2013年全国名校中考数学模拟试题分类汇编25 等腰三角形(含答案)
2013中考试卷分类汇编-等腰三角形
2013中考全国100份试卷分类汇编等边三角形1、(2013凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14 B.15 C.16 D.17考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.2、(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()B,高为,﹣33、(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.EF=CG=AG=BE=,,=S4、(2013•十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC 的长为()=,5、(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC 边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()PB=PCBC PN=BC∴⊥PB=PC6、(2013•遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()cm B2+cm×=7、(2013台湾、23)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4D.6﹣6考点:正方形的性质;等边三角形的性质.分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.解答:解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.点评:本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.8、(2013菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是,(或介于和之间的任意两个实数)(写出1个即可).考点:等边三角形的性质.专题:新定义;开放型.分析:根据等边三角形的性质,(1)最长的面径是等边三角形的高线;(2)最短的面径平行于三角形一边,最长的面径为等边三角形的高,然后根据相似三角形面积的比等于相似比的平方求出最短面径.解答:解:如图,(1)等边三角形的高AD是最长的面径,AD=×2=;(2)当EF∥BC时,EF为最短面径,此时,()2=,即=,解得EF=.所以,它的面径长可以是,(或介于和之间的任意两个实数).故答案为:,(或介于和之间的任意两个实数).点评:本题考查了等边三角形的性质,读懂题意,弄明白面径的定义,并准确判断出等边三角形的最短与最长的面径是解题的关键.9、(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.10、(2013•宜昌)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.11、(2013•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7.==12、(2013聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.考点:旋转的性质;等边三角形的判定与性质.分析:首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.解答:解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠BAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案是:3.点评:本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.13、(2013•德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).,)a=,=2+14、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.DBC==,,故答案为:15、(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.16、(2013年广东湛江)如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上.从内到外,它们的边长依次为2,4,6,8,, ,顶点依次用1234A A A A 、、、、表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、 均相距一个单位,则顶点3A 的坐标是 ,92A 的坐标是 .解析:考查正三角形的相关知识及找规律的能力。
2013年全国中考数学三角形试题汇编
2013年全国中考数学三角形试题汇编(2013•江西)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.【答案】解:●操作发现:①②③④●数学思考:答:MD=ME,MD⊥ME,1、MD=ME;如图2,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,∵M是BC的中点,∴MF∥AC,MF=AC.又∵EG是等腰Rt△AEC斜边上的中线,∴EG⊥AC且EG=AC,∴MF=EG.同理可证DF=MG.∵MF∥AC,∴∠MFA+∠BAC=180°.同理可得∠MGA+∠BAC=180°,∴∠MFA=∠MGA.又∵EG⊥AC,∴∠EGA=90°.同理可得∠DFA=90°,∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME.2、MD⊥ME;证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,又∵△DFM≌△MGE,∴∠MEG=∠MDF.∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°.即MD⊥ME;证法二:如图2,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH,即∠DHA=∠FDM+90°,∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】(1)由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF,△DFM中四个角相加为180°,∠FMG可看成三个角的和,通过变形计算可得∠DME=90°.(3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)【关键词】课题学习全等开放探究(2013,河北)如图8-1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图8-2.则下列说法正确的是A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远(2013•上海)如图3,在△和△中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△≌△,这个添加的条件可以是____________.(只需写一个,不添加辅助线)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.(2013•上海)如图5,在△中,,,tanC=32,如果将△沿直线l翻折后,点落在边的中点处,直线l与边交于点,那么的长为__________.(2013•上海)如图8,在△中,,,点为边的中点,交于点,交的延长线于点.(1)求证:;(2)联结,过点作的垂线交的延长线于点,求证:.(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为4和8两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去,∴答案只有20.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.(2013•毕节地区)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质可得∠CFE=45°,再根据三角形内角与外角的关系可得∠E+∠D=∠CFE.解答:解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的关系,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.(2013•昆明)如图,在ABC中,点D、E分别是AB、AC的中点,A=50゜,ADE=60゜,则C的度数为()A.50゜B.60゜C.70゜D.80゜(2013•昆明)在平面直角坐标系中,已知点A(2,3),在坐标轴上找一点P,使得AOP是等腰三角形,则这样的点P共有个。
2013年全国名校三角形全等中考模拟数学题汇编
2013年全国名校三角形全等中考模拟数学题汇编三角形全等一、选择题1、(2013年广西南丹中学一摸)下列说法中不正确的是A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等答案:D二、填空题1、(2013山西中考模拟六) 如图,相交于点,,试添加一个条件使得,你添加的条件是(只需写一个).答案:AD=CB(或OA=OC或OD=OB)2、(2013年河北四摸)如图4,将ABC 沿直线AB向右平移后到达BDE的位置,若CAB =50°,ABC=100°,则CBE的度数为.答案:三、解答题1、(2013山西中考模拟六) 如图,已知平行四边形ABCD中,点为边的中点,延长相交于点.求证:.答案:证明:四边形是平行四边形,,即.,.为的中点,...[w*2、(2013温州市一模)如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD.求证:四边形ABCD是平行四边形.答案:证明:∵BE∥FD∴∠BEF=∠DFE∴∠BEA=∠DFC∵AE=CF,BE=FD∴△ABE≌△CDF(SAS)∴∠BAE=∠DCF, AB=CD∴AB∥CD∴四边形ABCD是平行四边形.3、(2013年河北省一摸)|探索与证明:(1)如图14-1,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A逆时针方向旋转一个角度到如图14-2的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.答案:(1) 猜想:BD+CE=DE.………………………………………………………………1分证明:由已知条件可知:∠DAB+∠CAE=120°,∠ECA+∠CAE=120°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠AEC=60°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴BD+CE=AE+ AD=DE.…………………………………………………5分(2) 猜想:CE-BD=DE.………………………………………………………………6分证明:由已知条件可知:∠DAB+∠CAE=60°,∠ECA+∠CAE=60°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠AEC=120°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴CE-BD=AD-AE=DE.………………………………………………10分4、(2013年河北二摸)探究一:如图1,正△ABC中,E为AB边上任一点,△CDE为正三角形,连结AD,猜想AD与BC的位置关系,并说明理由.探究二:如图2,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.答案:答案:24.解(1)…………………………………………………………1分与为正三角形…………………………………………………………2分在与中………………………………………………3分…………………………………………………4分…………………………………………………………5分(2)与为等腰三角形,且∠BAC=∠EDC即……………………………………………………7分……………………………………………………8分又………………………………………………………………10分5、(2013年河北三摸)已知,在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连结DE,DE所在直线交直线BC于点M.请探究:(1)如图①,当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论;(2)如图②,当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由。
2013全国各地中考数学试题分类汇编
2013全国各地中考数学试题分类汇编
2013年全国各地中考数学试卷分类汇编:等腰三角形
2013年全国各地中考数学试卷分类汇编:直角三角形
