八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质学案 新版北师大版
新教材北师大版八年级上册《4.3 一次函数的图象(第2课时)》教学设计
课题
第4课时
时间10月17日
课型
新知探究课
教具
教材、课件、三角板
学习
目标
知识与能力
了解一次函数的变化规律,掌握函数图象及其简单性质。
过程与方法
经历对次函数图象规律的探究,学会解决问题的方法策略。
情感态度价值观
结合探究,增强数形结合的意识,渗透分类讨论的思想。
教学重点
了解一次函数的变化规律,掌握函数图象及其简单性质。
比一比,看谁画得快;略。
P87—随堂练习1、2、3;P88—习题4.4—5。
通过本节的探究活动,你有什么收获和体会?
归纳出一次函数图象中系数k,b对函数图象的影响。
结合一次函数的图象,探究一次函数的简单性质。
让学生对两直线的位置关系及k,b的几何意义作进一步的探讨。
感受函数值的增减速度与k值之间的联系。
引导学生自己总结本节课的知识要点和数学学习方法,使学生从感性上升到理性,形成系统的知识。
板
书
设
计
4.3一次函数的图象(二)
一次函数 的性质做一做
(1)(1)
(2) (2) (3)
作业
P87--88—习题4.4—1、2、3、4。
教学
反思
利用数形结合的思想研究一次函数图象和性质,对学生而言观察对象、探索思路、研究方法都是陌生的。在师生互动、生生互动的探索实践活动中,促成学生对一次函数知识结构的构建和完善。
教学难点
对一次函数的探究,培养学生的观察能力、识图能力以及语言表达能力。
教法学法
引导、启发,合作交流
教学环节
教学过程
设计意图
创设情境
新知探究
八年级数学上册 4.3 一次函数的图象 第2课时 一次函数的图象和性质教案1 (新版)北师大版
第2课时一次函数的图象和性质1.了解并掌握一次函数的图象与性质;(重点)2.能灵活运用一次函数的图象与性质解答有关问题.(难点)一、情境导入在同一直角坐标系内作出下列一次函数的图象:y=x+2;y=x;y=x-2.观察图象你能得出什么结论?二、合作探究探究点一:一次函数的图象作出一次函数y=12x+1的图象,并根据图象回答下列问题:(1)当x=3时,y=________;当y=-32时,x=________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是________;(3)当y>0时,x________.解析:作y=12x+1的图象,取(0,1),(-2,0)两点,已知x代入关系式求y,已知y代入关系式求x.列表如下:描点、连线,y=12x+1的图象如下图:(1)当x=3时,y=2.5;当y=-32时,x=-5.(2)图象与x轴的交点坐标是(-2,0),与y轴的交点坐标是(0,1).(3)当y>0时,x>-2.方法总结:一次函数的图象y=kx+b是与坐标轴相交的直线,只需描出点(0,b),(-bk,0)就可以作出图象.探究点二:一次函数的性质【类型一】一次函数图象的性质已知一次函数y=(2+m)x+(n-4).(1)m为何值时,y随x的增大而减小?(2)m、n为何值时,函数图象与y轴的交点在x轴的下方?(3)m、n为何值时,函数图象过原点?解析:(1)因为k<0时,y随x的增大而减小,故2+m<0;(2)要使直线与y轴的交点在x轴的下方,必有2+m≠0,同时n-4<0;(3)直线过原点是正比例函数的特征,即2+m≠0且n-4=0.解:(1)依题意,得2+m<0,即m<-2.故当m<-2时,y随x的增大而减小.(2)依题意,得⎩⎪⎨⎪⎧2+m≠0,n-4<0.解得n<4且m≠-2.故当m≠-2且n<4时,函数图象与y轴的交点在x轴的下方.(3)依题意,得⎩⎪⎨⎪⎧2+m≠0,n-4=0.解得n=4且m≠-2.故当m≠-2且n=4时,函数图象过原点.方法总结:一次函数y=kx+b(k≠0)中,k的符号决定直线上升或下降,b的符号决定直线与y轴的交点位置,在考虑b的值时,同时要考虑k≠0这一隐含条件,在利用一次函数的性质解决问题时,常常结合方程和不等式求解.【类型二】 一次函数y =kx +b 中k 、b 符号的确定两个一次函数y 1=ax +b 与y 2=bx +a ,它们在同一坐标系中的图象可能是( )解析:解此类题应根据k ,b 的符号从而确定y =kx +b 图象的位置或根据图象确定k ,b 的符号.A 选项中,由y 1的图象知a>0,b<0,则y 2的图象应过一、二、四象限,故A 错,C 选项对;B 选项中,由y 1的图象知a>0,b>0,则y 2的图象应过一、二、三象限,故B 错;D 选项中,由y 1的图象知,a<0,b>0,则y 2的图象应过一、三、四象限,故D 错.故选C.方法总结:解此类题目时要注意前后两个函数中同一字母的取值与符号都相同.探究点三:一次函数的平移(1)将直线y =2x 向上平移2个单位后所得图象对应的函数表达式为( )A .y =2x -1B .y =2x -2C .y =2x +1D .y =2x +2 (2)将正比例函数y =-6x 的图象向上平移,则平移后所得图象对应的函数表达式可能是________(写出一个即可).解析:(1)y =2x 的图象向上平移2个单位后所得图象对应的函数表达式为y =2(x +1),即y =2x +2.故选B ;(2)y =-6x 的图象向上平移可得到y =-6x +b(b>0).方法总结:一次函数y =kx +b 的图象可以看作由直线y =kx 沿y 轴平移|b|个单位长度得到的(当b >0,向上平移;当b <0,向下平移).三、板书设计一次函数的图象与性质⎩⎪⎨⎪⎧一次函数的图象一次函数的性质一次函数的平移经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略,在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想,通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.。
4.3.2 一次函数的图象与性质 课件 2024-2025学年北师大版八年级数学上册
同,图象都经过点 (0 , 3))
y = 5x - 2 的图象经过点 ( 0 , -2 )
一次函数 y = kx+ b 的图象经过点 ( 0 , b )
图象与 y 轴交点的纵坐标就是 b 的值
y = -x + 3
y = 5x - 2
y = -x
归纳总结
一次函数 y = kx + b 的图象是一条经过 ( 0 , b
一次函数 y=kx+b图像有什么特点?
