【导与练】(新课标)2016届高三数学一轮复习 第10篇 第7节 二项分布与正态分布课时训练 理

合集下载

2016届高考数学一轮总复习108二项分布及其应用练习

2016届高考数学一轮总复习108二项分布及其应用练习

第八节二项散布及其应用 ( 理)时间: 45 分钟分值:100分基础必做一、选择题1.(2015 ·唐山市期末 ) 如图,△ ABC和△ DEF都是圆内接正三角形,且BC∥EF.将一颗豆子随机地扔到该圆内,用 A 表示事件“豆子落在△ ABC 内”, B 表示事件“豆子落在△ DEF 内”,则 P(B|A) = ( ). 33 . 3A4πB2πC.31D.32分析△ABC≌△ DEF,设边长为3,△ABC与△ DEF重叠部分是边长为 1 的正六边形 P(B|A)S正六边形S 3 32S圆 2==正六边形=,选D.== 3S S 2 3△ABC △ABCS ·34圆答案 D2.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6 和 0.5 ,现已知目标被击中,则它是被甲击中的概率为( )A.0.45 B.0.6. 0.65 . 0.75C D分析设目标被击中为事件B,目标被甲击中为事件A,则由 P(B) =0.6 ×0.5 +0.4 ×0.5+0.6 ×0.5 = 0.8 ,又因为 A? B,所以 P(AB) = P(A) = 0.6 ,得 P(A|B) ==0.6= 0.75.0.8答案 D3.国庆节放假,甲去北京旅行的概率为1,乙、丙去北京旅行的概率分别为1,1 . 假设3 4 5三人的行动互相之间没有影响,那么这段时间内起码有1 人去北京旅行的概率为 ()593A . 60B . 5. 1. 1C 2D601 1 1分析 因甲、乙、丙去北京旅行的概率分别为 3,4, 5. 所以,他们不去北京旅行的概率2 3 4 1 人去北京旅行的概率为P =2 3 4 3分别为 , , ,起码有 1-×× = .3 4 53 4 5 5 答案 B4.一个平均小正方体的六个面中,三个面上标明数1,两个面上标明数 2,一个面上标注数 3,将这个小正方体投掷2 次,则向上的数之和为3 的概率为 ()A . 61B . 41C . 31D . 21分析 设第 i 次向上的数是 1 为事件 A ,第 i 次向上的数是 2 为 B , i = 1,2 ,则 P(A )ii1=P(A ) =2, P(B ) =P(B ) = 3,则所求的概率为 P(A B ) + P(A B ) =P(A )P(B) + P(A )P(B )2 1 1 211 22 112211 1 1 1 1= 2× 3+ 2× 3= 3.答案 C5.一个口袋中有 5 个白色乒乓球和 5 个黄色乒乓球 ( 乒乓球除颜色不一样外其余均同样 ) , 从中任取 5 次,每次拿出 1 个后又放回, 则抽取的 5 次中恰有3 次取到白球的概率是 (). 1. 3A 2B 53C 535C CD . C ·0.555分析 由题意知,任取一次取到白球和黄球的概率均为0.5. 随意取球 5 次,恰有 3 次取到白球的概率为 P 5(3) 33·(1 - 0.5) 5- 335.= C 5·0.5 = C 5·0.5答案 D6.如图,用 K ,A 1,A 2 三类不一样的元件连结成一个系统.当K 正常工作且 A 1,A 2 起码有 一个正常工作时,系统正常工作.已知K , A , A 正常工作的概率挨次为 0.9 、 0.8 、 0.8 ,12则系统正常工作的概率为 ()A . 0.960B . 0.864C . 0.720D . 0.576分析 可知 K ,A 1, A 2 三类元件正常工作互相独立.所以当A 1, A 2 起码有一个能正常工作的概率为 P = 1- (1 - 0.8) 2,所以系统能正常工作的概率为 K×0.96 == 0.96 P ·P =0.9 0.864.答案 B二、填空题37.设 A 、 B 为两个事件,若事件 A 和 B 同时发生的概率为10,在事件 A 发生的条件下,事件 B 发生的概率为 1,事件 A 发生的概率为 __________.2分析 由题意知: P(AB) = 3 , P(B|A) = 1,10 2 310 3∴P(A) ==1=5.2答案358.有一批种子的抽芽率为 0.9 ,出芽后的幼苗成活率为0.8 ,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为__________ .分析 设种子抽芽为事件 A ,种子成长为幼苗为事件 AB(抽芽,又成活为幼苗 ) ,出芽后的幼苗成活率为: P(B|A) = 0.8 , P(A) = 0.9.依据条件概率公式 P(AB) =P(B|A) ·P(A) =0.9 ×0.8 = 0.72 ,即这粒种子能成长为幼苗的概率为 0.72.答案 0.729.连续掷一枚平均的正方体骰子(6 个面分别标有 1,2,3,4,5,6) .现定义数列 {a } :当n向上边上的点数是 3 的倍数时, a n =1;当向上边上的点数不是 3 的倍数时, a n =- 1. 设 S n是其前 n 项和,那么 S 5= 3 的概率是 ________.分析 由 S =3 知:投掷 5 次中向上边上的点数是3 的倍数发生4 次,其概率为: P =54 1 4 · 1- 110533 = .C243答案10243三、解答题10.投掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为 3 或 6”,事件B 为“两颗骰子的点数之和大于8”.(1) 求 P(A) , P(B) , P(AB);(2) 当已知蓝色骰子的点数为3 或 6 时,求两颗骰子的点数之和大于 8 的概率.2 1解 (1)P(A) =6= 3.∵两颗骰子的点数之和共有36 个等可能的结果,点数之和大于 8 的结果共有 10 个.105∴ P(B) = 36= 18.当蓝色骰子的点数为3 或 6 时,两颗骰子的点数之和大于 8 的结果有 5 个,故 P(AB) =5 36.536 5(2) 由 (1) 知 P(B|A) == 1 = 12.311.2013 年 6 月“神舟”发射成功.此次发射过程共有四个值得关注的环节,即发射、实验、讲课、返回.据统计,因为时间关系,某班每位同学收看这四个环节的直播的概率分3 1 1 2 别为 ,, , ,而且各个环节的直播收看互不影响.4 32 3(1) 现有该班甲、 乙、丙三名同学, 求这 3 名同学起码有 2 名同学收看发射直播的概率;(2) 若用 X 表示该班某一位同学收看的环节数,求 X 的散布列.解 (1) 设“这 3 名同学起码有2 名同学收看发射直播”为事件A ,232333 32734 × 1-34=32.则 P(A) =C 4 + C (2) 由条件可知 X 可能取值为 0,1,2,3,4.3 11 2 1 3 1 1P(X = 0) = 1- 4 × 1-3 × 1-2 × 1- 3 =36;P(X =1) = 4 × 1-3 × 1-22 3 × 1-3 + 1-41 2 3 12 3 1 1 ×1×1- ×1- +1- ×1- ×1×1- +1- ×1- ×1- ×2=323432343231372;3 1 1 23111- 2 3 × 1- 1 1 2P(X =2)= × × 1-2 × 1- + × 1- × ×3 + 3 × 1- × +433 4 3 2 42 3 3 1 1 2311231 12 71- 4 ×3×2× 1-3 + 1-4 ×3× 1-2 ×3+ 1-4 × 1-3 ×2× 3=18;3 1 1 2 3 1 1 2 3 11 2 3 1 1 2P(X = 3) = 1-4 ×3×2×3+ 4× 1- 3 ×2× 3+4×3× 1-2 ×3+4×3× 2× 1- 323= 72;3 1 1 21P(X = 4) = 4× 3× 2× 3= 12.即 X 的散布列X 0 1 2 3 4 P1 137 23 1 3672187212培 优 演 练1.某次数学测试共有 10 道选择题, 每道题共有四个选项, 且此中只有一个选项是正确的,评分标准规定: 每选对 1 道题得 5 分,不选或选错得 0 分.某考生每道题都选并能确立此中有 6 道题能选对, 其余 4 道题没法确立正确选项, 但这 4 道题中有 2 道题能清除两个错误选项, 另 2 道只好清除一个错误选项, 于是该生做这 4 道题时每道题都从不可以清除的选项中随机选一个选项作答,且各题作答互不影响.(1) 求该考生本次测试选择题得50 分的概率;(2) 求该考生本次测试选择题所得分数的散布列.解 (1) 设选对一道“能清除2 个选项的题目”为事件A ,选对一道“能清除 1 个选项的题目”为事件 B ,则P(A) = 1 , P(B) =1.该考生选择题得 50 分的概率为23P(A) ·P(A) ·P(B) ·P(B) = 1 2 1 21. 2 × 3 =36 (2) 该考生所得分数 X = 30,35,40,45,50.121 2 1P(X = 30) = 2 × 1- 3 = 9 , 1 1 2 2 2 1 2 1 1 2 1 P(X = 35) = C 2 2 · 3 + 2 · C 2·3×3= 3,1 2 2 2 1 1 2 11 2 1 2 1 2 13P(X = 40) = 2 × 3 +C 2· 2 · C 2 · 3×3+ 2 × 3 = 36,1 1 21 2 1 2 1 1 2 1P(X = 45) = 2· +· 2·×=,C 23 2C 33 6121 2 1 P(X = 50) = 2 ×3 =36. 该考生所得分数 X 的散布列为X 30 35 40 45 50P11 13119 3 366362.(2014 ·陕西卷 ) 在一块耕地上栽种一种作物,每季栽种成本为 1 000 元,此作物的市场价钱和这块地上的产量均拥有随机性,且互不影响,其详细状况以下表:作物产量 ( kg) 300 500概率0.5 0.5作物市场价钱 ( 元 / kg) 6 10概率0.4 0.6(1)设 X 表示在这块地上栽种 1 季此作物的收益,求 X 的散布列;(2) 若在这块地上连续 3 季栽种此作物,求这 3 季中起码有 2 季的收益许多于 2 000 元的概率.解(1) 设 A 表示事件“作物产量为300 kg”,B 表示事件“作物市场价钱为 6 元 / kg”,由题设知 P(A) = 0.5 , P(B) = 0.4 ,∵收益=产量×市场价钱-成本,∴X全部可能的取值为500×10- 1 000 =4 000,500 ×6- 1 000 =2 000 ,300×10- 1 000 =2 000,300 ×6- 1 000 =800.P(X= 4 000) = P( A )P( B ) = (1 -0.5) ×(1 - 0.4) =0.3 ,P(X= 2 000) = P( A )P(B) +P(A)P( B ) = (1 -0.5) ×0.4 +0.5 ×(1 - 0.4) = 0.5 ,P(X= 800) = P(A)P(B) =0.5 ×0.4 = 0.2 ,所以 X 的散布列为X 4 000 2 000 800P 0.3 0.50.2(2) 设 C i表示事件“第i 季收益许多于 2 000 元” (i = 1,2,3) .由题意知C1, C2, C3互相独立,由(1) 知,P(C i ) = P(X= 4 000) + P(X= 2 000) =0.3 + 0.5 = 0.8(i = 1,2,3) ,3 季的收益均许多于 2 000 元的概率为P(C1C2C3) = P(C1)P(C 2)P(C 3) = 0.8 3=0.512;3 季中有 2 季收益许多于 2 000 元的概率为P( C1 C2C3) + P(C1 C2 C3) + P(C1C2 C3 ) =3×0.8 2×0.2=0.384,所以,这 3 季中起码有 2 季的收益许多于 2 000 元的概率为0.512 + 0.384 = 0.896.。

