数学:4.1《圆的方程》测试 (新人教A版必修2)

合集下载

2019-2020年高中数学 4.1.2圆的一般方程练习 新人教A版必修2

2019-2020年高中数学 4.1.2圆的一般方程练习 新人教A版必修2

2019-2020年高中数学 4.1.2圆的一般方程练习 新人教A 版必修2基础梳理1.圆的一般方程的定义.当D 2+E 2-4F>0时,二元二次方程x 2+y 2+Dx +Ey +F =0称为圆的一般方程. 2.方程x 2+y 2+Dx +Ey +F =0表示的图形.已知点M(x 0,y 0)和圆的方程x +y +Dx +Ey +F =0.则其位置关系如下表:练习1:二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0在什么条件下表示圆的方程? 答案:A =C≠0,B =0且D 2+E 2-4AF >0练习2:圆x 2+y 2-2x +10y -24=0的圆心为(1,-5),半径为 ►思考应用1.圆的标准方程与圆的一般方程各有什么特点?解析:圆的标准方程(x -a)2+(y -b)2=r 2明确了圆心和半径,方程左边为平方和,右边为一个正数,且未知数的系数为1;一般方程体现了二元二次方程的特点,但未明确圆心和半径,需计算得到.当二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0中的系数A =C ≠0,B =0,D 2+E 2-4AF>0时,二元二次方程就是圆的一般方程.2.求圆的方程常用“待定系数法”,“待定系数法”的一般步骤是什么? 解析:(1)根据题意选择方程的形式——标准方程或一般方程;(2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程.自测自评1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为(C ) A .(4,-6),r =16 B .(2,-3),r =4 C .(-2,3),r =4 D .(2,-3),r =16解析:由圆的一般方程可知圆心坐标为(-2,3), 半径r =1242+(-6)2+12=4.2.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0)所表示的曲线关于y =x 对称,则必有(A )A .D =EB .D =FC .F =ED .D =E =F解析:由题知圆心⎝⎛⎭⎫-D 2,-E 2在直线y =x 上,即-E 2=-D2,∴D =E. 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是(B )A .RB .(-∞,1)C .(-∞,1]D .[1,+∞)解析:由D 2+E 2-4F =(-4)2+22-4×5k =20-20k >0得k <1.4.圆心是(-3,4),经过点M (5,1)的圆的一般方程为x 2+y 2+6x -8y -48=0. 解析:圆的半径r =(-3-5)2+(4-1)2=73, ∴圆的标准方程为(x +3)2+(y -4)2=73, 展开整理得,x 2+y 2+6x -8y -48=0为圆的一般方程. 5.指出下列圆的圆心和半径: (1)x 2+y 2-x =0;(2)x 2+y 2+2ax =0(a ≠0); (3)x 2+y 2+2ay -1=0.解析:(1)⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0,半径r =12; (2)(x +a )2+y 2=a 2,圆心(-a ,0),半径r =|a |; (3)x 2+(y +a )2=1+a 2,圆心(0,-a ),半径r =1+a 2. 基础达标1.方程x 2+y 2+4x -2y +5=0表示的曲线是(C ) A .两直线 B .圆 C .一点D .不表示任何曲线2.x 2+y 2-4y -1=0的圆心和半径分别为(C )A .(2,0),5B .(0,-2),5C .(0,2), 5D .(2,2),5解析:x 2+(y -2)2=5,圆心(0,2),半径 5.3.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是(C ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0 D .x -y -1=0解析:x 2+2x +y 2=0配方得(x +1)2+y 2=1,圆心为(-1,0),故所求直线为y =x +1,即x -y +1=0.4.如果直线l 将圆x 2+y 2-2x -4y =0平分且不通过第四象限,那么l 的斜率的取值范围是(A )A .[0,2]B .[0,1]C.⎣⎡⎦⎤0,12D.⎣⎡⎭⎫0,12 解析:l 必过圆心(1,2),0≤k ≤2(几何意义知). 5.圆x 2+y 2-6x +4y =0的周长是________. 解析:(x -3)2+(y +2)2=13,r =13,C =2πr =213π. 答案:213π6.(1)已知点M 与两个定点A (4,2)、B (-2,6)的距离的比值为1,探求点M 的轨迹,然后求出它的方程;(2)已知点M 与两个定点A (4,2)、B (-2,6)的距离的比值为12时,M 点的轨迹又是什么?求出它的方程.解析:设M (x ,y )(1)因为点M 与两个定点A (4,2)、B (-2,6)的距离的比值为1,所以(x -4)2+(y -2)2(x +2)2+(y -6)2=1,化简得3x -2y +5=0.所以M 的轨迹是直线,它的方程是3x -2y +5=0;(2)因为点M 与两个定点A (4,2)、B (-2,6)的距离的比值为12,所以(x -4)2+(y -2)2(x +2)2+(y -6)2=12,化简得(x -6)2+(y -23)2=2089,故此时M 的轨迹是以(6,23)为圆心,半径为4313的圆,它的方程是(x -6)2+(y -23)2=2089.巩固提升7.已知A ,B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________________________________________________________________________.答案:(x -1)2+(y +1)2=98.求经过两点P (-2,4),Q (3,-1),并且在x 轴上截得的弦长等于6的圆的方程. 解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,将P (-2,4),Q (3,-1)代入圆的方程得⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10. 令y =0得x 2+Dx +F =0.设x 1,x 2为方程x 2+Dx +F =0的两根. 由|x 1-x 2|=6有D 2-4F =36,解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. ∴圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 9.已知点A 在直线2x -3y +5=0上移动,点P 为连接M (4,-3)和点A 的线段的中点,求P 的轨迹方程.解析:设点P 的坐标为(x ,y ), A 的坐标为(x 0,y 0).∵点A 在直线2x -3y +5=0上, ∴有2x 0-3y 0+5=0. 又∵P 为MA 的中点,∴有⎩⎨⎧x =4+x 02,y =-3+y 02,∴⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +3. 代入直线方程得2(2x -4)-3(2y +3)+5=0, 化简得:2x -3y -6=0即为所求.1.任何一个圆的方程都可写成x 2+y 2+Dx +Ey +F =0的形式,但方程x 2+y 2+Dx +Ey +F =0表示的曲线不一定是圆,只有D 2+E 2-4F >0时,方程才表示圆心为⎝⎛⎭⎫-D 2,-E 2,半径为r =12D 2+E 2-4F 的圆.2.在圆的方程中含有三个参变数,因此必须具备三个独立条件才能确定一个圆.求圆的方程时是选用标准方程还是一般方程的依据:当给出的条件与圆心坐标、半径有关,或者由已知条件容易求得圆心和半径时,一般用标准方程.当上述特征不明显时,常用一般方程,特别是给出圆上三点,用待定系数法求圆的方程时,常用一般式,这样得到的关于D,E,F的三元一次方程组,要比使用标准方程简便得多.3.要画出圆的图象,必须知道圆心和半径,因此应掌握用配方法将圆的一般方程化为标准方程.。