2013年全国各地中考数学试卷分类汇编:全等三角形
2013年全国各地中考数学试卷分类汇编:三角形的边与角
2013年全国各地中考数学试卷分类汇编:矩形菱形与正方形
2013年全国各地中考数学试题分类汇编:圆
2013年全国各地中考数学试卷分类汇编:圆的有关性质
2013年全国各地中考数学试卷分类汇编:点直线与圆的位置关系
2013年全国各地中考数学试卷分类汇编:有理数
2013年全国各地中考数学试卷分类汇编:函数与一次函数
2013年全国各地中考数学试卷分类汇编:二次函数
2013年全国各地中考数学试卷分类汇编:反比例函数
2013年全国各地中考数学试卷分类汇编:二次根式
2013年全国各地中考数学试卷分类汇编:不等式(组)
2013年全国各地中考数学试卷分类汇编:动态问题
2013年全国各地中考数学试卷分类汇编:规律探索
精心整理,仅供学习参考。
等腰三角形性质试题及答案
一.教学内容:2.1 等腰三角形2.2 等腰三角形的性质二. 重点、难点:重点:理解和掌握等腰三角形以下性质:1. 等腰三角形轴对称性质;2. 等边对等角;3. 三线合一。
难点:1. 推导性质。
通过操作,观察、分析、归纳得出等腰三角形性质的过程。
2. 应用性质。
等腰三角形三线合一性质的运用,在解题思路上需要作一些转换。
三. 知识要点及学习目标1. 等腰三角形的有关概念。
首先要能根据边的长短识别和判断等腰三角形;其次,能够明确指出已知的等腰三角形的顶角、底角、腰和底边。
如图,△ABC中,若AB、BC、AC三边中有其中两边相等,则△ABC称为等腰三角形。
(1)(2)(3)图(1)中AB=AC,图(2)中AC=BC,图(3)中AB=BC。
相等的两边称为等腰三角形的腰,另一边称为等腰三角形的底边;两腰的夹角称为等腰三角形的顶角,另外两个角称为等腰三角形的底角。
你能指出上述三幅图中的腰、底边,顶角和底角吗?2. 等腰三角形的轴对称性。
通过折纸操作认识探索等腰三角形的轴对称性。
明确等腰三角形的对称轴是等腰三角形顶角平分线所在的直线(不是顶角平分线本身)。
根据轴对称图形的概念我们知道:如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形。
如果在△ABC中,AB=AC,我们画出顶角∠BAC的平分线AD,沿着AD对折△ABC会发现什么结论?通过操作显示出等腰△ABC 是一个轴对称图形。
它的对称轴就是角平分线AD所在的直线。
(这里要注意到对称轴的概念——直线,而△ABC的顶角平分线是一条线段即这里的折痕,不能把它们混为一谈,同时也要把一般角的平分线——射线与它们区别开)。
3. 推导等腰三角形的性质。
通过进一步实验、观察、交流等活动推导等腰三角形的性质,从而加深对轴对称变换的认识。
因为等腰三角形是轴对称图形,而图形轴对称变换是全等变换中的一种基本变换,所以如下图,△ABC中,若AB=AC,AD是△ABC的∠BAC的平分线,当我们沿AD折叠时,会发现AD两旁的△ABD与△ACD能够重合即△ABD≌△ACD。
中考数学专题复习《等腰三角形》测试卷(附带答案)
中考数学专题复习《等腰三角形》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一单选题1.如图在▱ABCD中AD=5AB=3DE平分∠ADC交BC边于点E则BE=()A.2B.3C.4D.52.如图在▱ABCD中∠B=40°,AB=AC将△ADC沿对角线AC翻折AF交BC于点E 点D的对应点为点F则∠AEC的度数是()A.80°B.90°C.100°D.110°3.菱形ABCD如图E为AD上一点F为CB延长线上一点EF⊥AC于点P交AB于G若AE=13AD则AGFC的值为()A.13B.15C.25D.164.如图△ABC是等腰三角形∠BAC=90°BC=7.点D在BC上且BD:CD=2:5.连接AD将线段AD绕点A顺时针旋转90°得到线段AE连接BE DE.则△BDE的面积是()A.4B.5C.6D.75.如图在△ABC中AB=AC=6∠BAC=120°以边BC为直径作⊙O与线段CA,BA的延长线分别交于点D,E则弧DE的长为()A.3πB.2πC.√3πD.2√3π6.如图EF为半圆形量角器直径直角三角板ABC与半圆形量角器如图放置其中斜边AB 与半圆形量角器交于A D两点AC经过点F AB∥EF若BD=8AF=BF则AD长度是()A.4B.4√3C.6D.4√67.如图矩形ABCD对角线AC、BD相交于点O,DE平分∠ADC交AB于点E过点A作AF⊥DE交DE于F点连接FO若DF=√2CD=3则FO的长为()A.1B.23C.12D.148.如图△ABC中∠ABC=45°CD⊥AB于D BE平分∠ABC且BE⊥AC于E与CD相交于点F H是BC边的中点连接DH与BE相交于点G.下列结论正确的有()个.①BF=AC②CE=12BF③△DGF是等腰三角形④BD+DF=BC⑤S△BDFS△BCF=BDBCA.5B.4C.3D.2二填空题9.已知:等腰△ABC,BA=BC点D在AB上点E在BC的延长线上AD=CE连接DE 交AC于点F作DH⊥AC于点H∠HDF−∠E=30°CE=6,CF=2则HF的长为.10.如图矩形ABCD的对角线相交于O AE平分∠BAD交BC于E若∠CAE=15°则∠COE=度.11.如图菱形ABCD中∠ABC=135°DH⊥AB于H交对角线AC于E过E作EF⊥AD 于F若△DEF的周长为2 则菱形ABCD的边长为.12.如图在△ABC中∠B=90°AB=4BC=6以AC为斜边作等腰直角三角形ADC 连接BD则BD的长为.13.如图平行四边形A BCD的对角线AC BD相交于点O AB⊥AC AB=3∠ACB= 30°点P从点A出发沿AD以每秒1个单位长度的速度向终点D运动.连接PO并延长交BC于点Q设点P的运动时间为t秒在点P的运动过程中当△APO是等腰三角形时t的值为.14.如图在△ABC中AB=AC点D为线段BC上一动点(不与点B C重合)连接AD 作∠ADE=∠B=40°DE交线段AC于点E下列结论:①∠DEC=∠BDA②若AB=DC则AD=DE③当DE⊥AC时则D为BC中点④当△ADE为等腰三角形时∠BAD=40°.正确的有.(填序号)15.如图已知A,B为反比例函数y=4x图象上两点连接AB线段AB经过原点O C为反比例函数y=kx(k<0)在第四象限内图象上一点当△CAB是以AB为底的等腰三角形且CA AB =58时k的值为.16.如图已知直线L:y=x+2交x轴于点A交y轴于点A1点A2A3…在直线L上点B1 B2B3…在x轴的正半轴上若△A1OB1△A2B1B2△A3B2B3…均为等腰直角三角形直角顶点都在x轴上则△A2024B2023B2024的面积为.三解答题17.如图在△ABC中CD是AB边上的高.AB(1)若∠ABC=∠ACB=15°请证明:CD=12(2)若∠ABC=30°CD=3点E是BC边上的中点求AC+AE的最小值.18.如图已知△ABC中∠B=90°AB=8cm BC=6cm P Q是△ABC边上的两个动点其中点P从点A开始沿A→B方向运动且速度为每秒1cm点Q从点B开始沿B→C 方向运动且速度为每秒2cm它们同时出发设出发的时间为t秒.(1)当t=2秒时求PQ的长(2)求出发时间为几秒时△PQB是等腰三角形?(3)若Q沿B→C→A方向运动则当点Q在边CA上运动时求能使△BCQ成为等腰三角形的运动时间.19.已知△ACB和△ECD都是等腰直角三角形CA=CB,CE=CD,∠ACB=∠ECD=90°,△ACB的顶点A在△ECD的斜边DE上.(1)如图1 连接BD.①请你探究AE与BD之间的关系并证明你的结论②求证:AE2+AD2=2AC2.(2)如图2 若AE=2,AC=2√5点F是AD的中点求CF的长.20.如图在▱ABCD中∠BAD的平分线交边BC于点E交边DC的延长线于点F.(1)如图1 求证:CE=CF(2)如图2 若∠ABC=90°,G是EF的中点分别连结CG,BG,DG求证:DG⊥BG(3)如图3 若∠ABC=120°四边形CFGE为平行四边形分别连结DB,DG试判断△BDG的形状并证明.21.【问题背景】已知:在△ABC中AB=AC点D E分别为直线BC上两动点探究线段BD DE EC三条线段之间的数量关系:(1)如图1 当∠BAC=90°时点D E分别为线段BC上两动点且∠DAE=45°猜想BD DE EC三条线段之间存在的数量关系式直接写出你的猜想__________【问题拓展】(2)如图2 当动点E在线段BC上动点D运动在线段CB延长线上时其它条件不变(1)中探究的结论是否发生改变?请说明你的猜想并给予证明【问题迁移】(3)如图3 当∠BAC=60°时点D E在边BC上2BD−DE=3点F在边AB上点F到AC的距离是2√3且∠DFE=30°CE=7求△FDE的面积.参考答案1.解:∵四边形ABCD为平行四边形AD=5AB=3∵AD∥BC,CD=AB=3,BC=AD=5∵∠ADE=∠DEC∵DE平分∠ADC∵∠ADE=∠CDE∵∠DEC=∠CDE∵CE=CD=3∵BE=BC−CE=5−3=2.故选:A.2.解:∵四边形ABCD为平行四边形∵AD∥BC∵∠DAC=∠ACB∵∠B=40°,AB=AC且AD∥BC∵∠B=∠ACB=40°,∠BAD=140°∵∠DAC=∠ACB=40°由折叠的性质可知∠DAC=∠FAC=40°∵∠AEC=180°−(∠ACB+∠FAC)=180°−(40°+40°)=100°.故选:C.3.解:∵菱形ABCD∵∠AEF=∠F∠EAC=∠ACF∠BAC=∠DAC AD=BC∵△APE∽△PFC∵∠AGE=∠BGF∵△AEG∽△BGF∵EF⊥AC∵在△AGP和△AEP中{∠BAC=∠DAC AP=AP ∠APG=∠APE∵△AGP≌△AEP∵AG=AE∵AE=13AD∵AE=13BC∵设AG=AE=x则BG=2x∵AG GB =12∵BF=2x ∵FC=5x∵AG FC =x5x=15故选:B.4.解:∵线段AD绕点A顺时针旋转90°得到线段AE ∵AD=AE,∠DAE=90°∵∠EAB+∠BAD=90°在△ABC中∠BAC=90°,AB=AC∵∠BAD+∠CAD=90°,∠C=∠ABC=45°∵∠EAB=∠CAD∵△EAB≌△DAC(SAS)∵∠C=∠ABE=45°,CD=BE∵∠EBC=∠EBA+∠ABC=90°∵BC=7,BD:CD=2:5∵BD=2,CD=BE=5∵S△BDE=12BD⋅BE=12×2×5=5故选:B.5.解:如图连接OA,OD,OE,CE∵∠BAC=120°AB=AC=6(180°−∠BAC)=30°∴∠CBE=∠BCD=12∵BC为⊙O的直径∴∠BEC=90°∴∠BCE=90°−∠CBE=60°∵∠DCE=∠BCE−∠BCD=30°∴∠DOE=2∠DCE=60°∵AB=AC=6OB=OC∴AO⊥BC∴OB=AB⋅cos∠CBE=AB⋅cos30°=3√3∴OD=OE=OB=3√3∴弧DE的长=60×3√3π=√3π180故选:C.6.解:如图连接OD DF.∵AD∥EF∠BAC=30°∵∠AFE=∠CAB=30°∠DOF=2∠CAB=60°∵OD=OF∵△ODF是等边三角形∵∠OFD=60°∵∠AFD=∠OFD−∠AFE=60°−30°=30°∵∠DAF=∠AFD=30°∵AD=DF∵FA=FB∵∠A=∠ABF=30°∵∠AFB=180°−30°−30°=120°∵∠BFD=∠AFB−∠AFD=120°−30°=90°∵DF=12DB∵BD=8∵AD=DF=4.故选:A.7.解:四边形ABCD为矩形CD=3∴AB=CD=3∠ADC=∠BAD=90°,OD=OB ∵DE平分∠ADC∴ADE=∠CDE=12∠ADC=45°∴△ADE为等腰直角三角形∴AD=AE∵AF⊥DE∴DF=EF,∠AFD=90°∴△ADF为等腰直角三角形∴AD=√DF2+AF2=√2DF=2∴AE=AD=2∴BE=AB−AE=3−2=1∵DF=EF,OD=OB即点F O分别为DE、BD的中点∴OF为△BDE的中位线∴OF=12BE=12故选:C.8.解:∵CD⊥AB,BE⊥AC∵∠BDC=∠ADC=∠AEB=90°∵∠A+∠ABE=90°,∠ABE+∠DFB=90°∵∠A=∠DFB∵∠ABC=45°,∠BDC=90°∵∠DCB =90°−45°=45°=∠DBC∵BD =DC在△BDF 和△CDA 中{∠BDF =∠CDA∠A =∠DFB BD =CD∵△BDF≌△CDA (AAS )∵BF =AC 故①正确.∵∠ABE =∠EBC =22.5°,BE ⊥AC∵∠A =∠BCA =67.5°∵BA =BC∵BE ⊥AC∵AE =EC =12AC =12BF 故②正确 ∵BE 平分∠ABC ,∠ABC =45°∵∠ABE =∠CBE =22.5°∵∠BDC =90°,BH =HC∵∠BHG =90°∵∠BDF =∠BHG =90°∵∠BGH =∠BFD =67.5°∵∠DGF =∠DFG =67.5°∵DG =DF∵△DGF 是等腰直角三角形 故③正确.∵△BDF≌△CDA∵DF =AD∵BC =AB =BD +AD =BD +DF 故④正确∵BE 平分∠ABC∵点F 到AB 的距离等于点F 到BC 的距离∵ S △BDFS △BCF = BD BC 故⑤正确所以 正确的结论是①②③④⑤ 共5个故选:A .9.解:如图过点D作DG∥BC交AC于点G.∵BA=BC∵∠A=∠BCA∵DG∥BC∵∠DGA=∠BCA,∠DGF=∠ECF∵∠A=∠DGA∵DA=DG∵AD=CE∵DG=CE=6在△DFG和△EFC中{∠DFG=∠CFE ∠DGF=∠EFC DG=EC∵△DFG≌△EFC(AAS)∵GF=CF=2,∠GDF=∠E∵∠HDF−∠E=30°∵∠HDG=∠HDF−∠GDF=30°∵DH⊥AC∵GH=12DG=3∵HF=GH+GF=3+2=5.