x2-1), 约去分母,得x+1=2. 解这个整式方程,得x=1.
思考:x=1是不是原分式方 程的解(或根)呢?
当x=1时,原分式方程左边和右边的分母 (x-1)与(x2-1)都是0,方程中出现的 两个分式都没有意义,因此,x=1不是原分式 方程的解,应当舍去.所以原分式方程无解.
概括 在解分式方程时,产生不合适原分式方
程的解(或根),这种根通常称为增根.因此, 在解分式方程时必须进行检验.
如何判定一个值是否为这个分式方程 的根呢?分式方程如何检验呢?
ቤተ መጻሕፍቲ ባይዱ
分式方程的检验
解分式方程进行检验的关键是看所求得 的整式方程的根是否使原分式方程中的分式 的分母为零.有时为了简便起见,也可将它代 入所乘的整式(即最简公分母),看它的值 是否为零.如果为零,即为增根.
例2
解方程:
100 30 x x7
解:方程两边同乘以x(x-7),约
去分母,得 100(x-7)=30x.
华师大版数学八下16.分时方程的应用课件
则从A市开往乙地列车的速度是(x-15)千米/时,
依题意得:
解得:x =120 . 经检验:x =120是原方程的解.
答:从A市开往甲地列车的速度是120千米/时, 从A市开往乙地列车的速度是105千米/时.
5.商场用50 000元从外地采购回一批T恤 衫,由于销路好,商场又紧急调拨18.6万元采 购回比上一次多两倍的T恤衫,但第二次比第 一次进价每件贵12元.求第一次购进多少件T
探究问题
问题:某校招生录取时,为了防止数据 输入出错,2640名学生的成绩数据分别由 两位程序操作员各向计算机输入一遍,然 后让计算机比较两人的输入是否一致.已知 甲的输入速度是乙的2倍,结果甲比乙少用 2小时输完.问这两个操作员每分钟各能输 入多少名学生的成绩?
列方程解应用题的 步骤是怎样的呢?
练习:求解本章导图中的 问题.
例1 王军同学准备在课外活动时间组织部分同 学参加电脑网络培训,按原定的人数估计共需 费用300元.后因人数增加到原定人数的2倍, 费用享受了优惠,一共只需要480元,参加活 动的每个同学平均分摊的费用比原计划少4元 ,原定的人数是多少?
解:设原定是x人,由题意可知:
列分式方程解应用题的一般步骤: 审清题意;
设未知数(要有单位); 找出等量关系,列出分式方程;
解这个分式方程;
验根,先检验是否有增根,再检查是否合符题意; 作答.(要有单位) 列分式方程解应用题主要涉及的类型有: 行程问题:路程=速度×时间; 工程问题:工作量=工作时间×工作效率.
随堂练习
1.甲、乙两人同时从A地出发,骑自行车行30 km到B地,甲比乙每小时少骑3 km,结果乙早 到40分钟,若设乙每小时走 x km,则可列方程 (D )
解:设大车的速度为2x千米/时,小车的速度为5x 千米/时,根据题意得
依题意得:
解得:x =120 . 经检验:x =120是原方程的解.
答:从A市开往甲地列车的速度是120千米/时, 从A市开往乙地列车的速度是105千米/时.
5.商场用50 000元从外地采购回一批T恤 衫,由于销路好,商场又紧急调拨18.6万元采 购回比上一次多两倍的T恤衫,但第二次比第 一次进价每件贵12元.求第一次购进多少件T
探究问题
问题:某校招生录取时,为了防止数据 输入出错,2640名学生的成绩数据分别由 两位程序操作员各向计算机输入一遍,然 后让计算机比较两人的输入是否一致.已知 甲的输入速度是乙的2倍,结果甲比乙少用 2小时输完.问这两个操作员每分钟各能输 入多少名学生的成绩?
列方程解应用题的 步骤是怎样的呢?
练习:求解本章导图中的 问题.
例1 王军同学准备在课外活动时间组织部分同 学参加电脑网络培训,按原定的人数估计共需 费用300元.后因人数增加到原定人数的2倍, 费用享受了优惠,一共只需要480元,参加活 动的每个同学平均分摊的费用比原计划少4元 ,原定的人数是多少?
解:设原定是x人,由题意可知:
列分式方程解应用题的一般步骤: 审清题意;
设未知数(要有单位); 找出等量关系,列出分式方程;
解这个分式方程;
验根,先检验是否有增根,再检查是否合符题意; 作答.(要有单位) 列分式方程解应用题主要涉及的类型有: 行程问题:路程=速度×时间; 工程问题:工作量=工作时间×工作效率.