新高考一轮复习人教版 二项分布与正态分布 作业

新高考一轮复习人教版 二项分布与正态分布 作业

11.3 二项分布与正态分布基础篇 固本夯基考点一 条件概率、相互独立事件及二项分布、全概率公式1.(2022届长沙长郡中学月考,7)某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别为23,34,只有通过前一关才能进入下一关,每一关都有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进人第三关的概率为( ) A.12B.56C.89D.1516答案 B2.(2022届武汉部分学校质检,5)在一次试验中,随机事件A,B 满足P(A)=P(B)=23,则( ) A.事件A,B 一定互斥 B.事件A,B 一定不互斥 C.事件A,B 一定互相独立 D.事件A,B 一定不互相独立 答案 B3.(2021新高考Ⅰ,8,5分)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立 答案 B4.(2018课标Ⅲ,8,5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 答案 B5.(2021辽宁丹东质检,2)10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一张奖券,甲先抽,乙后抽,在甲中奖的条件下,乙没有中奖的概率为( ) A.35B.23C.34D.4156.(2021江苏徐州第三次调研,2)清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共10人进入决赛,其中高一年级2人,高二年级3人,高三年级5人,现采取抽签的方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级2人不相邻的概率为( ) A.112 B.13 C.12 D.34答案 D7.(多选)(2021福建厦门外国语学校月考,12)甲罐中有4个红球,3个白球和3个黑球;乙罐中有5个红球,3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以M 表示由乙罐取出的球是红球的事件,下列结论正确的为( ) A.P(M)=12B.P(M|A 1)=611 C.事件M 与事件A 1不相互独立 D.A 1,A 2,A 3是两两互斥的事件 答案 BCD8.(2022届山东济宁一中开学考试,14)已知随机变量ξ~B (6,13),则P(ξ=4)= ,D(ξ)= .(用数字作答) 答案20243;439.(2022届山东潍坊10月段考,15)一项过关游戏规则规定:在第n 关要抛掷一颗质地均匀的骰子n 次,如果这n 次抛掷所出现的点数之和大于2n,则算过关.甲同学参加了该游戏,他连过前两关的概率是 .答案5910.(2020天津,13,5分)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为 ;甲、乙两球至少有一个落入盒子的概率为 . 答案16;2311.(2019课标Ⅰ,15,5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是 .12.(2022届江苏苏州调研,19)某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为34,且甲、乙两人是否答对每个试题互不影响. (1)试通过计算,分析甲、乙两人谁通过自主招生初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为Y,求Y 的分布列及数学期望和方差. 解析 (1)∵在8个试题中甲能答对6个,∴甲通过自主招生初试的概率P 1=C 63C 21C 84+C 64C 84=1114,又∵乙能答对每个试题的概率为34, ∴乙通过自主招生初试的概率P 2=C 43(34)314+C 44(34)4=189256,∵P 1>P 2,∴甲通过自主招生初试的可能性更大.(2)由题意可知,乙答对题的个数X 的可能取值为0,1,2,3,4,X~B (4,34), P(X=k)=C 4k (34)k (14)4−k(k=0,1,2,3,4)且Y=5X, 故Y 的分布列为∴E(Y)=E(5X)=5E(X)=5×4×34=15, D(Y)=D(5X)=52D(X)=25×4×34×(1−34)=754. 13. (2022届山东潍坊阶段测,20)智能体温计测温方便、快捷,已经逐渐代替水银体温计应用于日常体温测量.调查发现,使用水银体温计测温结果与人体的真实体温基本一致,而使用智能体温计测量体温可能会产生误差.对同一人而言,如果用智能体温计与水银体温计测温结果相同,我们认为智能体温计“测温准确”;否则,我们认为智能体温计“测温失误”.现在某社区随机抽取了20人用两种体温计测量体温,数据如下:(1)试估计用智能体温计测量该社区1人“测温准确”的概率;(2)从该社区中任意抽查3人用智能体温计测量体温,设随机变量X 为使用智能体温计“测温准确”的人数,求X 的分布列与数学期望.解析 (1)题表20人的体温数据中,用智能体温计与水银体温计测温结果相同的序号是01,04,06,07,09,12,13,14,16,18,19,20,共有12个, 由此估计所求概率为1220=35. (2)随机变量X 的所有可能取值为0,1,2,3.由(1)可知,用智能体温计测量该社区1人“测温准确”的概率为35. 所以P(X=0)=C 30(35)0(1−35)3=8125, P(X=1)=C 31(35)1(1−35)2=36125, P(X=2)=C 32(35)2(1−35)1=54125, P(X=3)=C 33(35)3(1−35)0=27125, 所以X 的分布列为故X 的数学期望E(X)=0×8125+1×36125+2×54125+3×27125=225125=95. 14.(2019课标Ⅱ,18,12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解析 (1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.考点二 正态分布1.(2022届河北邢台9月联考,6)已知随机变量ξ服从正态分布N(3,4),若P(ξ>2c+1)=P(ξ<2c-1),则c 的值为( )A.32 B.2 C.1 D.12答案 A2.(2021广东深圳一模,5)已知随机变量ξ~N(μ,σ2),有下列四个命题: 甲:P(ξ<a-1)>P(ξ>a+2). 乙:P(ξ>a)=0.5. 丙:P(ξ≤a)=0.5.丁:P(a<ξ<a+1)<P(a+1<ξ<a+2).如果只有一个假命题,则该命题为( ) A.甲 B.乙 C.丙 D.丁 答案 D3.(2020广东深圳七中月考,5)某班有60名学生,一次考试后数学成绩符合ξ~N(110,σ2),若P(100≤ξ≤110)=0.35,则估计该班学生数学成绩在120分以上的人数为( ) A.10 B.9 C.8 D.7 答案 B4.(2021江苏七市第二次调研,13)已知随机变量X~N(2,σ2),P(X>0)=0.9,则P(2<X ≤4)= . 答案 0.45.(2021广东韶关一模,20)在一次大范围的随机知识问卷调查中,通过随机抽样,得到参加问卷调查的100人的得分统计结果如下表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分ξ~N(μ,196),μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表). ①求μ的值;②若P(ξ>2a-5)=P(ξ<a+3),求a 的值;(2)在(1)的条件下,为此次参加问卷调查的市民制订如下奖励方案:①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.解析 (1)①由题意得30×2+40×13+50×21+60×25+70×24+80×11+90×4100=60.5,∴μ=60.5.②由题意得2a-5+a+3=2×60.5,解得a=41.(2)由题意知P(ξ<μ)=P(ξ≥μ)=12,获赠话费X(单位:元)的可能取值为20,40,50,70,100, P(X=20)=12×34=38,P(X=40)=12×34×34=932,P(X=50)=12×14=18,P(X=70)=12×34×14+12×14×34=316,P(X=100)=12×14×14=132,∴X 的分布列为∴E(X)=20×38+40×932+50×18+70×316+100×132=1654. 综合篇 知能转换考法一 条件概率的求法1.(2021广东二模,3)2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动.甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P(B|A)=( ) A.13B.12C.23D.34答案 D2.(2022届全国学业质量检测,9)某公司为方便员工停车,租了6个停车位,编号如图所示,公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位,记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P(A|B)=( ) A.16B.310 C.12 D.35答案 D3.(多选)(2021江苏海安高级中学月考,7)已知A ,B 分别为随机事件A,B 的对立事件,P(A)>0,P(B)>0,则下列说法正确的是( ) A.P(B|A)+P(B |A)=P(A) B.P(B|A)+P(B |A)=1C.若A,B 独立,则P(A|B)=P(A)D.若A,B 互斥,则P(A|B)=P(B|A) 答案 BCD考法二 n 重伯努利试验及二项分布问题的求解方法1.(2021广东深圳外国语学校月考,5)某同学进行3分投篮训练,若该同学投中的概率为12,他连续投篮n 次至少得到3分的概率大于0.9,那么n 的最小值是( ) A.3 B.4 C.5 D.6 答案 B2.(2020辽宁葫芦岛兴城高级中学模拟)一个袋中有大小、形状相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为ξ1;当无放回依次取出两个小球时,记取出的红球数为ξ2,则 ( ) A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)=E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)=E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2) 答案 B3.(多选)(2022届山东济宁一中开学考,11)某单位举行建党100周年党史知识竞赛,在必答题环节共设置了5道题,每道题答对得20分,答错扣10分(每道题都必须回答,但相互不影响).设某选手每道题答对的概率均为23,其必答题环节的总得分为X,则( ) A.该选手恰好答对2道题的概率为49B.E(X)=50C.D(X)=1003D.P(X>60)=112243答案 BD4.(2017课标Ⅱ,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX= . 答案 1.965.(2022届山东济宁一中开学考试,21)由于抵抗力差的人感染新冠肺炎的可能性相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多.为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质.