故答案为:5.10.解:在矩形ABCD中AO=BO=CO=DO∠ABC=90°∵∠CAE=15°AE平分∠BAD∴∠BAE=∠BEA=45°∴AB=BE∴∠BAC=60°OA=OB∴△AOB是等边三角形∴∠BAC=60°AC=BO∴∠BCA=30°AB=12∴BE=BO又∵∠DBC=∠ACB=30°在△BOE中∠BOE=(180°−∠DBC)÷2=75°∴∠COE=180°−60°−75°=45°.故答案为:45.11.解:∵四边形ABCD是菱形∠ABC=135°∵AD∥BC∠DAC=∠BAC∵∠DAB=45°∵DH⊥AB EF⊥AD∵EF=EH∵AH=DH∵∠ADH=45°且EF⊥AD∵∠ADH=∠DEF=45°∵DF=EF∵DE=√2EF∵∵DEF的周长为2∵DE+EF+DF=2∵(2+√2)EF=2∵EF=2−√2∵EH=2−√2DE=2√2−2∵DH=DE+EH=√2∵AH=DH=√2∵AD=√2AH=2∵菱形ABCD的边长为2故答案为:212.解:当在AC上方作等腰直角三角形时过D作DE⊥BA DF⊥BC如图所示:∴∠DEA=∠DFC=∠DFB=90°设∠ACB=α则在Rt△ABC中∠BAC=90°−α∵△ADC是等腰直角三角形∴∠DCA=∠DAC=45°DA=DC∴∠BCD=α+45°∠BAD=∠BAC+∠DAC=(90°−α)+45°=135°−α∴∠DAE=180°−∠BAD=α+45°∵∠EAD=∠FCD∴Rt△DEA≌Rt△DFC(AAS)∴DE=DF∵∠DEA=∠B=∠DFB=90°∴四边形BFDE是正方形在Rt△ABC中AC=√AB2+BC2=2√13∵S四边形ABCD=S△ABC+S ADC=S△ABD+S BDC∴12AB⋅BC+12AC×12AC=12AB⋅DE+12BC⋅DF即4×6+12×(2√13)2=4DE+6DF=10DF解得DF=5即正方形BFDE的边长为5∵BD是正方形BFDE的对角线∴BD=√BF2+DF2=5√2当在AC下方作等腰直角三角形时过D作DE⊥BA DF⊥BC如图所示:∴∠DEA=∠DFC=∠EBF=90°设∠ACB=α则在Rt△ABC中∠BAC=90°−α∵△ADC是等腰直角三角形∴∠DCA=∠DAC=45°DA=DC∴∠BCD=45°−α∠BAD=∠BAC−∠DAC=(90°−α)−45°=45°−α∴Rt△DEA≌Rt△DFC(AAS)∴DE=DF AE=FC∵∠DEA=∠EBF=∠DFB=90°∴四边形BFDE是正方形即BE=BF∵AB=4,BC=6∴AB+BE=BC−BF即4+BE=6−BE解得BE=1即正方形BFDE的边长为1∵BD是正方形BFDE的对角线∴BD=√BF2+DF2=√2综上所述BD的长为5√2或√2故答案为:5√2或√2.13.解:如图所示作点E G M使得AE=OE AG=AO AO=MO当点P分别运动到点E G M时△APO是等腰三角形①当点P运动到点E:此时∠BFE=∠DEF=2∠EAO=2∠ACB=60°又∵∠ABC =90°−∠ACB =60° 且AE ∥BF∴四边形ABFE 为等腰梯形∴AE =OE =12EF =12AB =32∴t 1=32②当点P 运动到点G :此时AG =AO =12AC =√32AB =3√32∴t 2=3√32③当点P 运动到点M :AO =MO作OT ⊥AM 交AM 于点T ∠CAD =∠AMO =30°根据等腰三角形三线合一得:AM =2AT =2AO ⋅√32=√32AC =√32⋅AB ⋅√3=92∴t 3=92. 答:点P 的运动时间为32或3√32或92. 14.解:①∵∠ADC =∠B +∠BAD ,∠B =∠ADE =40° ∵∠BAD =∠CDE∵AB =AC∵∠B =∠C∵由三角形内角和定理知:∠DEC =∠BDA 故①正确 ②∵AB =AC∵∠B =∠C =40°由①知:∠DEC =∠BDA∵AB =DC∵△ABD ≌△DCE (AAS )∵AD =DE 故②正确③∵DE ⊥AC∵∠DEC =90°∵∠CDE=50°∵∠ADC=90°∵AD⊥BC∵AB=AC∵BD=CD∵D为BC中点故③正确④∵∠C=40°∵∠AED>40°∵∠ADE≠∠AED∵△ADE为等腰三角形∵AE=DE或AD=DE当AE=DE时∠DAE=∠ADE=40°∵∠BAC=180°−40°−40°=100°∵∠BAD=60°当AD=DE时∠DAE=∠DEA=70°∵∠BAD=30°故④不正确.∵正确的有①②③故答案为:①②③.15.解:如图:作AE⊥y轴于E CF⊥y轴于F.连接OC.∵A、B关于原点对称∵AC=BC,OA=OB∵OC⊥AB∵∠CFO=∠COA=∠AEO=90°∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°∵∠COF=∠OAE∵△CFO∽△OEA∵S△COF S△AOE =(COOA)2∵CA AB =58AO=OB∵CA:OA=5:4又∵AC2=OA2+OC2∵CO:OA=3:4∵S△COF S△AOE =(COOA)2=916即12|k|12×4=916∵k<0∵k=−94故答案为:−94.16.解:y=x+2交y轴于点A1∴A1(0,2)∵△A1OB1是等腰直角三角形∴B1(2,0)∵若△A1OB1△A2B1B2△A3B2B3…均为等腰直角三角形∴A2(2,4)B2(6,0)A3(6,8)B3(14,0)∴S△A1OB1=12×2×2=21S△A2B1B2=12×4×4=23S△A3B2B3=12×8×8=25…S△An B n−1B n=22n−1∴△A2024B2023B2024的面积为=24047故答案为:24047.17.(1)证明:∵∠ABC=∠ACB=15°CD是AB边上的高.∵AB=AC,∠CAD=30°∵CD=12AC=12AB(2)延长CD到C′使C′D=CD=3连接AC′,C′E如图:∵CD是AB边上的高∵BD是CC′的垂直平分线∵AC′=AC∴AC+AE=AC′+AE≥C′E,即AC+AE的最小值为C′E∵∠ABC=30°,CD=3∴BC=2CD=6∵ 点E是BC边上的中点∴CE=3=CD∵BC=C′C=6∠BCD=∠C′CE∴△BCD≌△C′CE(SAS)∴BD=C′EBD=√BC2−CD2=√62−32=3√3∴C′E=3√3即最小值为3√3.18.(1)解:∵AP=2×1=2(cm)BQ=2×2=4(cm)∵BP=AB−AP=8−2×1=6(cm)∵∠B=90°∵PQ=√BQ2+BP2=√42+62=2√13(cm)(2)解:根据题意得:BQ=BP即2t=8−t解得:t=83即出发时间为83秒时△PQB是等腰三角形(3)解:分三种情况:当CQ=BQ时如图1所示:则∠C=∠CBQ∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∵CQ=AQ∵∠B=90°AB=8cm BC=6cm∴AC=√82+62=10(cm)∴CQ=AQ=12AC=5(cm)∴BC+CQ=11(cm)∴t=11÷2=5.5(秒).当CQ=BC时如图2所示:则BC+CQ=12(cm)∴t=12÷2=6(秒).当BC=BQ时如图3所示:过B点作BE⊥AC于点E∵S△ABC=12AB×BC=12AC×BE则BE=AB⋅BCAC =6×810=4.8(cm)∴CE=√BC2−BE2=3.6(cm)∴CQ=2CE=7.2cm∴BC+CQ=13.2cm∴t=13.2÷2=6.6(秒).由上可知当t为5.5秒或6秒或6.6秒时ΔBCQ为等腰三角形.19.(1)解:①AE=BD理由如下:∵∠ACB=∠ECD=90°∵∠ACE=∠BCD又∵CA=CB,CE=CD,∵△ACE≌△BCD(SAS)∵AE=BD②∵△ACB和△ECD都是等腰直角三角形CA=CB,CE=CD ∵∠ECA+∠ACD=∠ACD+∠DCB=90°,∠CEA=∠CDE=45°,∠CAB=∠CBA=45°∵∠ECA=∠DCB在△ECA和△DCB中{CE=CD ∠ECA=∠DCB AC=BC∴△ECA≌△DCB(SAS),∵AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°∴△ADB是直角三角形∴AD2+BD2=AB2,∴AD2+AE2=AB2,∴AE2+AD2=2AC2.(2)解:过点C作CH⊥DE于H如图:∵AC2+BC2=2AC2,AD2+AE2=AB2,AE=2,AC=2,∴AD=6,∴DE=AE+AD=8,∵点F是AD的中点∴AF=DF=3,∴△ECD是等腰直角三角形∴CH=DH=EH=4,∴HF=DH−DF=1,∴CF=√GH2+HF2=√42+12=√17.20.(1)证明:∵四边形ABCD是平行四边形∵AB∥CD,AD∥BC∵∠F=∠BAF∠CEF=∠DAF∵AF平分∠BAD∵∠BAF=∠DAF∵∠F=∠CEF∵CE=CF.(2)证明:∵四边形ABCD是平行四边形∠ABC=90°∵四边形ABCD是矩形∵AD=BC,∠ADC=∠BCD=90°∵∠BCF=90°∵G是EF的中点∵CG=EG=FG∵△CEG和△CFG都是等腰直角三角形∵∠ECG=∠F=45°∵∠ADC=90°∵∠DAF=45°∵△DAF是等腰直角三角形∵DA=DF∵BC=DF∵△BCG≌△DFG(SAS)∵∠BGC=∠DGF∵∠BGC−∠DGC=∠DGF−∠DGC=∠CGF=90°∵DG⊥BG.(3)解:△BDG是等边三角形理由如下:如图延长AB、FG交于点H连接DH∵FG∥CE,CE∥AD∵FH∥BC∥AD∵AH∥DF∵四边形AHFD是平行四边形∵∠DFA=∠FAB=∠DAF∵DA=DF∵四边形AHFD是菱形∵FD=FH,AD=AH∵∠ABC=120°∵∠DFH=∠DAH=60°∵△FDH和△ADH都是等边三角形∵∠DFG=∠DHB=∠FDH=60°,FD=HD ∵四边形BCFH是平行四边形∵BH=CF∵FG=CE,CE=CF∵FG=BH在△DFG和△DHB中{FG=BH∠GFD=∠BHD, FD=HD∵△DFG≌△DHB(SAS)∵∠FDG=∠HDB,DG=DB∵∠BDG=∠HDB+∠HDG=∠FDG+∠HDG=∠FDH=60°∵△BDG是等边三角形.21.解:(1)DE2=BD2+EC2证明:如图将△ADB沿直线AD对折得△AFD连FE∵△AFD≌△ABD∵AF=AB FD=DB∠FAD=∠BAD∠AFD=∠ABD∵∠BAC=90°∠DAE=45°∵∠BAD+∠CAE=45°,∠FAD+∠FAE=45°∵∠CAE=∠FAE又∵AE=AE,AF=AB=AC∵△AFE≌△ACE∵∠DFE=∠AFD+∠AFE=45°+45°=90°∵DE2=FD2+EF2∵DE2=BD2+EC2(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折得△AFD连FE∵△AFD≌△ABD∵AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD又∵AB=AC∵AF=AC∵∠FAE=∠FAD+∠DAE=∠FAD+45°∠EAC=∠BAC﹣∠BAE=90°−(∠DAE−∠DAB)=45°+∠DAB∵∠FAE=∠EAC又∵AE=AE∵△AFE≌△ACE∵FE=EC∠AFE=∠ACE=45°∠AFD=∠ABD=180°−∠ABC=135°,∵∠DFE=∠AFD−∠AFE=135°−45°=90°∵在Rt△DFE中DE2=FD2+EF2即DE2=BD2+EC2(3)过点F作FH∥AC交BC于点H作FG⊥AC于点G则FG=2√3∵∠BAC=60°∵∠AFG=30°AF∵AG=12AF)2+(2√3)2又∵AF2=AG2+FG2即AF2=(12解得:AF=4或AF=−4(舍)又∵AB=AC∵△ABC是等边三角形∵BA=BC又∵FH∥AC∵∠BFH=∠A=∠C=∠FHB=∠B=60°∵BF=BH=FH即AF =CH =4∵EH =EC −EH =7−4=3将△FDB 沿直线FD 对折 得△FMD 连ME 过E 点作EN ⊥DM 交DM 的延长线于点N ∵△FBD ≌△FMD∵FB =FM BD =DM ∠BFD =∠MFD ∠FBD =∠FMD∵∠BFH =60° ∠DFE =30°∵∠BFD +∠HFE =30°,∠DFM +∠MFE =30°∵∠HFEE =∠MFE又∵FE =FE,FH =FB =FM∵△FHE ≌△FME∵∠FME =∠FHE =60° EM =EH =3∵∠DME =∠FMD +∠FME =60°+60°=120°∵∠NME =60°∵∠MEN =30°∵MN =12EM =32 EN =√MF 2−MN 2=√32−(32)2=32√3∵DN =DM +MN =BD +MN =BD +32 又∵2BD −DE =3∵DE =2BD −3在Rt △DNE 中 DE 2=DN 2+EN 2 即(2BD −3)2=(BD +32)2+(32√3)2解得:BD =0(舍)或BD =5∵DE =7 BF =BH =BD +DE +EH =5+7+3=15过点F 作FQ ⊥BC 于点Q∵∠BFQ=30°∵BQ=12BF=152FQ=√BF2−BQ2=√152−(152)2=152√3∵S△DEF=12DE⋅FQ=12×7×152√3=105√34.。
2013年全国各地中考数学试卷分类汇编:等腰三角形