随堂练习
1.甲、乙两人同时从A地出发,骑自行车行30 km到B地,甲比乙每小时少骑3 km,结果乙早 到40分钟,若设乙每小时走 x km,则可列方程 (D )
解:设大车的速度为2x千米/时,小车的速度为5x 千米/时,根据题意得
八年级数学下册第十六章二次根式16.1分式及其基本性质2.分式的基本性质课件(新版)华东师大版
探究点三:分式的通分
【例 3】 通分:
(1) c , 1 , a ;
ab c 2c2
【导学探究】 1.题(1)的最简公分母为
2abc2
.
解:(1) c , 1 , a 的最简公分母是 2abc2,
ab c 2c2
所以 c = c 2c2 = 2c3 ,
ab ab 2c2 2abc2
1 = 1 2abc = 2abc ,
公因式 的分式称为最简分式.化简分式时,通常要使结果为
最简分式或者整式.
4.通分
把几个异分母的分式分别化为与原来的分式相等的同分母的分式,叫分式的通分.
探究点一:分式的基本性质
【例 1】 利用分式的基本性质填空:
(1) 7xy = 7
5x2 y 5x
;(2)
x
x
y
=
x
x y y
x y
x
=
xy x2 x2 2xy y2
2.分式的基本性质
1.分式的基本性质
分式的分子与分母都乘(或都除以)同一个不等于零的 整式
,分式的值不
变.用式子表示为 A = A M , A = A M (其中 M 为不等于零的整式).
B BM B BM
2.约分
把一个分式的分子和分母的
公因式 约去,这种变形称为分式的约分.
3.最简分式 分子与分母没有
确定最简公分母的一般步骤:
1.(2018 灵宝期中)下列各式从左到右的变形不正确的是( D )
(A) 2 =- 2
3y 3y
(B) y = y
6x 6x
(C) 3x =- 3x
4 y 4 y
(D)- 8x = 8x
3y 3y
八年级数学下册第16章分式164零指数幂与负整数指数幂1641零指数幂与负整数指数幂课件(新版)华东
am am
amm
a0.
这启发我们规定 a0 ( 1 a 0).
即任何不等于零的数的零次幂都等于1.
新课讲解
已知(3x-2)0有意义,则x应满足的条件是
___x____23_.
分析:根据零次幂的意义可知:(3x-2)0有意义,
则3x-2≠0,x 2 . 3
解题技巧:零次幂有意义的条件是底数不等于0, 所以解决有关零次幂的意义类型的题目时,列出关 于底数不等于0的式子求解即可.
2018- 0
2
3.
分析:分别根据有理数的乘方、0指数幂、负整数 指数幂及绝对值的性质计算出各数,再根 据实数的运算法则进行计算.
解:
22
1 2
2
2018-0
2
3
= 4 412 3
= 3 1.
随堂即练
1.计算:
0.50 1
(1)0 1
1
105 100 000
1
6
2
64
3 3 4
0.0001.
(3)
2 3
-2
3 2 2
9. 4
新课讲解
若a
2 3
2
,b
11
,
c
3 2
0
,
则a、b、c的大小关系是( B )
A.a>b=c
B.a>c>b
C.c>a>b
D.b>c>a
分析:
a
=
-
2 3
2
=
3 2
2
=
9 ,b = 4
11
1, c
3 2
0
1, a
c
b.
第16章 分 式
16.4 零指数幂与负整数指数幂
华师版八年级数学下册课件 第16章 分式 可化为一元一次方程的分式方程 第2课时 列分式方程解应用题
10.(新疆中考)某商店第一次用 600 元购进 2B 铅笔若干支, 第二次又用 600 元购进该款铅笔,但这次每支的进价是第一次进价的54 倍, 购进数量比第一次少了 30 支, 则该商店第一次购进的铅笔每支的进价是_4__元.
11.(12 分)某自动化车间计划生产 480 个零件,当生产任务完成一半时, 停止生产并进行自动化程序软件升级,用时 20 分钟,
7.(10分)(威海中考)小明和小刚约定周末到某体育公园打羽毛球. 他们两家到体育公园的距离分别是1 200米,3 000米, 小刚骑自行车的速度是小明步行速度的3倍,若两人同时到达, 则小明需提前4分钟出发,求小明和小刚两人的速度.