高中数学 第四章 圆与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题

高中数学 第四章 圆与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题

第四章 单元质量测评对应学生用书P99 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值X 围是( ) A .⎝ ⎛⎭⎪⎫-∞,12 B .(-∞,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎦⎥⎤-∞,12答案 A解析 由(-1)2+12-4m >0,解得m <12.2.已知圆C 1:x 2+y 2+4x -4y -3=0,动点P 在圆C 2:x 2+y 2-4x -12=0上,则△PC 1C 2面积的最大值为( )A .2 5B .4 5C .8 5D .20 答案 B解析 圆C 1:x 2+y 2+4x -4y =3,即(x +2)2+(y -2)2=11,圆心为(-2,2), C 2:x 2+y 2-4x -12=0,即(x -2)2+y 2=16,圆心为(2,0),半径为4, ∴|C 1C 2|=16+4=25, △PC 1C 2面积最大时,有PC 2⊥C 1C 2,∴△PC 1C 2的面积的最大值为12×25×4=45,故选B .3.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,则a <0,b >0.直线x +ay +b =0等价于y =-1a x -b a ,因为k =-1a >0,-ba>0,所以直线不经过第四象限.4.已知A(1,2,3),B(3,3,m),C(0,-1,0),D(2,-1,-1),则( ) A .|AB|>|CD| B .|AB|<|CD| C .|AB|≤|CD| D.|AB|≥|CD| 答案 D解析 |AB|=22+12+m -32=5+m -32,|CD|=22+02+-12=5.因为(m -3)2≥0,所以|AB|≥|CD|.5.从M(0,2,1)出发的光线,经平面xOy 反射后到达点N(2,0,2),则光线所行走的路程为( )A .3B .4C .17D .3 2 答案 C解析 点M(0,2,1)关于平面xOy 对称的点为M′(0,2,-1),光线所行走的路程为 |M′N|=2-02+0-22+2+12=17.6.直线x +3y =0绕原点按顺时针方向旋转30°所得直线与圆(x -2)2+y 2=3的位置关系是( )A .直线与圆相切B .直线与圆相交但不过圆心C .直线与圆相离D .直线过圆心 答案 A解析 直线x +3y =0的斜率为-33,倾斜角为150°,绕原点按顺时针方向旋转30°,所得直线的倾斜角为120°,斜率为-3,所以直线方程为3x +y =0.圆(x -2)2+y 2=3的圆心(2,0)到直线3x +y =0的距离d =233+1=3=r ,所以直线与圆相切. 7.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( )A .8B .-4C .6D .无法确定 答案 C解析 ∵圆上存在关于直线x -y +3=0对称的两点,∴x-y +3=0过圆心⎝ ⎛⎭⎪⎫-m 2,0,即-m2+3=0,解得m =6. 8.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1 答案 B解析 设圆C 2的圆心为(a ,b),则依题意,得 ⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,对称圆的半径长不变,所以圆C 2的半径长为1,故圆C 2的方程为(x -2)2+(y +2)2=1,选B .9.以(a ,1)为圆心,且与两条直线2x -y +4=0和2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5 B .(x +1)2+(y +1)2=5 C .(x -1)2+y 2=5 D .x 2+(y -1)2=5 答案 A解析 因为两条直线2x -y +4=0和2x -y -6=0的距离为d =|-6-4|5=25,所以所求圆的半径为r =5,所以圆心(a ,1)到直线2x -y +4=0的距离为|2a -1+4|5=|2a +3|5=5,即a =1或a =-4,又因为圆心(a ,1)到直线2x -y -6=0的距离也为5,所以a =1.所以所求的圆的标准方程为(x -1)2+(y -1)2=5,故选A .10.过直线y =2x 上一点P 作圆M :(x -3)2+(y -2)2=45的两条切线l 1,l 2,A ,B 为切点,当直线l 1,l 2关于直线y =2x 对称时,则∠APB 等于( )A .30° B.45° C.60° D.90°答案 C解析 过圆M 的圆心(3,2)向直线y =2x 作垂线,设垂足为N ,易知当点P 与点N 重合时,l 1与l 2关于y =2x 对称,此时,|MP|=|2×3-2|5=45,又圆M 的半径长为25,故sin∠MPA=12,则∠MPA=30°,故∠APB=60°. 11.已知圆C :(x -3)2+(y -4)2=1和两点A(-m ,0),B(m ,0)(m>0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( )A .7B .6C .5D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB|=2m .因为∠APB=90°,连接OP ,易知|OP|=12|AB|=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC|=32+42=5,所以|OP|max =|OC|+r =6,即m 的最大值为6.12.设点M(x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值X 围是( )A .[-1,1]B .⎣⎢⎡⎦⎥⎤-12,12 C .[-2,2] D .⎣⎢⎡⎦⎥⎤-22,22 答案 A解析 解法一:过M 作圆O 的两条切线MA ,MB ,切点分别为A ,B ,若在圆O 上存在点N ,使∠OMN=45°,则∠OMB≥∠OMN=45°,所以∠AMB≥90°,所以-1≤x 0≤1,故选A .解法二:过O 作OP⊥MN 于P ,则|OP|=|OM|sin45°≤1, ∴|OM|≤2, 即x 20+1≤2,∴x 20≤1,即-1≤x 0≤1,故选A .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.答案 (x +2)2+y 2=2解析 设圆心坐标为(a ,0)(a <0),则圆心到直线的距离等于半径,即r =|a +0|12+12=2,解得a =-2.故圆的标准方程为(x +2)2+y 2=2.14.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是________________.答案 x -2y -1=0(x≠1)解析 圆心坐标为(2m +1,m),半径长r =|m|(m≠0).令x =2m +1,y =m(m≠0),可得x -2y -1=0(x≠1),即为圆心的轨迹方程.15.若直线x +y +m =0上存在点P ,过点P 可作圆O :x 2+y 2=1的两条切线PA ,PB ,切点为A ,B ,且∠APB=60°,则实数m 的取值X 围为________.