一次函数的图象:一次函数y=kx+b的图象是一条经过点(0,b)的直线,
通常也称为直线y=kx+b.
y=kx+b
y
b
( k , 0)
(0, b)
O
x
一次函数图象的画法
画图时通常取两点(0,b)与( b ,0)(k≠0),有时也可取横、纵坐标均为
整数的点.
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
B )
3. 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k,b的
取值范围为(
C
)
A. k>0,b>0
B. k>0,b<0
C. k<0,b<0
D. k<0,b>0
第3题图
4.在平面直角坐标系中,一次函数y=-x-4的图象与y轴交于点A.
y = -2x向上平移一个单位得到y = -2x + 1;
y = -2x向下平移一个单位得到y = -2x - 1;
y = -2x - 1
(3)平移直线y = -2x+ 1,能得到y = -2x,y = -2x - 1吗?
y = -2x
y = -2x + 1
北师大版八年级数学上册:4-3一次函数的图象(教案)
2.教学难点
-斜率k的正负对一次函数图象在坐标平面内位置的影响,特别是斜率为0和斜率不存在的情况;
4.作出一次函数图象的方法,包括描点法和图形变换;
5.运用一次函数图象解决实际问题,如根据图象求解方程和不等式。
二、核心素养目标
本节课的核心素养目标如下:
1.培养学生的逻辑推理能力,使其能够通过一次函数的定义和性质,推导出图象的特点和变化规律;
2.提升学生的数据分析能力,使其能够利用一次函数图象解决实际问题,进行数据预测和分析;
3.增强学生的空间想象力和几何直观,通过作一次函数图象,培养学生的图形认识和变换能力;
4.培养学生的数学建模素养,使其能够运用一次函数模型表达现实世界中的数量关系,解决实际问题;
5.培养学生的团队协作和交流能力,通过小组合作探讨一次函数图象的绘制和运用,促进学生之间的相互学习与分享。
三、教学难点与重点
1.教学重点
-理解一次函数的定义及一般形式,掌握y = kx + b中k和b的含义及其对图象的影响;
-学会通过分析斜率k和截距b的符号,判断一次函数图象在坐标平面内的位置关系;
-掌握用描点法绘制一次函数图象的基本步骤,并能够运用图象解决相关问题;
-能够运用一次函数图象分析实际问题中的数量关系,建立数学模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
北师大版初中八年级数学上册第四章一次函数3一次函数的图象第2课时一次函数的图象及性质课件
选D.
.
8.(易错题)(2023四川成都模拟)已知一次函数y=mx+n的图象 不经过第二象限,则m,n的取值范围为 m>0,n≤0 . 解析 ∵一次函数y=mx+n的图象不经过第二象限,∴m>0. 当此函数图象经过原点时,n=0; 当此函数图象不经过原点时,n<0. 故答案为m>0,n≤0.
9.(2024安徽六安期末)函数y=-x+b的图象与x轴、y轴分别交 于点A、B,△AOB的面积为8,则b的值为 ±4 .
知识点2 一次函数y=kx+b的性质 4.(2024安徽六安期末)下列函数中,y随x的增大而减小的是 ( C) A.y=5x+3 B.y=2x-4 C.y=-3x+4 D.y=x+3 解析 当k<0时,y随x的增大而减小,故选C.