等腰三角形一、选择题1.(2013山东德州,4,3分)如图,AB ∥CD ,点E 在BC 上,且CD=CE,∠D=740,,则∠B的度数为( )A 、680B 、320C 、220D 、160 【答案】B.【解析】在△CDE 中,∵CD=CE ,∴∠D=∠DEF=74°, ∴∠C=180°-2×74°=32°. ∵AB ∥CD ,∴∠B=∠C=32°.【方法指导】本题考查了平行线性质、等腰三角形性质、三角形内角和.本题把平行线、三角形内角和、等腰三角形基础知识进行简单组合进行考查.注意“等边对等角”前提是在同一个三角形中,也就是是等腰三角形的重要性质. 2.(2013山东日照,10,4分)如图,在△ABC 中,以BC 为圆的直径分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是 A.BD ⊥AC B.AC 2=2AB·AE C.△ADE 是等腰三角形 D. BC =2AD.【答案】D【解析】∵BC 为圆的直径,∴∠BDC=90°,即BD ⊥AC 。
∵BD 平分∠ABC ,∴AD=DC. ∴△ABC 是等腰三角形。
由题意得∠ADE=∠ABC, ∠A 为公共角,∴△ADE ∽△ABC, ∴AE AB AC AD ACAEAB AD ⋅=⋅=即,,∴AC 2=2AB·AE 。
∴△ADE 是等腰三角形。
故只有D 不一定正确。
【方法指导】本题是以圆为背景 的几何证明题,涉及到的知道点等腰三角形的判定与性质,相似三角形的判定与性质。
3.(2013四川成都,4,3分)如图,在△ABC 中,∠B =∠C ,AB =5,则AC 的长为( ) (A)2 (B)3 (C)4 (D)5A5B C第4题图【答案】D.【解析】根据“等边对等角”可知,AC=AB=5.故选D.【方法指导】我们知道“等边对等角”、“等角对等边”.一个三角形中,边和角还有以下关系:“较大的边所对的角较大”、“较大的角所对边较大”.4.(2013四川南充,3,3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°【答案】:D.【解析】根据等腰三角形的性质等边对等角得到∠C=∠B=70°,再根据三角形内角和定理得∠A=180°-∠C-∠B=180°-70°-70°=40°.故选D.【方法指导】本题考查等腰三角形的性质及三角形内角和定理.等腰三角形性质:等边对等角;“三线合一”.三角形内角和定理:三角形内角和为180°.6.(2013贵州毕节,7,3分)已知等腰三角形的一边长为4,另一边长为8,则这个等A.80°B.50°C.40°D.20°考点:等腰三角形的性质.分析:根据等腰三角形两底角相等列式进行计算即可得解.解答:解:∵等腰三角形的顶角为80°,∴它的底角度数为(180°-80°)=50°.故选B.点评:本题考查了等腰三角形两底角相等的性质,是基础题.8.(2013上海市,6,4分)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()(A)∠BDC =∠BCD;(B)∠ABC =∠DAB;(C)∠ADB =∠DAC;(D)∠AOB =∠BOC.9.(2013河北省,8,3分)如图1,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里答案:D解析:依题意,知MN =40×2=80,又∠M =70°,∠N =40°, 所以,∠MPN =70°,从而NP =NM =80,选D > .二、填空题。
2013年中考数学试卷分类汇编-等腰三角形
等腰三角形2、(2013年临沂)如图,在平面直角坐标系中,点A 1 , A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,所作三角形是等腰三角形的概率是(A ) 3 4. (B) 1 3. (C) 23. (D) 1 2.答案:D解析:以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,能作4个,其中A 1B 1O ,A 2B 2O 为等腰三角形,共2个,故概率为: 1 23、(2013年武汉)如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )AA.18° B.24° C.30° D.36°答案:A解析:因为AB=AC,所以,∠C=∠ABC=12(180°-36°)=72°,又BD为高,所以,∠DBC=90°72°=18°4、(2013四川南充,3,3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B. 55°C. 50°D. 40°答案:D解析:因为AB=AC,所以∠C=∠B=70°,∠A=180°-70°-70°=40°5、(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()6、(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()8、(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:计算题.分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC 中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF 的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.解答:解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.9、(2013•莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标10、(2013•德州)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()14、(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()=,,=,CD=,.15、(2013成都市)如图,在△ABC中,B C∠=∠,AB=5,则AC的长为()A.2B.3C.4D.5答案:D解析:由∠B=∠C,得AC=AB=5(等角对等边),故选D16、(2013•宜昌)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()17、(2013哈尔滨)如图,在 ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:根据CECE平分∠BCD得∠BCE=∠ECD,AD∥BC得∠BCE=∠DEC从而△DCE为等腰三角形,ED=DC=AB,2AB=AD=AE+ED=3+AB,解得AB=3故选B18、(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的180°﹣80°×2=20°,20、(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 114 D 4分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算. 解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC , 过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E , ∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质), ∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大. 21、(2013台湾、31)如图,甲、乙两人想在正五边形ABCDE 内部找一点P ,使得四边形ABPE 为平行四边形,其作法如下:(甲) 连接BD 、CE ,两线段相交于P 点,则P 即为所求(乙) 先取CD 的中点M ,再以A 为圆心,AB 长为半径画弧,交AM 于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确 考点:平行四边形的判定.分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE 的度数,根据平行四边形的判定判断即可.解答:解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.22、(2013台湾、20)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC 长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55考点:矩形的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.解答:解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=PC,MP=MC,∵∠PBC=70°,∴∠BCP=(180°﹣∠PBC)=(180°﹣70°)=55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选B.点评:本题考查了矩形的四个角都是直角的性质,等腰三角形两底角相等的性质以及等边对等角,是基础题.23、(2013•滨州)在等腰△ABC中,AB=AC,∠A=50°,则∠B=65°.为边长的等腰三角形的周长为 5 .25、(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B 为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= 6 .AC×CO=3,AC×BC=3,26、(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.27、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .∴∠DBC=BD==DE=BD=故答案为:△AOP是等腰三角形,则这样的点P共有8 个.29、(2013•荆门)若等腰三角形的一个角为50°,则它的顶角为80°或50°.30、(2013凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解答:解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.31、(2013•白银)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5 .32、(2013凉山州)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.专题:动点型.分析:当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.解答:解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图①所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.33、(2013•牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为 2.4cm或cm .==x=cm题主要考查相似三角形的判定与性质等知识点,解答本题的关键是正确的画出图∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.35、(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15 度.36、(2013•玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有 6 个,写出其中一个点P的坐标是(5,0).等腰三角形的判定;坐标与图形性质.37、(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a .∴∠BCD沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.考点:平行四边形的性质;等腰直角三角形;翻折变换(折叠问题).分析:如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=BE.又B′E是BD的中垂线,则DB′=BB′.解答:解:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故答案是:.点评:本题考查了平行四边形的性质,等腰三角形的判定与性质以及翻折变换(折叠的性质).推知DB′=BB′是解题的关键.39、(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 12 .考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.40、(2013年江西省)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.【答案】25°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边CD,则有AD=DE,即△ADE为等腰三角形,顶角∠ADE=∠BCF=60°+70°=130°,∴∠DAE=25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.【方法规律】先要明确∠DAE的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD=130°转化为∠BCD=130°,∠F=110°转化为∠DCF=70°,从而求得∠ADE=∠BCF=130°.【关键词】平行四边形等腰三角形周长求角度41、(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.,即,﹣;的长为AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3, +2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1, +2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.44、(13年安徽省4分、14)已知矩形纸片ABCD中,AB=1,BC=2,将该纸片叠成一个平面图形,折痕EF不经过A点(E、F是该矩形边界上的点),折叠后点A落在A,处,给出以下判断:(1)当四边形A,CDF为正方形时,EF=2(2)当EF=2时,四边形A,CDF为正方形(3)当EF=5时,四边形BA,CD为等腰梯形;(4)当四边形BA,CD为等腰梯形时,EF=5。
