2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(20)复数代数形式的加、减运算及其几何意义
高中数学选修22人教A课时跟踪检测:第1章 导数及其应用 1 2 含解析
第一章 导数及其应用1.5 定积分的概念 1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程课时跟踪检测一、选择题1.在计算y =6x 2与直线x =1,x =3,y =0围成的图形的面积时,把区间[1,3]n 等分,则每个小区间的长度为( )A.1n B .2n C.3nD.12n解析:每个小区间的长度为3-1n =2n . 答案:B2.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是( )A .1.02B .2.02C .2.52D.1.52解析:S =15×⎣⎢⎡ 12×12+12×⎝ ⎛⎭⎪⎫652+12×⎝ ⎛⎭⎪⎫752+⎦⎥⎤12×⎝ ⎛⎭⎪⎫852+12×⎝ ⎛⎭⎪⎫952 =15×25+36+49+64+8150=255250=1.02.答案:A3.(2019·吉林省实验中学高二期中)设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑ni =1f (ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( )A .与f (x )、区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关B .与f (x )、区间[a ,b ]和分点的个数n 有关,与ξi 的取法无关C .与f (x )、区间[a ,b ]、分点的个数n 和ξi 的取法都有关D .与f (x )、区间[a ,b ]和ξi 的取法有关,与分点的个数n 无关解析:因为S n =∑ni =1f (ξi )Δx =∑ni =1f (ξi )·b -an ,所以S n 的大小与f (x )、区间、分点的个数和变量的取法都有关.故选C.答案:C4.下列关于函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 的端点处的函数值的说法正确的是( )A .f (x )的值变化很小B .f (x )的值变化很大C .f (x )的值不变化D .当n 很大时,f (x )的值变化很小 答案:D5.在等分区间的情况下,f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞∑ni =1 ⎝ ⎛⎭⎪⎫11+i 2·1n D.lim n →∞∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 解析:若将区间[0,2] n 等分,则每一区间的长度为2n ,第i 个区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n ,若取每一区间的右端点进行近似代替,则和式极限形式为lim n →∞∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n . 答案:B6.(2019·鄂东南九校高二上学期期中)若做变速直线运动的物体v (t )=t 2,在0≤t ≤a 内经过的路程为9,则a 的值为( )A .1B .2C .3D.4解析:将区间[0,a ] n 等分,记第i 个区间为a (i -1)n ,ain (i =1,2,…,n ),此区间长为a n ,用小矩形面积ai n 2·a n近似代替相应的小曲边梯形的面积,则∑n i =1 ⎣⎢⎡⎦⎥⎤ai n 2·a n =a 3n 3·(12+22+…+n 2)=a 331+1n 1+12n 近似地等于速度曲线v (t )=t 2与直线t =0,t =a ,t 轴围成的曲边梯形的面积.依题意得lim n →∞ a 331+1n 1+12n =9,所以a 33=9,解得a =3.答案:C 二、填空题7.(2019·泉港一中高二期中)对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是________.解析:将区间[0,1]三等分为0,13,13,23,23,1,各小矩形的面积和为S 1=03·13+133·13+233·13=19.答案:198.已知某物体运动的速度v =2t -1,t ∈[0,10]若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.解析:若把区间[0,10]进行10等分,则第i 个小区间为[i -1,i ](i =1,2,…,10),其右端点为i ,那么物体运动的路程的近似值为s =∑10i =1 (2i -1)=2∑10i =1i -10=2×(1+10)×102-10=100.答案:1009.由直线x =1,x =2,y =0与曲线y =1x 所围成的曲边梯形,将区间[1,2]等分成4份,将曲边梯形较长的边近似看作高,则曲边梯形的面积是________.解析:将区间[1,2]等分成4份,将曲边梯形较长的边近似看作高,则高分别为1,45,23,47,∴曲边梯形的面积是14×⎝ ⎛⎭⎪⎫1+45+23+47=319420. 答案:319420 三、解答题10.利用分割、近似代替、求和、取极限的方法求函数y =1+x ,x =1,x =2的图象与x 轴围成的梯形的面积,并用梯形的面积公式加以验证.解:f (x )=1+x 在区间[1,2]上连续,将区间[1,2]分成n 等份,则每个区间的长度为Δx i =1n ,在[x i -1,x i ]=⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi =x i -1=1+i -1n (i =1,2,3,…,n ), 于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n , 从而S n =∑i =1nf (ξi )Δx i =∑i =1n⎝ ⎛⎭⎪⎫2+i -1n ·1n =∑i =1n ⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n 2[0+1+2+…+(n -1)]= 2+1n 2·n (n -1)2=2+n -12n =52-12n . ∴S =lim n →∞S n =lim n →∞ ⎝ ⎛⎭⎪⎫52-12n =52. 验证如下:由梯形的面积公式得 S =12×(2+3)×1=52.11.(2019·榆林二中高二月考)一辆汽车做变速直线运动,设汽车在时刻t 的速度v (t )=6t 2(t 的单位:h ,v 的单位:km/h),求汽车在t =1到t =2这段时间内运动的路程s (单位:km).解:把区间[1,2]等分成n 个小区间n +i -1n ,n +in (i =1,2,…,n ),每个区间的长度Δt =1n ,每个时间段行驶的路程记为Δs i (i =1,2,…,n ).故路程和s n =∑ni =1Δs i . Δs i ≈v n +i -1n ·Δt =6·n n +i -12·1n=61+i -1n2·1n =6n (n +i -1)2 ≈6n(n +i -1)(n +i )(i =1,2,3,…,n ).s n =∑ni =16n(n +i -1)(n +i )=6n (1n -1n +1+1n +1-1n +2+…+12n -1-12n )=6n (1n -12n ).s =lim n →∞s n =lim n →∞6n 1n -12n =3. 12.求由直线x =0,x =1,y =0及曲线y =x 2+2x 所围成的图形的面积S . 解:①分割在区间[0,1]上等间隔地插入n -1个点,将它等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为Δx =i n -i -1n =1n .分别过上述n -1个分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形(如图),它们的面积记作:ΔS 1,ΔS 2,…,ΔS n ,则小曲边梯形面积的和为S =∑ni =1ΔS i .②近似代替记f (x )=x 2+2x ,当n 很大,即Δx 很小时,在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,可以认为f (x )的值变化很小,不妨用f ⎝ ⎛⎭⎪⎫i n 来近似地作为f (x )在该区间上的函数值.从图形上看就是用平行于x 轴的直线段近似地代替小曲边梯形的曲边,这样在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,用小矩形的面积ΔS i ′近似地代替ΔS i ,则有ΔS i ≈ΔS i ′=f ⎝ ⎛⎭⎪⎫i n ·Δx =1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2·i n . ③求和小曲边梯形的面积和S n =∑ni =1ΔS i ≈∑ni =1ΔS i ′ =∑n i =1 1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2·i n =1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n 2+22n 2+…+n 2n 2+2⎝ ⎛⎭⎪⎫1n +2n +…+n n=(n +1)(2n +1)6n 2+n +1n=16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎝ ⎛⎭⎪⎫1+1n .④取极限分别将区间[0,1]等分成8,16,20,…等份时,S n 越来越趋向于S ,从而有 S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎝ ⎛⎭⎪⎫1+1n =43.即由直线x =0,x =1,y =0及曲线y =x 2+2x 所围成的图形的面积等于43.13.(2019·张家口模拟)由直线x =0,x =2,y =0与曲线y =x 2+1围成的曲边梯形,将区间[0,2]5等分,按照区间左端点和右端点估计梯形面积分别为________、________.解析:将区间[0,2]5等分,每个区间长度为0.4,按照区间左端点和右端点对应的小曲边梯形的面积近似为小矩形的面积,所以按照区间左端点和右端点估计梯形面积分别为0.4×(0.42+1)×5和0.4×(22+1)×5,即为2.32 和10.答案:2.32 10。
高中数学 课时跟踪检测(十二)合情推理(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试
课时跟踪检测(十二) 合情推理一、题组对点训练对点练一 数(式)中的归纳推理1.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),且a 1=1,通过计算a 2,a 3,a 4,猜想a n等于( )A .2(n +1)2B .2n (n +1)C .22n -1D .22n -1解析:选B 由a 1=1,S 2=22·a 2=a 1+a 2得a 2=13,由a 1+a 2+a 3=9×a 3得a 3=16,由a 1+a 2+a 3+a 4=42·a 4得a 4=110,…,猜想a n =2n (n +1),故选B.2.将正整数排列如下图: 12 3 4 5 6 7 8 910 11 12 13 14 15 16 …则2 018出现在 A .第44行第81列 B .第45行第81列 C .第44行第82列D .第45行第82列解析:选D 由题意可知第n 行有2n -1个数,则前n 行的数的个数为1+3+5+…+(2n -1)=n 2,因为442=1 936,452=2 025,且1 936<2 018<2 025,所以2 018在第45行,又第45行有2×45-1=89个数,2018-1 936=82,故2 018在第45行第82列,选D.3.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是( )A .n +(n +1)+(n +2)+…+(3n -2)=n 2B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -1)=n 2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)2解析:选B 观察各等式的构成规律可以发现,各等式的左边是2n -1(n ∈N *)项的和,其首项为n ,右边是项数的平方,故第n 个等式首项为n ,共有2n -1项,右边是(2n -1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,故选B.4.设f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳出一个一般结论,并给出证明.解:f(0)+f(1)=130+3+13+3=11+3+13+3=3-12+3-36=33.