通过统计每周到活动中心运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老年人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为ξ,求ξ的分布列和期望;(2)将某人的每周活动时间量与所有老年人的每周平均活动时间量比较,当超出所有老年人的每周平均活动时间量不少于0.74h 时,称该老年人为“活动爱好者”,从参加活动的老年人中随机抽取10人,且抽到k 人为“活动爱好者”的可能性最大,试求k 的值.(每组数据以区间的中点值为代表)解析 (1)由题图可知,从到活动中心参加活动的老年人中任意选取1人,每周活动时间在[8,9)(单位:h)的概率为25.①记“至少有3人每周活动时间在[8,9)(单位:h)”为事件A, 则P(A)=C 53·(25)3·(1−25)2+C 54·(25)4·(1−25)+C 55(25)5=9923 125.②随机变量ξ所有可能的取值为0,1,2,P(ξ=0)=C 33C 53=110,P(ξ=1)=C 32C 21C 53=35,P(ξ=2)=C 31C 22C 3=310,则ξ的分布列如下:故E(ξ)=0×110+1×35+2×310=65. (2)老年人的每周活动时间的平均值为6.5×0.06+7.5×0.35+8.5×0.4+9.5×0.15+10.5×0.04=8.26(h),则老年人中“活动爱好者”的活动时间为[9,11](单位:h),参加活动的老年人中为“活动爱好者”的概率为p=0.19,若从参加活动的老年人中随机抽取10人,且抽到X 人为“活动爱好者”,则X~B(10,0.19), 若k 人的可能性最大,则P(X=k)=C 10k p k(1-p)10-k,k=0,1,2,3, (10)由题意有{P(X =k)≥P(X =k −1),P(X =k)≥P(X =k +1),即{C 10k (0.19)k (0.81)10−k ≥C 10k−1(0.19)k−1(0.81)11−k ,C 10k (0.19)k (0.81)10−k ≥C 10k+1(0.19)k+1(0.81)9−k , 解得1.09≤k ≤2.09,由k ∈N *,得k=2.6.(2022届广东汕头金山中学期中,19)如图,李先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有L 1、L 2两条路线,L 1路线上有A 1、A 2、A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1、B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条较好的上班路线,并说明理由.解析 (1)设“走L 1路线最多遇到1次红灯”为事件A,则P(A)=C 30×(12)3+C 31×12×(1−12)2=12, 所以走L 1路线,最多遇到1次红灯的概率为12. (2)依题意,X 的可能取值为0,1,2. P(X=0)=(1−34)×(1−35)=110,P(X=1)=34×(1−35)+(1−34)×35=920,P(X=2)=34×35=920. 随机变量X 的分布列为所以E(X)=0×110+1×920+2×920=2720. (3)设选择L 1路线遇到红灯次数为Y,随机变量Y 服从二项分布Y~B (3,12),所以E(Y)=3×12=32. 因为E(X)<E(Y),所以选择L 2路线上班较好.7.(2019天津,16,13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解析 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B (3,23),从而P(X=k)=C 3k ·(23)k (13)3−k ,k=0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}. 由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立, 从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)=827×29+49×127=20243. 8.(2018课标Ⅰ,20,12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是不是不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 解析 (1)20件产品中恰有2件不合格品的概率为f(p)=C 202p 2(1-p)18.因此f'(p)=C 202[2p(1-p)18-18p 2(1-p)17]=2C 202p(1-p)17(1-10p).令f'(p)=0,得p=0.1,当p ∈(0,0.1)时,f'(p)>0; 当p ∈(0.1,1)时,f'(p)<0. 所以f(p)的最大值点为p 0=0.1. (2)由(1)知,p=0.1,(i)令Y 表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y, 所以EX=E(40+25Y)=40+25EY=490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于EX>400,故应该对余下的产品作检验.考法三 正态分布问题的求解方法1.(2022届江苏苏州调研,3)已知随机变量ξ服从正态分布N(0,1),如果P(ξ≤1)=0.84,则P(-1<ξ≤0)=( )A.0.34B.0.68C.0.15D.0.07 答案 A2.(2022届江苏徐州期中,5)某单位招聘员工,先对应聘者的简历进行评分,评分达标者进入面试环节,现有1000人应聘,他们的简历评分X 服从正态分布N(60,102),若80分及以上为达标,则估计进入面试环节的人数为( )(附:若随机变量X~N(μ,σ2),则P(μ-σ<X<μ+σ)≈0.6827,P(μ-2σ<X<μ+2σ)≈0.9545,P(μ-3σ<X<μ+3σ)≈0.9973)A.12B.23C.46D.159 答案 B3.(多选)(2022届湖南湘潭9月模拟,10)已知随机变量X 服从正态分布N(0,22),则( ) A.X 的数学期望为E(X)=0 B.X 的方差为D(X)=2 C.P(X>0)=12D.P(X>2)=12 答案 AC4.(2022届河北9月开学摸底联考,7)含有海藻碘浓缩液的海藻碘盐,是新一代的碘盐产品.海藻中的碘80%为无机碘,10%~20%为有机碘,海藻碘盐兼备无机碘和有机碘的优点.某超市销售的袋装海藻碘食用盐的质量X(单位:克)服从正态分布N(400,4),某顾客购买了4袋海藻碘食用盐,则至少有2袋的质量超过400克的概率为( ) A.1116 B.34 C.58 D.516答案 A5.(2022届(新高考)第一次月考,19)数学建模是高中数学核心素养的一个组成部分,数学建模能力是应用意识和创新意识的重要表现.为全面推动数学建模活动的开展,某学校举行了一次数学建模竞赛活动,已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图.(1)为了对数据进行分析,将60分以下的成绩定为不合格,60分以上(含60分)的成绩定为合格.为科学评估该校学生数学建模水平,决定利用分层随机抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会.记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列和数学期望;(2)已知这60名学生的数学建模竞赛成绩X 服从正态分布N(μ,σ2),其中μ可用样本平均数近似代替,σ2可用样本方差近似代替(每组数据以区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,试估计此次竞赛受到奖励的人数.(结果根据四舍五入保留到整数位)若随机变量X~N(μ,σ2),则P(μ-σ<X ≤μ+σ)≈0.6827,P(μ-2σ<X ≤μ+2σ)≈0.9545,P(μ-3σ<X ≤μ+3σ)≈0.9973.解析 (1)由题中频率分布直方图和分层随机抽样的方法,可知抽取的10人中合格的人数为(0.01+0.02)×20×10=6,不合格的人数为10-6=4. 因此,ξ的可能值为0,1,2,3,4,P(ξ=0)=C 64C 104=114,P(ξ=1)=C 41C 63C 104=821,P(ξ=2)=C 42C 62C 104=37,P(ξ=3)=C 43C 61C 104=435,P(ξ=4)=C 44C 104=1210.故ξ的分布列为所以ξ的数学期望E(ξ)=0×114+1×821+2×37+3×435+4×1210=85. (2)由题意可知,μ=(30×0.005+50×0.015+70×0.02+90×0.01)×20=64,σ2=(30-64)2×0.1+(50-64)2×0.3+(70-64)2×0.4+(90-64)2×0.2=324,所以σ=18.由X 服从正态分布N(μ,σ2),得P(64-18<X ≤64+18)=P(46<X ≤82)≈0.6827,则P(X>82)=12(1-0.6827)=0.15865,P(X>46)=0.6827+0.15865=0.84135,60×0.84135≈50,所以估计此次竞赛受到奖励的人数为50.6.(2022届辽宁渤海大学附中考试,20)随着我国国民消费水平的不断提升,进口水果受到了人们的喜爱,世界各地鲜果纷纷从空中、海上汇聚中国:泰国的榴莲、山竹、椰青,厄瓜多尔的香蕉,智利的车厘子等水果走进了千家万户.某种水果按照果径大小可分为五个等级:特等、一等、二等、三等和等外.某水果进口商从采购的一批水果中随机抽取500个,利用水果的等级分类标准得到的数据如下:(1)若将样本频率视为概率,从这批水果中随机抽取6个,求恰好有3个水果是二等级别的概率; (2)若水果进口商进口时将特等级别与一等级别的水果标注为优级水果,则用分层随机抽样的方法从这500个水果中抽取10个,再从抽取的10个水果中随机抽取3个,Y 表示抽取的优级水果的数量,求Y 的分布列及数学期望E(Y).解析 (1)设从500个水果中随机抽取一个,抽到二等级别水果的事件为A,则P(A)=250500=12, 随机抽取6个,设抽到二等级别水果的个数为X,则X~B (6,12), 所以恰好抽到3个二等级别水果的概率为P(X=3)=C 63(12)3(12)3=516.(2)用分层随机抽样的方法从500个水果中抽取10个, 其中优级水果有3个,非优级水果有7个. 则Y 所有可能的取值为0,1,2,3.P(Y=0)=C 73C 103=724,P(Y=1)=C 72C 31C 103=2140,P(Y=2)=C 71C 32C 103=740,P(Y=3)=C 33C 103=1120.所以Y 的分布列为所以E(Y)=0×724+1×2140+2×740+3×1120=910.7.(2017课标Ⅰ,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性;(ii)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.9 5经计算得x=116∑i=116x i=9.97,s=√116∑i=116(x i−x)2=√116(∑i=116x i2−16x2)≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974.0.997416≈0.9592,√0.008≈0.09.解析(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望为EX=16×0.0026=0.0416.(2)(i)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由x =9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查. 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008, 因此σ的估计值为√0.008≈0.09.。