5.(一题多解)(2024江苏淮安期末)已知点(-2,y1),(3,y2)都在直 线y=-2x+1上,则y1与y2的大小关系为 ( A ) A.y1>y2 B.y1=y2 C.y1<y2 D.无法比较 解析 解法一:将点(-2,y1),(3,y2)代入直线y=-2x+1,得y1=-2× (-2)+1=5,y2=-2×3+1=-5, ∴y1>y2. 解法二:∵-2<0,∴y随x的增大而减小, ∵-2<3,∴y1>y2.故选A.
解析 当y=0时,x=b,∴点A(b,0),则OA=|b|,
当x=0时,y=b,∴点B(0,b),则OB=|b|,
∵△AOB的面积为8,
∴ 1 OA·OB=8,即1 b2=8,解得b=±4.
2
2
10.已知函数y=(2m+1)x+m-3. (1)若函数图象经过原点,求m的值. (2)若函数的图象平行于直线y=3x-3,求m的值. (3)若这个函数是一次函数,且y随着x的增大而减小,求m的取 值范围.
八年级数学上册 4_3 一次函数的图象 第2课时 一次函数的图象和性质教案2 (新版)北师大版
4.3 一次函数的图象第2课时一次函数的图象和性质一、学生起点分析八年级学生已初步认识了变量之间的相依关系,积累了研究变量之间关系以及图象的一些方法和初步经验.在此基础上,学生能在“引导——探究——发现”式的课堂教学中积极参与讨论问题,大胆发表自己的见解和看法.但由于初中学生的年龄特点,他们借助直观、具体的图象更容易理解抽象的一次函数图象的变化规律及其性质.二、教学任务分析《一次函数的图象》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时完成.第1课时让学生了解了作正比例函数图象的方法,并通过作图的操作过程,明确正比例函数的图象性质.本节课为第2课时,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.与原传统教材相比,新教材更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律以及在具体图象中函数值的增减性和增减速度、具体直线之间的平行、相交等位置关系,实际上,这一过程,也是培养学生数形结合的意识和能力的好机会,并为今后继续学习一次函数的应用以及一次函数与二元一次方程的关系打下基础.为此,本节课的教学目标是:1.了解一次函数两个变量之间的变化规律.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质;2.经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略;3.在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想;4.通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.三、教学过程设计本节课设计了六个教学环节:第一环节:图片展示;第二环节:复习引入;第三环节:活动探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:创设情境内容:展示一些与实际生活息息相关的图片.说明在我们生活中,有许许多多这样的图案,这些图象当中蕴含着某些规律,人们利用这些规律,能更合理地作出决策或预测.目的:通过富有现实意义的图片展示,引入生活中熟悉的图片,使学生感受到图象里蕴含的某些规律可以使人们作出合理、科学的决策,激发学生的求知欲望,感受图象的实用价值.说明:通过欣赏这些生活中的图象,学生感受到图象中所蕴含的规律,激发了学生的好奇心和求知欲.第二环节:复习引入内容:在前面,我们已经学会了绘制正比例函数图象,明确了正比例函数图像的有关性质,那么一次函数图象中又蕴含着什么规律,这节课我们就来研究一次函数图象的性质.首先,我们来复习一下上节课所学习的知识.复习提问:(1)作函数图象有几个主要步骤?(2)上节课中我们探究得到正比例函数图象有什么特征?目的:学生回顾上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫.在上节课的探究中我们得到正比例函数图象是过原点的一条直线.本节课主要内容是对一次函数y kx b =+中常数k 、b 对图象的影响进行探究.本节课也可从第二环节复习引入开始,直接进入本课题的学习.说明:学生通过知识回顾,再次明确正比例函数图象的一些特征,为学习本节课在知识上作好准备.第三环节: 活动探究1、合作探究,发现规律内容:观察在同一直角坐标系内的下列一次函数的图象.2,5,621-==+=x y x y x y )(; .321,2,6)2(--=-=+-=x y x y x y得出结论:一次函数图像是一条直线.因此作一次函数图像时,只要确定两个点,再过这两个点作直线就可以了.一次函数y kx b =+的图像也称为直线y kx b =+.议一议:(1)观察图象,它们分别分布在哪些象限.(2)观察每组三个函数的图象,随着x 值的变化,y 的值在怎样变化? (3)从以上观察中,你发现了什么规律? 归纳出一次函数图象的特点: 在一次函数y kx b =+中当0k >时,y 随x 的增大而增大,当b >0时,直线必过一、二、三象限; 当b <0时,直线必过一、三、四象限; 当0k <时,y 随x 的增大而减小,当b >0时,直线必过一、二、四象限; 当b <0时,直线必过二、三、四象限. 目的:归纳出一次函数图象中系数k ,b 对函数图象的影响。
北师大版八年级上册数学4.3第2课时一次函数的图象和性质.ppt优质教案