答案 [-22,2 2 ]解析 若∠APB=60°,则|OP|=2,直线x +y +m =0上存在点P ,过点P 可作圆O :x2+y 2=1的两条切线PA ,PB ,等价于直线x +y +m =0与圆x 2+y 2=4有公共点,由点到直线的距离公式可得|m|2≤2,解得m∈[-22,2 2 ].16.当且仅当a<r<b 时,圆x 2+y 2=r 2(r>0)上有两点到直线3x +4y -15=0的距离是2,则以(a ,b)为圆心,且和直线4x -3y +1=0相切的圆的方程为______________.答案 (x -1)2+(y -5)2=4解析 因为圆心(0,0)到直线3x +4y -15=0的距离d =|-15|32+42=3,结合图形可知,圆x 2+y 2=r 2(r>0)上有两点到直线3x +4y -15=0的距离为2,等价于|r -3|<2,即1<r<5,所以a =1,b =5.又点(1,5)到直线4x -3y +1=0的距离为|4×1+5×-3+1|42+-32=2,所以所求圆的方程为(x -1)2+(y -5)2=4. 三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知圆C :x 2+y 2-2y -4=0,直线l :mx -y +1-m =0. (1)判断直线l 与圆C 的位置关系;(2)若直线l 与圆C 交于不同的两点A ,B ,且|AB|=32,求直线l 的方程.解 (1)将圆C 的方程化为标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C(0,1),半径r =5,圆心C(0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m|m 2+1=|m|m 2+1<1<5,因此直线l 与圆C 相交.(2)设圆心C 到直线l 的距离为d , 则d =52-⎝⎛⎭⎪⎫3222=22. 又d =|m|m 2+1,则|m|m 2+1=22,解得m =±1,所以所求直线方程为x -y =0或x +y -2=0.18.(本小题满分12分)在空间直角坐标系Oxyz 中.(1)在z 轴上求一点P ,使得它到点A(4,5,6)与到点B(-7,3,11)的距离相等; (2)已知点M 到坐标原点的距离等于23,且它的横、纵、竖坐标相等,求该点的坐标. 解 (1)设点P 的坐标为(0,0,c), 因为|PA|=|PB|, 所以16+25+c -62=49+9+c -112,所以c =515,所以点P 的坐标为⎝ ⎛⎭⎪⎫0,0,515.(2)设点M 的坐标为(a ,a ,a), 所以a 2+a 2+a 2=23, 所以a 2=4,所以a =±2.所以点M 的坐标为M(2,2,2)或M(-2,-2,-2).19.(本小题满分12分)已知圆C :x 2+y 2+Dx +Ey +3=0关于直线x +y -1=0对称,圆心在第二象限,半径为2.(1)求圆C 的方程;(2)已知不过原点的直线l 与圆C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程.解 (1)由题意,得⎩⎪⎨⎪⎧-D 2-E2-1=0,D 2+E 2-4×32=2,解得⎩⎪⎨⎪⎧D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2(舍去).∴圆C 的方程为x 2+y 2+2x -4y +3=0. (2)圆C :(x +1)2+(y -2)2=2,∵切线在两坐标轴上的截距相等且不为零, 设切线l :x +y =m(m≠0),∴圆心C(-1,2)到切线的距离等于半径2, 即|-1+2-m|2=2,∴m=-1或m =3. ∴所求切线方程为x +y +1=0或x +y -3=0.20.(本小题满分12分)已知点P 1(-2,3),P 2 (0,1),圆C 是以P 1P 2的中点为圆心,12|P 1P 2|为半径的圆.(1)若圆C 的一条切线在x 轴和y 轴上截距相等,求此切线方程;(2)若P(x ,y)是圆C 外一点,从P 向圆C 引切线PM ,M 为切点,O 为坐标原点,|PM|=|PO|,求使|PM|最小的点P 的坐标.解 (1)设圆心坐标为C(a ,b),半径为r ,依题意得 a =-2+02=-1,b =3+12=2,r =12×4+4=2.∴圆C 的方程为(x +1)2+(y -2)2=2.①若截距均为0,即圆C 的切线过原点,则可设该切线为y =kx ,即kx -y =0,则有|-k -2|k 2+1=2,解得k =2±6.此时切线方程为(2+6)x -y =0或(2-6)x -y =0. ②若截距不为0,可设切线为x +y =a 即x +y -a =0, 依题意得|-1+2-a|2=2,解得a =-1或a =3.此时切线方程为x +y +1=0或x +y -3=0.综上,所求切线方程为(2±6)x -y =0或x +y +1=0或x +y -3=0. (2)∵|PM|=|PO|,∴|PM|2=|PO|2,即(x +1)2+(y -2)2-2=x 2+y 2,整理得y =2x +34,而|PM|=|PO|=x 2+y 2=1420x 2+12x +9,当x =-122×20=-310时,|PM|取得最小值.此时点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.21.(本小题满分12分)已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0. (1)求证:对任意的m∈R ,直线l 与圆C 总有两个不同的交点; (2)若圆C 与直线l 相交于A ,B 两点,求弦AB 的中点M 的轨迹方程.解 (1)证明:因为直线l :mx -y +1=0恒过定点N(0,1),且点N(0,1)在圆C :x 2+(y -2)2=5的内部,所以直线l 与圆C 总有两个不同的交点. (2)由题知C(0,2),设动点M(x ,y), 当x =0时,M(0,1);当x≠0时,由垂径定理,知MN⊥MC, 所以y -2x ·y -1x=-1,整理得x 2+⎝ ⎛⎭⎪⎫y -322=14,又(0,1)满足此方程,所以弦AB 的中点M 的轨迹方程是x 2+⎝ ⎛⎭⎪⎫y -322=14.22.(本小题满分12分)有一种大型商品,A ,B 两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每千米的运费A 地是B 地的2倍,若A ,B 两地相距10千米,顾客选择A 地或B 地购买这种商品的标准是:运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品?解 以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,如图所示.设A(-5,0),则B(5,0).在坐标平面内任取一点P(x ,y),设从A 地运货到P 地的运费为2a 元/千米,则从B 地运货到P 地的运费为a 元/千米.若P 地居民选择在A 地购买此商品, 则2ax +52+y 2<ax -52+y 2,整理得⎝ ⎛⎭⎪⎫x +2532+y 2<⎝ ⎛⎭⎪⎫2032.即点P 在圆C :⎝ ⎛⎭⎪⎫x +2532+y 2=⎝ ⎛⎭⎪⎫2032的内部.也就是说,圆C 内的居民应在A 地购买,圆C 外的居民应在B 地购买,圆C 上的居民可随意选择A ,B 两地之一购买.。