同理f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想:当x1+x2=1时,f(x1)+f(x2)=33.证明:设x1+x2=1,则f(x1)+f(x2)=13x1+3+13x2+3=3x1+3x2+233x1+x2+3(3x1+3x2)+3=3x1+3x2+233(3x1+3x2)+2×3=3x1+3x2+233(3x1+3x2+23)=33.故猜想成立.对点练二归纳推理在几何中的应用5.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A.白色B.黑色C.白色可能性大D.黑色可能性大解析:选A 由图,知三白二黑周期性排列,36=5×7+1,故第36颗珠子的颜色为白色.6.如图所示,第n个图形是由正n+2边形拓展而来(n=1,2,…),则第n-2个图形共有________个顶点.解析:第一个图有3+3×3=4×3个顶点;第二个图有4+4×4=5×4个顶点;第三个图有5+5×5=6×5个顶点;第四个图有6+6×6=7×6个顶点;……;第n 个图有(n +3)×(n +2)个顶点. 第n -2个图有(n +1)×n =(n 2+n )个顶点. 答案:n 2+n7.某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮. 现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由上面规律,得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n .所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝ ⎛⎭⎪⎫1-1n =32-12n .对点练三 类比推理8.已知{b n }为等比数列,b 5=2,且b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 等比数列中的积(乘方)类比等差数列中的和(积),得a 1+a 2+…+a 9=2×9. 9.在平面中,△ABC 的∠ACB 的平分线CE 分△ABC 面积所成的比S △AEC S △BEC =ACBC,将这个结论类比到空间:在三棱锥A BCD 中,平面DEC 平分二面角A CD B 且与AB 交于E ,则类比的结论为________.解析:平面中的面积类比到空间为体积,故S △AEC S △BEC 类比成V A CDEV B CDE.平面中的线段长类比到空间为面积,故ACBC 类比成S △ACD S △BDC .故有V A CDE V B CDE =S △ACDS △BDC. 答案:V A CDE V B CDE =S △ACDS △BDC10.在矩形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,在立体几何中,通过类比,给出猜想并证明.解:如图①,在矩形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ, 则cos 2α+cos 2β+cos 2γ=1,证明如下:如图②,cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.二、综合过关训练1.观察下列各式:72=49,73=343,74=2 401,…,则72 018的末两位数字为( )A .01B .43C .07D .49解析:选D 因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…, 所以这些数的末两位数字呈周期性出现,且周期T =4.又2 018=4×504+2, 所以72 018的末两位数字与72的末两位数字相同,为49.2.定义A *B ,B *C ,C *D ,D *B 依次对应下列4个图形:那么下列4个图形中,可以表示A *D ,A *C 的分别是( ) A .(1),(2) B .(1),(3) C .(2),(4)D .(1),(4)解析:选C 由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4).3.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1 024C .1 225D .1 378解析:选C 记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n (n +1)2.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225.4.将正偶数2,4,6,8,…按下表的方式进行排列,记a ij 表示第i 行和第j 列的数,若a ij=2 018,则i +j 的值为( )第1 列 第2列 第3列 第4列 第5列 第1行2 4 6 8 第2行 1614 12 10 第3行18 20 22 24 第4行 3230 28 26 第5行34 36 38 40 ………………A .257B .256C .255D .254解析:选C 由表所反映的信息来看,第n 行的最大偶数为S n =8n (n ∈N *),则8(i -1)<2 018≤8i ,由于i ∈N *,解得i =253;另一方面,奇数行的最大数位于第5列,偶数行的最大数位于第1列,第252行最大数为8×252=2 016,此数位于第252行第1列,因此2 018位于第253行第2列,所以i =253,j =2,故i +j =253+2=255,故选C.5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列. 解析:等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 答案:T 8T 4T 12T 86.如图(1),在三角形ABC 中,AB ⊥AC ,若AD ⊥BC ,则AB 2=BD ·BC .若类比该命题,如图(2),三棱锥A BCD 中,AD ⊥平面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是不是真命题.解:命题是:三棱锥A BCD 中,AD ⊥平面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有S 2△ABC =S △BCM ·S △BCD .此命题是一个真命题.证明如下:在图(2)中,延长DM 交BC 于E ,连接AE ,则有DE ⊥BC . 因为AD ⊥平面ABC , 所以AD ⊥AE .又AM ⊥DE ,所以AE 2=EM ·ED .于是S 2△ABC =⎝ ⎛⎭⎪⎫12BC ·AE 2=⎝ ⎛⎭⎪⎫12BC ·EM ·⎝ ⎛⎭⎪⎫12BC ·ED =S △BCM ·S △BCD .7.如图所示为m 行m +1列的士兵方阵(m ∈N *,m ≥2).(1)写出一个数列,用它表示当m 分别是2,3,4,5,…时,方阵中士兵的人数; (2)若把(1)中的数列记为{a n },归纳该数列的通项公式; (3)求a 10,并说明a 10表示的实际意义; (4)已知a n =9 900,问a n 是数列第几项?解:(1)当m =2时,表示一个2行3列的士兵方阵,共有6人,依次可以得到当m =3,4,5,…时的士兵人数分别为12,20,30,….故所求数列为6,12,20,30,….(2)因为a 1=2×3,a 2=3×4,a 3=4×5,…,所以猜想a n =(n +1)(n +2),n ∈N *. (3)a 10=11×12=132.a 10表示11行12列的士兵方阵的人数为132.(4)令(n +1)(n +2)=9 900,所以n =98,即a n 是数列的第98项,此时方阵为99行100列.。
人教版2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(十七) 数学归纳法
课时跟踪检测(十七) 数学归纳法层级一 学业水平达标1.设S k =+++…+,则S k +1为( )1k +11k +21k +312k A .S k + B .S k ++12k +212k +112k +2C .S k +-D .S k +-12k +112k +212k +212k +1解析:选C 因式子右边各分数的分母是连续正整数,则由S k =++ (1)k +11k +2+,①12k 得S k +1=++…+++.②1k +21k +312k 12k +112(k +1)由②-①,得S k +1-S k =+-12k +112(k +1)1k +1=-.故S k +1=S k +-.12k +112(k +1)12k +112(k +1)2.利用数学归纳法证明不等式1+++…+<n (n ≥2,n ∈N *)的过程中,由121312n -1n =k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k 项解析:选D 当n =k 时,不等式左边的最后一项为,而当n =k +1时,最后一12k -1项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加12k +1-112k -1+2k 1,故增加了2k 项.3.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则( )A .该命题对于n >2的自然数n 都成立B .该命题对于所有的正偶数都成立C .该命题何时成立与k 取值无关D .以上答案都不对解析:选B 由n =k 时命题成立可推出n =k +2时命题也成立,又n =2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.4.对于不等式 <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:n 2+n (1)当n =1时, <1+1,不等式成立.12+1(2)假设当n =k (k ∈N *)时,不等式成立,即<k +1,则当n =k +1时,k 2+k =<==(k +1)+1,(k +1)2+(k +1)k 2+3k +2(k 2+3k +2)+k +2(k +2)2∴n =k +1时,不等式成立,则上述证法( )A .过程全部正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:选D 在n =k +1时,没有应用n =k 时的归纳假设,故选D.5.设f (n )=5n +2×3n -1+1(n ∈N *),若f (n )能被m (m ∈N *)整除,则m 的最大值为( )A .2 B .4C .8D .16解析:选C f (1)=8,f (2)=32,f (3)=144=8×18,猜想m 的最大值为8.6.用数学归纳法证明“对于足够大的自然数n ,总有2n >n 3”时,验证第一步不等式成立所取的第一个值n 0最小应当是________.解析:∵210=1 024>103,29=512<93,∴n 0最小应为10.答案:107.用数学归纳法证明++…+>-,假设n =k 时,不等式成立,1221321(n +1)2121n +2则当n =k +1时,应推证的目标不等式是____________________________________.解析:观察不等式中分母的变化便知.答案:++…++>-1221321(k +1)21(k +2)2121k +38.对任意n ∈N *,34n +2+a 2n +1都能被14整除,则最小的自然数a =________.解析:当n =1时,36+a 3能被14整除的数为a =3或5;当a =3且n =2时,310+35不能被14整除,故a =5.答案:59.已知n ∈N *,求证1·22-2·32+…+(2n -1)·(2n )2-2n ·(2n +1)2=-n (n +1)(4n +3).证明:(1)当n =1时,左边=4-18=-14=-1×2×7=右边.(2)假设当n =k (k ∈N *,k ≥1)时成立,即1·22-2·32+…+(2k -1)·(2k )2-2k ·(2k +1)2=-k (k +1)(4k +3).则当n =k +1时,1·22-2·32+…+(2k -1)·(2k )2-2k ·(2k +1)2+(2k +1)·(2k +2)2-(2k +2)·(2k +3)2=-k (k +1)(4k +3)+(2k +2)[(2k +1)(2k +2)-(2k +3)2]=-k (k +1)(4k +3)+2(k +1)·(-6k -7)=-(k +1)(k +2)(4k +7)=-(k +1)·[(k +1)+1][4(k +1)+3],即当n =k +1时成立.由(1)(2)可知,对一切n ∈N *结论成立.10.用数学归纳法证明1+≤1+++…+≤+n (n ∈N *).n 2121312n 12证明:(1)当n =1时,≤1+≤,命题成立.321232(2)假设当n =k (k ∈N *)时命题成立,即1+≤1+++…+≤+k ,k2121312k 12则当n =k +1时,1+++…++++…+>1++2k ·=1+.121312k 12k +112k +212k +2k k212k +1k +12又1+++…++++…+<+k +2k ·=+(k +1),121312k 12k +112k +212k +2k 1212k 12即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.