4.3 一次函数的图象第 2 课时一次函数的图象和性质一、学生起点剖析八年级学生已初步认识了变量之间的相依关系,累积了研究变量之间关系以及图象的一些方法和初步经验. 在此基础上,学生能在“指引——研究——发现”式的讲堂教课中踊跃参加议论问题,勇敢发布自己的看法和看法. 但因为初中学生的年纪特色,他们借助直观、详细的图象更简单理解抽象的一次函数图象的变化规律及其性质 .二、教课任务剖析《一次函数的图象》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了 2 个课时达成 . 第 1 课时让学生认识了作正比率函数图象的方法,并经过作图的操作过程,明确正比率函数的图象性质 . 本节课为第 2 课时,主假如经过对一次函数图象的比较与归类,研究一次函数及其图象的简单性质. 与原传统教材对比,新教材更着重借助感性资料,让学生在详细操作中获取有关一次函数图象的变化规律以及在详细图象中函数值的增减性和增减速度、详细直线之间的平行、订交等地点关系,实质上,这一过程,也是培育学生数形联合的意识和能力的好时机,并为此后持续学习一次函数的应用以及一次函数与二元一次方程的关系打下基础.为此,本节课的教课目的是:1.认识一次函数两个变量之间的变化规律 . 在认识一次函数图象的基础上,掌握一次函数图象及其简单性质;2.经历对一次函数图象变化规律的研究过程,学会解决一次函数问题的一些基本方法和策略;3.在联合图象研究一次函数性质的过程中,加强学生数形联合的意识,浸透分类议论的思想;4.经过对一次函数图象及性质的研究,在研究中培育学生的察看能力、识图能力以及语言表达能力 .三、教课过程设计本节课设计了六个教课环节:第一环节:图片展现;第二环节:复习引入;第三环节:活动研究;第四环节:反应练习与知识拓展;第五环节:课时小结;第六环节:作业部署 .第一环节:创建情境内容:展现一些与实质生活息息有关的图片 . 说明在我们生活中,有许很多多这样的图案,这些图象中间包含着某些规律,人们利用这些规律,能更合理地作出决议或展望 .目的:经过富裕现实意义的图片展现,引入生活中熟习的图片,使学生感觉到图象里包含的某些规律能够令人们作出合理、科学的决议,激发学生的求知欲望,感觉图象的适用价值.说明:经过赏识这些生活中的图象,学生感觉到图象中所包含的规律,激发了学生的好奇心和求知欲 .第二环节:复习引入内容:在前方,我们已经学会了绘制正比率函数图象,明确了正比率函数图像的有关性质,那么一次函数图象中又包含着什么规律,这节课我们就来研究一次函数图象的性质 . 第一,我们来复习一下上节课所学习的知识 .复习发问:( 1)作函数图象有几个主要步骤?(2)上节课中我们研究获取正比率函数图象有什么特色?目的:学生回首上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫 . 在上节课的研究中我们获取正比率函数图象是过原点的一条直线 . 本节课主要内容是对一次函数 y kx b 中常数k、b对图象的影响进行研究.本节课也可从第二环节复习引入开始,直接进入本课题的学习.说明:学生经过知识回首,再次明确正比率函数图象的一些特色,为学习本节课在知识上作好准备 .第三环节:活动研究1、合作研究,发现规律内容:察看在同向来角坐标系内的以下一次函数的图象.(1) y2x 6 , y5x , y x 2 ;(2) y x 6 , y2x , y 1 x3. 2得出结论:一次函数图像是一条直线. 所以作一次函数图像时,只需确立两个点,再过这两个点作直线就能够了. 一次函数y kx b 的图像也称为直线y kx b .议一议:(1)察看图象,它们分别散布在哪些象限 .(2)察看每组三个函数的图象,跟着 x 值的变化, y 的值在如何变化?(3 )从以上察看中,你发现了什么规律?概括出一次函数图象的特色:在一次函数 y kx b 中当 k 0 时, y 随 x 的增大而增大,当 b 0 时,直线必过一、二、三象限;当 b 0 时,直线必过一、三、四象限;当 k 0 时, y 随 x 的增大而减小,当 b 0 时,直线必过一、二、四象限;当 b0 时,直线必过二、三、四象限 .目的:概括出一次函数图象中系数k,b 对函数图象的影响。
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质教案 新版北师大版
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第4.3节一次函数的图象,主要让学生掌握一次函数的图象和性质。
本节内容是在学习了平面直角坐标系、函数概念和一次函数的基础上进行的,为学生提供了进一步研究函数图象的机会。
通过本节的学习,学生可以更好地理解一次函数图象的特点,提高解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了平面直角坐标系、函数概念和一次函数的基础知识,具备了一定的抽象思维能力。
但是,对于一次函数图象的性质,部分学生可能还难以理解和掌握。
因此,在教学过程中,要关注学生的个体差异,引导学生通过观察、操作、思考、交流等活动,自主探索一次函数图象的性质。
三. 教学目标1.知识与技能:使学生掌握一次函数的图象和性质,能够判断一次函数图象与系数的关系。
2.过程与方法:培养学生观察、操作、思考、交流的能力,提高解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一次函数的图象和性质。
2.难点:一次函数图象与系数的关系。
五. 教学方法采用问题驱动法、合作交流法、直观演示法等,引导学生主动探究,激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.准备课件和教学素材。
2.准备黑板和粉笔。
3.准备计时器。
七. 教学过程1.导入(5分钟)利用课件展示一次函数的图象,引导学生回顾一次函数图象的特点,为新课的学习做好铺垫。