高中数学二项分布及其应用知识点+练习

高中数学二项分布及其应用知识点+练习
A. B. C. D.
【例6】某商场经销某商品,顾客可采用一次性付款或分期付款购置.根据以往资料统计,顾客采用一次性付款的概率是 ,经销一件该商品,假设顾客采用一次性付款,商场获得利润 元;假设顾客采用分期付款,商场获得利润 元.
⑴ 求 位购置该商品的顾客中至少有 位采用一次性付款的概率;
⑵ 求 位位顾客每人购置 件该商品,商场获得利润不超过 元的概率.
【例25】从 位同学〔其中 女, 男〕中,随机选出 位参加测验,每位女同学能通过测验的概率均为 ,每位男同学能通过测验的概率均为 ,试求:
⑴选出的3位同学中至少有一位男同学的概率;
⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.
【例26】甲、乙两个篮球运发动互不影响地在同一位置投球,命中率分别为 与 ,且乙投球2次均未命中的概率为 .
预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.
【例33】某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
次独立重复试验中,事件 恰好发生 次的概率为 .
2.二项分布
假设将事件 发生的次数设为 ,事件 不发生的概率为 ,那么在 次独立重复试验中,事件 恰好发生 次的概率是 ,其中 .
于是得到 的分布列




由于表中的第二行恰好是二项展开式 各对应项的值,所以称这样的离散型随机变量 服从参数为 , 的二项分布,记作 .
⑶甲组 名男生、 名女生;乙组 名男生、 名女生,今从甲、乙两组中各选 名同学参加

2016高考数学一轮复习 12-5 二项分布与正态分布课件 新人教A版

2016高考数学一轮复习 12-5 二项分布与正态分布课件 新人教A版
第 5讲
最新考纲
二项分布与正态分布
1.了解条件概率和两个事件相互独立的概念;
2.理解n次独立重复试验的模型及二项分布.能解决一些 简单的实际问题;3.了解正态密度曲线的特点及曲线所 表示的意义,并进行简单应用.
知 识 梳 理
1.条件概率及其性质
(1ห้องสมุดไป่ตู้对于任何两个事件A和B,在已知事件A发生的条件下, 条件概率 事件B发生的概率叫做_________ ,用符号P(B|A)来表
- -


(2)设 C 表示事件“观众丙选中 3 号歌手”, C2 3 4 则 P(C)= 3= , C5 5
依题意,A,B,C 相互独立,A,B,C相互独立, 且 ABC,ABC,ABC,ABC 彼此互斥. 又 P(X=2)=P(ABC)+P(ABC)+P(ABC) 2 3 2 2 2 3 1 3 3 33 = × × + × × + × × = , 3 5 5 3 5 5 3 5 5 75 2 3 3 18 P(X=3)=P(ABC)= × × = , 3 5 5 75 33 18 17 ∴P(X≥2)=P(X=2)+P(X=3)= + = . 75 75 25
- - - -
(1)显然, “两人各射击一次,都击中目标”就是事件 AB, 又由于事件 A 与 B 相互独立,∴P(AB)=P(A)· P(B)=0.8× 0.8=0.64. (2)“两人各射击一次,恰好有一人击中目标”包括两种情 况:一种是甲击中乙未击中(即 AB),另一种是甲未击中乙 击中(即AB).根据题意,这两种情况在各射击一次时不可 能同时发生,即事件 AB与AB 是互斥的,所以所求概率为 P=P(AB)+P(AB)=P(A)· P(B)+ P(A)· P(B)=0.8×(1-0.8) +(1-0.8)×0.8=0.16+0.16=0.32.

高考数学第一轮复习:《二项分布与正态分布》

高考数学第一轮复习:《二项分布与正态分布》

高考数学第一轮复习:《二项分布与正态分布》最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.4.能解决一些简单的实际问题.【教材导读】1.条件概率和一般概率的关系是什么?提示:一般概率的性质对条件概率都适用,是特殊与一般的关系.2.事件A,B相互独立的意义是什么?提示:一个事件发生的概率对另一个事件发生的概率没有影响.3.在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A恰好发生k次的概率值为什么是C k n p k(1-p)n-k?提示:n次恰好发生k次,为C k n个互斥事件之和,每个互斥事件发生的概率为p k(1-p)k,故有上述结论.4.正态分布中最为重要的是什么?提示:概念以及正态分布密度曲线的对称性.1.条件概率及其性质条件概率的定义条件概率的性质一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义设A、B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)与对立事件的关系如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,设在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图(1)所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图(2)所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ <X≤μ+σ)=0.6826;②P(μ-2σ <X≤μ+2σ)=0.9544;③P(μ-3σ <X≤μ+3σ)=0.9974.【重要结论】1.P(A)=a,P(B)=b,P(C)=c,则事件A,B.C至少有一个发生的概率为1-(1-a)(1-b)(1-c).2.X~N(μ,σ),若P(X<a)=P(X>b),则正态密度曲线关于直线x=a+b2对称.1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()(A)1 (B)5 3(C)5 (D)9B解析:因为μ=2,根据正态分布的性质得a+2+2a-32=2,解得a=53.2.已知随机变量X服从正态分布N(2,32),且P(X≤1)=0.30,则P(2<X<3)等于() (A)0.20 (B)0.50(C)0.70 (D)0.80A 解析:∵该正态密度曲线的对称轴方程为x =2, ∴P(X ≥3)=P(X ≤1)=0.30,∴P (1<X <3)=1-P(X ≥3)-P(X ≤1)=1-2×0.30=0.40,∴P (2<X <3)=12P (1<X <3)=0.20. 3.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )(A)56 (B)45 (C)3132(D)12C 解析: ∵函数f(x)=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12,∴P(X ≤4)=1-P(X =5)=1-125=3132.4.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长幼苗的概率为________.答案:0.725.在一次高三数学模拟考试中,第22题和23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12,则其中甲、乙两名学生选做同一道题的概率为________.答案:12考点一 条件概率(1)某射击手射击一次命中的概率是0.7,两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )(A)710 (B)67 (C)47(D)25(2)把一枚硬币任意抛掷三次,事件A 为“至少一次出现反面”,事件B 为“恰有一次出现正面”,则P(B|A)=________.解析:(1)设第一次射中为事件A 、随后一次射中为事件B , 则P(A)=0.7,P(AB)=0.4,所以P(B|A)=P (AB )P (A )=0.40.7=47. (2)由题意,知P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P (AB )P (A )=3878=37.答案:(1)C (2)37【反思归纳】 (1)一般情况下条件概率的计算只能按照条件概率的定义套用公式进行,在计算时要注意搞清楚问题的事件含义,特别注意在事件A 包含事件B 时,AB =B.(2)对于古典概型的条件概率,计算方法有两种:可采用缩减基本事件全体的办法计算P(B|A)=n (AB )n (A );直接利用定义计算P(B|A)=P (AB )P (A ). 【即时训练】 (1)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.(2)某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率是________.解析:(1)解法一 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P(AB)=C 55C 2100,所以P(B|A)=P (AB )P (A )=5×4100×995100=499.解法二 第一次取到不合格产品后,也就是在第二次取之前,还有99件产品,其中有4件不合格的,因此第二次取到不合格品的概率为499.(2)记事件A 为这个家用电器使用了三年, 事件B 为这个家用电器使用到四年,显然事件B A ,即事件AB =B ,故P(A)=0.8,P(AB)=0.4, 所以P(B|A)=P (AB )P (A )=0.5. 答案:(1)499 (2)0.5考点二独立事件的概率甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解析:设A k,B k分别表示“甲、乙在第k次投篮投中”,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(A3)=13+23×12×13+(23)2×(12)2×13=13+19+127=1327.(2)ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P(ξ=2)=P(A1B1A2)+P(A1B1A2B2)=23×12×13+(23)2×(12)2=29,P(ξ=3)=P(A1B1A2B2)=(23)2×(12)2=19.综上知,ξ的分布列为ξ 1 2 3P 232919所以E(ξ)=1×23+2×29+3×19=139.【反思归纳】概率计算的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.【即时训练】 某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列. 解:(1)甲、乙所付费用可以为10元、20元、30元. 甲、乙两人所付费用都是10元的概率为 P 1=13×12=16,甲、乙两人所付费用都是20元的概率为 P 1=12×13=16,甲、乙两人所付费用都是30元的概率为 P 1=1-13-12×1-12-13=136故甲、乙两人所付费用相等的概率为 P =P 1+P 2+P 3=1336.(2)随机变量ξ的取值可以为20,30,40,50,60. P(ξ=20)=12×13=16P(ξ=30)=13×13+12×12=1336P(ξ=40)=12×13+1-12-13×13+1-13-12×12=1136P(ξ=50)=12×1-12-13+1-12-13×13=536P(ξ=60)=1-12-13×1-12-13=136 故ξ的分布列为:P16 1336 1136 536 136考点三 二项分布京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值;(2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.解:(1)根据正态曲线的对称性,由P(ξ<38)=P(ξ>68),得μ=38+682=53. 再由频率分布直方图得⎩⎪⎨⎪⎧(0.01+0.03+b +0.02+a )×10=1,0.1×35+0.3×45+10b ×55+0.2×65+10a ×75=53, 解得⎩⎪⎨⎪⎧a =0.005,b =0.035.(2)样本年龄在[70,80]的票友共有0.05×100=5(人), 由题意η=0,1,2,3,4,5,所以P(η=0)=C 05⎝ ⎛⎭⎪⎫1-235=1243, P(η=1)=C 15⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫1-234=10243, P(η=2)=C 25⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-233=40243, P(η=3)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫1-232=80243, P(η=4)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫1-231=80243, P(η=5)=C 55⎝ ⎛⎭⎪⎫235=32243, 所以η的分布列为η 012345 P1243 10243 40243 80243 8024332243所以E(η)=0×1243+1×10243+2×40243+3×80243+4×80243+5×32243=103,或根据题设,η~B ⎝ ⎛⎭⎪⎫5,23,P(η=k )=C k 5⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-235-k (k =0,1,2,3,4,5), 所以E(η)=5×23=103.【反思归纳】 在实际问题中具体列出服从二项分布的随机变量的概率分布列对解决问题有直观作用,求解服从二项分布的随机变量的概率分布列和数学期望,只要按照公式计算即可.【即时训练】 某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数所进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.解:(1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一 ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340. P(ξ=0)=C 02×⎝ ⎛⎭⎪⎫37402=13691600,P(ξ=1)=C 12×340×3740=111800, P(ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91600,故所求分布列为X 0 12P13691600111800 91600ξ的均值为E(ξ)=0×13691600+1×111800+2×91600=320,ξ的方差为D(ξ)=⎝ ⎛⎭⎪⎫0-3202×13691600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91600=111800.解法二 求ξ的分布列同解法一.ξ的均值为E(ξ)=2×340=320,ξ的方差为D(ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.考点四 正态分布(1)在某项测量中,测量结果ξ服从正态分布N (4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为( )(A)0.2 (B)0.4 (C )0.8(D)0.9(2)已知三个正态分布密度函数f i (x)=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3(B)μ1>μ2=μ3,σ1=σ2<σ3(C)μ1=μ2<μ3,σ1<σ2=σ3(D)μ1<μ2=μ3,σ1=σ2<σ3(3)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()(A)73(B)53(C)5 (D)3解析:(1)∵ξ服从正态分布N(4,σ2)(σ>0),∴曲线的对称轴是直线x=4,∴ξ在(4,+∞)内取值的概率为0.5.∵ξ在(0,4)内取值的概率为0.4,∴ξ在(0,+∞)内取值的概率为0.5+0.4=0.9.(2)正态分布密度函数f2(x)和f3(x)的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又f2(x)的对称轴的横坐标值比f1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数f1(x)和f2(x)的图像一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.故选D.(3)因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3+a+22=3,解得:a=73.故选A.答案:(1)D(2)D(3)A【反思归纳】(1)在计算服从正态分布的随机变量在特殊区间上的概率时要充分利用正态密度曲线的对称性,将所求的概率转化到我们已知区间上概率.(2)根据正态密度曲线的对称性,当P(ξ>x1)=P(ξ<x2)时必然有x1+x22=μ.【即时训练】为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中体重属于正常情况的人数是()(A)997 (B)954(C)819 (D)683解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ≤X≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.答案:D正态分布与二项分布的综合某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?审题指导满分展示:解:解答:(1)解:20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)解:由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于EX>400,故应该对余下的产品作检验.命题意图:本题考查二项分布、数学期望等基础知识,考查综合运用概率统计知识分析问题和解决问题的能力.课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)=()(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P (AB )P (A )=1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P (AB )P (A )=12×1212=12.故选B.6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得:C k 512k ×125-k =C k +1512k +1×124-k ,解得k =2.故选C.7.某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1(B)0.2(C)0.7 (D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D.9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200. 答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2 .依题意,X ~B ⎝ ⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( ) (A)5 (B)10 (C)15(D)20 B 解析:因为ξ~Bn ,12, 所以E (ξ)=n2, 又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924 C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X-N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=________.解析:∵随机变量X~N(3,σ2),∴P(X>3)=P(X<3)=0.5,∵P(X>m)=0.3,∴P(X>6-m)=P(X<m)=1-P(X>m)=1-0.3=0.7.答案:0.714.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P(0<ξ<3)=P(ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850(n ≤16,n ∈N *),850(n ≥17,n ∈N *).(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P(B|A)=P(AB)P(A)=0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X表示当天的利润(单位:元),X的分布列为E(X)=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y表示当天的利润(单位:元),Y的分布列为:E(Y)=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E(X)>E(Y),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