层级二 应试能力达标1.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2解析:选C 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.2.设f (n )=1+++…+(n ∈N *),那么f (n +1)-f (n )等于( )121313n -1A. B.+13n +213n 13n +1C.+D.++13n +113n +213n 13n +113n +2解析:选D f (n +1)-f (n )=++.13n 13n +113n +23.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为f (k ),则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+k +1B .f (k +1)=f (k )+k -1C .f (k +1)=f (k )+kD .f (k +1)=f (k )+k +2解析:选C 当n =k +1时,任取其中1条直线记为l ,则除l 外的其他k 条直线的交点的个数为f (k ),因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为任何三条直线不过同一点,所以上面的k 个交点两两不相同,且与平面内其他的f (k )个交点也两两不相同,从而n =k +1时交点的个数是f (k )+k =f (k +1).4.若命题A (n )(n ∈N *)n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确解析:选C 由题意知n =n 0时命题成立能推出n =n 0+1时命题成立,由n =n 0+1时命题成立,又推出n =n 0+2时命题也成立…,所以对大于或等于n 0的正整数命题都成立,而对小于n 0的正整数命题是否成立不确定.5.用数学归纳法证明1+a +a 2+…+a n +1=(n ∈N *,a ≠1),在验证n =1成1-an +21-a立时,左边所得的项为____________.解析:当n =1时,n +1=2,所以左边=1+a +a 2.答案:1+a +a 26.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=20=1,右边=21-1=1,等式成立.②假设n =k (k ≥1,且k ∈N *)时,等式成立,即1+2+22+…+2k -1=2k -1.则当n =k +1时,1+2+22+…+2k -1+2k ==2k +1-1,1-2k +11-2所以当n =k +1时,等式也成立.由①②知,对任意n ∈N *,等式成立.上述证明中的错误是________.解析:由证明过程知,在证从n =k 到n =k +1时,直接用的等比数列前n 项和公式,没有用上归纳假设,因此证明是错误的.答案:没有用归纳假设7.平面内有n (n ∈N *)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n 个圆把平面分成n 2-n +2部分.证明:(1)当n =1时,n 2-n +2=2,即一个圆把平面分成两部分,故结论成立.(2)假设当n =k (k ≥1,k ∈N *)时命题成立,即k 个圆把平面分成k 2-k +2部分.则当n =k +1时,这k +1个圆中的k 个圆把平面分成k 2-k +2个部分,第k +1个圆被前k 个圆分成2k 条弧,这2k 条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k 个部分,故k +1个圆把平面分成k 2-k +2+2k =(k +1)2-(k +1)+2部分,即n =k +1时命题也成立.综上所述,对一切n ∈N *,命题都成立.8.已知某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2.(1)写出这个数列的前5项;(2)写出这个数列的通项公式并加以证明.解:(1)已知a 1=1,由题意,得a 1·a 2=22,∴a 2=22.∵a 1·a 2·a 3=32,∴a 3=.3222同理,可得a 4=,a 5=.42325242因此这个数列的前5项分别为1,4,,,.941692516(2)观察这个数列的前5项,猜测数列的通项公式应为:a n =Error!下面用数学归纳法证明当n ≥2时,a n =.n 2(n -1)2①当n =2时,a 2==22,结论成立.22(2-1)2②假设当n =k (k ≥2,k ∈N *)时,结论成立,即a k =.k 2(k -1)2∵a 1·a 2·…·a k -1=(k -1)2,a 1·a 2·…·a k -1·a k ·a k +1=(k +1)2,∴a k +1==·==.(k +1)2(a 1·a 2·…·ak -1)·ak (k +1)2(k -1)2(k -1)2k 2(k +1)2k 2(k +1)2[(k +1)-1]2这就是说当n =k +1时,结论也成立.根据①②可知,当n ≥2时,这个数列的通项公式是a n =.n 2(n -1)2∴这个数列的通项公式为a n =Error!。
高中数学 3.2.1复数代数形式的加、减运算及其几何意义课后习题 新人教A版选修2-2
3.2.1 复数代数形式的加、减运算及其几何意义课时演练·促提升A组1.已知z1=2+i,z2=1-2i,则复数z=z2-z1对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:z=z2-z1=(1-2i)-(2+i)=-1-3i,故z对应的点为(-1,-3),在第三象限.答案:C2.已知复数z满足z+i-3=3-i,则z等于()A.0B.2iC.6D.6-2i解析:z=3-i-(i-3)=6-2i.答案:D3.若复数z1=a-i,z2=-4+b i,z1-z2=6+i,z1+z2+z3=1(a,b∈R),则z3为()A.-1-5iB.-1+5iC.3-4iD.3+3i解析:∵z1-z2=(a-i)-(-4+b i)=a+4-(1+b)i=6+i,∴a=2,b=-2,∴z3=1-z1-z2=1-2+i+4+2i=3+3i.故选D.答案:D4.若复平面上的▱ABCD中,对应复数6+8i,对应复数为-4+6i,则对应的复数是()A.-1-7iB.2+14iC.1+7iD.2-14i解析:设对应的复数分别为z1与z2,则有于是2z2=2+14i,z2=1+7i,故对应的复数是-1-7i.答案:A5.A,B分别是复数z1,z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形解析:根据复数加(减)法的几何意义知,以为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB为直角三角形.答案:B6.计算(-1+2i)+(i+i2)-|1+2i|=.解析:原式=-1+2i+(i-1)-=-2+3i-=-(2+)+3i.答案:-(2+)+3i7.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则a=.解析:z1-z2=(a2-a-2)+(a-4+a2-2)i=(a2-a-2)+(a2+a-6)i(a∈R)为纯虚数,所以解得a=-1.答案:-18.已知z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,y∈R).若z1-z2=13-2i,求z1,z2.解:∵z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x+3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x-3y)+(x+4y)i,又z1-z2=13-2i,∴(5x-3y)+(x+4y)i=13-2i.∴解得∴z1=(3×2-1)+(-1-4×2)i=5-9i,z2=[4×(-1)-2×2]-[5×2+3×(-1)]i=-8-7i.9.在复平面内A,B,C三点对应的复数分别为1,2+i,-1+2i.(1)求对应的复数;(2)判断△ABC的形状;(3)求△ABC的面积.解:(1)对应的复数为2+i-1=1+i,对应的复数为-1+2i-(2+i)=-3+i,对应的复数为-1+2i-1=-2+2i.(2)∵||=,||=,||==2,∴||2+||2=||2,∴△ABC为直角三角形.(3)S△ABC=×2=2.B组1.复数z=x+y i(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为()A.2B.4C.4D.16解析:∵复数z=x+y i(x,y∈R)满足|z-4i|=|z+2|,∴|x+(y-4)i|=|(x+2)+y i|,化简得x+2y=3.∴2x+4y≥2=2=2=4,当且仅当x=2y=时,等号成立.答案:C2.△ABC的三个顶点所对应的复数分别为z1,z2,z3,复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的()A.外心B.内心C.重心D.垂心解析:设复数z与复平面内的点Z相对应,由△ABC的三个顶点所对应的复数分别为z1,z2,z3及|z-z1|=|z-z2|=|z-z3|可知点Z到△ABC的三个顶点的距离相等,由三角形外心的定义可知,点Z即为△ABC的外心.答案:A3.设纯虚数z满足|z-1-i|=3,则z=.解析:∵z为纯虚数,∴设z=b i(b∈R,且b≠0).由|z-1-i|=3,得|-1+(b-1)i|=3.∴1+(b-1)2=9.∴b-1=±2.∴b=1±2.答案:(1±2)i4.已知复数z=x+y i(x,y∈R),且|z-2|=,则的最大值为.解析:∵z=x+y i(x,y∈R),且|z-2|=,∴(x-2)2+y2=3.由图可知.答案:5.已知复平面内的A,B对应的复数分别是z1=sin2θ+i,z2=-cos2θ+icos 2θ,其中θ∈(0,π),设对应的复数是z.(1)求复数z;(2)若复数z对应的点P在直线y=x上,求θ的值.解:(1)∵点A,B对应的复数分别是z1=sin2θ+i,z2=-cos2θ+icos 2θ,∴点A,B的坐标分别是A(sin2θ,1),B(-cos2θ,cos 2θ),∴=(-cos2θ,cos 2θ)-(sin2θ,1)=(-cos2θ-sin2θ,cos 2θ-1)= (-1,-2sin2θ).∴对应的复数z=-1+(-2sin2θ)i.(2)由(1)知点P的坐标是,代入y=x,得-2sin2θ=-,即sin2θ=,∴sin θ=±.又θ∈(0,π),∴sin θ=,∴θ=.6.若z∈C,且|z+2-2i|=1,求|z-2-2i|的最小值.解:设z=x+y i,x,y∈R,由|z+2-2i|=1,得|z-(-2+2i)|=1,表示以(-2,2)为圆心,1为半径的圆,如图所示,则|z-2-2i|=表示圆上的点与定点(2,2)的距离,由数形结合得|z-2-2i|的最小值为3.7.设z1=1+2a i,z2=a-i,a∈R,A={z||z-z1|<},B={z||z-z2|≤2},已知A∩B=⌀,求a的取值范围.解:因为z1=1+2a i,z2=a-i,|z-z1|<,即|z-(1+2a i)|<,|z-z2|≤2,即|z-(a-i)|≤2,由复数减法及模的几何意义知,集合A是以 (1,2a)为圆心,为半径的圆的内部的点对应的复数,集合B是以(a,-1)为圆心,2为半径的圆周及其内部的点所对应的复数,若A∩B=⌀,则两圆圆心距大于或等于半径和,即≥3,解得a≤-2或a≥.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
高中数学人教A版选修2-2第三章3-2-1 复数代数形式的加、减运算及其几何意义 《课件》(共20张PPT)
探究点2 复数的加法满足交换律、结合律
2. 设z1=a1+b1i, z2=a2+b2i, z3=a3+b3i. (1)因为 z1+z2=(a1+b1i)+(a2+b2i)
=(a1+a2)+(b1+b2)i,
z2+z1= (a2+b2i) + (a1+b1i) =(a1+a2)+(b1+b2)i, 所以 z +z =z +z
(2)因为 (z1+z2)+z3=[(a1+b1i)+(a2+b2i)]+(a3+b3i)
=(a1+a2 +a3)+(b1+b2+b3)i,
z1+ (z2+z3)=(a1+b1i)+[(a2+b2i)+(a3+b3i)]
=(a1+a2 +a3)+(b1+b2+b3)i,
所以 (z1+z2)+z3=z1+(z2+z3)
OZ2 =(c,d) OZ1=(a,b),
OZ1 + OZ2 =(a+c,b+d)
Z1(a,b)
OZ =(a+c)+(b+d)i
x
O
复数的加法可以按照向量的加法来进行
3.复数加法运算的几何意义 z1+ z2=OZ1 +OZ2 = OZ
符合向量加法 的平行四边形 法则.