2013 年中考数学模拟试卷参考答案
1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)
2013年全国各地中考模拟卷分类汇编:等腰三角形(共17页)
2013年全国各地中考模拟卷分类汇编--等腰三角形一、选择题1、(2013年聊城莘县模拟)如图,等边三角形的边长为3,点为边上一点,且,点为边上一点,若,则的长为().A .B .C .D .1答案:B2、(2013年惠州市惠城区模拟)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16B.18C. 20D. 16或20 答案:C3、(2013浙江永嘉一模)10.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论: ①∠CDF =α;②A 1E =CF ;③DF =FC ;④BE =BF . 其中正确的有( ▲ )A .②③④B .①③④C .①②④D .①②③ 【答案】C4、(2013重庆一中一模)11.如图,在等腰ABC Rt ∆中,︒=∠90C ,6=AC , D 是AC 上一点.若51tan =∠DBA ,那么AD 的长为A . 2B .3C .2D . 1 【答案】A(第1 题图)C 1BA第2题图CAPBD5. (2013江西饶鹰中考模拟)如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( ) A .1 B.2 C.3 D.4 答案:C6、(2013年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36° D7、 (2013年江苏无锡崇安一模)如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC =1,AE =DE =2,在BC 、DE 上分别找一点M 、N , 使△AMN 的周长最小,则△AMN 的最小周长为…( ▲ ) A .2 6 B .27 C .4 2D .5答案:B二、填空题1、(2013年安徽模拟二)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长A BD ′PCD M NE C ′ QF第6题为 .答案:42.(2013年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP .3、(2013年安徽省模拟六)如图,等边三角形ABC 中,D 、E 分别在AB 、BC 边上,且AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G .下列结论:①AE =CD ;②∠AFC =1200;③⊿ADF 是正三角形;④12FG AF =.其中正确的结论是 (填所有正确答案的序号). 答案:①②④4、(2013年福州市初中毕业班质量检查)如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____ . 1.5第1题图第1题第3题图 ABCDE7.(2013年江苏无锡崇安一模)在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点D 到斜边AB 的距离为 ▲.答案:47.(2013浙江东阳吴宇模拟题)如图,C 、D 、B 的坐标分别为(1, 0)(9, 0)(10, 0),点P (t ,0)是CD 上一个动点,在x 轴上方作等边△OPE 和△BPF ,连EF ,G 为EF 的中点。
全国名校2013年中考数学模拟试卷分类汇编33 图形的变换
图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2013安徽芜湖一模)下列图形既是轴对称图形,又是中心对称图形的是 ( ).A B C D[w#~@ww*.zzste&] 答案:D2、(2013江苏东台实中)下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( ).答案:D3、(2013江苏扬州弘扬中学二模)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( ).A .2+10B .2+210C .12D .18 答案:B4、(2013·吉林中考模拟)下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:B5、(2013·曲阜市实验中学中考模拟)李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( )10题图A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)答案:A6、(2013·温州市中考模拟)将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()答案:C7、(2013·湖州市中考模拟试卷1)下列交通标志中,既是中心对称图形,又是轴对称图形的是()答案:D8、(2013·湖州市中考模拟试卷3)下列图形中,既是中心对称图形又是轴对称图形的是( ).A. 等边三角形B. 等腰直角三角形C. 菱形D. 等腰梯形答案:C9、(2013·湖州市中考模拟试卷7)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为()A.15︒或30︒ B.30︒或45︒ C.45︒或60︒ D.30︒或60︒答案:D10、(2013年深圳育才二中一摸)下列平面图形,既是中心对称图形,又是轴对称图形的是( )A .等腰三角形B .正五边形C .平行四边形D .矩形 答案:D11、(2013年深圳育才二中一摸)如图,将△ABC 绕着点C 顺时针旋转50°后得到△'''C B A . 若∠A =40°. ∠'B =110°,则∠'BCA 的度数是( ) A .110° B.80° C.40° D.30° 答案:B12、(2013年广西南丹中学一摸)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC绕点C 顺时针旋转60°,则顶点A 所经过的路径长为 A .10πBCD .π答案:C13、(2013年河南西华县王营中学一摸)下列图形中,既是轴对称图形又是中心对称图形的是( )答案:D14、(2013年河北四摸)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30° (B )45° (C )90° (D )135°答案:C第11题图/B15、(2013年温州一摸)将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( ) 答案:C二、填空题1、(2013吉林镇赉县一模)如图所示,在△ABC 中,∠CAB 绕点A 逆时针旋转到△A′B ′C ′的位置,使CC ′∥AB ,则∠BAB 答案:30°2、(2013山西中考模拟六) 已知△ABC 的面积为36,将△ABC 沿BC 平移到△A ´B ´C ´,使B ´和C重合,连结AC ´交AC 于D ,则△C ´DC 的面积为________.答案:183、(2013·温州市中考模拟)如图,五角星绕中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为____º答案:72º4、(2013·湖州市中考模拟试卷3)如图,将一块含45角的直角三角尺ABC 在水平桌面A B C D上绕点B 按顺时针方向旋转到11A BC 的位置,若AB =8cm ,那么点A 旋转到1A 所经过的路线长为_ cm .(结果保留π)答案:65、(2013·湖州市中考模拟试卷8)一个长方形的长与宽分别为和16cm ,绕它的对称中心旋转一周所扫过的面积是2cm ;旋转90度时, 扫过的面积是 2cm .答案:256π,6401283π+ 6、(2013年河北三摸)两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD 沿上底AD 方向向右平移得到图(2).已知AD =4,BC =8,若阴影部分的面积是四边形A ′B ′CD 的面积的13,则图(2)中平移距离A ′A =________.答案:37、(2013年河北四摸)如图4,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 . 答案:30︒8、(2013年温州一摸)如图,五角星绕中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为____º 答案:721 2 题图三、解答题1、(2013安徽芜湖一模)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)经过怎样的平移,可使ABC △的顶点A 与坐标原点O 重合,并直接写出此时点C 的对应点1C 坐标;(不必画出平移后的三角形)(2)将ABC △绕坐标原点O 逆时针旋转90°,得到△A ′B ′C ′,画出△A ′B ′C ′.答案:解:(1)1C (1,-3);………………………………………………………………(3分)(2)图形略;……………………………………………………………………… (8分) 2、(2013安徽芜湖一模)如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F分别在AB 、AC 边上,此时BD =CF ,BD ⊥CF 成立. (1)当正方形ADEF 绕点A 逆时针旋转θ(090θ<<)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G .① 求证:BD ⊥CF ;② 当AB =4,ADBG 的长.图1 图2 图3答案:(本小题满分12分)解(1)BD =CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形,∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∵∠BAD =DAC BAC ∠-∠,∠CAF =DAC DAF ∠-∠,∴∠BAD =∠CAF ,∴△BAD ≌△CAF .第18题图图13.3图13.2图13.145°θG CDEFFEDCF E DCBA∴BD =CF.……………………………………………………………………(4分)(2)①证明:设BG 交AC 于点M .∵△BAD ≌△CAF (已证),∴∠ABM =∠GCM . ∵∠BMA =∠CMG ,∴△BMA ∽△CMG .∴∠BGC =∠BAC =90°.∴BD ⊥CF .……………………………………(7分)②过点F 作FN ⊥AC 于点N .∵在正方形ADEF 中,AD =2, ∴AN =FN =121=AE . ∵在等腰直角△ABC 中,AB =4, ∴CN =AC -AN =3,BC =2422=+AC AB .Rt △FCN ∽Rt △ABM ,∴ABCNAM FN = ∴AM ==⨯AB 3134.∴CM =AC -AM =4-34=38,310422=+=AM AB BM .…… (9分)∵△BMA ∽△CMG ,∴CGCMBA BM =. ∴CG 3843104=. ∴CG =5104.…………………………………… (11分) ∴在Rt △BGC 中,=-=22CG BC BG 5108. ……………… (12分) 3、(2013温州市一模)如图,正比例函数(0)y kx k =≠经过点A (2,4), AB ⊥x 轴于点B .(1)求该正比例函数的解析式.(2)将△ABO 绕点A 逆时针旋转90︒得到△ADC ,写出点C 的坐标,试判断点C 是否在直线113y x =+的图象上,并说明理由.