高中数学人教A版必修二:第四章《圆与方程》单元试卷(2)(Word版,含解析)

高中数学人教A版必修二:第四章《圆与方程》单元试卷(2)(Word版,含解析)

第四章圆与方程单元检测(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.直线y =x +10与曲线x 2+y 2=1的位置关系是( ). A .相交 B .相离 C .相切 D .不能确定2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ). A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=13.点P (x ,y ,z )2=,则点P 在( ).A .以点(1,1,-1)为半径的圆上B .以点(1,1,-1)为棱长的正方体内C .以点(1,1,-1)为球心,2为半径的球面上D .无法确定4.圆x 2+y 2=4与圆x 2+y 2+4x -4y +4=0关于直线l 对称,则l 的方程是( ). A .x +y =0 B .x +y -2=0 C .x -y -2=0 D .x -y +2=0 5.圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且只有( ). A .1条 B .2条 C .3条 D .4条6.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( ).A .-3B .3C .-3或3D .以上都不对7.过点P (2,3)向圆x 2+y 2=1作两条切线P A 、PB ,则弦AB 所在直线的方程为( ). A .2x -3y -1=0 B .2x +3y -1=0 C .3x +2y -1=0 D .3x -2y -1=08.与圆x 2+y 2-ax -2y +1=0关于直线x -y -1=0对称的圆的方程为x 2+y 2-4x +3=0,则a 等于( ).A .0B .1C .2D .39.圆x 2+(y +1)2=3绕直线kx -y -1=0旋转一周所得的几何体的表面积为( ).A .36πB .12πC .D .4π10.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是( ). A .2x -y -1=0 B .2x -y -1=0(x ≠1) C .x -2y -1=0(x ≠1) D .x -2y -1=0 11.若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是( ).A .0k <<B .0k <<C .0k <<D .0<k <512.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若MN ≥k的取值范围是( ).A .3[,0] 4- B .(-∞,34-]∪[0,+∞)C .[33-D .2[,0]3-二、填空题(本题共4小题,,每小题4分,共16分)13.过直线l :y =2x 上一点P 作圆C :(x -8)2+(y -1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为__________.14.点P为圆x2+y2=1上的动点,则点P到直线3x-4y-10=0的距离的最小值为__________.15.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________.16.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为l垂直的直线的方程为________.三、解答题(本题共6小题,共74分)17.(12分)一圆和直线l:x+2y-3=0切于点P(1,1),且半径为5,求这个圆的方程.18.(12分)求平行于直线3x+3y+5=0且被圆x2+y2=20截得长为的弦所在的直线方程.19.(12分)点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.20.(12分)圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A、B.(1)求线段AB的垂直平分线的方程;(2)求线段AB的长.21.(12分)已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线和圆恒相交于两点;(2)求直线l被圆C截得的弦长最小时的方程.22.(14分)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.答案与解析1.答案:B解析:1=>.2.答案:A解析:方法一(直接法):设圆心坐标为(0,b),1=,解得b=2,故圆的方程为x2+(y-2)2=1.方法二(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.方法三(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C.3.答案:C解析:根据两点间距离公式的几何意义,动点(x,y,z)满足到定点(1,1,-1)的距离恒等于2.4.答案:D解析:∵两圆圆心分别为(0,0)和(-2,2),∴中点为(-1,1),两圆圆心连线斜率为-1.∴l的斜率为1,且过点(-1,1).∴l的方程为y-1=x+1,即x-y+2=0.5.答案:B解析:⊙C1:(x+1)2+(y+1)2=4,⊙C2:(x-2)2+(y-1)2=4,124C C=<,∴只有2条公切线.∴应选B.6.答案:C解析:圆的方程可变为(x+1)2+(y-2)2=a2+7,圆心为(-1,2),1=-,解得a=±3.7.答案:B解析:圆x2+y2=1的圆心为坐标原点O,以OP为直径的圆的方程为2231324(1)()x y-+-=.显然这两个圆是相交的,由22221313124x yx y⎧+=⎪⎨(-)+(-)=⎪⎩得2x+3y-1=0,这就是弦AB所在直线的方程.8.答案:C解析:两圆的圆心分别为(,1)2aA,B(2,0),则AB的中点1(1,)42a+在直线x-y-1=0上,即111042a+--=,解得a=2,故选择C.9.答案:B解析:由题意,圆心为(0,-1),又直线kx-y-1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=2=12π.10.答案:C解析:圆心为(2m+1,m),r=|m|(m≠0).不妨设圆心坐标为(x,y),则x=2m+1,y=m,所以x-2y-1=0.又因为m≠0,所以x≠1.因此选择C.11.答案:A解析:圆x2+4x+y2-5=0可变形为(x+2)2+y2=9,如图所示.当x=0时,y±=,结合图形可得A,∵AMk=∴(0k∈.12.答案:A解析:圆心(3,2)到直线y=kx+3的距离d,MN≥=∴34k-≤≤.13.答案:解析:圆心C的坐标为(8,1),由题意,得PC⊥l,∴PC的长是圆心C到直线l的距离.即PC=14.答案:1解析:∵圆心到直线的距离为1025d==,∴点P到直线3x-4y-10=0的距离的最小值为d-r=2-1=1.15.答案:(x-2)2+y2=10解析:由题意,线段AB中点M(3,2),12ABk=-12ABk=-,∴线段AB中垂线所在直线方程为y-2=2(x-3).由223y xy-=(-)⎧⎨=⎩得圆心(2,0).则圆C的半径r=故圆C的方程为(x-2)2+y2=10.16.答案:x+y-3=0解析:设圆心(a,0),∴222|1|a+=-,∴a=3.∴圆心(3,0).∴所求直线方程为x+y-3=0.17.解:设圆心坐标为C(a,b),圆的方程即为(x-a)2+(y-b)2=25.∵点P(1,1)在圆上,则(1-a)2+(1-b)2=25.①又l为圆C的切线,则CP⊥l,∴121ba-=-.②联立①②解得11ab⎧=+⎪⎨=+⎪⎩或112ab⎧=-⎪⎨=-⎪⎩即所求圆的方程为(x-12+(y-1-2=25或(x-12+(y-1+2=25.18.解:设弦所在的直线方程为x+y+c=0.①则圆心(0,0)到此直线的距离为||2dc=.因为圆的半弦长、半径、弦心距恰好构成直角三角形,所以2220+=.由此解得c=±2,代入①得弦的方程为x+y+2=0或x-y-2=0.19.解:设点M(x,y),因为M是弦BC的中点,故OM⊥BC.又∵∠BAC=90°,∴|MA|=12|BC|=|MB|.∵|MB|2=|OB|2-|OM|2,∴|OB|2=|MO|2+|MA|2,即42=(x2+y2)+[(x-0)2+(y-2)2],化简为x2+y2-2y-6=0,即x 2+(y -1)2=7.∴所求轨迹为以(0,1)为半径的圆.20.解:(1)两圆方程相减,得4x -4y +1=0,即为AB 的方程.两圆圆心连线即为AB 的垂直平分线,所以AB 的垂直平分线的方程过两圆圆心,且与AB 垂直. 则AB 的垂直平分线的斜率为-1.又圆x 2+y 2-2x -5=0的圆心为(1,0),所以AB 的垂直平分线的方程为y =-(x -1),即x +y -1=0.(2)圆x 2+y 2-2x -5=0的半径、圆x 2+y 2-2x -5=0的圆心到AB 的距离、AB 长的一半三者构成一个直角三角形的三条边,圆x 2+y 2-2x -5=0可化为(x -1)2+y 2=6,所以圆心(1,0),半径,弦心距8=,由勾股定理得222||()(28AB +=,解得2AB =.21.解:(1)由(2m +1)x +(m +1)y -7m -4=0,得(2x +y -7)m +x +y -4=0.则27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩∴直线l 恒过定点A (3,1). 又∵(3-1)2+(1-2)2=5<25,∴(3,1)在圆C 的内部,故l 与C 恒有两个公共点.(2)当直线l 被圆C 截得的弦长最小时,有l ⊥AC ,由12AC k =-,得l 的方程为y -1=2(x -3),即2x -y -5=0.22.解:(1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+,(3-.故可设C 的圆心为(3,t ),则有22223(1)t t ++-=,解得t =1.则圆C 3=所以圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:22319.x y a x y -+=⎧⎨(-)+(-)=⎩ 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0.因此1,2(82)4a x -±=,从而x 1+x 2=4-a ,212212a x x a -+=.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0.又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0.② 由①,②得a =-1,满足Δ>0,故a =-1.。