y
Z2(c,d)
Z(a+c,b+d)
人教a版数学【选修2-2】练习:3.2.1复数代数形式的加减运算及其几何意义(含答案)
选修2-2 第三章 3.2 3.2.1一、选择题1.设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( ) A .1+i B .2+i C .3 D .-2-i[答案] D[解析] ∵z 1+z 2=(2+b i)+(a +i) =(2+a )+(b +1)i =0,∴⎩⎪⎨⎪⎧ 2+a =0,b +1=0,∴⎩⎪⎨⎪⎧a =-2,b =-1.∴a +b i =-2-i.2.已知|z |=4,且z +2i 是实数,则复数z =( ) A .23-2i B .-23-2i C .±23-2i D .23±2i[答案] C[解析] ∵z +2i 是实数,可设z =a -2i(a ∈R ), 由|z |=4得a 2+4=16, ∴a 2=12,∴a =±23, ∴z =±23-2i.3.(2014·浙江台州中学期中)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件[答案] A[解析] z 是纯虚数⇔⎩⎪⎨⎪⎧x 2-1=0,x +1≠0,⇔x =1,故选A.4.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4[答案] B[解析] z =1-(3-4i)=-2+4i ,故选B.5.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1[答案] D[解析] z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i. ∵z 1+z 2所对应的点在实轴上, ∴1+a =0,∴a =-1.6.▱ABCD 中,点A 、B 、C 分别对应复数4+i 、3+4i 、3-5i ,则点D 对应的复数是( ) A .2-3i B .4+8i C .4-8i D .1+4i[答案] C[解析] AB →对应的复数为(3+4i)-(4+i)=(3-4)+(4-1)i =-1+3i , 设点D 对应的复数为z ,则DC →对应的复数为(3-5i)-z . 由平行四边形法则知AB →=DC →, ∴-1+3i =(3-5i)-z ,∴z =(3-5i)-(-1+3i)=(3+1)+(-5-3)i =4-8i.故应选C. 二、填空题7.在复平面内,若OA →、OB →对应的复数分别为7+i 、3-2i ,则 |AB →|=________. [答案] 5[解析] |AB →|对应的复数为3-2i -(7+i)=-4-3i ,所以|AB →|=(-4)2+(-3)2=5. 8.(2014·揭阳一中期中)已知向量OA →和向量OC →对应的复数分别为3+4i 和2-i ,则向量AC →对应的复数为________.[答案] -1-5i[解析] ∵AC →=OC →-OA →,∴AC →对应复数为(2-i)-(3+4i)=-1-5i.9.在复平面内,O 是原点,O A →、O C →、A B →对应的复数分别为-2+i 、3+2i 、1+5i ,那么B C →对应的复数为________________.[答案] 4-4i[解析] B C →=O C →-O B →=O C →-(O A →+A B →) =3+2i -(-2+i +1+5i) =(3+2-1)+(2-1-5)i=4-4i. 三、解答题10.已知平行四边形ABCD 中,A B →与A C →对应的复数分别是3+2i 与1+4i ,两对角线AC 与BD 相交于P 点.(1)求A D →对应的复数; (2)求D B →对应的复数; (3)求△APB 的面积.[分析] 由复数加、减法运算的几何意义可直接求得A D →,D B →对应的复数,先求出向量P A →、P B →对应的复数,通过平面向量的数量积求△APB 的面积.[解析] (1)由于ABCD 是平行四边形,所以A C →=A B →+A D →,于是A D →=A C →-A B →,而(1+4i)-(3+2i)=-2+2i ,即A D →对应的复数是-2+2i.(2)由于D B →=A B →-A D →,而(3+2i)-(-2+2i)=5, 即D B →对应的复数是5.(3)由于P A →=12C A →=-12A C →=⎝⎛⎭⎫-12,-2, PB →=12D B →=⎝⎛⎭⎫52,0, 于是P A →·P B →=-54,而|P A →|=172,|PB →|=52,所以172·52·cos ∠APB =-54, 因此cos ∠APB =-1717,故sin ∠APB =41717, 故S △APB =12|P A →||PB →|sin ∠APB=12×172×52×41717=52. 即△APB 的面积为52.[点评] (1)根据复数加减法运算的几何意义可以把复数的加减法运算转化为向量的坐标运算.(2)复数加减法运算的几何意义为应用数形结合思想解决复数问题提供了可能.一、选择题11.已知复数z 1=3+2i ,z 2=1-3i ,则复数z =z 1-z 2在复平面内对应的点Z 位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] ∵z 1=3+2i ,z 2=1-3i ,∴z =z 1-z 2=3+2i -(1-3i)=(3-1)+(2+3)i =2+5i.∴点Z 位于复平面内的第一象限.故应选A.12.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值为( ) A .1 B .3 C .1或3 D .-1[答案] B[解析] 由条件知⎩⎪⎨⎪⎧a 2-4a +3=0,a -1≠0.∴a =3.13.(2014·新乡、许昌、平顶山调研)复数z 1、z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m 、λ、θ∈R ),并且z 1=z 2,则λ的取值范围是( )A .[-1,1]B .[-916,1]C .[-916,7]D . [916,1][答案] C[解析] ∵z 1=z 2,∴⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ. ∴λ=4sin 2θ-3sin θ=4(sin θ-38)2-916,∵sin θ∈[-1,1],∴λ∈[-916,7].二、填空题14.在复平面内,z =cos10+isin10的对应点在第________象限. [答案] 三[解析] ∵3π<10<7π2,∴cos10<0,sin10<0,∴z 的对应点在第三象限.15.若|z -1|=|z +1|,则|z -1|的最小值是________________. [答案] 1[解析] 解法一:设z =a +b i ,(a ,b ∈R ), 则|(a -1)+b i|=|(a +1)+b i|. ∴(a -1)2+b 2=(a +1)2+b 2, 即a =0,∴z =b i ,b ∈R ,∴|z -1|m i n =|b i -1|m i n =(-1)2+b 2, 故当b =0时,|z -1|的最小值为1. 解法二∵|z -1|=|z +1|,∴z 的轨迹为以(1,0),(-1,0)为端点的线段的垂直平分线,即y 轴,|z -1|表示,y 轴上的点到(1,0)的距离,所以最小值为1.三、解答题16.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i(x ,y ∈R ),设z =z 1-z 2,且z =13-2i ,求z 1、z 2.[解析] z =z 1-z 2=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i]=[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i =(5x -3y )+(x +4y )i ,又因为z =13-2i ,且x 、y ∈R ,所以⎩⎪⎨⎪⎧ 5x -3y =13,x +4y =-2,解得⎩⎪⎨⎪⎧x =2,y =-1.所以z 1=(3×2-1)+(-1-4×2)i =5-9i , z 2=4×(-1)-2×2-[5×2+3×(-1)]i =-8-7i.*17.已知关于t 的方程t 2+2t +2xy +(t +x -y )i =0(x 、y ∈R ),求使该方程有实根的点(x ,y )的轨迹方程.[解析] 设原方程的一个实根为t =t 0,则有(t 20+2t 0+2xy )+(t 0+x -y )i =0.根据复数相等的充要条件有⎩⎪⎨⎪⎧t 20+2t 0+2xy =0, ①t 0+x -y =0, ② 把②代入①中消去t 0,得(y -x )2+2(y -x )+2xy =0, 即(x -1)2+(y +1)2=2.故所求点的轨迹方程为(x -1)2+(y +1)2=2.[点评] 因为t 0为实数,故根据复数相等的充要条件让实部与虚部分别为0,而要求的是点(x ,y )的轨迹方程,故应用代入消元法将t 0消去整理即可.。
(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(含答案解析)(3)
一、选择题1.若i 为虚数单位,则复数311i i-+的模是( ) A .22B .5C .5D .22.已知i 是虚数单位,,a b ∈R ,31ia bi i++=-,则a b -等于( ) A .-1B .1C .3D .43.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101-B .21-C .101+D .21+4.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( ) A .2-B .12-C .12D .25.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45D .356.若复数满足,则复数的虚部为( )A .B .C .D .7.已知复数3412iz i+=-,是z 的共轭复数,则z 为 ( ) A .55B .221C .5D .58.已知复数z 满足z (1﹣i )=﹣3+i (期中i 是虚数单位),则z 的共轭复数z 在复平面对应的点是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若复数z 满足(34)112i z i -=+,其中i 为虚数单位,则z 的虚部为( ) A .2-B .2C .2i -D .2i10.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆 B .两条直线C .圆D .一条直线11.已知复数33iz i --=,则z 的虚部为( ) A .3-B .3C .3iD .3i -12.已知复数z 满足(1-i)z=2+i ,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 二、填空题13.已知复数z 满足|2|1z i +-=,则|21|z -的取值范围是________. 14.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________. 15.复数z 满足21z i -+=,则z 的最大值是___________. 16.213i(3i)-+化简后的结果为_________. 17.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 18.设a R ∈,若复数3a i z i-=+(i 是虚数单位)的实部为12,则 a = __________.19.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.20.已知z C ∈,||1z =,则2|21|z z ++的最大值为______.三、解答题21.(Ⅰ)已知m R ∈,复数()()2245215z m m m m i =--+--是纯虚数,求m 的值;(Ⅱ)已知复数z 满足方程()20z z i +-=,求z 及2z i +的值. 22.已知复数w 满足()432(w w i i -=-为虚数单位). (1)求w ;(2)设z C ∈,在复平面内求满足不等式12z w ≤-≤的点Z 构成的图形面积. 23.已知复数,, , 求:(1)求的值; (2)若,且,求的值.24.已知复数()()2226z m m m m i =-++-所对应的点分别在(1)虚轴上;(2)第三象限.试求以上实数m 的值或取值范围. 25.已知1z i =+.(1)设23(1)4z i ω=+--,求ω;(2)如果2211z az bi z z ++=--+,求实数,a b 的值. 26.下列方程至少有一个实根,求实数t 的值与相应方程的根.