答案:解:(1)∵正比例函数(0)y kx k =≠经过点A (2,4) ∴42k =2k ∴=2y x ∴=MN FE DCG 45°图13.3D OBACyx(第22题)(2) ∵A (2,4),AB ⊥x 轴于点B∴2,4OB AB ==∵△ABO 绕点A 逆时针旋转90︒得到△ADC ∴2,4DC OB AD AB ==== ∴C (6,2)∵当6x =时,161323y =⨯+=≠ ∴点C 不在直线113y x =+的图象上4、(2013·湖州市中考模拟试卷1)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,A B C △的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出A B C △绕点C 顺时针旋转90后的11ABC △;(2)求边AB 旋转时所扫过区域的面积答案:(1)画图(略) ………………………………4分 (2)72π…………………………‥4分 5、(2013年上海市)(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)数学课上,张老师出示图1和下面框中条件:(1)①当点C 与点F 重合时,如图2所示,可得DM的值为 ▲ ; 如图1,两块等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,∠ABC =∠DEF = 90°,AB = 1,DE = 2.将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C 、E 两点间的距离为x .(第25题图1)C E F l B (第25题图2)E F (C ) B l②在平移过程中,AMDM的值为▲(用含x的代数式表示);(2)艾思轲同学将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请你帮他补全图形,并计算AMDM的值;(3)艾思轲同学又将图1中的三角板ABC绕点C逆时针旋转m度,090m<≤,原题中的其他条件保持不变.请你计算AMDM的值(用含x的代数式表示).答案:解:(1)① 1.………………………………………………………………………(2分)②2x.………………………………………………………………………(2分)(2)联结AE,补全图形如图1所示.…………………………………………(1分)∵△ABC和△DEF是等腰直角三角形,∠ABC =∠DEF = 90°,AB = 1,DE = 2,∴BC = 1,EF = 2,∠DFE =∠ACB= 45°.∴AC=DF=,∠EFB = 90°.∴AD DF AC=-=A为DF的中点.………………………(1分)∴EA⊥DF,EA平分∠DEF.∴∠MAE = 90°,∠AEF = 45°,AE=∵∠MEB =∠AEF= 45°,∴∠MEA =∠BEF.∴Rt△MAE∽Rt△BFE.……………………………………………………(1分)∴AM AEBF EF=,∴AM=.……………………………………………(1分)∴DM AD AM=-==,∴1AMDM=.……………………(1分)(第25题备用图)E F l(第25题图3)E F(C) l(3)如图2,过点B 作BE 的垂线交直线EM 于点G ,联结AG .∵∠EBG = 90°,∠BEM = 45°,∴∠BGE = 45°.∴BE = BG .…………………………………………………………………(1分) ∵∠ABC =∠EBG = 90°,∴∠ABG =∠CBE .……………………………(1分) 又∵BA = BC ,∴△ABG ≌△CBE .………………………………………(1分) ∴AG = CE = x ,∠AGB =∠CEB .∵∠AGB +∠AGM =∠CEB +∠DEM = 45°,∴∠AGM =∠DEM ,∴AG ∥DE .…………………………………………(1分) ∴2AM AG xDM DE ==.…………………………………………………………(1分) 注:第(3)小题直接写出结果不得分。
等腰三角形练习(含答案)
EDC A B F1.等腰三角形练习题(第一课时)一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°EDCABHFG二、填空题6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______. 三、解答题11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.12.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB13.已知△ABC 中AB=AC ,点P 是底边的中点,PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,• 求证:PD=PE.四、探究题14.如图,CD 是△ABC 的中线,且CD=12AB ,你知道∠ACB 的度数是多少吗?由此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB答案:1.D 2.B 3.A 4.C 5.B 6.607.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+12n )° 9.70° 10.略 11.6cm 12.连接BD ,∵AB=AD ,∴∠ABD=∠ADB .∵CB=CD ,∴∠CBD=∠CDB .∴∠ABC=∠ADC 13.连接AP ,证明AP 平分∠BAC .14.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形练习题(第二课时)一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C A BE D ABFEDCABH F(1) (2) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( ) A .1个 B .2个 C .3个 D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( ) A .①②③ B .①②③④ C .①② D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 8.一灯塔P 在小岛A 的北偏西25°,从小岛A 沿正北方向前进30海里后到达小岛,•此时测得灯塔P 在北偏西50°方向,则P 与小岛B 相距________. 三、解答题 9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .E D CA BF10.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF四、探究题11.如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E , 求证:AE=BE .ECABF答案:1.A 2.C 3.A 4.C 5.1 6.AB=AC 7.2cm 8.30海里9.连接BC ,∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ABD=∠ACE ,∴∠FBC=∠FCB ,∴FB=FC 10.证明∠D=∠BED11.证明∠EAD=∠EDA ,∠EBD=∠EDB 分别得到AE=DE ,BE=DE。
中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)
中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________(25道)一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12 B 5C .23 D 32.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A .23B .232C .2D .233.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .44.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为 ①若60,ABC CBD α=︒∽,则OD 的长为 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC =,则AE 的长为( )A .1B .2C .1D .1或26.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .537.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC = 2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.29.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD的长是( )A B C D11.ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.参考答案一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12BC .23 D【答案】D 【详解】解:①点O 是①ABC 的重心 ①OC =23CE ①①ABC 是直角三角形 ①CE =BE =AE ①①B =30° ①①F AE =①B =30° ①BAC =60° ①①F AE =①CAF =30° ①ACE 是等边三角形 ①CM =12CE ①OM =23CE ﹣12CE =16CE 即OM =16AE ①BE =AE ①EF①EF ①AB ①①AFE =60° ①①FEM =30° ①MF =12EF ①MF①MO MF1AE故选D .2.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A.2B.2 C .2 D.【答案】B 【分析】根据等腰直角三角形的性质可得2cm AD CD == 由含30度角直角三角形的性质可得24cm BC CD == 由勾股定理可得BD 的长 即可得到结论.【详解】解:如图,在Rt ACD △中 45ACD ∠=︒①45CAD ACD ∠=︒=∠①2cm AD CD ==在Rt BCD 中 60BCD ∠=︒①30CBD ∠=︒①24cm BC CD == ①)22224223cm BD BC CD --= ①()233cm AB BD AD =-=.故选:B .【点睛】本题考查了勾股定理 等腰直角三角形的性质 含30︒角直角三角形的性质 熟练掌握勾股定理是解题的关键.3.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据等腰三角形两底角相等与36A ∠=︒ 得到72ABC C ∠=∠=︒ 根据角平分线定义得到36ABD CBD ∠=∠=︒ 根据线段垂直平分线性质得到EB ED = 得到EBD EDB ∠=∠ 推出EDB CBD ∠=∠ 得到DE BC ∥ 推出AED ABC ∠=∠ ①正确 根据等角对等边得到AD AE = AD BD = 根据三角形外角性质得到72BDC C ∠=︒=∠ 得到BC BD = 推出BC AE = ①正确 根据AED ABC △∽△ 得到ED AD AD BC AC AD DC ==+ 推出ED = ①错误 根据2AC =时CD AD = 2AD AD =-,推出1AD = ①正确. 【详解】①ABC 中 AB AC = 36A ∠=︒ ①()1180722ABC C A ∠=∠=︒-∠=︒ 由作图知 BD 平分ABC ∠ MN 垂直平分BD ①1362ABD CBD ABC ∠=∠=∠=︒EB ED = ①EBD EDB ∠=∠①EDB CBD ∠=∠①DE BC ∥①AED ABC ∠=∠ ①正确 ADE C ∠=∠①AED ADE ∠=∠①AD AE =①A ABD ∠=∠①AD BD =①72BDC A ABD ∠=∠+∠=︒ ①BDC C ∠=∠①BC BD =①BC AE = ①正确设ED x = BC a =则AD a = BE x =①CD BE x ==①AED ABC △∽△ ①EDADADBC AC AD DC ==+ ①x aa a x =+①220x ax a +-=①0x >①51x -= 即51ED -=①错误 当2AC =时 2CD AD =- ①51CD AD -=512AD AD -=-, ①51AD = ①正确①正确的有①①① 共3个.故选:C .【点睛】本题主要考查了等腰三角形 相似三角形 解决问题的关键是熟练掌握等腰三角形判定和性质 相似三角形的判定和性质 角平分线的定义和线段垂直平分线的性质.4.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为27 ①若60,ABC CBD α=︒∽,则OD 的长为23 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == BC AE == 6BD ==∴8DE =∴AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = BC = OE = 1CE =①CD = GE DF ==32CF =①52EF DG == OG①OD =≠①①错误①如图6 ABC BCD ∽△△①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:A .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D 【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.6.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .53【答案】D 【分析】过点D 作DM AB ⊥于M 由勾股定理可求得4AC = 由题意可证明ADC ADM △≌△,则可得4AM AC == 从而有1BM = 在Rt DMB 中 由勾股定理建立方程即可求得结果.