7.4 二项分布与超几何分布(精练)【题组一 二项分布】1.(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为34,现有3位患有该病的患者服用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为( )A .2764B .964C .364D .34【答案】B【解析】由已知3位患者被治愈是相互独立的,每位患者被治愈的概率为34,则不被治愈的概率为14所以3位患者中恰有1为患者被治愈的概率为12133194464P C æöæö=´´=ç÷ç÷èøèø故选:B 2.(2020·北京高二期末)已知随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,则二项分布的参数n ,p 的值为( )A .4n =,12p =B .6n =,13p =C .8n =,14p =D .10n =,15p =【答案】D【解析】随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,可得2np =,()1 1.6np p -=,解得0.2p =,10n =,故选:D.3.(2020·山西晋中市)某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为( ).A .60,24B .80,120C .80,24D .60,120【答案】D【解析】设该同学20次罚篮,命中次数为X ,则320,5X B æöç÷èø:,所以()320125E X =´=,()3324201555D X æö=´´-=ç÷èø,所以该同学得分5X 的期望为()551260E X =´=,方差为()224551205D X =´=.故选:D4.(2020·营口市第二高级中学高二期末)从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取6次,设摸得黑球的个数为X ,已知()3E X =,则m 等于( )A .2B .1C .3D .5【答案】C【解析】根据题意可得出63()()(33kk m k m P X k C m m-==++ ,即3(6,)3X B m ~+ 所以()36333E X m m=´=Þ=+故选C 5.(多选)(2020·全国高二单元测试)若随机变量ξ~B 1(5,)3,则P (ξ=k )最大时,k 的值为( )A .1B .2C .3D .4【答案】AB【解析】依题意5512()33kkk P k C x -æöæö==ç÷ç÷èøèø,k=0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k=2或1时,P (ξ=k )最大.故选:AB ..6.(2021·广东东莞)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(1)写出这组数据的众数和中位数;(2)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(3)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X 表示抽到“好体能”学生的人数,求X 的分布列【答案】(1)众数和中位数分别是5.8,5.8;(2)19140;(3)分布列见解析;【解析】(1)这组数据的众数和中位数分别是5.8,5.8;(2)设至少有2人是“好体能”的事件为A ,则事件A 包含得基本事件个数为;2134124C C C +g 总的基本事件个数为316C ,213412431619()140C C C P A C +==g (3)X 的可能取值为0,1,2,3,由于该校男生人数众多,故X 近似服从二项分布1(3,)4B 3327(0)()464P x ===,1231327(1)()4464P x C ===g ,223139(2)(4464P x C ===g ,311(3)(464P x ===X 的分布列为:X123P276427649641647.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]L 这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【答案】(1)0.25m = , 1.25n =, 3.5t =;(2)分布列见详解;2.1.【解析】(1)由题意可知120名学生中身高大于1.60米的有18人,所以该校学生身高大于1.60米的频率为180.15120= 记d 为学生身高,则()()31.2 1.3 1.7 1.80.025120p p d d ££=<£== ()()151.3 1.4 1.6 1.70.125120p p d d <£=<£==()()()11.4 1.5 1.5 1.6120.02520.1250.352p p d d <£=<£=-´-´=所以0.0250.250.1m == ,0.125 1.250.1n ==,0.353.50.1t ==;(2)由(1)知学生身高在[]1.41.6, 的概率20.350.7p =´=随机变量X 服从二项分布()~3,0.7X B 则()()33010.70.027p x C ==´-= ()()213110.70.70.189p x C ==´-´=()()1223210.70.70.441p x C ==´-´=()33330.70.343p x C ==´=所以X 的分布列为X0123P0.0270.1890.4410.34330.7 2.1EX =´=8.(2020·湖北随州市·高二期末)疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X ,求X 的分布列;(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.【答案】(1)答案见解析;(2)方案一数学期望为110(元),方案二数学期望为100(元);方案一.【解析】(1)由题意易知,方案一和方案二中单次抽到红球的概率为13,抽到白球的概率为23,依题意,X 的取值可能为90,110,130,150.且30328(90)327P X C æö==×=ç÷èø,1213124(110)339P X C æöæö==××=ç÷ç÷èøèø223122(130)339P X C æöæö==××=ç÷ç÷èøèø,33311(150)327P X C æö==×=ç÷èø其分布列为X 90110130150p8274929127(2)由(1)知选择方案一时最终获得返金券金额的数学期望为8421()90110130150110279927E X =´+´+´+´=(元),选择方案二时,设摸到红球的次数为Y ,最终可能获得返金券金额为Z 元,由题意可知,1~3,3Y B æöç÷èø,得1()313E Y =´=()(100)100()100E Z E Y E Y ===由()()E X E Z >可知,该顾客应该选择方案一抽奖.【题组二 超几何分布】1.(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X ,求X 的数学期望;(2)取出的3个球中红球个数多于白球个数的概率.【答案】(1)910;(2)13.【解析】(1)取出的3个球中红球的个数为X ,可能取值为:0,1,2,3,所以()37310350120p X C C===, ()2731016331120p X C C C===, ()1731022132120p X C C C===,()3103313120p X C C===.所以X 的数学期望()35632119012312012012012010E X =´+´+´+´=.(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,而()12341310320C C P A C ==,()()21372310217212040C C P A P X C =====,()()3037331013120C C P A P X C ×====,所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=.2.(2021·山东德州市)在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表:员工编号12345678910捐款数额120802155013019530090200225(1)若从这10名员工中随机选取2人,则选取的人中捐款恰有一人高于200元,一人低于200元的概率;(2)若从这10名员工中任意选取4人,记选到的4人中捐款数额大于200元的人数为X ,求X 的分布列和数学期望.【答案】(1)25;(2)分布列见解析,65.【解析】(1)10名员工中捐款数额大于200元的有3人,低于200元的有6人故选取的人中捐款恰有一人高于200元,一人低于200元的概率为:1136210182455C C P C ===(2)由题知,10名员工中捐款数额大于200元的有3人,则随机变量X 的所有可能取值为0,1,2,3()4741035102106C P X C ====,()133********12102C C P X C ====,()2237410623221010C C P X C ====()313741071321020C C P X C ====则X 的分布列为X0123P1612310130()1131601236210305E X =´+´+´+´=;(用超几何分布公式()366105nM E X N ´===计算同样得分)3.(2020·河北省盐山中学高二期末)在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:空气质量指数优良好轻度污染中度污染重度污染天数5a84b空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.(1)求a ,b 的值;(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为X ,求X 的分布列及数学期望.【答案】(1)10a =,3b =.(2)61天(3)见解析【解析】(1)由题意知从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天,所以空气质量为Ⅰ级的天数为总天数的12,所以5+a=15,8+4+b=15,可得10a =,950.(2)依题意可知,一年中每天空气质量指数为优的概率为51306P ==,则一年中空气质量指数为优的天数约为1366616´=.(3)由题可知抽取的10天的数据中,Ⅰ级的天数为5,Ⅱ级和Ⅲ级的天数之和为5,满足超几何分布,所以X 的可能取值为0,1,2,3,4,4541051(0)21042C P X C ====,135510505(1)21021C C P X C ====,225541010010(2)21021C C P X C ====,3551410505(3)21021C C P X C ====,4541051(4)21042C P X C ====,X 的分布列为X1234P142 521 1021521 142故151051()0123424221212142E X =´+´+´+´+´=.4.(2020·延安市第一中学)在一个袋中,装有大小、形状完全相同的3个红球、2个黄球.现从中任取2个球,设随机变量x 为取得红球的个数.(1)求x 的分布列;(2)求x 的数学期望()E x 和方差()D x .【答案】(1)详见解析(2)6()5E x =,9()25D x =【解析】(1)x 的取值为0,1,2.()0232251010C C P C x ===,()113225631105C C P C x ====,()2032253210C C P C x ===,则x 的分布列为:x012P11035310(2)()1336012105105E x =´+´+´=,2226163639()0125105551025D x æöæöæö=-´+-´+-´=ç÷ç÷ç÷èøèøèø.5.(2020·西藏拉萨市)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有n 天,从这n 天中任取两天,设X 为这两天中客流量超过7万人的天数.求X 的分布列和期望.【答案】(1)①4.15,②4.125;(2)分布列见解析,()23E X =【解析】(1)①平均值为()2.50.2 3.50.25 4.50.4 5.50.05 6.50.057.50.051 4.15´+´+´+´+´+´´=②设中位数为x ,则()0.200.250.4040.5x ++-=解得中位数为 4.125x =(2)可知15n =其中超过7万人次的有5天()2010521545301057C C P X C ====()111052155010110521C C P X C ====()02105215102210521C C P X C ====X012P371021221所以()31022012721213E X =´+´+´=6.(2021·福建莆田市)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设x 为取出的4个球中红球的个数,求x 的分布列和数学期望.【答案】(1)715;(2)见解析.【解析】(1)记事件:A 取出的4个球中恰有1个红球,事件1:A 取出的4个球中唯一的红球取自于甲盒,事件2:A 取出的4个球中唯一的红球取自于乙盒,则12A A A =U ,且事件1A 与2A 互斥,由互斥事件的概率公式可得()()()1221134324122246715C C C C C P A P A P A C C +=+==,因此,取出的4个球中恰有1个红球的概率为715;(2)由题意知随机变量x 的可能取值为0、1、2、3,()22342246105C C P C C x ===,()7115P x ==,()111223243222463210C C C C C P C C x +===,()123222461330C C P C C x ===.所以,随机变量x 的分布列如下表所示:x123P15715310130因此,随机变量x 的数学期望为17317012351510306E x =´+´+´+´=.7.(2020·福建省南安市侨光中学高二月考)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题.(1)求甲选手能晋级的概率;(2)若乙选手每题能答对的概率都是34,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平.【答案】(1)45;(2)乙选手比甲选手的答题水平高【解析】解法一:(1)记“甲选手答对i 道题”为事件i A ,1,2,3i =,“甲选手能晋级”为事件A ,则23A A A =U .()()()()2134242323336645C C C P A P A A P A P A C C =È=+=+=;(2)设乙选手答对的题目数量为X ,则3~3,4X B æöç÷èø,故()39344E X =´=,设甲选手答对的数量为Y ,则Y 的可能取值为1,2,3,()124236115C C P Y C ===,()214236325C C P Y C ===,()3436135C P Y C ===,故随机变量Y 的分布列为Y123P153515所以,()1311232555E Y =´+´+´=,则()()E X E Y >,所以,乙选手比甲选手的答题水平高;解法二:(1)记“甲选手能晋级”为事件A ,则()124236141155C C P A C =-=-=;(2)同解法二.8.(2020·全国高二课时练习)某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A 、B 、C 三个不同的专业,其中A 专业2人,B 专业3人,C 专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;(2)设X 表示取到B 专业的人数,求X 的分布列.【答案】(1)79120(2)见解析【解析】()1令事件A 表示“3个来自于两个不同专业”,1A 表示“3个人来自于同一个专业”,2A 表示“3个人来自于三个不同专业”,()3335131011120C C P A C +==,()111235231030120C C C P A C ==,3\个人来自两个不同专业的概率:()()()1211307911120120120P A P A P A =--=--=.()2随机变量X 有取值为0,1,2,3,()0337310350120C C P X C ===,()1237310631120C C P X C ===,()2137310212120C C P X C ===,()307331013120C C P X C ===,X \的分布列为:X123P3512063120211201120【题组三 二项分布与超几何分布综合运用】1.(2020·甘肃省会宁县第四中学) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2019年上半年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如下茎叶图所示(十位为茎,个位为叶).(1)在这15天的 2.5PM 日均监测数据中,求其中位数;(2)从这15天的数据中任取2天数据,记x 表示抽到 2.5PM 监测数据超标的天数,求x 的分布列及数学期望;(3)以这15天的 2.5PM 日均值来估计该市下一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.【答案】(1)45;(2)分布列见解析,45;(3)219.【解析】(1)由茎叶图可得中位数是45.(2)依据条件,x 服从超几何分布:其中15N =,6M =,2n =,x 的可能值为0,1,2,()026921512035C C P C x ===,()116921518135C C P C x ===,()2069215512357C C P C x ====,所以x 的分布列为:x012P1235183517()121814012353575E x =´+´+´=.(3)依题意可知,一年中每天空气质量达到一级或二级的概率为93=155P =,一年中空气质量达到一级或二级的天数为h ,则3365,5B h æöç÷èø:,33652195E h =´=,∴一年中平均有219天的空气质量达到一级或二级.2.(2020·山东高二期末)1933年7月11日,中华苏维埃共和国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率;(2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.【答案】(1)35 ;(2)49;(3)选择A .【解析】(1) A 恰好答对两个问题的概率为214236C C 3C 5=;(2) B 恰好答对两个问题的概率为223214339C æö´=ç÷èø;(3) X 所有可能的取值为1,2,3. ()124236C C 11C 5P X ===,214236C C 3(2)C 5P X ===,304236C C 1(3)C 5P X ===,所以131()1232555E X =´+´+´=,2221312()(12)(22)(32)5555D X =-´+-´+-´=;而23,3Y B æö-ç÷èø,2()323E Y =´=,212()3333D Y =´´=,所以()()E X E Y =,()()D X D Y <,可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定.所以选择投票给学生A .3.(2021·湖南高二期末)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)拿4次所得分数x 的分布列和数学期望()E x 【答案】(1)34;(2)分布列见解析;期望为2.【解析】(1)一次拿到奇数的概率3162P ==,所以拿2次得分为0分的概率为2021124C æö=ç÷èø所以拿2次得分不小于1分的概率为2211311244C æö-=-=ç÷èø(2)x 可以取值:0,1,2,3,4所以()404121601C P x æö=ç÷èø==()13141112124C P x æöæö´=ç÷ç÷èøèø==()22241132228C P x æöæö´=ç÷ç÷èøèø==()31341112324C P x æöæö´=ç÷ç÷èøèø==()404411122164P C x æöæö´=ç÷ç÷èøèø==分布列x01234P116143814116满足二项分布概率1~42B x æöç÷èø,1()=4=22E x \´4.(2020·武汉外国语学校高二期中)为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.(Ⅰ)从抽取的12人中随机选取3人,记x 表示成绩优良的人数,求x 的分布列及数学期望;(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到k 人的成绩是优良的可能性最大,求k 的值.【答案】(Ⅰ)分布列见解析;()2E x =;(Ⅱ)7k =.【解析】(Ⅰ)由题意12人中有8人体质优良,x 可能的取值为0,1,2,3,()343121055C P C x ===,()128431212155C C P C x ×===,()218431228255C C P C x ×===,()3831214355C P C x ===,所以x 的分布列为:x0123P155125528551455数学期望()1122814 01232 55555555E x=´+´+´+´=;(Ⅱ)由题意可知,抽取的10人中,成绩是优良的人数210,3X Bæöç÷èø∼,所以()10 102133k k kP X k C-æöæö==××ç÷ç÷èøèø,0,1,210k=×××,令()()10110111010101101110102121333321213333k k k kk kk k k kk kC CC C------+-++ìæöæöæöæö×׳××ïç÷ç÷ç÷ç÷ïèøèøèøèøíïæöæöæöæö×׳××ç÷ç÷ç÷ç÷ïèøèøèøèøî,解得192233k££,又kÎN,所以7k=,所以当7k=时,抽到k人的成绩是优良的可能性最大.。