(1)2(2)(2)0x t i x ti ++++=; (2)2(21)(3)0x i x t i --+-=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据复数的除法运算把311i i-+化成(),a bi a b R +∈ 【详解】()()()()2231131331241211112i i i i i i ii i i i i -----++====+++--,31121i i i-∴=+==+ 故选:B . 【点睛】本题考查复数的除法运算和复数的求模公式,属于基础题.2.A解析:A 【分析】根据复数的除法化简31ii+-,再根据复数相等的充要条件求出,a b ,即得答案. 【详解】()()()()2231334241211112i i i i i ia bi i i i i i +++++++=====+--+-, 1,2,1ab a b ∴==∴-=-.故选:A . 【点睛】本题考查复数的除法运算和复数相等的充要条件,属于基础题.3.A解析:A 【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解. 【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径,即min 111z i ++==, 故选:A 【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D 【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a 值. 【详解】()()()()12i i 212i z a a a =++=-++为纯虚数, 20120a a -=⎧∴⎨+≠⎩,解得2a =,故选D. 【点睛】本题主要考查的是复数的乘法运算以及纯虚数的定义,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.5.C解析:C 【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部. 【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C. 【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.6.B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为7.C解析:C 【解析】分析:利用复数模的性质直接求解. 详解:∵3412iz i+=-, ∴2222343434512121(2)i i z z i i +++=====--+- 故选C .点睛:复数(,)z a bi a b R =+∈的模为22z a b =+1212z z z z =,1122z z z z =. 8.B解析:B 【分析】先化简得到2z i =--,再计算2z i =-+得到答案。
2017-2018学年高中数学人教A版浙江专版选修2-2:课时跟踪检测十二 数系的扩充和复数的概念 含解析 精品
课时跟踪检测(十二) 数系的扩充和复数的概念层级一 学业水平达标1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD.2+2i解析:选A 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A. 2.4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A .1 B .1或-4 C .-4D .0或-4解析:选C 由题意知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4. 3.下列命题中:①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1;②纯虚数集相对于复数集的补集是虚数集;③若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3;④若实数a 与a i 对应,则实数集与复数集一一对应.正确的命题的个数是( )A .0B .1C .2D .3解析:选A ①取x =i ,y =-i ,则x +y i =1+i ,但不满足x =y =1,故①错; ②③错;对于④,a =0时,a i =0,④错,故选A.4.复数z =a 2-b 2+(a +|a |)i(a ,b ∈R)为实数的充要条件是( ) A .|a |=|b | B .a <0且a =-b C .a >0且a ≠bD .a ≤0解析:选D 复数z 为实数的充要条件是a +|a |=0,故a ≤0. 5.若复数cos θ+isin θ和sin θ+icos θ相等,则θ值为( ) A.π4B.π4或54πC .2k π+π4(k ∈Z)D .k π+π4(k ∈Z)解析:选D 由复数相等定义得⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,∴tan θ=1,∴θ=k π+π4(k ∈Z),故选D.6.下列命题中:①若a ∈R ,则a i 为纯虚数;②若a ,b ∈R ,且a >b ,则a +i >b +i ;③两个虚数不能比较大小;④x +y i 的实部、虚部分别为x ,y .其中正确命题的序号是________.解析:①当a =0时,0i =0,故①不正确;②虚数不能比较大小,故②不正确;③正确;④x +y i 中未标注x ,y ∈R ,故若x ,y 为复数,则x +y i 的实部、虚部未必是x ,y .答案:③7.如果(m 2-1)+(m 2-2m )i >1则实数m 的值为______.解析:由题意得⎩⎪⎨⎪⎧m 2-2m =0,m 2-1>1,解得m =2.答案:28.已知z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.解析:由复数相等的充要条件有⎩⎪⎨⎪⎧ n 2-3m -1=-3,n 2-m -6=-4⇒⎩⎪⎨⎪⎧m =2,n =±2. 答案:2 ±29.设复数z =log 2(m 2-3m -3)+log 2(3-m )i ,m ∈R ,如果z 是纯虚数,求m 的值.解:由题意得⎩⎪⎨⎪⎧m 2-3m -3>0,3-m >0,log 2(m 2-3m -3)=0,log 2(3-m )≠0,解得m =-1.10.求适合等式(2x -1)+i =y +(y -3)i 的x ,y 的值.其中x ∈R ,y 是纯虚数. 解:设y =b i(b ∈R 且b ≠0),代入等式得(2x -1)+i =b i +(b i -3)i , 即(2x -1)+i =-b +(b -3)i ,∴⎩⎪⎨⎪⎧2x -1=-b ,1=b -3, 解得⎩⎪⎨⎪⎧x =-32,b =4.即x =-32,y =4i.层级二 应试能力达标1.若复数(a 2-a -2)+(|a -1|-1)i(a ∈R)不是纯虚数,则( ) A .a =-1 B .a ≠-1且a ≠2 C .a ≠-1D .a ≠2解析:选C 若复数(a 2-a -2)+(|a -1|-1)i 不是纯虚数,则有a 2-a -2≠0或|a -1|-1=0,解得a ≠-1.故应选C.2.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的值为( )A .4B .-1C .4或-1D .1或6解析:选B 由题意知⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,∴m =-1.3.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R)有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC .-3-iD .-3+i解析:选B 由题意知n 2+(m +2i)n +2+2i =0,即⎩⎪⎨⎪⎧ n 2+mn +2=0,2n +2=0.解得⎩⎪⎨⎪⎧m =3,n =-1.∴z =3-i ,故应选B.4.若复数z 1=sin 2θ+icos θ,z 2=cos θ+i 3sin θ(θ∈R),z 1=z 2,则θ等于( ) A .k π(k ∈Z) B .2k π+π3(k ∈Z)C .2k π±π6(k ∈Z)D .2k π+π6(k ∈Z)解析:选D 由复数相等的定义可知,⎩⎨⎧sin 2θ=cos θ,cos θ=3sin θ.∴cos θ=32,sin θ=12.∴θ=π6+2k π,k ∈Z ,故选D. 5.已知z 1=(-4a +1)+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R.若z 1>z 2,则a 的取值集合为________.解析:∵z 1>z 2,∴⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,∴a =0,故所求a 的取值集合为{0}. 答案:{0}6.若(x -i)i =y +2i ,x ,y ∈R ,则x =________,y =________. 解析:(x -i)i =x i +1=y +2i ,则x =2,且y =1. 答案:2 17.定义运算⎪⎪⎪⎪⎪⎪a c b d =ad -bc ,如果(x +y )+(x +3)i =⎪⎪⎪⎪⎪⎪3x +2y -y i 1,求实数x ,y 的值. 解:由定义运算⎪⎪⎪⎪⎪⎪a c b d =ad -bc , 得⎪⎪⎪⎪⎪⎪3x +2y -y i 1=3x +2y +y i ,故有(x +y )+(x +3)i =3x +2y +y i.因为x ,y 为实数,所以有⎩⎪⎨⎪⎧x +y =3x +2y ,x +3=y ,得⎩⎪⎨⎪⎧2x +y =0,x +3=y , 得x =-1,y =2.8.已知集合M ={(a +3)+(b 2-1)i,8},集合N ={3i ,(a 2-1)+(b +2)i}满足M ∩N ⊆M ,求实数a ,b 的值.解:依题意,得(a +3)+(b 2-1)i =3i ,① 或8=(a 2-1)+(b +2)i.② 由①,得a =-3,b =±2, 由②,得a =±3,b =-2.综上,a =-3,b =2,或a =-3,b =-2或a =3,b =-2.。
最新整理人教A版高中数学选修2-2课时跟踪检测(二十) 复数代数形式的加、减运算及其几何意义.doc
课时跟踪检测(二十) 复数代数形式的加、减运算及其几何意义层级一 学业水平达标1.已知z =11-20i ,则1-2i -z 等于( )A .z -1B .z +1C .-10+18iD .10-18i解析:选C 1-2i -z =1-2i -(11-20i)=-10+18i.2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4解析:选B z =1-(3-4i)=-2+4i ,故选B.3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限.4.若z 1=2+i ,z 2=3+a i(a ∈R),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1解析:选D z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.5.设向量OP ――→,PQ ――→,OQ ――→对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0解析:选D ∵OP ――→+PQ ――→=OQ ――→,∴z 1+z 2=z 3,即z 1+z 2-z 3=0.6.已知x ∈R ,y ∈R ,(x i +x )+(y i +4)=(y -i)-(1-3x i),则x =__________,y =__________.解析:x +4+(x +y )i =(y -1)+(3x -1)i∴⎩⎪⎨⎪⎧ x +4=y -1,x +y =3x -1,解得⎩⎪⎨⎪⎧x =6,y =11. 答案:6 117.计算|(3-i)+(-1+2i)-(-1-3i)|=________.解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|=32+42=5.答案:58.已知z 1=32a +(a +1)i ,z 2=-33b +(b +2)i(a ,b ∈R),若z 1-z 2=43,则a +b =________. 解析:∵z 1-z 2=32a +(a +1)i -[-33b +(b +2)i]=⎝⎛⎭⎫32a +33b +(a -b -1)i =43, 由复数相等的条件知⎩⎪⎨⎪⎧ 32a +33b =43,a -b -1=0,解得⎩⎪⎨⎪⎧a =2,b =1.∴a +b =3. 答案:39.计算下列各式.(1)(3-2i)-(10-5i)+(2+17i);(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i).解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i =1 008-1 009i.10.