【详解】解:过点D 作DM AB ⊥于M 如图由勾股定理可求得4AC =由题中作图知 AD 平分BAC ∠①DM AB AC BC ⊥⊥,①DC DM =①AD AD =①Rt Rt ADC ADM △≌△①4AM AC ==①1BM AB AM =-=设BD x =,则3MD CD BC BD x ==-=-在Rt DMB 中 由勾股定理得:2221(3)x x +-= 解得:53x = 即BD 的长为为53故选:D .【点睛】本题考查了作图:作角平分线 角平分线的性质定理 全等三角形的判定与性质 勾股定理 利用全等的性质 利用勾股定理建立方程是解题的关键.7.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m【答案】B 【分析】作AD BC ⊥于点D 根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒ 再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点DABC 中,120BAC ∠=︒ AB AC =∴()1180302B C BAC ∠=∠=︒-∠=︒AD BC ⊥∴11126m 22AD AB ==⨯=故选B .【点睛】本题考查等腰三角形的性质 三角形内角和定理 含30度角的直角三角形的性质等解题的关键是掌握30度角所对的直角边等于斜边的一半.8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC =2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.2【答案】C【分析】证明ADC DEB ∽△△ 根据题意得出45BD BC = 进而即可求解.【详解】解:①ABC 为等边三角形①60B C ∠=∠=︒①ADB ADE BDE C DAC ∠=∠+∠=∠+∠ 60ADE ∠=︒①BDE DAC ∠=∠①ADC DEB ∽△△ ①AD ACDE BD =①4BD DC = ①45BD BC =①AD AC DE BD =5445BC BC == ① 2.4DE = ①534AD DE =⨯= 故选:C .【点睛】本题考查了相似三角形的性质与判定 等边三角形的性质 熟练掌握相似三角形的性质与判定是解题的关键.9.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图 1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等【答案】D【分析】利用直角三角形斜边中线的性质证明:OC OA OB ==即可.【详解】解:作直线PQ (两点确定一条直线)连接PA PB QA QB OC ,,,,①由作图 PA PB QA QB ==,①PQ AB ⊥且AO BO =(与线段两个端点距离相等的点在这条线段的垂直平分线上).①90ACB ∠=︒ ①12OC AB =(直角三角形斜边中线等于斜边的一半) ①OA OB OC ==①A B C 三点在以O 为圆心 AB 为直径的圆上.①O 为ABC 的外接圆.故选:D .【点睛】本题考查作图-复杂作图 线段的垂直平分线的定义 直角三角形斜边中线的性质等知识 解题的关键熟练掌握基本知识 属于中考常考题型.10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD 的长是( )A B C D 【答案】C 【分析】如图所示 过点B 作BE AC ⊥于E 利用勾股定理求出5AC = 进而利用等面积法求出125BE =,则可求出95AE = 再由BD 平分ABC 的周长 求出32AD CD ==, 进而得到65DE =,则由勾股定理得BD ==【详解】解:如图所示 过点B 作BE AC ⊥于E①在ABC 中 9034ABC AB BC ∠=︒==,, ①225AC AB +BC ①1122ABC S AC BE BC AC =⋅=⋅△ ①125AB BC BE AC ⋅== ①2295AE AB BE =-= ①BD 平分ABC 的周长①AD AB BC CD +=+ 即34AD CD +=+又①5AD CD AC +==①32AD CD ==, ①65DE AD AE =-= ①2265BD BE DE =+=故选C .【点睛】本题主要考查了勾股定理 正确作出辅助线构造直角三角形是解题的关键.11.ABC 的三边长a b c 满足2()23|320a b a b c ----=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()20230320a b a b c ⎧-≥⎪⎪--⎨-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5【答案】B 【分析】利用三角形三边关系求得04AC << 再利用等腰三角形的定义即可求解.【详解】解:在ACD 中 2AD CD ==①2222AC -<<+ 即04AC <<当4AC BC ==时 ABC 为等腰三角形 但不合题意 舍去若3AC AB ==时 ABC 为等腰三角形故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义 解题的关键是灵活运用所学知识解决问题.二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .【答案】23【分析】先求出AD=2 BD=4 根据三角形的一个外角等于与它不相邻的两个内角的和可得①AMD+①A=①EDF+①BDN 然后求出①AMD=①BDN 从而得到①AMD 和①BDN 相似 根据相似三角形对应边成比例可得MA MD BD DN= 求出MA•DN=4MD 再将所求代数式整理出完全平方的形式 然后根据非负数的性质求出最小值即可.【详解】①AB=6 AB=1:3 ①AD=6×13=2 BD=6﹣2=4 ①①ABC 和①FDE 是形状 大小完全相同的两个等腰三角形①①A=①B=①FDE 由三角形的外角性质得 ①AMD+①A=①EDF+①BDN ①①AMD=①BDN①①AMD①①BDN ①MA MD BD DN= ①MA•DN=BD•MD=4MD ①MD+12⋅MA DN =MD+2233()(2323MD MD MD+- =①3MD MD 即3MD+12⋅MA DN 有最小值为23故答案为考点:相似三角形的判定与性质 等腰三角形的性质 旋转的性质 最值问题 综合题.14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .【答案】32/112/1.5 【分析】先根据AAS 证明BDA CDE △≌△ 推出5==BA CE 再利用勾股定理求出BC 最后根据中点的定义即可求CD 的长. 【详解】解:CE AB ∥∴BAD CED ∠=∠点D 为BC 的中点∴BD CD = 又BDA CDE ∠=∠∴BDA CDE △≌△()AAS∴5==BA CERt ABC △中 90ACB ∠=︒ 4AC =∴3BC === ∴1322CD BC ==. 故答案为:32. 【点睛】本题考查全等三角形的判定与性质 勾股定理 平行线的性质等 证明BDA CDE △≌△是解题的关键.15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .541【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论 画出图形 连接OC 过点O 作ON BC ⊥于N 利用勾股定理解题即可【详解】解:当在线段上时 连接OC 过点O 作ON BC ⊥于N①当D 在线段AC 上时1AD =2CD AC AD ∴=-=90BCD ∠=︒22222313BD CD BC ∴=+=+点O 是线段BD 的中点1132OC OB OD BD ∴====ON BC ⊥1322CN BN BC ∴===AB DE45COE A CBA CED ∴∠=∠=∠=∠=︒2CE CD ∴==31222NE ∴=-=221ON CO CN =-2222151()2OE ON NE ∴=++=②当D 在CA 延长线上时,则4CD AD AC =+=O 是线段BD 的中点 90BCD ∠=︒12OC OB OD BD ∴=== ON BC ⊥1322CN BN BC ∴=== OB OD =122ON CD ∴== AB DE45CAB COE CBA CED ∴∠=∠=∠=∠=︒4CE CD ∴==35422EN CE CN ∴=-=-=OE ∴==OE ∴【点睛】本题考查等腰直角三角形的判定和性质 勾股定理 正确作出辅助线是解题的关键.16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .【答案】32【分析】连接CP 利用勾股定理列式求出AB 判断出四边形CDPE 是矩形 根据矩形的对角线相等可得DE CP = 再根据垂线段最短可得CP AB ⊥时 线段DE 的值最小 然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP①90,6C AC BC ∠=︒== ①22226662AB AC BC ++=①PD BC ⊥于点D PE AC ⊥于点E 90ACB ∠=︒①四边形CDPE 是矩形①DE CP =由垂线段最短可得CP AB ⊥时 线段CP 的值最小 此时线段DE 的值最小此时 1122ABC S AC BC AB CP ==△⋅⋅ 代入数据:11666222CP ①32CP =①DE 的最小值为32故答案为:【点睛】本题考查了矩形的判定与性质 垂线段最短的性质 勾股定理 判断出CP AB ⊥时 线段DE 的值最小是解题的关键.17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .【答案】【分析】连接AC BD 交于点O 过点E 作EF AC ⊥ 交AC 于点F 先证明BCD △是等边三角形 AC垂直平分BD 求得30EAC ACD ACB ∠=∠=∠=︒ 6AE EC == 再解三角形求出AO AC CO =-= 4BO = 最后运用勾股定理求得AB 即可.【详解】解:如图:连接AC BD 交于点O又①BC DC = 60C ∠=︒①BCD △是等边三角形①8BD BC CD ===①AB AD = BC DC =①AC BD ⊥ 142BO DO BD === ①1302ACD ACB BCD ∠=∠=∠=︒ 又①AE CD ∥①30EAC ACD ACB ∠=∠=∠=︒.①6AE EC ==过点E 作EF AC ⊥ 交AC 于点F ①3cos30633CF CE =⋅︒==3cos30633AF AE =⋅︒==3cos3083CO BC =⋅︒==①63AC CF AF =+=①634323AO AC CO =-==①在Rt BOA 中 2222(23)427AB BO AO ++= 故答案为:27【点睛】本题属于四边形综合题 主要考查了等边三角形的判定和性质 平行线的性质 垂直平分线 勾股定理 解直角三角形等知识点 正确作出辅助线成为解答本题的关键.18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.【答案】65【分析】根据题意可得BD BE = 再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.【详解】解:根据题意可得:BD BE =①BDE BED ∠=∠①18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,①65BDE BED ∠=∠=︒.故答案为:65.【点睛】本题主要考查了等腰三角形的性质 三角形内角和等知识点 掌握等腰三角形的性质是解答本题的关键.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .【答案】4【分析】利用圆的性质得出AP 垂直平分CD 和5AD AC == 运用勾股定理便可解决问题.【详解】解:根据题意可知 以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P ①AP 垂直平分CD ,即90AED ∠=︒ ①132DE CD == 又①在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 其中5AC =①5AD AC ==在ADE 中 4AE =故答案为:4.【点睛】本题主要考查圆和三角形的相关性质 掌握相关知识点是解题的关键.20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点M 证明ACG BMG ∽ 得出AG AC AC GB BM BC == 根据96ACG BCG S AG AC S GB BC ===32= 即可求解. 【详解】解:如图所示 过点B 作BM AC ∥交CG 的延长线于点M①ACM CMB ∠=∠由作图可得CG 是ACB ∠的角平分线①ACM BCM ∠=∠①BCM CMB ∠=∠①BC BM =①BM AC ∥①ACG BMG ∽ ①AG AC AC GB BM BC== ①96ACG BCG S AG AC S GB BC ===32= ①BCG 的面积为8①ACG 的面积为12故答案为:12.