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)
(2)由(1)可知M的轨迹是以点 为圆心, 为半径的圆.
由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.

高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

学业分层测评一、选择题1.点P在圆C1:x2+y2-8x-4y+11=0上点Q在圆C2:x2+y2+4x+2y+1=0上则|PQ|的最小值是()A.5 B.1C.35-5 D.35+5【解析】圆C1:x2+y2-8x-4y+11=0即(x-4)2+(y-2)2=9圆心为C1(42);圆C2:x2+y2+4x+2y+1=0即(x+2)2+(y+1)2=4圆心为C2(-2-1)两圆相离|PQ|的最小值为|C1C2|-(r1+r2)=35-5【答案】 C2.设两圆C1、C2都和两坐标轴相切且都过点(41)则两圆心的距离|C1C2|=()A.4 B.4 2C.8 D.8 2【解析】∵两圆与两坐标轴都相切且都经过点(41)∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(aa)(bb)则有(4-a)2+(1-a)2=a2(4-b)2+(1-b)2=b2即ab为方程(4-x)2+(1-x)2=x2的两个根整理得x2-10x+17=0∴a+b=10ab=17∴(a-b)2=(a+b)2-4ab=100-4×17=32∴|C1C2|=2(a-b)2=32×2=8【答案】 C3.过点P(23)向圆C:x2+y2=1上作两条切线P APB则弦AB所在的直线方程为()A.2x-3y-1=0B.2x+3y-1=0C.3x+2y-1=0D.3x-2y-1=0【解析】 弦AB 可以看作是以PC 为直径的圆与圆x 2+y 2=1的交线而以PC为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134根据两圆的公共弦的求法可得弦AB 所在的直线方程为:(x -1)2+⎝ ⎛⎭⎪⎫y -322-134-(x 2+y 2-1)=0整理可得2x +3y -1=0故选B【答案】 B二、填空题6.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(31)的圆的方程是________.【解析】 设所求圆的方程为 (x 2+y 2-x -y -2)+λ(x 2+y 2+4x -4y -8)=0(λ≠-1)将(31)代入得λ=-25故所求圆的方程为x 2+y 2-133x +y +2=0【答案】 x 2+y 2-133x +y +2=07.两圆相交于两点A (13)和B (m -1)两圆圆心都在直线x -y +c =0上则m +c 的值为________.【解析】 由题意知线段AB 的中点在直线x -y +c =0上且k AB =41-m=-1即m =5 又点⎝ ⎛⎭⎪⎫1+m 2,1在该直线上 所以1+m 2-1+c =0所以c =-2所以m +c =3【答案】 3三、解答题8.求圆心为(21)且与已知圆x 2+y 2-3x =0的公共弦所在直线经过点(5-2)的圆的方程.【解】 设所求圆的方程为(x -2)2+(y -1)2=r 2即x 2+y 2-4x -2y +5-r 2=0①已知圆的方程为x 2+y 2-3x =0②②-①得公共弦所在直线的方程为x +2y -5+r 2=0又此直线经过点(5-2)∴5-4-5+r 2=0∴r 2=4故所求圆的方程为(x -2)2+(y -1)2=49.有相距100 km 的AB 两个批发市场商品的价格相同但在某地区居民从两地运回商品时A 地的单位距离的运费是B 地的2倍.问怎样确定AB 两批发市场的售货区域对当地居民有利?【09960144】【解】 建立以AB 所在直线为x 轴AB 中点为原点的直角坐标系则A (-500)B (500).设P (xy )由2|P A |=|PB |得x 2+y 2+5003x +2 500=0 所以在圆x 2+y 2+5003x +2 500=0内到A 地购物合算;在圆x 2+y 2+5003x +2500=0外到B 地购物合算;在圆x 2+y 2+5003x +2 500=0上到AB 两地购物一样合算.[自我挑战]10.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C ⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45 D ⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45 【解析】 两圆方程相减得公共弦所在直线的方程为x -y =0因此所求圆的圆心的横、纵坐标相等排除CD 选项画图(图略)可知所求圆的圆心在第三象限排除A 故选B【答案】 B11.设半径为3 km 的圆形村落A 、B 两人同时从村落中心出发A 向东B 向北A 出村后不久改变前进方向斜着沿切于村落圆周的方向前进后来恰好与B 相遇设A 、B 两人的速度一定其比为3∶1问A 、B 两人在何处相遇?【解】由题意以村中心为原点正东方向为x轴的正方向正北为y轴的正方向建立直角坐标系设A、B两人的速度分别为3v km/h v km/h设A出发a h在P处改变方向又经过b h到达相遇点Q则|PQ|=3b v|OP|=3a v|OQ|=(a+b)v则P(3a v0)Q(0(a+b)v)在Rt△OPQ中由|PQ|2=|OP|2+|OQ|2得5a=4bk PQ=0-v(a+b)3a v-0∴k PQ=-34设直线PQ的方程为y=-34x+c(c>0)由PQ与圆x2+y2=9相切得|4c|42+32=3解得c=154故A、B两人相遇在正北方离村落中心154km。