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,求z 1-z 2.解:∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i ,∴⎩⎪⎨⎪⎧ x +3=5,2-y =-6,解得⎩⎪⎨⎪⎧x =2,y =8, ∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.层级二 应试能力达标1.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( )A .0B .1 C.22 D.12解析:选C 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离即为22. 2.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量Z 1Z 2――→对应的复数为( )A .3+4iB .5-2iC .-2+6iD .2-6i解析:选D Z 1Z 2――→=OZ 2――→-OZ 1――→,即终点的复数减去起点的复数,∴(5-2i)-(3+4i)=2-6i.3.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA ――→,OB ――→对应的复数分别是3+i ,-1+3i ,则CD ――→对应的复数是( )A .2+4iB .-2+4iC .-4+2iD .4-2i解析:选D 依题意有CD ――→=BA ――→=OA ――→-OB ――→.而(3+i)-(-1+3i)=4-2i ,故CD ――→对应的复数为4-2i ,故选D.5.设复数z 满足z +|z |=2+i ,则z =________.解析:设z =x +y i(x ,y ∈R),则|z |=x 2+y 2. ∴x +y i +x 2+y 2=2+i.∴⎩⎨⎧ x +x 2+y 2=2,y =1,解得⎩⎪⎨⎪⎧x =34,y =1.∴z =34+i. 答案:34+i 6.在复平面内,O 是原点,OA ――→,OC ――→,AB ――→对应的复数分别为-2+i,3+2i,1+5i ,那么BC ――→对应的复数为________.解析:BC ――→=OC ――→-OB ――→=OC ――→-(OA ――→+AB ――→)=3+2i -(-2+i +1+5i)=(3+2-1)+(2-1-5)i =4-4i.答案:4-4i7.在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求向量AB ――→,AC ――→,BC ――→对应的复数;(2)判断△ABC 的形状.(3)求△ABC 的面积.解:(1)AB ――→对应的复数为2+i -1=1+i ,BC ――→对应的复数为-1+2i -(2+i)=-3+i ,AC ――→对应的复数为-1+2i -1=-2+2i.(2)∵|AB ――→|=2,|BC ――→|=10,|AC ――→|=8=22,∴|AB ――→|2+|AC ――→|2=|BC ――→|2,∴△ABC 为直角三角形.(3)S △ABC =12×2×22=2.8.设z =a +b i(a ,b ∈R),且4(a +b i)+2(a -b i)=33+i ,又ω=sin θ-icos θ,求z 的值和|z -ω|的取值范围.解:∵4(a +b i)+2(a -b i)=33+i ,∴6a +2b i =33+i ,∴⎩⎨⎧ 6a =33,2b =1,∴⎩⎨⎧ a =32,b =12.∴z =32+12i , ∴z -ω=⎝⎛⎭⎫32+12i -(sin θ-icos θ) =⎝⎛⎭⎫32-sin θ+⎝⎛⎭⎫12+cos θi ∴|z -ω|= ⎝⎛⎭⎫32-sin θ2+⎝⎛⎭⎫12+cos θ2 =2-3sin θ+cos θ = 2-2⎝⎛⎭⎫32sin θ-12cos θ= 2-2sin ⎝⎛⎭⎫θ-π6, ∵-1≤sin ⎝⎛⎭⎫θ-π6≤1, ∴0≤2-2sin ⎝⎛⎭⎫θ-π6≤4,∴0≤|z -ω|≤2, 故所求得z =32+12i ,|z -ω|的取值范围是[0,2].。
人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx
高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。
(完整版)高中数学选修2-2综合测试题(附答案)
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。
高中数学选修2-2同步练习题库:复数代数形式的四则运算(填空题:容易)
复数代数形式的四则运算(填空题:容易)1、为虚数单位,计算.2、复数_____.3、若复数,则_____.4、复数的实部为_______.5、已知为实数,为虚数单位,若为实数,则________.6、复数__________.7、计算__________.(为虚数单位)8、设是虚数单位,则=________9、已知复数满足(为虚数单位),则_______.10、已知复数(是虚数单位),则的实部是______.11、复数__________.12、复数(2+i)·i的模为___________.13、复数所对应的点在复平面内位于第________象限.14、设,则__________.15、设为序数单位,则__________.16、若复数满足,则__________.17、已知(为虚数单位),则__________.18、是虚数单位,复数__________.19、设复数(,为虚数单位).若,则的值是____.20、已知是虚数单位,若,则 __________.21、复数__________.22、复数满足,则__________.23、复数在复平面内对应的点位于第__________象限.24、复数的共轭复数是__________.25、已知i是虚数单位,复数z满足,则_____.26、已知复数,则复数的虚部为.27、已知复数z与(z-3)2+5i 均为纯虚数,则z= .28、设复数z满足(z+i)i=-3+4i(i为虚数单位),则z的模为.29、设i为虚数单位,则(1+i)5的虚部为________.30、设为虚数单位,若复数31、复数(是虚数单位)的虚部是_______。
32、复数(为虚数单位),则______.33、设为虚数单位,若,则复数的虚部为 .34、设复数z(2﹣i)=11+7i(i为虚数单位),则z= .35、已知复数z满足z(1+i)=2﹣4i,那么z= .36、设是虚数单位,则复数等于__________.37、复数的虚部为.38、如果是实数,那么实数.39、复数.40、设是虚数单位,则= .41、设i是虚数单位,则复数=_____________.42、复数(为虚数单位),则.43、设复数满足(为虚数单位),则= .44、是虚数单位,复数 .45、设,其中是虚数单位,则.46、若复数,且,则实数=______.47、已知复数(其中是虚数单位),则.48、复数___________49、为虚数单位,复数= .50、设复数满足(为虚数单位),则的共轭复数.51、若是虚数单位,复数满足,则的虚部为_________.52、已知复数,其中是虚数单位,则.53、已知,其中、为实数,则 .54、若(是虚数单位),则_________.55、为虚数单位,复数= .56、若复数(为虚数单位),则复数的模 .57、i + i2 + i3+ + i2012= .58、已知复数,则 .59、已知复数满足(为虚数单位),则 .60、已知复数(其中i为虚数单位),则= .61、复数的模等于______.62、复数的值等于__________.63、计算 .64、已知复数,则= ;65、已知复数,则= ;66、已知复数,则z的虚部为.67、已知复数,则z的虚部为.68、设(i为虚数单位),则69、已知是虚数单位,则复数的共轭复数是_____________70、是虚数单位,计算_________.参考答案1、2、3、4、25、-26、7、8、9、110、11、12、13、四14、15、16、17、218、19、20、21、1.22、23、二24、25、;26、-227、28、29、30、31、32、533、34、3+5i.35、36、37、-138、-139、40、-141、2i42、43、44、45、46、047、48、49、.50、51、.52、53、354、.55、.56、57、058、559、60、561、62、163、64、65、66、167、168、69、70、【解析】1、试题分析:.考点:复数除法运算.2、;故填.3、故答案为4、,故复数的实部为2。
人教a版数学【选修2-2】备选练习:3.2.2复数代数形式的乘除运算(含答案)
选修2-2 第三章 3.2 3.2.21.(2012·湖南文)复数z =i(i +1)(i 为虚数单位)的共轭复数是( )A .-1-iB .-1+iC .1-iD .1+i [答案] A[解析] z =i(i +1)=-1+i 的共轭复数是z -=-1-i.2.若复数(1+b i)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b =( )A .-2B .-12 C.12D .2 [答案] D[解析] (1+b i)(2+i)=2-b +(2b +1)i ,∵此复数为纯虚数,∴b =2.3.(2013·安徽理,1)设i 是虚数单位,z 是复数z 的共轭复数,若z ·z i +2=2z ,则z =( )A .1+iB .1-iC .-1+iD .-1-i [答案] A[解析] 设z =x +y i(x ,y ∈R ),由z ·z i +2=2z ,得(x 2+y 2)i +2=2(x +y i)=2x +2y i ,∴⎩⎪⎨⎪⎧ x 2+y 2=2y ,2=2x ,∴⎩⎪⎨⎪⎧x =1,y =1.∴z =1+i ,故选A. 4.对于n 个复数z 1、z 2、…、z n ,如果存在n 个不全为零的实数k 1、k 2、…、k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1、z 2、…、z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)[答案] {1,2,32}或{2,4,3}等 [解析] 由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 3(-2)=0,即(k 1+k 2-2k 3)+(2k 1-k 2)i =0.∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0. ∴k 1k 2k 3=32. 故填{1,2,32}或{2,4,3}等.5.设关于x 的方程是x 2-(tan θ+i)x -(2+i)=0.(1)若方程有实数根,求锐角θ和实数根;(2)证明:对任意θ≠k π+π2(k ∈Z ),方程无纯虚数根. [解析] (1)设实数根是a ,则a 2-(tan θ+i)a -(2+i)=0,即a 2-a tan θ-2-(a +1)i =0,∵a 、tan θ∈R ,∴⎩⎪⎨⎪⎧a 2-a tan θ-2=0,a +1=0; ∴a =-1,且tan θ=1,又0<θ<π2,∴θ=π4. (2)若方程存在纯虚数根,设为b i(b ∈R ,b ≠0),则(b i)2-(tan θ+i)b i -(2+i)=0,化简整理得-b 2+b -2-(b tan θ+1)i =0.即⎩⎪⎨⎪⎧-b 2+b -2=0b tan θ+1=0此方程组无实数解, ∴对任意θ≠k π+π2(k ∈Z ),方程无纯虚数根. 6.已知1+i 是方程x 2+bx +c =0的一个根(b 、c ∈R ).(1)求b 、c 的值;(2)试证明1-i 也是方程的根.[解析] (1)∵1+i 是方程x 2+bx +c =0的根∴(1+i)2+b (1+i)+c =0,即b +c +(2+b )i =0,∴⎩⎪⎨⎪⎧ b +c =02+b =0,解得⎩⎪⎨⎪⎧b =-2c =2. (2)由(1)知方程为x 2-2x +2=0,把1-i 代入方程左边得左边=(1-i)2-2(1-i)+2=0=右边,即方程成立∴1-i 也是方程的根.。
人教a版数学【选修2-2】备选练习:3.2.1复数代数形式的加减运算(含答案)