2.呈现(10分钟)展示一次函数的图象和性质,引导学生观察、分析,发现一次函数图象与系数的关系。
3.操练(10分钟)学生分组讨论,每组选择一个一次函数,分析其图象和性质,总结一次函数图象与系数的关系。
4.巩固(10分钟)教师提问,学生回答,巩固一次函数图象与系数的关系。
5.拓展(10分钟)引导学生思考:在实际生活中,哪些问题可以用一次函数的图象和性质来解决?让学生举例说明,提高学生的应用能力。
期八年级数学上册 4.3 一次函数的图象 第2课时 一次函数的图象教案 (新版)北师大版
第2课时一次函数的图象【知识与技能】1.理解直线y=kx+b与直线y=kx之间的位置关系.2.会利用两个合适的点画出一次函数的图象.3.掌握一次函数的性质.【过程与方法】通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.【情感与态度】在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重点】一次函数的图象和性质.【教学难点】由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课我们知道正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?它们之间有什么位置关系?下面一起研究一次函数y=kx+b的图象.【教学说明】利用所学知识“最近发展区”——正比例函数的图象及性质,为类比、探究一次函数的图象及其性质作好铺垫.二、思考探究,获取新知1.一次函数的图象.(1)你能用描点法画出一次函数y=-2x+1的图象吗?(2)通过上面画一次函数的图象想一想一次函数y=kx+b的图象有什么特点,对此你是怎样理解的?【教学说明】在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出一次函数的图象,可以说是得心应手,减轻了学生心理上的压力.【归纳结论】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.2.一次函数的性质.做一做:在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.讨论:(1)上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?(2)直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b的图象上直接看出b的数值吗?【教学说明】进一步巩固一次函数图象的画法,并为探究一次函数的性质做准备.让学生利用图象观察体验y=kx与y=kx+b两者之间的位置关系,从而得出函数y=kx+b的图象实际上是对直线y=kx上的所有点进行平移的结果,同时还让学生明白b的值就是图象与y轴交点的纵坐标.【归纳结论】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.三、运用新知,深化理解1.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x值的增大而增大,则m的值为 .2.一次函数y=3x-4的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限3.下列一次函数中,y随x值的增大而减小的是().A.y=2x-1B.y=3-4xx+2D.y=(5-2)x4.一次函数y=(3a-1)x+5图象上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2,则a的取值范围是().A.a>0B.a<0C.a>1 3D.a<1 35.如图,将直线OA向上平移2个单位,得到一个一次函数的图象,求这个一次函数的表达式.【教学说明】让学生独立完成,加强对所学知识的理解,及时反馈教学效果,查漏补缺.对有困难的学生给予鼓励和帮助,并进行强化.【答案】1.2 2.B 3.B 4.D5.解:设直线OA的关系式为y=kx,把(-2,4)代入得k=-2,所以y=-2x,将直线OA 向上平移2个单位之后一次函数的表达式为:y=-2x+2.四、师生互动,课堂小结1.师生共同回顾一次函数图象的性质和它与正比例函数图象之间的关系.2.本节课你掌握了哪些知识?觉得哪些是大家需要注意的?与同学们分享.【教学说明】教师引导学生回顾本课知识点,加强理解各知识点之间的联系,不断进行归纳总结.让学生大胆交流,力求让每一个人在数学上得到一定的发展.1.布置作业:习题4.4第1、2、3、4题.2.完成本课时练习.本节课学习了用两点法画一次函数图象,进而利用数形结合的探究讨论的方法寻求出一次函数图象的特征与关系式的相互联系,使我们对一次函数知识的理解与掌握更透彻,也体会到数学思想在数学研究中的重要性.。
八年级数学上册第四章一次函数:一次函数的图象2一次函数的图象与性质说课稿新版北师大版
八年级数学上册说课稿新版北师大版:4.3.2 一次函数的图象与性质各位评委,老师大家好,今天我要说课内容是新课标人教版八年级上册《一次函数的图象和性质》从以下五个方面来说:教材分析教法分析学法分析程序设计评价说明教材分析:地位和作用本节教材是一次函数的图象和性质的第一课时,它是紧接一次函数的概念教学内容之后学习的。
从知识的掌握来看,它是对前面所学知识的深化和运用。
从对后继内容的学习来看,它为研究二次函数等较为复杂函数提供了研究的方向和方法.再有结合近年中考命题,一次函数往往是考察的重点和热点知识。
所以本节内容有着十分重要的地位教学目标:[认知目标]:1、理解直线y=kx+b与y=kx之间的位置关系;2、会利用两个合适的点画出一次函数的图象;3、掌握一次函数的性质.[能力目标]:(1)主要是培养学生的看图、识图.动手实践能力。