2020届高考数学一轮复习第十篇 第7节二项分布与正态分布课时作业理(含解析)新人教A版

2020届高考数学一轮复习第十篇 第7节二项分布与正态分布课时作业理(含解析)新人教A版

第7节 二项分布与正态分布课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )=( )(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P ABP A =1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.(2019江西鹰潭一中模拟)端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P ABP A =12×1212=12.故选B. 6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得: C k 512k×125-k =C k +1512k +1×124-k , 解得k =2.故选C.7.(创新题)某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.(2019济宁一中)已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1 (B)0.2 (C)0.7(D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D. 9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200.答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316,X 的所有可能取值为0,1,2 .依题意,X ~B ⎝⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( )(A)5 (B)10 (C)15(D)20B 解析:因为ξ~Bn ,12,所以E (ξ)=n2,又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49, 所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X -N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________. 解析:∵随机变量X ~N (3,σ2),∴P (X >3)=P (X <3)=0.5, ∵P (X >m )=0.3,∴P (X >6-m )=P (X <m )=1-P (X >m )=1-0.3=0.7. 答案:0.714.(2019林州一中质检)某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P (0<ξ<3)=P (ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.(2019南昌模拟)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E (ξ).解:(1)由题知,P (80≤X <85)=12-P (X <75)=0.2,P (85≤X <95)=0.3-0.1=0.2,所以所求概率P =A 33×0.2×0.2×0.1=0.024. (2)P (75≤X ≤85)=1-2P (X <75)=0.4, 所以ξ服从二项分布B (3,0.4),P (ξ=0)=0.63=0.216,P (ξ=1)=3×0.4×0.62=0.432, P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064,所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850n ≤16,n ∈N *,850n ≥17,n ∈N *.(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P (B |A )=P AB P A =0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X 表示当天的利润(单位:元),X 的分布列为X 550 650 750 850 P0.10.20.160.54E (X )=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y 表示当天的利润(单位:元),Y 的分布列为:Y 600 700 800 P0.10.20.7E (Y )=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E (X )>E (Y ),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。