选修2-2 第三章 3.2 3.2.11.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根,则这个实根以及实数k 的值分别为__________________________和__________________________.[答案] ⎩⎨⎧ x 0=2,k =-22,或⎩⎨⎧ x 0=-2,k =2 2.[解析] 方程的实根必然适合方程,设x =x 0为方程的实根,代入整理后得a +b i =0的形式,由复数相等的充要条件,可得关于x 0和k 的方程组,通过解方程组可得x 及k 的值.2.已知a ∈R ,z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应的点的轨迹是什么?[分析] 根据复数与复平面上点的对应关系知,复数z 对应的点在第几象限,与复数z 的实部与虚部的符号有关,所以本题的关键是判断(a 2-2a +4)与-(a 2-2a +2)的符号.求复数z 对应点的轨迹问题,首先把z 表示成z =x +y i(x 、y ∈R )的形式,然后寻求x 、y 之间的关系,但要注意参数限定的条件.[解析] 由a 2-2a +4=(a -1)2+3≥3,-(a 2-2a +2)=-(a -1)2-1≤-1,∴复数z 的实部为正数,复数z 的虚部为负数,因此,复数z 的对应点在第四象限. 设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 消去a 2-2a 得:y =-x +2(x ≥3).∴复数z 的对应点的轨迹是一条射线,方程为y =-x +2(x ≥3).[点评] 对于求复数z 的轨迹方程问题,关键是要设z =x +y i(x 、y ∈R ),利用复数相等的充要条件转化为动点(x ,y )关于a 的参数方程,在消去参数a 时,注意观察到a 2-2a 是一个整体,这样可以简化消参数的过程.3.设m ∈R ,复数z 1=m 2+m m +2+(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m 的取值范围.[解析] 因为z 1=m 2+m m +2+(m -15)i ,z 2=-2+m (m -3)i ,所以z 1+z 2=⎝ ⎛⎭⎪⎫m 2+m m +2-2+[(m -15)+m (m -3)]i =m 2-m -4m +2+(m 2-2m -15)i. 因为z 1+z 2是虚数,所以m 2-2m -15≠0且m ≠-2.所以m ≠5且m ≠-3且m ≠-2.所以m 的取值范围是(-∞,-3)∪(-3,-2)∪(-2,5)∪(5,+∞).4.已知z 1=cos α+isin α,z 2=cos β-isin β且z 1-z 2=513+1213i ,求cos(α+β)的值. [解析] ∵z 1=cos α+isin α,z 2=cos β-isin β,∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i , ∴⎩⎨⎧ cos α-cos β=513 ①sin α+sin β=1213② ①2+②2得2-2cos(α+β)=1,即cos(α+β)=12. 5.设z =a +b i(a 、b ∈R ),且4(a +b i)+2(a -b i)=33+i ,又ω=sin θ-icos θ,求z 的值和|z -ω|的取值范围.[解析] ∵4(a +b i)+2(a -b i)=33+i ,∴6a +2b i =33+i ,∴⎩⎨⎧ 6a =33,2b =1,∴⎩⎨⎧ a =32,b =12.∴z =32+12i , ∴z -ω=⎝⎛⎭⎫32+12i -(sin θ-icos θ) =⎝⎛⎭⎫32-sin θ+⎝⎛⎭⎫12+cos θi ∴|z -ω|=⎝⎛⎭⎫32-sin θ2+⎝⎛⎭⎫12+cos θ2 =2-3sin θ+cos θ=2-2⎝⎛⎭⎫32sin θ-12cos θ =2-2sin ⎝⎛⎭⎫θ-π6, ∵-1≤sin ⎝⎛⎭⎫θ-π6≤1, ∴0≤2-2sin ⎝⎛⎭⎫θ-π6≤4 ∴0≤|z -ω|≤2,故所求得z =32+12i , |z -ω|的取值范围是[0,2].。
2018年高中数学课时跟踪检测二十一复数代数形式的乘除运算新人教A版选修22
课时跟踪检测〔二十一〕复数代数形式乘除运算层级一学业水平达标1.复数(1+i)2(2+3i)值为( )A.6-4i B.-6-4iC.6+4i D.-6+4i解析:选D (1+i)2(2+3i)=2i(2+3i)=-6+4i. 2.(全国卷Ⅰ)复数z满足(z-1)i=1+i,那么z=( ) A.-2-i B.-2+iC.2-i D.2+i解析:选C z-1=1+ii=1-i,所以z=2-i,应选C.3.(广东高考)假设复数z=i(3-2i)(i是虚数单位),那么z=( )A.2-3i B.2+3iC.3+2i D.3-2i解析:选A ∵z=i(3-2i)=3i-2i2=2+3i,∴z=2-3i.4.(1+i)20-(1-i)20值是( )A.-1 024 B.1 024C.0 D.512解析:选C (1+i)20-(1-i)20=[(1+i)2]10-[(1-i)2]10=(2i)10-(-2i)10=(2i)10-(2i)10=0.5.(全国卷Ⅱ)假设a 为实数,且2+a i 1+i =3+i ,那么a =( ) A .-4B .-3C .3D .4解析:选D 2+a i 1+i =(2+a i)(1-i)(1+i)(1-i)=a +22+a -22i =3+i , 所以⎩⎪⎨⎪⎧ a +22=3,a -22=1,解得a =4,应选D.6.(天津高考)a ,b ∈R,i 是虚数单位,假设(1+i)(1-b i)=a ,那么a b值为________. 解析:因为(1+i)(1-b i)=1+b +(1-b )i =a ,又a ,b ∈R,所以1+b =a 且1-b =0,得a =2,b =1,所以a b=2. 答案:27.设复数z =1+2i ,那么z 2-2z =________.解析:∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3.答案:-38.假设a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,那么|a +b i|=________.解析:∵a ,b ∈R,且a 1-i=1-b i , 那么a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎪⎨⎪⎧ a =1-b ,0=1+b .∴⎩⎪⎨⎪⎧ a =2,b =-1.∴|a +b i|=|2-i|=22+(-1)2= 5. 答案:59.计算:(i -2)(i -1)(1+i)(i -1)+i +-3-2i 2-3i. 解:因为(i -2)(i -1)(1+i)(i -1)+i =(i -2)(i -1)i 2-1+i =(i -2)(i -1)-2+i=i -1,-3-2i 2-3i =(-3-2i)(2+3i)(2-3i)(2+3i)=-13i 13=-i , 所以(i -2)(i -1)(1+i)(i -1)+i +-3-2i 2-3i=i -1+(-i)=-1. 10.z 为z 共轭复数,假设z ·z -3i z =1+3i ,求z . 解:设z =a +b i(a ,b ∈R),那么z =a -b i(a ,b ∈R),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,那么有⎩⎪⎨⎪⎧ a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧ a =-1,b =0,或⎩⎪⎨⎪⎧ a =-1,b =3.所以z =-1或z =-1+3i.层级二 应试能力达标1.如图,在复平面内,点A 表示复数z ,那么图中表示z 共轭复数点是( )A .AB .BC .CD .D解析:选B 设z =a +b i(a ,b ∈R),且a <0,b >0,那么z 共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.2.设a 是实数,且1+a i 1+i∈R,那么实数a =( ) A .-1B .1C .2D .-2解析:选B 因为1+a i 1+i ∈R,所以不妨设1+a i 1+i=x ,x ∈R,那么1+a i =(1+i)x =x +x i ,所以有⎩⎪⎨⎪⎧ x =1,a =x ,所以a =1.3.假设a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪⎪⎪a +i i =2,那么a =( ) A .2B.3C. 2 D .1解析:选B ∵a +ii =(a +i)(-i)=1-a i ,∴⎪⎪⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=1+a 2=2,解得a =3或a =-3(舍).4.计算(-1+3i)3(1+i)6+-2+i 1+2i值是( ) A .0B .1C .iD .2i 解析:选D 原式=(-1+3i)3[(1+i)2]3+(-2+i)(1-2i)(1+2i)(1-2i)=(-1+3i)3(2i)3+-2+4i +i +25=-12+32i 3-i +i =1-i +i =i (-i)i+i =2i. 5.假设z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,那么实数a 值为________.解析:z 1z 2=a +2i 3-4i =(a +2i)(3+4i)9+16=3a +4a i +6i -825=(3a -8)+(4a +6)i 25,∵z 1z 2为纯虚数, ∴⎩⎪⎨⎪⎧ 3a -8=0,4a +6≠0,∴a =83. 答案:836.设复数z 满足z 2=3+4i(i 是虚数单位),那么z 模为________. 解析:设z =a +b i(a ,b ∈R),那么z 2=a 2-b 2+2ab i =3+4i ,∴⎩⎪⎨⎪⎧ a 2-b 2=3,2ab =4,解得⎩⎪⎨⎪⎧ a =2,b =1或⎩⎪⎨⎪⎧ a =-2,b =-1.∴|z |=a 2+b 2= 5. 答案:57.设复数z =(1+i)2+3(1-i)2+i ,假设z 2+a z<0,求纯虚数a . 解:由z 2+a z <0可知z 2+a z 是实数且为负数. z =(1+i)2+3(1-i)2+i =2i +3-3i 2+i =3-i 2+i=1-i.∵a 为纯虚数,∴设a =m i(m ∈R 且m ≠0),那么z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2 =-m 2+⎝ ⎛⎭⎪⎪⎫m2-2i <0, ∴⎩⎪⎨⎪⎧ -m 2<0,m 2-2=0,∴m =4,∴a =4i.8.复数z =(1+i)3(a +b i)1-i且|z |=4,z 对应点在第一象限,假设复数0,z ,z 对应点是正三角形三个顶点,求实数a ,b 值.解:z =(1+i)2·(1+i)1-i(a +b i) =2i·i(a +b i)=-2a -2b i.由|z |=4,得a 2+b 2=4,①∵复数0,z ,z 对应点构成正三角形,∴|z -z |=|z |.把z =-2a -2b i 代入化简得|b |=1.②又∵z 对应点在第一象限,∴a <0,b <0.由①②得⎩⎪⎨⎪⎧ a =-3,b =-1.故所求值为a =-3,b =-1.。
人教A高中数学选修22新课改地区课时跟踪检测十二 复数代数形式的乘除运算 含解析
课时跟踪检测(十二) 复数代数形式的乘除运算一、题组对点训练对点练一 复数的乘除运算1.下列各式的运算结果为纯虚数的是( )A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i) 解析:选C A 项,i(1+i)2=i·2i =-2,不是纯虚数;B 项,i 2(1-i)=-(1-i)=-1+i ,不是纯虚数;C 项,(1+i)2=2i,2i 是纯虚数;D 项,i(1+i)=i +i 2=-1+i ,不是纯虚数.故选C.2.(2019·全国卷Ⅰ)设z =3-i 1+2i,则|z |=( ) A .2 B . 3 C . 2 D .1解析:选C 法一:∵z =3-i 1+2i =(3-i )(1-2i )(1+2i )(1-2i )=1-7i 5, ∴|z |= ⎝⎛⎭⎫152+⎝⎛⎭⎫-752= 2. 法二:|z |=⎪⎪⎪⎪⎪⎪3-i 1+2i =105= 2. 3.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( )A .-2iB .2iC .-2D .2解析:选A ∵z i =1+i ,∴z =1+i i =1i+1=1-i. ∴z 2=(1-i)2=1+i 2-2i =-2i.4.计算:(1)(1-i)(3+2i)+(2+2i)2;(2)4+4i 1-3i +1i ; (3)(2+i )(1-i )21-2i. 解:(1)原式=(3+2i -3i +2)+(4+8i -4)=(5-i)+8i =5+7i.(2)原式=(4+4i )(1+3i )(1-3i )(1+3i )+i i·i=4+43i +4i -434+i -1=(1-3)+(3+1)i -i=(1-3)+3i.(3)原式=(2+i )(1-2i -1)1-2i =(2+i )·(-2i )1-2i =2-4i 1-2i=2. 对点练二 共轭复数5.复数z =-3+i 2+i 的共轭复数是( ) A .2+iB .2-iC .-1+iD .-1-i解析:选D z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-1+i ,z =-1-i. 6.已知a ∈R ,i 是虚数单位.若z =a + 3 i ,z ·z =4,则a =( )A .1或-1 B.7或-7C .