(2)通过对一次函数的图象和性质的探究,培养学生数形结合数学思想方法。
[情感目标]:通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
[ 教学重点 ]一次函数的图象和性质。
[教学难点]一次函数的图象性质的发现.[教法分析]1. 数形结合:整节课贯穿数形结合方法由数点的坐标描点得到一次函数形状,由一次函数的图象形状观察分析得出性质规律,通过典型习题的练习加深对数形结合方法的应用。
2.由特殊到一般的方法:图象和性质的学习探究都是通过此方法。
3.类比法:由于本节课是在正比例函数图象性质之后学习的,通过类比的方式,由正比例函数图象性质类比出一次函数图象性质,解决了本节课重难点,进而总结正比例函数图象性质与一次函数图象性质这两者之间的关系。
4.使用多媒体课件应用于课堂,增强知识的直观性,增大课堂容量。
[学法分析]1、应用自主探究、互助合作的学习方法。
培养学生独立思考能力,自主探究的学习习惯以及同学间的合作精神。
一次函数图象采用动手操作方式,是学生主动学习的过程,经历画图象进而感悟它的形状与正比例函数图象异同,为后面发现规律作了准备,这样学生所获更多,印象更深。
4.3 一次函数的图象(第2课时) 八年级上册北师大版
解: 列表
描点
连线
y
12
10
8
x
... -1 0 ...
y=-6x ... 6 0 ...
y=-6x+5 ... 11 5 ...
6 4
2
-2 -1 O 1 2 3 x
探究新知
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.
-2
-3
y=-2x+1
探究新知 归纳小结
一次函数y=kx+b的图象也称为直线y=kx+b.
与x轴的交点 坐标
y=kx+b
y
(
-
b k
, 0)
(0, b)
O
x
与y轴的交点 坐标
由于两点确定一条直线,画一次函数图象时
我们只需描点(0,b)和点
b k
,
0
或
(1,k+b),连线即可.
探究新知 探究一 画出函数y=-6x与y=-6x+5的图象.
的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
提示:反过来也成立:y越大,x就越小.
巩固练习
变式训练
1.在直线y=3x+6上,对于点A(x1,y1)和B(x2,y2)若x1>x2,
则y1 > y2.(填写大小关系)
北师大版八年级上册数学北师大版八年级上册数学 第2课时 一次函数的图象和性质精选教案2
4.3 一次函数的图象第2课时一次函数的图象和性质一、学生起点分析八年级学生已初步认识了变量之间的相依关系,积累了研究变量之间关系以及图象的一些方法和初步经验.在此基础上,学生能在“引导——探究——发现”式的课堂教学中积极参与讨论问题,大胆发表自己的见解和看法.但由于初中学生的年龄特点,他们借助直观、具体的图象更容易理解抽象的一次函数图象的变化规律及其性质.二、教学任务分析《一次函数的图象》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时完成.第1课时让学生了解了作正比例函数图象的方法,并通过作图的操作过程,明确正比例函数的图象性质.本节课为第2课时,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.与原传统教材相比,新教材更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律以及在具体图象中函数值的增减性和增减速度、具体直线之间的平行、相交等位置关系,实际上,这一过程,也是培养学生数形结合的意识和能力的好机会,并为今后继续学习一次函数的应用以及一次函数与二元一次方程的关系打下基础.为此,本节课的教学目标是:1.了解一次函数两个变量之间的变化规律.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质;2.经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略;3.在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想;4.通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.三、教学过程设计本节课设计了六个教学环节:第一环节:图片展示;第二环节:复习引入;第三环节:活动探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:创设情境内容:展示一些与实际生活息息相关的图片.说明在我们生活中,有许许多多这样的图案,这些图象当中蕴含着某些规律,人们利用这些规律,能更合理地作出决策或预测.目的:通过富有现实意义的图片展示,引入生活中熟悉的图片,使学生感受到图象里蕴含的某些规律可以使人们作出合理、科学的决策,激发学生的求知欲望,感受图象的实用价值.说明:通过欣赏这些生活中的图象,学生感受到图象中所蕴含的规律,激发了学生的好奇心和求知欲.第二环节:复习引入内容:在前面,我们已经学会了绘制正比例函数图象,明确了正比例函数图像的有关性质,那么一次函数图象中又蕴含着什么规律,这节课我们就来研究一次函数图象的性质.首先,我们来复习一下上节课所学习的知识.复习提问:(1)作函数图象有几个主要步骤?(2)上节课中我们探究得到正比例函数图象有什么特征?目的:学生回顾上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫.在上节课的探究中我们得到正比例函数图象是过原点的一条直线.本节课主要内容是对一次函数y kx b =+中常数k 、b 对图象的影响进行探究.本节课也可从第二环节复习引入开始,直接进入本课题的学习.说明:学生通过知识回顾,再次明确正比例函数图象的一些特征,为学习本节课在知识上作好准备.第三环节: 活动探究1、合作探究,发现规律内容:观察在同一直角坐标系内的下列一次函数的图象.2,5,621-==+=x y x y x y )(;.321,2,6)2(--=-=+-=x y x y x y 得出结论:一次函数图像是一条直线.因此作一次函数图像时,只要确定两个点,再过这两个点作直线就可以了.一次函数y kx b =+的图像也称为直线y kx b =+.议一议:(1)观察图象,它们分别分布在哪些象限.(2)观察每组三个函数的图象,随着x 值的变化,y 的值在怎样变化?(3)从以上观察中,你发现了什么规律?归纳出一次函数图象的特点:在一次函数y kx b =+中当0k >时,y 随x 的增大而增大,当b >0时,直线必过一、二、三象限; 当b <0时,直线必过一、三、四象限; 当0k <时,y 随x 的增大而减小,当b >0时,直线必过一、二、四象限; 当b <0时,直线必过二、三、四象限. 目的:归纳出一次函数图象中系数k ,b 对函数图象的影响。
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质教案1北师大版(new)
第2课时一次函数的图象和性质1.了解并掌握一次函数的图象与性质;(重点)2.能灵活运用一次函数的图象与性质解答有关问题.(难点)一、情境导入在同一直角坐标系内作出下列一次函数的图象:y=x+2;y=x;y=x-2。
观察图象你能得出什么结论?二、合作探究探究点一:一次函数的图象作出一次函数y=12x+1的图象,并根据图象回答下列问题:(1)当x=3时,y=________;当y=-错误!时,x=________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是________;(3)当y>0时,x________.解析:作y=错误!x+1的图象,取(0,1),(-2,0)两点,已知x 代入关系式求y,已知y代入关系式求x。
列表如下:x0-2y=错误!x+110描点、连线,y=错误!x+1的图象如下图:(1)当x=3时,y=2。
5;当y=-错误!时,x=-5。
(2)图象与x轴的交点坐标是(-2,0),与y轴的交点坐标是(0,1).(3)当y>0时,x>-2。
方法总结:一次函数的图象y=kx+b是与坐标轴相交的直线,只需描出点(0,b),(-错误!,0)就可以作出图象.探究点二:一次函数的性质【类型一】一次函数图象的性质已知一次函数y=(2+m)x +(n-4).(1)m 为何值时,y随x的增大而减小?(2)m、n为何值时,函数图象与y轴的交点在x轴的下方?(3)m、n为何值时,函数图象过原点?解析:(1)因为k〈0时,y随x的增大而减小,故2+m〈0;(2)要使直线与y轴的交点在x轴的下方,必有2+m≠0,同时n-4〈0;(3)直线过原点是正比例函数的特征,即2+m≠0且n-4=0。
解:(1)依题意,得2+m<0,即m<-2。
故当m<-2时,y随x的增大而减小.(2)依题意,得错误!解得n<4且m≠-2.故当m≠-2且n<4时,函数图象与y轴的交点在x轴的下方.(3)依题意,得错误!解得n=4且m≠-2。
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质说课稿 (新版北师大版)
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.3一次函数的图象第2课时,主要讲述了一次函数的图象和性质。
在这一课时中,学生将学习一次函数的图象特点,以及如何通过图象来判断一次函数的性质。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握一次函数的图象和性质,为后续学习其他函数打下基础。
二. 学情分析在开展本课时,学生已经学习了代数基础知识,对函数有了初步的认识。
然而,对于一次函数的图象和性质,他们可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过引导和启发,帮助他们理解和掌握一次函数的图象和性质。
三. 说教学目标1.知识与技能:使学生了解一次函数的图象特点,学会通过图象来判断一次函数的性质。
2.过程与方法:培养学生观察、分析、解决问题的能力,提高他们的数形结合思想。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:一次函数的图象特点,一次函数的性质。
2.教学难点:如何引导学生从图象中判断一次函数的性质,以及如何运用数形结合思想解决实际问题。
五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、案例分析法等,让学生在实践中学习,提高他们的动手能力和思维能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合现代教育技术,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考一次函数的图象和性质,激发学生的学习兴趣。
2.讲解新课:讲解一次函数的图象特点,通过例题分析,让学生学会如何从图象中判断一次函数的性质。
3.实践操作:让学生动手绘制一次函数的图象,观察图象特点,进一步理解一次函数的性质。
4.课堂讨论:学生进行小组讨论,分享各自的学习心得,互相答疑解惑。
5.巩固练习:布置一些具有代表性的练习题,让学生巩固所学知识,提高解题能力。