2016版高考数学大一轮复习课件:第10章-第8节二项分布及应用

2016版高考数学大一轮复习课件:第10章-第8节二项分布及应用

检 测
P(A1A2A3…An)=_P_(_A_1_)_P_(A__2)_P_(_A_3_)…__P__(A_n_)____
菜单
第四页,编辑于星期五:二十三点 五十四分。
名师金典·新课标高考总复习·理科数学
基 础 知 识 点
2.二项分布
方 法

在 n 次独立重复试验中,设事件 A 发生的次数为 X,在 巧
名师金典·新课标高考总复习·理科数学
基 础 知 识 点
考向二 [189] 相互独立事件的概率 (2013·大纲全国卷)甲、乙、丙三人进行羽毛球练
习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负
方 法 技 巧
的一方在下一局当裁判.设各局中双方获胜的概率均为12,各
局比赛的结果相互独立,第 1 局甲当裁判.
一天的空气质量为优良的概率是 0.75,连续两天为优良的概
率是 0.6,已知某天的空气质量为优良,则随后一天的空气质
量为优良的概率是( )

A.0.8
B.0.75
课 时


考 向
C.0.6
D.0.45
时 检

菜单
第十页,编辑于星期五:二十三点 五十四分。
名师金典·新课标高考总复习·理科数学
6.如图 10-8-1,用 K、A1、A2 三类不同的元件连接成
核 那么其中恰有 1 次获得通过的概率是( )
课 时


考 向
4 A.9
2 B.9
4 C.27
2 D.27
时 检 测
【答案】 A
菜单
第七页,编辑于星期五:二十三点 五十四分。
名师金典·新课标高考总复习·理科数学

高三复习资料数学二项分布

高三复习资料数学二项分布

高三数学第一轮复习每课一练二项分布A 卷班级 ____姓名 _______座号 ___12 分,平一局、某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得 得 1 分,输一局得 0 分, 根据以往经验,每局甲赢的概率为1,乙赢的概率为1,且每局比赛输赢互不影响.若甲第 n 局的得分记为 a n ,令 S n a 1 a 223... a n( I )求 S 35 的概率;(Ⅱ) 若规定:当其中一方的积分达到或超过4 分时,比赛结束,否则,继续进行。

设随机变量表示此次比赛共进行的局数,求的分布列及数学期望。

2、一个袋中有大小相同的标有1,2,3,4,5,6 的 6 个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号。

若拿出球的标号是 3 的倍数,则得 1 分,否则得 1 分。

( 1)求拿4 次至少得2 分的概率;(2)求拿4 次所得分数的分布列和数学期望。

3、在盒子里有大小相同,仅颜色不同的乒乓球共出一球确定颜色后放回盒子里,再取下一个球取球 .求: (1)最多取两次就结束的概率;10 个,其中红球 .重复以上操作,最多取(2)整个过程中恰好取到5 个,白球 3 个,蓝球 2 个 .现从中任取3 次,过程中如果取出蓝色球则不再 2 个白球的概率;(3)取球次数的分布列和数学期望.高三数学第一轮复习每课一练二项分布 B 卷班级 ____姓名 _______座号 ___1、一个口袋中装有 n 个红球( n5 且 n N )和 5 个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖. (Ⅰ)试用 n 表示一次摸奖中奖的概率p ;(Ⅱ)若 n5 ,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n 取多少时, P 最大?2、袋子 A 和 B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是1,从 B 中摸出一个红球的3概率为 p . ( 1)从 A 中有放回地摸球,每次摸出一个,有 3 次摸到红球即停止. ① 求恰好摸 5 次停 止的概率; ② 记 5 次之内 (含 5 次 )摸到红球的次数为 ξ,求随机变量 ξ的分布率及数学期望 E (.2)若 A 、 B 两个袋子中的球数之比为1∶ 2,将 A 、B 中的球装在一起后,从中摸出一个红球的概率是2,求 p 的值.53、A 有一只放有x 个红球, y 个白球, z 个黄球的箱子 ( x,y,z ≥0,且 xy z6 ),B 有一只放有3 个红球,2 个白球, 1 个黄球的箱子,两人各自从自己的箱子中任取一球比颜色,规定同色时为B 胜( 1)写出 A 胜的所有基本事件 (2)用 x, y , z 表示 B 胜的概率;( 3)当A 胜,异色时为A 如何调整箱子中球时,才能使自己获胜的概率最大?高三数学第一轮复习每课一练二项分布A 卷班级 ____姓名 _______座号 ___12 分,平一局、某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得 得 1 分,输一局得 0 分, 根据以往经验,每局甲赢的概率为1,乙赢的概率为1,且每局比赛输赢互不影响.若甲第 n 局的得分记为 a n ,令 S n23a 1 a 2 ... a n( I )求 S 3 5 的概率;(Ⅱ) 若规定:当其中一方的积分达到或超过4 分时,比赛结束,否则,继续进行。

最新-高考理科数学(人教版)一轮复习练习:第十篇第7节二项分布与正态分布(1)-word版

最新-高考理科数学(人教版)一轮复习练习:第十篇第7节二项分布与正态分布(1)-word版

最新-高考理科数学(人教版)一轮复习练习:第十篇第7节二项分布与正态分布(1)-word版【选题明细表】基础巩固(时间:30分钟)1.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%)(A)4.56% (B)13.59%(C)27.18% (D)31.74%解析:P(-3<ξ<3)=68.27%,P(-6<ξ<6)=95.45%,则P(3<ξ<6)=×(95.45%-68.27%)=13.59%.2.一台机床有的时间加工零件A,其余时间加工零件B,加工零件A时,停机的概率为,加工零件B时,停机的概率是,则这台机床停机的概率为( A )(A) (B) (C) (D)解析:加工零件A停机的概率是×=,加工零件B停机的概率是(1-)×=,所以这台机床停机的概率是+=.故选A.3.(2017·梅州市一模)箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖,现有4人参与摸奖,恰好有3人获奖的概率是( B )(A) (B)(C) (D)解析:从6个球中摸出2个,共有=15种结果,两个球的号码之积是4的倍数,有(1,4),(2,4),(3,4),(2,6)(4,5),(4,6),共6种结果,所以摸一次中奖的概率是=,所以有4人参与摸奖,恰好有3人获奖的概率是×()3×=.故选B.4.(2017·岳阳市质检)排球比赛的规则是5局3胜制(无平局),甲队在每局比赛获胜的概率都相等为,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( C )(A) (B) (C) (D)。

二项分布、超几何分布与正态分布2023高考数学一轮复习【导与练】高中总复习第1轮教学课件(北师大版)

二项分布、超几何分布与正态分布2023高考数学一轮复习【导与练】高中总复习第1轮教学课件(北师大版)

)
2
解析:因为随机变量ξ服从正态分布 N(2,σ ),
所以正态曲线关于直线 x=2 对称,
又 P(ξ>4)=0.2,所以 P(ξ<0)=0.2,
-(>)
所以所求概率 P(0<ξ<2)=

=0.3.故选 A.
数学
3.箱中有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出2个球,记下
数学
第7节
二项分布、超几何分布与正态分布
数学
课程标准要求
1.通过具体实例,了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的
实际问题.
2.了解超几何分布,理解超几何分布与二项分布的区别与联系,并能解决简单的
实际问题.
3.通过误差模型,了解正态分布的意义,理解正态曲线的性质,会用正态分布解决
实际问题.

N 件产品中,不放回地随机抽取 n 件产品中的次品数.令 p= ,则 p 是 N 件产品的



次品率 ,而 是抽取的 n 件产品的 次品率 ,则 E( )=p,即 EX== np .



数学
释疑
超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超
几何分布的特征:
(1)考察对象分两类.
ξ
P
所以Eξ=0·(1-m)+1·m=m,
0
1-m
所以Dξ=(0-m)2·(1-m)+(1-m)2·m=m(1-m).故选D.
1
m
数学
2.若随机变量ξ服从正态分布N(2,σ2),ξ在区间(4,+∞)上取值的概率是0.2,
则ξ在区间(0,2)上取值的概率为( A

高中试卷-专题7.4 二项分布与超几何分布(含答案)

高中试卷-专题7.4 二项分布与超几何分布(含答案)

专题7.4 二项分布与超几何分布姓名: 班级:重点二项分布与超几何分布的特征难点二项分布与超几何分布的计算一、超几何分布例1-1.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( )。

A 、41004901C C -B 、4100390110490010C C C C C ⋅+⋅C 、4100110C CD 、4100390110C C C ⋅【答案】D【解析】由超几何分布概率公式可知,所求概率为4100110390C C C ⋅,故选D 。

例1-2.有8名学生,其中有5名男生。

从中选出4名代表,选出的代表中男生人数为X ,则其数学期望为=)(X E ( )。

A 、2B 、5.2C 、3D 、5.3【答案】B【解析】随机变量X 的所有可能取值为1、2、3、4,141)1(483315=⋅==C C C X P 、73)2(482325=⋅==C C C X P 、73)3(481335=⋅==C C C X P 、141)4(48345=⋅==C C C X P ,X 的分布列为:X1234P1417373141∴2514137337321411)(=⨯+⨯+⨯+⨯=X E ,故选B 。

例1-3.在含有3件次品的10件产品中,任取4件,X 表示取到的次品数,则==)2(X P 。

【答案】103【解析】X 满足超几何分布,∴103)2(4102723=⋅==C C C X P 。

例1-4.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望 。

【答案】109【解析】由题设知含有红色乒乓球个数ξ的可能取值是0、1、2、3,247)0(3103703=⋅==ξC C C P ,4021)1(3102713=⋅==ξC C C P ,407)2(3101723=⋅==ξC C C P ,1201)3(310733=⋅==ξC C C P ,109120134072402112470)(=⨯+⨯+⨯+⨯=ξE 。

人教B版高考总复习一轮数学精品课件 第11章 第7节二项分布、超几何分布、正态分布

人教B版高考总复习一轮数学精品课件 第11章 第7节二项分布、超几何分布、正态分布

1
3
,用ξ表示这5位乘客在第20层下电梯的人数,求:
(1)随机变量ξ的分布列;
(2)随机变量ξ的均值.