- 3 D. 3解析:选A 法一:由题意可知z =a - 3 i ,∴z ·z =(a + 3 i)(a - 3 i)=a 2+3=4,故a =1或-1.法二:z ·z =|z |2=a 2+3=4,故a =1或-1.7.已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z .解:设z =a +b i(a ,b ∈R ),则z =a -b i ,(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧a 2+b 2-3b =1,-3a =3, 解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3.所以z =-1或z =-1+3i.对点练三 复数范围内的方程根问题8.设x ,y 是实数,且x 1-i +y 1-2i =51-3i,则x +y =________. 解析:x 1-i +y 1-2i=x (1+i )2+y (1+2i )5=⎝⎛⎭⎫x 2+y 5+⎝⎛⎭⎫x 2+2y 5i , 而51-3i=5(1+3i )10=12+32i , 所以x 2+y 5=12且x 2+2y 5=32, 解得x =-1,y =5,所以x +y =4.答案:49.已知复数z =(1-i )2+3(1+i )2-i. (1)求复数z ;(2)若z 2+az +b =1-i ,求实数a ,b 的值.解:(1)z =-2i +3+3i 2-i =3+i 2-i=(3+i )(2+i )5=1+i. (2)把z =1+i 代入得(1+i)2+a (1+i)+b =1-i ,即a +b +(2+a )i =1-i ,所以⎩⎪⎨⎪⎧ a +b =1,2+a =-1,解得⎩⎪⎨⎪⎧a =-3,b =4.二、综合过关训练1.复平面内表示复数z =i(-2+i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.已知复数z =3+i (1-3i )2,z 是z 的共轭复数,则z ·z =( ) A .14 B .12C .1D .2解析:选A 法一:z =3+i (1-3i )2=3+i 1-3-23i =3+i -2(1+3i )=(3+i )(1-3i )-2×4=-34+14i , ∴z =-34-14i. ∴z ·z =⎝⎛⎭⎫-34+14i ⎝⎛⎭⎫-34-14i =316+116=14. 法二:∵z =3+i (1-3i )2,∴|z |=|3+i||1-3i|2=24=12. ∴z ·z =|z |2=14. 3.已知复数z =1-i ,则z 2-2z z -1=( ) A .2i B .-2i C .2 D .-2解析:选B 法一:因为z =1-i ,所以z 2-2z z -1=(1-i )2-2(1-i )1-i -1=-2-i=-2i. 法二:由已知得z -1=-i ,而z 2-2z z -1=(z -1)2-1z -1=(-i )2-1-i=2i =-2i. 4.设i 是虚数单位, z 是复数z 的共轭复数.若z ·z i +2=2z ,则z =( )A .1+iB .1-iC .-1+iD .-1-i解析:选A 设z =a +b i(a ,b ∈R ),则z =a -b i ,又z ·z i +2=2z , ∴(a 2+b 2)i +2=2a +2b i ,∴a =1,b =1,故z =1+i.5.若21-i=a +b i(i 为虚数单位,a ,b ∈R ),则a +b =________. 解析:因为21-i =2(1+i )(1-i )(1+i )=1+i ,所以1+i =a +b i ,所以a =1,b =1,所以a +b =2.答案:26.已知a ∈R ,i 为虚数单位,若a -i 2+i为实数,则a 的值为________. 解析:由a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15-2+a 5i 是实数,得-2+a 5=0,所以a =-2. 答案:-27.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.解:∵(z 1-2)(1+i)=1-i ,∴z 1-2=1-i 1+i =(1-i )2(1+i )(1-i )=1-2i -12=-i , ∴z 1=2-i.设z 2=a +2i(a ∈R ),则z 1·z 2=(2-i)(a +2i)=(2a +2)+(4-a )i.又∵z 1·z 2∈R ,∴a =4.∴z 2=4+2i.8.已知z ,ω为复数,(1+3i)z 为实数,ω=z 2+i,且|ω|=52,求ω. 解:设ω=x +y i(x ,y ∈R ),由ω=z 2+i,得z =ω(2+i)=(x +y i)(2+i). 依题意,得(1+3i)z =(1+3i)(x +y i)(2+i)=(-x -7y )+(7x -y )i ,∴7x -y =0.① 又|ω|=52,∴x 2+y 2=50.② 由①②得⎩⎪⎨⎪⎧ x =1,y =7或⎩⎪⎨⎪⎧ x =-1,y =-7.∴ω=1+7i 或ω=-1-7i.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(二十) 复数代数形式的加、减运算及其几何意义
层级一 学业水平达标
1.已知z =11-20i ,则1-2i -z 等于( )
A .z -1
B .z +1
C .-10+18i
D .10-18i
解析:选C 1-2i -z =1-2i -(11-20i)=-10+18i.
2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )
A .-2
B .4
C .3
D .-4
解析:选B z =1-(3-4i)=-2+4i ,故选B.
3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:选B z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限.
4.若z 1=2+i ,z 2=3+a i(a ∈R),且z 1+z 2所对应的点在实轴上,则a 的值为( )
A .3
B .2
C .1
D .-1
解析:选D z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.
5.设向量OP ――→,PQ ――→,OQ ――→对应的复数分别为z 1,z 2,z 3,那么( )
A .z 1+z 2+z 3=0
B .z 1-z 2-z 3=0
C .z 1-z 2+z 3=0
D .z 1+z 2-z 3=0
解析:选D ∵OP ――→+PQ ――→=OQ ――→,∴z 1+z 2=z 3,即z 1+z 2-z 3=0.
6.已知x ∈R ,y ∈R ,(x i +x )+(y i +4)=(y -i)-(1-3x i),则x =__________,y =__________.
解析:x +4+(x +y )i =(y -1)+(3x -1)i
∴⎩⎪⎨⎪⎧ x +4=y -1,x +y =3x -1,解得⎩⎪⎨⎪⎧
x =6,y =11. 答案:6 11
7.计算|(3-i)+(-1+2i)-(-1-3i)|=________.
解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|=
32+42=5.
答案:5
8.已知z 1=
32
a +(a +1)i ,z 2=-33
b +(b +2)i(a ,b ∈R),若z 1-z 2=43,则a +b =________. 解析:∵z 1-z 2=32a +(a +1)i -[-33b +(b +2)i]=⎝⎛⎭⎫32a +33b +(a -b -1)i =43, 由复数相等的条件知⎩⎪⎨⎪⎧ 32a +33b =43,a -b -1=0,
解得⎩⎪⎨⎪⎧
a =2,
b =1.∴a +b =3. 答案:3
9.计算下列各式.
(1)(3-2i)-(10-5i)+(2+17i);
(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i).
解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.
(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i =1 008-1 009i.
10.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,求z 1-z 2.
解:∵z 1=x +2i ,z 2=3-y i ,
∴z 1+z 2=x +3+(2-y )i =5-6i ,
∴⎩⎪⎨⎪⎧ x +3=5,2-y =-6,解得⎩⎪⎨⎪⎧
x =2,y =8, ∴z 1=2+2i ,z 2=3-8i ,
∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.
层级二 应试能力达标
1.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( )
A .0
B .1 C.22 D.12
解析:选C 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离即为22
. 2.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量Z 1Z 2――→对应的复数
为( )
A .3+4i
B .5-2i
C .-2+6i
D .2-6i
解析:选D Z 1Z 2――→=OZ 2――→-OZ 1――→,即终点的复数减去起点的复数,∴(5-2i)-(3+
4i)=2-6i.
3.△ ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )
A .外心
B .内心
C .重心
D .垂心
解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.
4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA ――→,OB ――→对应
的复数分别是3+i ,-1+3i ,则CD ――→对应的复数是( )
A .2+4i
B .-2+4i
C .-4+2i
D .4-2i
解析:选D 依题意有CD ――→=BA ――→=OA ――→-OB ――→.而(3+i)-(-1+3i)=4-2i ,故
CD ――→对应的复数为4-2i ,故选D.
5.设复数z 满足z +|z |=2+i ,则z =________.
解析:设z =x +y i(x ,y ∈R),则|z |=
x 2+y 2. ∴x +y i +x 2+y 2=2+i.
∴⎩⎨⎧ x +x 2+y 2=2,y =1,解得⎩⎪⎨⎪⎧
x =34,y =1.∴z =34+i. 答案:34
+i 6.在复平面内,O 是原点,OA ――→,OC ――→,AB ――→对应的复数分别为-2+i,3+2i,1+
5i ,那么BC ――→对应的复数为________.
解析:BC ――→=OC ――→-OB ――→=OC ――→-(OA ――→+AB ――→)=3+2i -(-2+i +1+5i)=(3+2-1)+(2-1-5)i =4-4i.
答案:4-4i
7.在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.
(1)求向量AB ――→,AC ――→,BC ――→对应的复数;
(2)判断△ABC 的形状.
(3)求△ABC 的面积.
解:(1)AB ――→对应的复数为2+i -1=1+i ,
BC ――→对应的复数为-1+2i -(2+i)=-3+i ,
AC ――→对应的复数为-1+2i -1=-2+2i.
(2)∵|AB ――→|=2,|BC ――→|=10,|AC ――→|=8=22,
∴|AB ――→|2+|AC ――→|2=|BC ――→|2,∴△ABC 为直角三角形.
(3)S △ABC =12×2×22=2.
8.设z =a +b i(a ,b ∈R),且4(a +b i)+2(a -b i)=33+i ,又ω=sin θ-icos θ,求z 的值和|z -ω|的取值范围.
解:∵4(a +b i)+2(a -b i)=33+i ,∴6a +2b i =33+i ,
∴⎩⎨⎧ 6a =33,2b =1,∴⎩⎨⎧ a =32,b =12.∴z =32+12
i , ∴z -ω=⎝⎛⎭⎫32+12i -(sin θ-icos θ) =⎝⎛⎭⎫32-sin θ+⎝⎛⎭⎫12
+cos θi ∴|z -ω|= ⎝⎛⎭⎫32-sin θ2+⎝⎛⎭⎫12+cos θ2 =
2-3sin θ+cos θ = 2-2⎝⎛⎭⎫32sin θ-12cos θ= 2-2sin ⎝⎛⎭
⎫θ-π6, ∵-1≤sin ⎝⎛⎭
⎫θ-π6≤1, ∴0≤2-2sin ⎝⎛⎭
⎫θ-π6≤4,∴0≤|z -ω|≤2, 故所求得z =
32+12i ,|z -ω|的取值范围是[0,2].。