解:设小明的速度是 x 米/分钟,则小刚骑自行车的速度是 3x 米/分钟, 根据题意,得
恢复生产后工作效率比原来提高了13 , 结果完成任务时比原计划提前了 40 分钟, 求软件升级后每小时生产多少个零件?
解:设软件升级前每小时生产 x 个零件,
则软件升级后每小时生产(1+13 )x 个零件,根据题意,得
480 x
-[24x 0
+(12+4013)x
+2600
]=4600
,解得 x=60,
1 200 x
-4=3
000 3x
,解得 x=50,经检验得
x=50 是原方程的解,
且符合题意,故 3x=150, 答:小明的速度是 50 米/分钟,小刚骑自行车的速度是 150 米/分钟
8.(易错题)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书, 工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案: ①甲队单独完成这项工程,刚好如期完工; ②乙队单独完成此项工程要比规定工期多用 5 天; ③ ,剩下的工程由乙队单独做,也正好如期完工.
11.(12 分)某自动化车间计划生产 480 个零件,当生产任务完成一半时, 停止生产并进行自动化程序软件升级,用时 20 分钟,
7.(10分)(威海中考)小明和小刚约定周末到某体育公园打羽毛球. 他们两家到体育公园的距离分别是1 200米,3 000米, 小刚骑自行车的速度是小明步行速度的3倍,若两人同时到达, 则小明需提前4分钟出发,求小明和小刚两人的速度.
解:设小明的速度是 x 米/分钟,则小刚骑自行车的速度是 3x 米/分钟, 根据题意,得
恢复生产后工作效率比原来提高了13 , 结果完成任务时比原计划提前了 40 分钟, 求软件升级后每小时生产多少个零件?
解:设软件升级前每小时生产 x 个零件,
则软件升级后每小时生产(1+13 )x 个零件,根据题意,得
480 x
-[24x 0
+(12+4013)x
+2600
]=4600
,解得 x=60,
1 200 x
-4=3
000 3x
,解得 x=50,经检验得
x=50 是原方程的解,
且符合题意,故 3x=150, 答:小明的速度是 50 米/分钟,小刚骑自行车的速度是 150 米/分钟
8.(易错题)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书, 工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案: ①甲队单独完成这项工程,刚好如期完工; ②乙队单独完成此项工程要比规定工期多用 5 天; ③ ,剩下的工程由乙队单独做,也正好如期完工.
华东师大版数学八年级下册16.分式的基本性质课件
作业
课本习题16.1第3,4 题做到作业本上
2 xy
(__2_x_y_)
x2 y2
,
3x x y
15x( x y)
(_5_(_x_+_y_))2
x x2
y y2
(__1___)
x y
约去的是分子、
例2、化简分式:8ab2c
分母的公因式
12a2b
解: 8ab2c
12a2b
4 a b( 2 b c ) 4 a b( 3 a )
2bc
3 a ((约根去据的什是么什?么)?)
11
1
1
(5) x2 x , x2 x ; (6) x2 x , x2 2x 1
答案展示 (4) 1 1 , 1 x y x2 y2 (x y)(x y) x y (x y)(x y)
解:(1) 1 b , 1 a a2b a2b2 ab2 a2b2
(2) c c2 , a a2 , b b2 ab abc bc abc ac abc
A、扩大到本来2倍 B、缩小为本来的 1
2
C、不变
D、缩小为本来的 1
x
x
2、如果把上题分式
什么呢?( B )
x y
改为
xy
那么4答案又是
课堂检测
3、约分
ab (1) 2a2 ;
x2 2xy y2 (2) x2 y2 .
解:(1) b 2a
, (2)
x x
y y
4、通分:(1)
a
b
x
,
ay
(1)ac, (2) 1 , (3) 2a , (4) a 4x 3b b
(5) 1 , (6) 2mn, (7) 4 y , (8) 1
华师版八年级下册数学精品教学课件 第16章 分式 分式的运算 分式的乘除
(2)高的单位面积产量 是低的单位面积产量的 多少倍?
1m am
(a-1)m
解:(1)“丰收1号”小麦的试
验田面积是(a 2-1)m2,单位
500
面积产量是a2 1 kg/m2; “丰收2号”小麦的试验田面积
是(a-1)2m2,单位面积产
量是 500
(a 1)2
kg/m2.