1
(1)ξ~B(5,3),即有
P(ξ=k)=C5
1 k 2 5-k
×(3) ×(3) ,k=0,1,2,3,4,5.
由此可得ξ的分布列为
ξ 0
P
1
32
243
1
1
(2)∵ξ~B(5,3),∴E(ξ)=5× 3
为 0,1,2,3,依题意知 ξ~B(3,0.3).
P(ξ=0)=C30 ×(1-0.3)3=0.343,P(ξ=1)=C31 ×0.3×(1-0.3)2=0.441,
P(ξ=2)=C32 ×0.32×(1-0.3)=0.189,P(ξ=3)=C33 ×0.33=0.027.
的可能取值
ξ的分布列为
从所有物品中随机取出n件(n≤N),则这n件中所含甲类物品数X是一个离
散型随机变量,X能取不小于t且不大于s的所有自然数,其中s是M与n中的
较小者,t在n不大于乙类物品件数(即n≤N-M)时取0,否则t取n减乙类物品
C C-
-
C
件数之差(即t=n-(N-M)),而且P(X=k)=
,k=t,t+1,…,s,
P(X=k)=
C pkqn-k
,k=0,1,…,n,
因此X的分布列如下表所示.
X 0
1
… k
… n
P n0 p0qn
n1 p1qn-1
… nk pkqn-k
… nn pnq0
注意到上述X的分布列第二行中的概率值都是二项展开式
(q+p)n=n0 p0qn+n1 p1qn-1+…+nk pkqn-k+…+nn pnq0 中对应项的值,因此称 X 服从

最新高考一轮总复习《11.5 二项分布与超几何分布》

最新高考一轮总复习《11.5 二项分布与超几何分布》





01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
1.伯努利试验与n重伯努利试验
(1)只包含两个可能结果的试验叫做伯努利试验.
(2)将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯
努利试验.
问题思考
n重伯努利试验具有哪些共同特征?
(4)二项分布是一个概率分布,其概率公式相当于(a+b)n的二项展开式的通
项公式,其中a=p,b=1-p.( × )
(5)从4名男演员和3名女演员中随机选出4名,其中女演员的人数X服从超几
何分布.( √ )
2.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率为
( C )
1
A.
50
由题意可知
P(X=2)=C42
×
1 2
3
×
1 2
1- 3
=
8
.
27
(2)方案一:逐个检验,检验次数为 4.
方案二:设检测次数为 Y,则 Y 的可能取值为 1,5,
所以 P(Y=1)=
1 4
13
=
16
16
,P(Y=5)=181
81
=
65
,
81
所以 Y 的分布列为
Y
P
E(Y)=1×
16
65
+5×
81
81
3
2 2 1
为3 , 3 , 3,且每人答题正确与否互不影响,设 A 队总得分为随机变量 X,则 X 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【导与练】(新课标)2016届高三数学一轮复习第10篇第7节二项分布与正态分布课时训练理【选题明细表】基础过关一、选择题1.已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率( C )(A)事件A,B同时发生(B)事件A,B至少有一个发生(C)事件A,B至多有一个发生(D)事件A,B都不发生解析:P(A)P(B)是指A,B同时发生的概率,1-P(A)·P(B)是A,B不同时发生的概率,即至多有一个发生的概率.2.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为,视力合格的概率为,其他几项标准合格的概率为,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( B )(A)(B)(C)(D)解析:由题意P=××=.故选B.3.(2014西宁模拟)已知P(B|A)=,P(A)=,则P(AB)等于( C )(A)(B)(C)(D)解析:由题意,P(B|A)=,又P(B|A)=,P(A)=,所以P(AB)=P(B|A)·P(A)=×=.4.甲、乙两人进行象棋比赛,比赛采用五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以3∶1的比分获胜的概率为( A )(A)(B)(C)(D)解析:甲以3∶1的比分获胜,即前三局甲胜二局,第四局甲胜,所求的概率为P=()2××=.故选A.5.(2014潍坊模拟)设随机变量X~N(3,1),若P(X>4)=p,则P(2<X<4)等于( C )(A)+p (B)1-p(C)1-2p (D)-p解析:因为随机变量X~N(3,1),观察图得,P(2<X<4)=1-2P(X>4)=1-2p.6.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( C )(A)(B)(C)(D)解析:法一由题得P(A)=,P(B)=,事件A、B至少有一件发生的概率为P=P(A)+P(B)+P(AB)=P(A)·P()+P()·P(B)+P(A)·P(B)=×+×+×=,故选C. 法二依题意得P(A)=,P(B)=,事件A,B中至少有一件发生的概率等于1-P()=1-P()·P()=1-×=,故选C.7.(2014南宁模拟)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为( A )(A)(B)(C)5 (D)3解析:因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以=3,解得a=.二、填空题8.(2014广州模拟)一射手对同一目标独立地射击四次,已知至少命中一次的概率为,则此射手每次射击命中的概率为.解析:由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为1-=.设此射手每次射击命中的概率为p,则(1-p)4=,所以p=.答案:9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是.解析:设“甲、乙二人相邻”为事件A,“甲、丙二人相邻”为事件B,则所求概率为P(B|A),由于P(B|A)=,而P(A)==,AB是表示事件“甲与乙、丙都相邻”,故P(AB)==,于是P(B|A)==.答案:10.已知X~N(μ,σ2),P(μ-σ<X≤μ+σ)=0.68,P(μ-2σ<X≤μ+2σ)=0.95,某次全市20000人参加的考试,数学成绩大致服从正态分布N(100,100),则本次考试120分以上的学生约有人.解析:依题意可知μ=100,σ=10.由于P(μ-2σ<X≤μ+2σ)=0.95,所以P(80<X≤120)=0.95,因此本次考试120分以上的学生约有20000×=500(人).答案:50011.(2014江苏盐城模拟)如图所示的电路有a,b,c三个开关,每个开关开或关的概率都是,且是相互独立的,则灯泡甲亮的概率为.解析:理解事件之间的关系,设“a闭合”为事件A,“b闭合”为事件B,“c闭合”为事件C,则灯亮应为事件AC,且A,C,之间彼此独立,且P(A)=P()=P(C)=.所以P(A C)=P(A)P()P(C)=.答案:三、解答题12.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与.(1)求甲投球2次,至少命中1次的概率;(2)若甲、乙两人各投球2次,求两人共命中2次的概率.解:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B,则P(A)=,P(B)=. (1)法一由题设知,P(A)=,P()=.故甲投球2次至少命中1次的概率为1-P()=,法二由题设知,P(A)=,P()=.故甲投球2次至少命中1次的概率为P(A)P()+P(A)P(A)=.(2)由题设知,P(A)=,P()=,P(B)=,P()=.甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各命中一次;甲命中2次,乙2次均不命中;甲2次均不命中,乙命中2次.概率分别为P1=P(A)P()P(B)P()=,P2=P(AA)P()=,P3=P()P(BB)=.所以甲、乙两人各投球2次,共命中2次的概率为P=P1+P2+P3=++=.能力提升13.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=,则P(Y≥1)= .解析:因为X~B(2,p),所以P(X≥1)=1-P(X=0)=1-(1-p)2=,解得p=.又Y~B(3,p),所以P(Y≥1)=1-P(Y=0)=1-(1-p)3=.答案:14.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入A袋中的概率为.解析:记“小球落入A袋中”为事件A,“小球落入B袋中”为事件B,则事件A的对立事件为B,若小球落入B袋中,则小球必须一直向左落下或一直向右落下,故P(B)=()3+()3=,从而P(A)=1-P(B)=1-=.答案:15.(2014烟台市一模)PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM 2.5标准采用世卫组织设定的最宽限值,即PM 2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM 2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)从这15天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列;(2)以这15天的PM 2.5日均值来估计一年360天的空气质量情况,则其中大约有多少天的空气质量达到一级.解:(1)ξ的可能取值为0,1,2,3,其分布列为P(ξ=k)=(k=0,1,2,3),即(2)依题意可知,一年中每天空气质量达到一级的概率为p==,一年中空气质量达到一级的天数为η,则η~B(360,),所以E(η)=360×=144(天),即一年中空气质量达到一级的天数为144天.探究创新16.某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.(1)试评估该校高三年级男生在全市高中男生中的平均身高状况;(2)求这50名男生身高在172 cm以上(含172 cm)的人数;(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.解:(1)由频率分布直方图,经过计算该校高三年级男生平均身高为(162×+166×+170×+174×+178×+182×)×4=168.72,高于全市的平均值168.(2)由频率分布直方图知,后3组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172 cm以上(含172 cm)的人数为10.(3)∵P(168-3×4<ξ≤168+3×4)=0.9974,∴P(ξ≥180)==0.0013,0.0013×100000=130.∴全市前130名的身高在180 cm以上,这50人中180 cm以上的有2人.随机变量ξ可取0,1,2,于是P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴E(ξ)=0×+1×+2×=.。

相关文档
最新文档