【精准解析】高中数学人教A版必修2一课三测:4.1.1+圆的标准方程+Word版含解析byde

【精准解析】高中数学人教A版必修2一课三测:4.1.1+圆的标准方程+Word版含解析byde

答案:(x-2)2+(y+3)2=25
9.已知半径为 3 的圆的圆心到 y 轴的距离等于半径,圆心在直线 x-3y=0 上,则此圆
的方程为________. 解析:依题意设圆心为(3b,b),半径为 r,由已知得 r=|3b|=3,所以 b=±1.所以圆的方
程为(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9.
解得 a=3,r2=25,所以圆 E 的方程为
x-3 4
2+y2=25.故选
C.
4
16
16
答案:C
7.如果实数 x,y 满足 x2+(y-3)2=1,那么y的取值范围是( ) x
只要坚持 梦想终会实现
-5-
高中学习讲义
A.[2 2 2,2 2 ]
D.(-∞,-2 2 ]∪[2 2,+∞)
4.1.1 圆的标准方程
高中学习讲义
填一填 1.圆的定义 平面内到定点的距离等于定长的点的集合叫做圆.其中定点是圆的圆心;定长是圆的半 径. 2.圆的标准方程
3.点与圆的位置关系 点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有 两种方法: (1)几何法:将所给的点 M 与圆心 C 的距离跟半径 r 比较: 若|CM|=r,则点 M 在圆上; 若|CM|>r,则点 M 在圆外; 若|CM|<r,则点 M 在圆内. (2)代数法:可利用圆 C 的标准方程(x-a)2+(y-b)2=r2 来确定: 点 M(m,n)在圆 C 上⇔(m-a)2+(n-b)2=r2; 点 M(m,n)在圆 C 外⇔(m-a)2+(n-b)2>r2; 点 M(m,n)在圆 C 内⇔(m-a)2+(n-b)2<r2.
知识点一
点与圆的位置关系

山东省临沂高一数学新人教A版必修二4.1《圆的方程》学案(1)

山东省临沂高一数学新人教A版必修二4.1《圆的方程》学案(1)