∵a>1,∴0<(a-1)2, a 2-1>0,
(x y)(x y) • (x y) (x y)(x y) • x
xy x
当x=1999,y=-2000时,得
x y 1999 2000 1
x
1999
1999
二 分式的乘方
根据乘方的意义计算下列各式:
34 3333 81
2 3
2
2 3
2 3
4 9
2 3
4
2 3
例 3 若 x=1999,y=-2000,你能求出分式
x2 2xy y2 x y
x2 xy • x y 的值吗?
解:原式 (x y)2 • x y x(x y) x y
(x y)2 • (x y) (x y)2(x y)
x(x y) • (x y) x(x y)(x y)
6y2 x
解:(1)原式
2 y3 =
3x
4
x2 x3
y
= 2x2 y3 12x4 y
y2 = 6x2
(2)原式 = 3xy2 2y
x 6y2
=
3x2 y2 12 y3
= x2 4y
方法归纳
分子和分母都是单项式的分式的乘法,直接 按“分子乘分子,分母乘分母”进行运算,其运 算步骤为:
第16章分式期末综合复习课件
设
1.已知 x
2
=
y 3
=k
=
Z
x+y-z
x+y+z
4
,试求
的值.
则x=2k,y=3k,z=4k
2.已知 1 1 x+ y 2x-3xy+2y
=
=1/9
的值.
5
,求
-x+2xy-y
=-7/3
3.已知 x + (
2
1 2
=3 ) , 求 x
2
x2
+
1
x2
的值.
1 x 2 29 x
变: 已知 x2 – 3x+1=0 ,求 x 2+
二、应用题复习
(3)甲工程队用3个月时间完成了一项工程,乙工程队完成这项工程 所用时间比甲工程队提前了半个月。由此可知乙工程队的工作效率 是____________; 1÷2.5=2/5 工作效率=工作量÷工作时间
( x 3)( x 2) ( x 4)( x 2)
x2 x 6 2 x 2x 8
注意:
乘法和除法运算时,结果要化为 最简分式 。
分式的加减
{
同分母相加
B C BC A A A
B C BD CA BD AC A D AD AD AD
分式。
2.通分: 把分母不相同的几个分式化成分母相同
关键是找最简公分母:各分 母所有因式的最高次幂的积
1.约分
(1)
-6x2y 27xy2 m2+4m+4 m2 - 4
(2)
-2(a-b)2 -8(b-a)3
关键找出分子和 分母的公因式
1.已知 x
2
=
y 3
=k
=
Z
x+y-z
x+y+z
4
,试求
的值.
则x=2k,y=3k,z=4k
2.已知 1 1 x+ y 2x-3xy+2y
=
=1/9
的值.
5
,求
-x+2xy-y
=-7/3
3.已知 x + (
2
1 2
=3 ) , 求 x
2
x2
+
1
x2
的值.
1 x 2 29 x
变: 已知 x2 – 3x+1=0 ,求 x 2+
二、应用题复习
(3)甲工程队用3个月时间完成了一项工程,乙工程队完成这项工程 所用时间比甲工程队提前了半个月。由此可知乙工程队的工作效率 是____________; 1÷2.5=2/5 工作效率=工作量÷工作时间
( x 3)( x 2) ( x 4)( x 2)
x2 x 6 2 x 2x 8
注意:
乘法和除法运算时,结果要化为 最简分式 。
分式的加减
{
同分母相加
B C BC A A A
B C BD CA BD AC A D AD AD AD
分式。
2.通分: 把分母不相同的几个分式化成分母相同
关键是找最简公分母:各分 母所有因式的最高次幂的积
1.约分
(1)
-6x2y 27xy2 m2+4m+4 m2 - 4
(2)
-2(a-b)2 -8(b-a)3
关键找出分子和 分母的公因式
16-3、可化为一元一次方程的分式方程(第2课时) 课件 2022—2023学年华东师大版八年级下册
(3)计算:xx+-12
-
x+2 x-1
= ((xx+-(x12-))21(-x)(-2x1+)2-)2(x+(x2+)(2x)-21)
(×)
(×) ( ×)
3、解分式方程:x22+x
+
3 x2-x
-
4 x2-1
=0
解:方程两边同乘以x(x+1)(x-1),约去分母, 得 2(x-1)+3(x+1)-4x=0 解这个整式方程,得 x=-1 检验:把x=-1代入x(x+1)(x-1), 得 (-1)·(-1+1)·(-1-1)=0. ∴x=-1是原方程的增根,此分式方程无解.
(2)错误的原因是 分式的运算只能约分,不能去分母 ; 1
(3)本题的正确答案是 1-x .