【点睛】本题考查了相似三角形的性质与判定 作角平分线 熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD ==①6BC①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .【答案】5【分析】先根据题意画出图形 再运用勾股定理求得AB 然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图:①△ACB =90° AC =6 BC =8 ①22226810AB AC BC①①ACB =90° D 为AB 的中点①CD =12AB =12×10=5.故答案为5.【点睛】本题主要考查了运用勾股定理解直角三角形 直角三角形斜边上的中线等于斜边的一半的性质等知识点 掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.【答案】(1)见解析 (2)185BD = 【分析】(1)根据三角形高的定义得出90ADB ∠=︒ 根据等角的余角相等 得出BAD C ∠=∠ 结合公共角B B ∠=∠ 即可得证(2)根据(1)的结论 利用相似三角形的性质即可求解.【详解】(1)证明:①90BAC AD ∠=︒,是斜边BC 上的高.①90ADB ∠=︒ 90B C ∠+∠=︒①90B BAD ∠+∠=︒①BAD C ∠=∠又①B B ∠=∠①C ABD BA ∽△△(2)①C ABD BA ∽△△ ①AB BD CB AB=又610AB BC ==, ①23618105AB BD CB ===. 【点睛】本题考查了相似三角形的性质与判定 熟练掌握相似三角形的性质与判定是解题的关键. 24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.【答案】见解析【分析】利用三线合一和等腰三角形的性质 证出2E ∠=∠ 再利用等边对等角即可.【详解】证明:BD 为等边ABC 的中线BD AC ∴⊥ 160∠=︒330∴∠=︒BD DE =330E ∴∠=∠=︒2160E ∠+∠=∠=︒230E ∴∠=∠=︒CD CE ∴=【点睛】本题考查了等边三角形 等腰三角形的性质和判定 理解记忆相关定理是解题的关键.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.。
等腰三角形2013年中考题汇编
等腰三角形2013年中考题汇编考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E 的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°�∠C�∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB 平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°�2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键. 46、(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC 于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图―应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答. 47、(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE 和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用. 48、(2013•荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF 中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键. 49、(2013哈尔滨)如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。
中考数学备考专题复习等腰三角形含解析
中考数学备考专题复习等腰三角形含解析一、单选题(共12题;共24分)1、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°2、如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A、25B、30C、45D、603、如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。
则A,B,C,D的面积的和等于 ( )A 、B 、C 、D 、4、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为( )A、2B、2.4C、2.6D、35、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A、15 dmB、20dmC、25dmD、30dm6、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB 的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A 、B 、C、3D、47、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为( )A 、B 、C 、D 、8、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD是()A、1B、2C、3D、49、在矩形ABCD中,AB=1,AD =,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A、②③B、③④C、①②④D、②③④10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF 为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、412、(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A、13B、19C、25D、169二、填空题(共5题;共6分)13、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是________,对角线的长是________.14、如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.15、(2016•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=________.16、(2016•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为________.17、(2016•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm .三、解答题(共2题;共10分)18、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B 的度数.19、如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E,D分别为边AB,AC上的点,且满足OE⊥OD,求证:OE=OD.四、综合题(共5题;共65分)20、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.21、(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(2016•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23、(2016•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)24、(2016•义乌)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q 是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).答案解析部分一、单选题【答案】A【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形【解析】【解答】此题有两种情况,一种是该高线在等腰三角形内部,另外一种是在等腰三角形外部。
2013年5月全国各地名校最新初三数学试卷分类汇编:等腰三角形(共17页)
- 新世纪教育网版 权所有
- 新世纪教育网版 权所有
Hale Waihona Puke • 第二轮复习是整个复习过程中的重要的一 环,它是对第一轮复习成果的进一步巩固, 也要为进行第三轮复习的综合模拟训练打 下坚实的基础。 • ⑴在这轮复习中备课组按知识板块、知识 网络、按数学思想、数学方法、知识交汇 等方面自己编写专题教学案。 • ⑵ 请组内专家打造精品专题课.
初中数学培优:等腰三角形(含答案)
等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形
一、选择题
1、(2013年河北省一摸)|如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD , 则∠A 等于
A .30°
B .36°
C .40°
D .45° 答案:B
2、(2013年河北二摸)如图,已知O 是四边形ABCD 内一点,
OA =OB =OC ,∠ABC =∠ADC =70°,则∠DAO +∠DCO 的大小是( )
A .70°
B .110°
C .140°
D .150° 答案:D 3、(2013年河北二摸)如图,已知O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则∠DAO +∠DCO 的大小是( )
A .70°
B .110°
C .140°
D .150° 答案:D
4、(2013年河北三摸)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点,若60APD ∠=°,则CD 的长为 A .12 B .23 C .3
4
D .1
二、填空题
1、(2013·吉林中考模拟)一个等腰三角形静的两边长分别为5或6,则这个等腰三角形的周长是 . 答案:15或17
2 A
B D
D
B
C
O
A
D B
C O
A
2、(2013·吉林中考模拟)如果P 是边长为4的等边三角形内任意一点,那么点P 到三角形三边距离之和为 . 答案:2
3、(2013·曲阜市实验中学中考模拟)如图,点O 是正ACE ∆和正BD F ∆的中心,且
AE ∥BD ,则AOF ∠=_______.
答案:60°
4、(2013·温州市中考模拟)等腰三角形的两边长分别为3和7,则其周长为_____. 答案:17
5、(2013·湖州市中考模拟试卷10)有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是 度. 答案:o 36或60(答对一个得3分)
6、(2013年河北省一摸)|如图7,将一块等腰直角三角板和一块含30°角的直角三角板叠放,
则△AOB 与△DOC 的面积之比为 . 答案:1:3
7、(2013年温州一摸)等腰三角形的两边长分别为3和7,则其周长为_____. 答案:17 三、解答题
1、(2013江苏射阴特庸中学)如图a ,在平面直角坐标系中,A (0,6),B (4,0).
(1)按要求画图:在图a 中,以原点O 为位似中心,按比例尺1:2,将△AOB 缩小,
得到△DOC ,使△AOB 与△DOC 在原点O 的两侧;并写出点A 的对应点D 的坐标为 ,点B 的对应点C 的坐标为 ;
(2)已知某抛物线经过B 、C 、D 三点,求该抛物线的函数关系式,并画出大致图象; (3)连接DB ,若点P 在CB 上,从点C 向点B 以每秒1个单位运动,点Q 在BD 上,
从点B 向点D 以每秒1个单位运动,若P 、Q 两点同时分别从点C 、点B 点出发,经过t 秒,当t 为何值时,△BPQ 是等腰三角形?
图7
答案:(1)画图1分; C (-2,0),D (0,-3). ……3分 (2)∵C (-2,0),B (4,0).设抛物线y =a (x +2)(x -4),
将D (0,-3)代入,得a =3/8. ……5分 ∴y =3/8(x +2)(x -4),即y =3/8x 2-3/4x -3. ……6分 大致图象如图所示. ……7分 (3)设经过ts ,△BPQ 为等腰三角形,
此时CP =t ,BQ =t ,∴BP =6-t .∵OD =3,OB =4,∴BD =5. ①若PQ =PB ,过P 作PH ⊥BD 于H ,则BH =1/2BQ =1/2t ,
由△BHP ∽△BOD ,得BH :BO =BP :BD ,∴t =48/13s . ……9分 ②若QP =QB ,过Q 作QG ⊥BC 于G ,BG =1/2(6-t ).
由△BGQ ∽△BOD ,得BG :BO =BQ :BD ,∴t =30/13s . ……10分 ③若BP =BQ ,则6-t =t ,t =3s . ……11分 ∴当t =48/13s 或30/13s 或3s 时,△BPQ 为等腰三角形.……12分
备用图
图a。