圆的方程●知识梳理 1.圆的方程(1)圆的标准方程 圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2. 说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆. (2)圆的一般方程二次方程x 2+y 2+Dx +Ey +F =0.(*) 将(*)式配方得(x +2D )2+(y +2E )2=4422F E D -+.当D 2+E 2-4F >0时,方程(*)表示圆心(-2D ,-2E ),半径r =21F E D 422-+的圆,把方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)叫做圆的一般方程.说明:(1)圆的一般方程体现了圆方程的代数特点: a.x 2、y 2项系数相等且不为零. b.没有xy 项.(2)当D 2+E 2-4F =0时,方程(*)表示点(-2D ,-2E ),当D 2+E 2-4F <0时,方程(*)不表示任何图形.(3)据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程. (3)圆的参数方程 ①圆心在O (0,0),半径为r 的圆的参数方程为 x =r cos θ,y =r sin θ ②圆心在O 1(a ,b ),半径为r 的圆的参数方程为 x =a +r cos θ,y =b +r sin θ 说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程.2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件若上述二元二次方程表示圆,则有A =C ≠0, B =0,这仅是二元二次方程表示圆的必要条件,不充分.在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A D x +A E y +AF=0, 仅当(A D )2+(A E )2-4·AF>0,即D 2+E 2-4AF >0时表示圆. 故Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF>0.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71 B.-1<t <21 (θ为参数). ① (θ为参数). ②C.-71<t <1 D .1<t <2 解析:由D 2+E 2-4F >0,得7t 2-6t -1<0, 即-71<t <1. 答案:C2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131 C.|a |<51 D .|a |<131 解析:点P 在圆(x -1)2+y 2=1内部⇔(5a +1-1)2+(12a )2<1⇔ |a |<131. 答案:D3.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是 A.当a 2+b 2=r 2时,圆必过原点 B.当a =r 时,圆与y 轴相切 C.当b =r 时,圆与x 轴相切 D .当b <r 时,圆与x 轴相交解析:已知圆的圆心坐标为(a ,b ),半径为r ,当b <r 时,圆心到x 轴的距离为|b |,只有当|b |<r 时,才有圆与x 轴相交,而b <r 不能保证|b |<r ,故D 是错误的.故选D .答案:D4.(2005年北京海淀区期末练习)将圆x 2+y 2=1按向量a 平移得到圆(x +1)2+(y -2)2=1,则a 的坐标为____________.解析:由向量平移公式即得a =(-1,2). 答案:(-1,2)5.已知P (1,2)为圆x 2+y 2=9内一定点,过P 作两条互相垂直的任意弦交圆于点B 、C ,则BC 中点M 的轨迹方程为____________.解析:Rt △OMC 中,|MP |=21|BC |(直角三角形斜边上的中线是斜边的一半).故所求轨迹方程为x 2+y 2-x -2y -2=0. 答案:x 2+y 2-x -2y -2=0 ●典例剖析【例1】 (2003年春季北京)设A (-c ,0)、B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.剖析:给曲线建立方程是解析几何的两个主要问题之一,其基本方法就是把几何条件代数化;主要问题之二是根据方程研究曲线的形状、性质,即用代数的方法研究几何问题.解:设动点P 的坐标为(x ,y ),由||||PB PA =a (a >0)得2222)()(yc x y c x +-++=a ,化简,得(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a =1时,方程化为x =0.当a ≠1时,方程化为(x -1122-+a a c )2+y 2=(122-a ac)2.所以当a =1时,点P 的轨迹为y 轴;当a ≠1时,点P 的轨迹是以点(1122-+a a c ,0)为圆心,|122-a ac|为半径的圆.评述:本题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力,对代数式的运算化简能力有较高要求.同时也考查了分类讨论这一数学思想.【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.剖析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形.解:因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2.又因为直线y =x 截圆得弦长为27, 则有(2|3|b b -)2+(7)2=9b 2,解得b =±1.故所求圆方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.评述:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a 、b 、r 或D 、E 、F ;(3)待定系数法的应用,解答中要尽量减少未知量的个数.【例3】 已知⊙O 的半径为3,直线l 与⊙O 相切,一动圆与l 相切,并与⊙O 相交的公共弦恰为⊙O 的直径,求动圆圆心的轨迹方程.剖析:问题中的几何性质十分突出,切线、直径、垂直、圆心,如何利用这些几何性质呢?解:取过O 点且与l 平行的直线为x 轴,过O 点且垂直于l 的直线为y 轴,建立直角坐标系.设动圆圆心为M (x ,y ),⊙O 与⊙M 的公共弦为AB ,⊙M 与l 切于点C ,则|MA |=|MC |.∵AB 为⊙O 的直径,∴MO 垂直平分AB 于O .由勾股定理得|MA |2=|MO |2+|AO |2=x 2+y 2+9,而|MC |=|y +3|, ∴922++y x =|y +3|.化简得x 2=6y ,这就是动圆圆心的轨迹方程.评述:求轨迹的步骤是“建系,设点,找关系式,除瑕点”. ●闯关训练 夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =0 解析:曲线关于x +y =0成轴对称图形,即圆心在x +y =0上. 答案:A2.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条解析:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求. 答案:B3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.解析:圆心(-21,3)在直线上,代入kx -y +4=0,得k =2. 答案:2 4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.解析:圆心(0,0)到直线3x -4y -10=0的距离d =5|10|-=2. 再由d -r =2-1=1,知最小距离为1. 答案:15.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程. 解:(1)曲线方程为(x +1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆. ∵点P 、Q 在圆上且关于直线x +my +4=0对称, ∴圆心(-1,3)在直线上.代入得m =-1. (2)∵直线PQ 与直线y =x +4垂直, ∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y =-x +b .将直线y =-x +b 代入圆方程,得2x 2+2(4-b )x +b 2-6b +1=0. Δ=4(4-b )2-4×2×(b 2-6b +1)>0,得2-32<b <2+32.由韦达定理得x 1+x 2=-(4-b ),x 1·x 2=2162+-b b .y 1·y 2=b 2-b (x 1+x 2)+x 1·x 2=2162+-b b +4b .∵OP ·OQ =0,∴x 1x 2+y 1y 2=0, 即b 2-6b +1+4b =0.解得b =1∈(2-32,2+32). ∴所求的直线方程为y =-x +1.6.已知实数x 、y 满足x 2+y 2+2x -23y =0,求x +y 的最小值.解:原方程为(x +1)2+(y -3)2=4表示一个圆的方程,可设其参数方程为x =-1+2cos θ,y =3+2sin θ 22sin (θ+4π),当θ=4π5,即x =-1-2,y =3-2时,x +y 的最小值为3-1-22.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求 (1)xy的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解:(1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设x y=k ,即y =kx ,由圆心(2,0)到y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值.由1|02|2+-k k =3,解得k 2=3.所以k max =3,k min =-3.(也可由平面几何知识,有OC =2,OP =3,∠POC =60°,直线OP 的倾斜角为60°,(θ为参数,0≤θ<2π),则x +y =3-1+2(sin θ+cos θ)=3-+1直线OP ′的倾斜角为120°解之)(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,纵轴截距b 取最小值.由点到直线的距离公式,得2|02|b +-=3,即b =-2±6,故(y -x )min =-2-6.(3)x 2+y 2是圆上点与原点距离之平方,故连结OC ,与圆交于B 点,并延长交圆于C ′,则(x 2+y 2)max =|OC ′|=2+3,(x 2+y 2)min =|OB |=2-3.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =3124--=-1, AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组x -y +1=0,y =0 半径r =22)40()11(-+--=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C (-1,0)的距离为22)03()12(-++=18,|M 1C |<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C |=22)04()12(-++=25>20,所以M 2在圆C 外. (理)已知动圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周.(1)求动圆M 的圆心的轨迹方程; (2)求半径最小时圆M 的方程. 解:(1)如图所示(坐标系省略了),圆心N (-1,-1)为弦AB 的中点,在Rt △AMN 中,|AM |2=|AN |2+|MN |2,∴(m +1)2=-2(n +2).(*)的解,即圆心坐标为(-1,0).故动圆圆心M 的轨迹方程为(x +1)2=-2(y +2). (2)由(*)式,知(m +1)2=-2(n +2)≥0, 于是有n ≤-2.而圆M 半径r =12 n ≥5,∴当r =5时,n =-2,m =-1,所求圆的方程为(x +1)2+(y +2)2=5.探究创新9.(2005年黄冈市调研考试题)如图,在平面斜坐标系xOy 中,∠xOy =60°,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若OP =x e 1+y e 2(其中e 1、e 2分别为与x 轴、y 轴同方向的单位向量),则P 点斜坐标为(x ,y ).(1)若P 点斜坐标为(2,-2),求P 到O 的距离|PO |; (2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 解:(1)∵P 点斜坐标为(2,-2), ∴OP =2e 1-2e 2.∴|OP |2=(2e 1-2e 2)2=8-8e 1·e 2=8-8×cos60°=4. ∴|OP |=2,即|OP |=2.(2)设圆上动点M 的斜坐标为(x ,y ),则OM =x e 1+y e 2.∴(x e 1+y e 2)2=1. ∴x 2+y 2+2xy e 1·e 2=1. ∴x 2+y 2+xy =1.故所求方程为x 2+y 2+xy =1. ●思悟小结1.不论圆的标准方程还是一般方程,都有三个字母(a 、b 、r 或D 、E 、F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a 、b 、r (或D 、E 、F )的三个方程组成的方程组,解之得到待定字母系数的值.2.求圆的方程的一般步骤:(1)选用圆的方程两种形式中的一种(若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊位置或圆心与两坐标间的关系,通常选用标准方程);(2)根据所给条件,列出关于D 、E 、F 或a 、b 、r 的方程组;(3)解方程组,求出D 、E 、F 或a 、b 、r 的值,并把它们代入所设的方程中,得到所求圆的方程.3.解析几何中与圆有关的问题,应充分运用圆的几何性质帮助解题.●教师下载中心 教学点睛1.在二元二次方程中x 2和y 2的系数相等并且没有x 、y 项只是表示圆的必要条件而不是充分条件.2.如果问题中给出了圆心两坐标之间的关系或圆心的特殊位置时,一般用标准方程.如果给出圆上的三个点的坐标,一般用一般方程.3.在一般方程中,当D 2+E 2-4F =0时,方程表示一个点(-2D ,-2E ),当D 2+E 2-4F <0时,无轨迹.4.在解决与圆有关的问题时,要充分利用圆的特殊几何性质,这样会使问题简单化.5.数形结合、分类讨论、函数与方程的思想在解决圆的有关问题时经常运用,应熟练掌握.拓展题例【例1】 圆x 2+y 2=1内有一定点A (21,0),圆上有两点P 、Q ,若∠P AQ =90°,求过点P 和Q 的两条切线的交点M 的轨迹方程.分析:先求出PQ 中点E 的轨迹方程为x 2+y 2-21x -83=0.再求切点弦PQ 所在直线的方程.解:设P (x 1,y 1),Q (x 2,y 2),则过P 、Q 的切线方程分别是 x 1x +y 1y =1,x 2x +y 2y =1.又M (m ,n )在这两条切线上,有mx 1+ny 1=1,mx 2+ny 2=1,∵P 、Q 两点的坐标满足方程mx +ny =1,又两点确定唯一一条直线, ∴PQ 所在直线的方程是mx +ny =1.又∵E 为直线OM 与PQ 之交点,解方程组 mx +ny =1 y =mn x ⇒x =22n m m +,y =22nm n+. 将(22n m m +,22nm n +)代入中点E 的轨迹方程得x 2+y 2+34x -38=0. 这就是要求的过P 、Q 两点的切线交点M 的轨迹方程.【例2】 如图,过原点的动直线交圆x 2+(y -1)2=1于点Q ,在直线OQ 上取点P ,使P 到直线y =2的距离等于|PQ |,求动直线绕原点转一周时P 点的轨迹方程.解:设P (x ,y ),圆O 1:x 2+(y -1)2=1与直线y =2切于点A ,连结AQ ,易知|AQ |=|AR |=|x |, 又|PQ |=|PR |=2-y ,∴在Rt △OQA 中,|OA |2=|AQ |2+|OQ |2,即22=|x |2+[22y x -(2-y )]2, 化简整理得x 2(x 2+y 2-4)=0, ∴x =0或x 2+y 2=4为所求的轨迹方程.。