2、判断下列解法是否正确:
(1)解分式方程:
36 x
=
30 x-1
+1
去分母,得:36(x-1)=30x + 1x(x-1)
(2)解分式方程:32-x2-x42 = 1 -x
去分母,得:3-2x2= (2x-4)-2x2 -+44xx
135 2x 135 5x
路程(km) 135 135
两车分别 走完全程 用时关系
如何?
A、B两地相距135千米,两辆汽车从A开往B,大汽车 比小汽车早出发5小时,小汽车比大汽车晚到30分钟, 已知小汽车与大汽车的速度之比为5:2,求两车的速度.
解:设大车速度为2x千米/时,小车速度为5x千米/时,
综合应用
当a为何值时,方程
3 x
+
6 x-1
华东师大版八年级数学下册第16章分式16.分式的基本性质教学课件
1、分式基本性质 2、分式的基本性质的应用: 约分 3、什么是最简分式
1.化简下列分数:
4 ______ 6
8 _______ 12
8 ______ 24
2.填空:
3
5 15
7
6 18
3 8
12
3.填空:
2
3a 9a
b
a
a2
3a
5b 15ab
1
x 2 (x 2)(x 1)
c
c
D. b a a b c c
3.下列分式 8ab 10ac
,
ab
b a2
,
x x2
y y2
,
x2 x
y2 y
中,
最简分式的个数是(A)
A..1 B.2 C.3
D.4
4.填空 :
xy2 y
(1). x2 y x
x y (x-y)2
(2). x
y
x2
y2
当堂检测
1.
=
=
2.分式 1 , x 2 , 5x 1的最简公分母是 3x 2x2 4x3
16 x2 y3 4x
(1) 20 xy4
5y
(2)
x2 4 x2 4x 4
(x
2)( x 2) (x 2)2
x2 x2
我们把分子与分母不再有公因式的分式叫做最简分式. 注意: 约分的最终结果应化为最简分式.
练习: 约分:
3ax (1) 6a2
Hale Waihona Puke 2(a b) (2) a2 b2
x2 4x 4 (3) x2 4
1.下列各式与 x y 相等的是(C)
x y
A. (x y) 5
1.化简下列分数:
4 ______ 6
8 _______ 12
8 ______ 24
2.填空:
3
5 15
7
6 18
3 8
12
3.填空:
2
3a 9a
b
a
a2
3a
5b 15ab
1
x 2 (x 2)(x 1)
c
c
D. b a a b c c
3.下列分式 8ab 10ac
,
ab
b a2
,
x x2
y y2
,
x2 x
y2 y
中,
最简分式的个数是(A)
A..1 B.2 C.3
D.4
4.填空 :
xy2 y
(1). x2 y x
x y (x-y)2
(2). x
y
x2
y2
当堂检测
1.
=
=
2.分式 1 , x 2 , 5x 1的最简公分母是 3x 2x2 4x3
16 x2 y3 4x
(1) 20 xy4
5y
(2)
x2 4 x2 4x 4
(x
2)( x 2) (x 2)2
x2 x2
我们把分子与分母不再有公因式的分式叫做最简分式. 注意: 约分的最终结果应化为最简分式.
练习: 约分:
3ax (1) 6a2
Hale Waihona Puke 2(a b) (2) a2 b2
x2 4x 4 (3) x2 4
1.下列各式与 x y 相等的是(C)
x y
A. (x y) 5
八年级数学下册16、2分式的运算16、2、2分式的加减第2课时异分母分式的加减习题课件新版华东师大版
HS版八年级下
第16章 分 式
16.2.2 分式的加减 第2课时 异分母分式的加减
提示:点击 进入习题
1B 2A 3B 4B
5C 6B 7A 8D
答案显示
提示:点击 进入习题
9B 10 见习题
11 见习题
12 见习题
答案显示
13 见习题 14 见习题 15 见习题 16 见习题
提示:点击 进入习题
x4x+2 1=x2+x12=x+1x2-2=32-2=7.故x4x+2 1的值为17.
该题的解法叫做“倒数法”,请你利用“倒数法”解下面 的题目: 已知x2-3xx+1=15,求x4+xx22+1的值.
【点拨】解决本题采用倒数法,先阅读材料,理解倒数
法的解题思路,然后先求得 x+1x的值,再求x4+xx22+1的 值,最后求x4+xx22+1的值.
15.【2020·乐山】已知 y=2x,且 x≠y,求x-1 y+x+1 y÷x2x-2yy2 的值. 解:原式=(x+y2)x(x-y)÷x2x-2yy2 =x22-xy2·x2x-2yy2=x2y.