4.3一次函数的图象与性质(教案)北师大版数学八年级上册
环节2 探究新知1.画出下面正比例函数y=2x+1的图象.列表描点连线探究一次函数的性质。
2.在同一直角坐标系中画出一次函数y=2x+3、y=2x3、y=2x、y=2x2、y=2x+5的图象,探究一次函数的性质。
1.小组合作 1.一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了。
2.一次函数y=kx+b 的图象一定过两个点,它们坐标分别是(0,b)(kb,0)3.k>0,图象过第一、三象限;k<0,图象过第二、四象限;b>0,图象过y轴正半轴;b<0,图象过y轴负半轴.一次函数y=kx+b的图象经过点(0,b).当k >0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.4.一次函数y=kx+b它可看作是由直线y=kx平移|b|个单位长度得到,当b>0时,向上平移,当b<0时,向下平移。
1=K2时,y1∥y2预设:部分学生不能够正确的讨论出来。
补救:学生解释,老师补充。
环节3 当堂练习1.函数y=0.8x6中,y的值随着x值的增大而1.学生独立完成。
2.小组交流讨论1.展示学生实践结果。
预设:部分学生在做的过程中遇到。
北师大版八年级上册数学《4.3 第2课时 一次函数的图象和性质》教学课件
正比例函数 解析式 y =kx(k≠0)
图象:经过原点和 (1,k)的一条直线
k>0
k<0
y
y
Ox
O
x
性质:k>0,y 随x 的增大而增大; k<0,y 随 x 的增大而减小.
一次函数 解析式 y =kx+b(k≠0)
?
? 针对函数 y =kx+b,大家想研究什么?应 该怎样研究?
讲授新课
一 一次函数的图象的画法
k >0,b 0 =
k >0,b 0<
k < 0,b 0>
k < 0,b 0=
k < 0,b 0<
归纳总结
一次函数y=kx+b中,k,b的正负对函数图象 及性质有什么影响?
当k>0时,直线y=kx+b由左到右逐渐上升,y 随x的增大而增大.
① b>0时,直线经过一、二、三象限; ② b<0时,直线经过一、三、四象限.
2…
4… 0…
y
y=x+2
.
.
.
O
.
.
.
..
.
.
2
y=x-2 x
Байду номын сангаас
探究归纳
观察三个函数图象的平移情况:
y
y=x+2
y=x
2●
y=x-2
O
2
x
●
把一次函数y=x+2,y=x-2的图象与y=x比较,发现:
1. 这三个函数的图象形状都是
,并且直倾线斜程度
____相__同.
2. 函数y=x的图象经过原点,函数y=x+2的图象与y轴交于点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 一次函数的图象
第2课时 一次函数的图象和性质
学习目标
1、了解正比例函数y=kx 的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象。
学习过程
1、新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=
21x ,y=x ,y=3x ,y=-2x 的图象。
如图:
3、议一议
(1)正比例函数y=kx 的图象有什么特点?(都经过原点)
(2)你作正比例函数y=kx 的图象时描了几个点?(至少两点)
(3)直线y=2
1x ,y=x ,y=3x 中,哪一个与x 轴正方向所成的锐角最大?哪一与x 轴正方向所成的锐角最小?
4、小结:正比例函数的图象有以下特点:
(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx 的图象时,除原点外,还需找一点,一般找(1,k )点。
(3)在正比例函数y=kx 图象中,当k>0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大。
(4)在正比例函数y=kx 的图象中,当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小。
5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x 的图象。
一次函数y=kx+b 的图象的特点:分析:在函数y=2x+6中,k>0,y 的值随x 值的增大而增大;在函数y=-x+6中,y 的值随x 值的增大而减小。
由上可知,一次函数y=kx+b 中,y 的值随x 的变化而变化的情况跟正比例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两 个坐标轴相交。
在作一次函数的图象时,也需要描两个点。
一般选取(0,b ),(-k
b ,0)比较简单。
6、想一想
(1)x 从0开始逐渐增大时,y=2x+6和y=5x 哪一个值先达到20?这说明了什么?(y=5x 的函数值先达到20,这说明随着x 的增加,y=5x 的函数值比y=2x+6的函数值增加得快)
(2)直线y=-x 与y=-x+6的位置关系如何?(平行,一次函数k 相同就平行)
(3)直线y=2x+6与y=-x+6的位置关系如何?(相交)
7、课堂练习
1、下列一次函数中,y 的值随x 值的增大而增大的是( )
A 、y=-5x+3
B 、y=-x-7
C 、y=x 3-5
D 、y=-x 7+4
2、下列一次函数中,y 的值随x 值的增大而减小的是( )
A 、y=3
2x-8 B 、y=-x+3 C 、y=2x+5 D 、y=7x-6 六、课后小结 1、正比例函数y=kx 的图象的特点。
2、一次函数y=kx+b 的图象的特点。
七、作业
习题4.4。