∵y=2x,∴xy=2.∴原式=22=1.
16.【中考·安顺】先化简1+x-2 3÷x2-x2-6x1+9,再从不等式 组-3x<2x2<x+4,4的整数解中选一个合适的 x 的值代入求值.
*8.【中考·南充】已知1x-1y=3,则式子2xx+-3xxyy--y2y的值是
()
A.-72
B.-121
9 CБайду номын сангаас2
3 D.4
【点拨】∵1x-1y=3,∴y-xyx=3, ∴x-y=-3xy, 则原式=2((xx- -yy))+ -3xxy y =--63xxyy+-3xxyy=--34xxyy=34,故选 D.
第16章 分 式
16.2.2 分式的加减 第2课时 异分母分式的加减
提示:点击 进入习题
1B 2A 3B 4B
5C 6B 7A 8D
答案显示
提示:点击 进入习题
9B 10 见习题
11 见习题
12 见习题
答案显示
13 见习题 14 见习题 15 见习题 16 见习题
提示:点击 进入习题
x4x+2 1=x2+x12=x+1x2-2=32-2=7.故x4x+2 1的值为17.
该题的解法叫做“倒数法”,请你利用“倒数法”解下面 的题目: 已知x2-3xx+1=15,求x4+xx22+1的值.
【点拨】解决本题采用倒数法,先阅读材料,理解倒数
法的解题思路,然后先求得 x+1x的值,再求x4+xx22+1的 值,最后求x4+xx22+1的值.
15.【2020·乐山】已知 y=2x,且 x≠y,求x-1 y+x+1 y÷x2x-2yy2 的值. 解:原式=(x+y2)x(x-y)÷x2x-2yy2 =x22-xy2·x2x-2yy2=x2y.
∵y=2x,∴xy=2.∴原式=22=1.
16.【中考·安顺】先化简1+x-2 3÷x2-x2-6x1+9,再从不等式 组-3x<2x2<x+4,4的整数解中选一个合适的 x 的值代入求值.
*8.【中考·南充】已知1x-1y=3,则式子2xx+-3xxyy--y2y的值是
()
A.-72
B.-121
9 CБайду номын сангаас2
3 D.4
【点拨】∵1x-1y=3,∴y-xyx=3, ∴x-y=-3xy, 则原式=2((xx- -yy))+ -3xxy y =--63xxyy+-3xxyy=--34xxyy=34,故选 D.
华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质
x x2
y y2
1 = 1(x y) = x y x y ( x y)( x y) x2 y2
③
1 x2
y2
,
x2
1
xy
分析:取各分母的所有因式的最高次幂的积作
公分母,即最简公分母
解:
x2
1
y2
(x
1 y)( x
, y)
x2
1
xy
1 x(x
y)
最简公分母:x( x y)( x y)
等于零的整式,分式的值不变.
上述性质可以用式表示为: A A C , A A C(C 0). B BC B BC 其中A,B,C是整式.
典例精析 例1 填空:
看分母如何变化,想想分一想子:如(何1)变中化. 看分子如何变化,想为分什么母不如给何出变x 化.
≠0,而(2)中却 给出了b ≠0?
当堂练习
1.下列各式成立的是( D )
A.
c ba
c ab
C.
c ba
c ab
B.
c ab
c ab
D. c c
ba ab
2.下列各式中是最简分式的( B )
A. a b ba
B. x2 y2 x y
C. x2 4 x2
D.
x y x2 y2
3.若把分式
y的
x y
x
和y
都扩大两倍,则分式
最简公分母的系数,取各个分母的系数的最小 公倍数,字母及式子取各分母中所有字母和式子的 最高次幂.
练一练 找最简公分母:
(1) 3 与 b ; 2a2 3ac
(2)
3 2a2b
与
ab ab2c
华师大版数学八年级下册16.分式的基本性质课件
分式 分式 分式 分式
(打“√”或“×”)
a 中b的a,b同时扩大10倍,分式值不变.( )×
ab
a 中 b的a,b同时扩大10倍,分式值不变.( )√
2a
a 约 2分后变为 2 .
( )×
ab
b
与2
a的最简公分母为(a+b)(a2-b2).( )×
ab
a2 b2
知识点 1 约分
【例1】化简下列分式:
1 3ab2c .
27ab
2
x2 x
6x 9 2y 9y
.
【思路点拨】确定分子、分母的公因式→约分.
分子、分母分别因式分解→找出公因式→约分.
【自主解答】1 3ab2c 3ab bc bc .
27ab 3ab 9 9
2
x2 6x 9 x2y 9y
x 32 yx 3x
3
x xy
的最简公分母是______.
【解析】因为(a-1)2=(1-a)2,所以最简公分母为(1-a)3.
答案:(1-a)3
3.分式 1 , 1 , 1 的最简公分母是______.
a b a b a2 b2
【解析】各分母的因式是(a+b),(a-b),(a+b)(a-b),
所以最简公分母是(a+b)(a-b).
1
x x y
y 2
.
2
x x2
1 . 1
提示:中(x-y)2变为(y-x)2不用在前面添负号. 错把x2-1当作(x-1)2进行约分了.
a2 ab a a b
a
3.化简 xy-2y 的结果是( )
x2-4x 4
A. x x2
B.x-x 2
八年级下册数学总复习(选择二)--省公开课获奖课件说课比赛一等奖课件
注:工程问题中旳公式:工作量=工作时间╳工作效率, 且一般设工作量=1
中考中的分式新型题 分式开放探索题赏析 一、 开放题 例 1:(2003 年江西)写出一个分母至少含有两项,且能够 约分的分式_______________
例 2:(2004 年山东)写出一个还有字母 x 的分式(要求: 不论 x 取任何实数,该分式有意义,且分式的值总为负)
例 4:计算;
x2-1 x2-2x+1
÷
x+1 x-1
·
1-x x+1
注;分式的混合运算可类比实数进行,同一级的运算应从左到右依 次进行,如分式的乘除混合运送,应先把除法统一为乘法,再从左 到右计算。
用 科 学 记 数 法 表 示 : — 0.000000108 =
__-_1_._1_╳__1_0_-_7_______(保留 2 个有效数字).
a ab+a+1
+
b bc+b+1 +
c ca+c+1
的值
的值
为零。
分析:分式的值为零的条件是:分子=0,且分母≠0。
解:令分子(m-1)(m-3)=0,得 m=1 或 m=3,但当 m=1 时, 分母 m2-3m+2=0,故 m=3
注:1、分式的值为零,实质上是一个分式方程的问题, 因此求得的整式方程的解必须验根! 2、分式的值为零、分式有意义、分式无意义是分式概 念中的三个常见的基本问题。
解题要领是; 分式的值为零 分子=0,且分母≠0 分式有意义 分母≠0 分式无意义 分母=0
练习:当
x=___2____时,分式
x2-4 x+2
的值为零,当 x__≠_-_2___时分
中考中的分式新型题 分式开放探索题赏析 一、 开放题 例 1:(2003 年江西)写出一个分母至少含有两项,且能够 约分的分式_______________
例 2:(2004 年山东)写出一个还有字母 x 的分式(要求: 不论 x 取任何实数,该分式有意义,且分式的值总为负)
例 4:计算;
x2-1 x2-2x+1
÷
x+1 x-1
·
1-x x+1
注;分式的混合运算可类比实数进行,同一级的运算应从左到右依 次进行,如分式的乘除混合运送,应先把除法统一为乘法,再从左 到右计算。
用 科 学 记 数 法 表 示 : — 0.000000108 =
__-_1_._1_╳__1_0_-_7_______(保留 2 个有效数字).
a ab+a+1
+
b bc+b+1 +
c ca+c+1
的值
的值
为零。
分析:分式的值为零的条件是:分子=0,且分母≠0。
解:令分子(m-1)(m-3)=0,得 m=1 或 m=3,但当 m=1 时, 分母 m2-3m+2=0,故 m=3
注:1、分式的值为零,实质上是一个分式方程的问题, 因此求得的整式方程的解必须验根! 2、分式的值为零、分式有意义、分式无意义是分式概 念中的三个常见的基本问题。
解题要领是; 分式的值为零 分子=0,且分母≠0 分式有意义 分母≠0 分式无意义 分母=0
练习:当
x=___2____时,分式
x2-4 x+2
的值为零,当 x__≠_-_2___时分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、写出原方程的根.
例1、1 (98西安)解方程:x 12x2 4 x42 2x1
解:原方程可化为 1 4x 21 x2(x2)x(2) x2
两边都乘以 (x2)x(2) ,并整理得;
x23x20解得 x11,x22
检验:x=1是原方程的根,x=2是增根 ∴原方程的根是x=1
2021/01/21
3
路程 速度 时间
甲
1812
x0.5
1812 x 0.5
乙
18
x
18 x
16
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/01/21
17
解:设规定日期为x天,根据题意列方程 2 x 1. x x3
请完成下面的过程
2021/01/21
8
例2. 已知轮船在静水中每小时行20千米, 如果 此船在某江中顺流航行72千米所用 的时间与 逆流航行48千米所用的时间相 同,那么此江 水每小时的流速是多少千 米?
解:设江水每小时的流速是x千米,根据 题意列方程
A、 B、 C D、无法计算 V1 V2 2
2V1V 2 V1 V2
V1 V2 2V1V 2
2021/01/21
11
3.甲加工180个零件所用的时间,乙可以
加工240个零件,已知甲每小时比乙少加
工5个零件,求两人每小时各加工的零件
个数.
甲:15
乙:20
4.A,B两地相距135千米,有大,小两辆 汽车从A地开往B地,大汽车比小汽车早 出发5小时,小汽车比大汽车晚到30分钟. 已知大、小汽车速度的比为2:5,求两 辆汽车的速度.
例2 已知 (xx 2 3 )2x A 2(x B 2)2求A、B
A1;B5
2021/Байду номын сангаас1/21
4
解方程:
1. x 5 x 1 0 x3 x1
x2
x2
8
2.
1 x2
x2
4
x0
3. 3 2 1 x 4x x4
无解
2021/01/21
4. 2y 5 3y 3 3 y2 y2
y4
5
5.若方程 应是
72 48 20x 20x
请完成下面的过程
2021/01/21
9
例3.某人骑自行车比步行每小时多走8千 米, 如果他步行12千米所用时间与骑车 行36千米所用的时间相等,求他步行40 千米用多少小时?
解:设他步行1千米用x小时,根据题意列 方程
12 36 x x8
请完成下面的过程
2021/01/21
10
学以致用
1.水池装有两个进水管,单独开甲管需a小时注
满空池,单独开乙管需b小时注满空池,若同时打
开两管,那么注满空池的时间是( )小时
1
A、 a b
B、
a
ab
b
C、a1
1 b
1
D、ab
2.A地在河的上游,B地在河的下游,若船从A地 开往B地的速度为V1,从B地返回A地的速度为V2,则 A、B两地间往返一次的平均速度为____
大:18千米/时
2021/01/21
小:45千米/时
12
5.已知轮船在静水中每小时行 20千米,如果此船在某江中 顺流航行72千米所用的时间 与逆流航行48千米所用的时
间相同,那么此江水每小时
的流速是多少千米?
2021/01/21
13
6.某工人师傅先后两次加工零件各 1500个,当第二次加工时,他革
3 2 1有增根,则增根
2x4 x2
6.解关于x的方程
2 ax 3 x2 x24 x2
产生增根,则常数a= 。
7、 已知 x2 x 2 1xA xxB 2求A、B
2021/01/21
6
复习回顾二:
列分式方程解应用题的一般步骤 1.审:分析题意,找出研究对象,建立等量关系.
2.设:选择恰当的未知数,注意单位.
2021/01/21
15
例3 甲乙两人分别从相距36千米的A、B两地相向而行,
甲从A出发到1千米时发现有东西遗忘在A地,立即返回,
取过东西后又立即从A向B行进,这样两人恰好在AB中点
处相遇。已知甲比乙每小时多走0.5千米,求二人的速度
各是多少?
36千米
A 1千米
B
分析:等量关系
t 甲=t 乙
2021/01/21
新了工具,改进了操作方法,结 果比第一次少用了18个小时.已知 他第二次加工效率是第一次的2.5
倍,求他第二次加工时每小时加 工多少零件?
2021/01/21
14
7.某人骑自行车比步行每小时 多 走 8 千 米 , 如 果 他 步 行 12 千米所用时间与骑车行36千
米所用的时间相等,求他步 行40千米用多少小时?
3.列:根据等量关系正确列出方程.
4.解:认真仔细.
5.验:不要忘记检验.
6.答:不要忘记写.
2021/01/21
7
例1: 一项工程,需要在规定日期内完成,如果甲队独做,恰 好如期完成,如果乙队独做,就要超过规定3天,现在由 甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定 日期内完成, 问规定日期是几天?
分式复习三
2021/01/21
1
复习回顾一:
1.解分式方程的思路是:
分式 方程
去分母
整式 方程
2.解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的根代入最简公分母,看结果是不 是为零,使最简公分母为零的根是原方程的增根,必 须舍去.