4.1圆的方程-2020-2021学年高一数学尖子生同步培优题典(人教A版必修2)(解析版)

4.1圆的方程-2020-2021学年高一数学尖子生同步培优题典(人教A版必修2)(解析版)

A. (x 2)2 ( y 4)2 4
B. (x 2)2 ( y 4)2 16
C. (x 2)2 (y 4)2 4
D. (x 2)2 ( y 4)2 16
【答案】D
【解析】 圆 C 的圆心在直线 y 2x 上, 可设 C a, 2a , 圆 C 与 x 轴正半轴相切与点 A ,a 0 且
1.(2020·湖南雨花高一期末)圆心在 y 轴上,半径为 2,且过点 2, 4 的圆的方程为( )
A. x2 y 12 4
B. x2 y 22 4
C. x2 y 32 4
D. x2 y 42 4
【答案】D
【解析】根据题意,设圆心的坐标为 0, b ,则有 0 22 b 42 4 ,解可得 b 4 ,则圆的方程为
圆 C 的半径 r 2a , Aa, 0 . A 到直线 x y 4 0 的距离 d
2 ,d
a04 11
2 ,解得:
a 6 或 a 2 , A2, 0 或 A6, 0 , A 在直线 x y 4 0 的左上方, A2, 0 ,C 2, 4 ,r 4 ,
圆 C 的标准方程为: x 22 y 42 16 .
A. x 32 y 12 4
B. x 12 y 12 4
C. x 32 y 12 4
D. x 12 y 12 4
【答案】B
【解析】因为过点
A1, 1 与
B 1,1
,所以线段
AB
的中点坐标为 0, 0
, kAB
1 1
1 1
1 ,所以线
段 AB 的中垂线的斜率为 k 1,所以线段 AB 的中垂线的方程为 y x ,又因为圆心在直线 x y 2 0 上,
x2 y 42 4。

青海省高中数学人教新课标A版必修2第四章圆与方程4.1.1圆的标准方程

青海省高中数学人教新课标A版必修2第四章圆与方程4.1.1圆的标准方程

青海省高中数学人教新课标A版必修2 第四章圆与方程 4.1.1圆的标准方程姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为()A .B .C .D .2. (2分)若点(1,1)和点(0,2)一个在圆(x﹣a)2+(y+a)2=4的内部,另一个在圆的外面,则正实数a的取值范围是()A . (1,+∞)B . (0,)C . (0,1)D . (1,2)3. (2分) (2015高二上·城中期末) 如果圆(x﹣a)2+(y﹣a)2=8上总存在两个点到原点的距离为,则实数a的取值范围是()A . (﹣3,﹣1)∪(1,3)B . (﹣3,3)C . [﹣1,1]D . (﹣3,﹣1]∪[1,3)4. (2分)设f(x)是定义在R上的增函数,且对于任意的x都有f(2—x)+f(x)=0恒成立.如果实数m、n满足不等式组’则m2+n2的取值范围是()A . (3,7)B . (9,25)C . (13,49)D . (9,49)5. (2分) (2015高二上·湛江期末) 已知二元一次不等式组所表示的平面区域为M,若M与圆(x﹣4)2+(y﹣1)2=a(a>0)至少有两个公共点,则实数a的取值范围是()A .B .C .D .6. (2分)圆心在x+y=0上,且与x轴交于点A(﹣3,0)和B(1,0)的圆的方程为()A . (x+1)2+(y﹣1)2=5B . (x﹣1)2+(y+1)2=C . (x﹣1)2+(y+1)2=5D . (x+1)2+(y﹣1)2=7. (2分)圆x2+y2+2x-4y=0的圆心坐标和半径分别是()A . (1,-2),5B . (1,-2),C . (-1,2),5D . (-1,2),二、单选题 (共1题;共2分)8. (2分)若直线y=kx+4+2k与曲线y=有两个交点,则k的取值范围是()A . [1,+∞)B . [﹣1,﹣)C . (, 1]D . (﹣∞,﹣1]三、填空题 (共3题;共3分)9. (1分) (2017高一上·西安期末) 与圆C:(x﹣2)2+(y+1)2=4相切于点(4,﹣1)且半径为1的圆的方程是________.10. (1分) (2016高二上·台州期中) 过点(1,2)总可以作两条直线与圆 x2+y2+kx+2y+k2﹣15=0 相切,则实数k的取值范围是________.11. (1分)(2017·南通模拟) 在平面直角坐标系xOy中,已知点P(0,1)在圆C:x2+y2+2mx﹣2y+m2﹣4m+1=0内,若存在过点P的直线交圆C于A、B两点,且△PBC的面积是△PAC的面积的2倍,则实数m的取值范围为________.四、解答题 (共3题;共30分)12. (5分) (2019高二上·九台月考) 判断圆与的位置关系.13. (15分) (2018高二上·安庆期中) 如图,已知矩形四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).(1)求对角线所在直线的方程;(2)求矩形外接圆的方程;(3)若动点为外接圆上一点,点为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。

人教A版数学必修二第四章第一课时同步练习4.1.1圆的标准方程

人教A版数学必修二第四章第一课时同步练习4.1.1圆的标准方程

§4.1.1圆的标准方程(限时60分钟)一、选择题1. 以点(2,-2)为圆心,以3为半径的圆的标准方程是 ( )A .3)2()2(22=-+-y xB .3)2()2(22=++-y xC .3)2()2(22=-++y xD .3)2()2(22=+++y x2. 方程 4)1(22=++y x 表示圆的圆心与半径分别是 ( )A .(1,0),4B .(-1,0),4C .(-1,0),2D .(1,0),23. 点(1,1)与圆122=+y x 的位置关系是 ( )A .点在圆上B .点在圆外C .点在圆内D .不能确定4.过点A (1,-1),B (-1,1)且圆心在直线x+y-2=0上的圆的方程是 ( )A .4)1()3(22=++-y xB .4)1()3(22=-++y xC .4)1()1(22=-+-y xD .4)1()1(22=+++y x5.方程()04122=-+-+y x y x 所表示的图形是 ( )A .一条直线及一个圆B .两个点C .一条射线及一个圆D .两条射线及一个圆二、填空题6.求圆221x y +=上的点到直线8x y -=的距离的最小值 .7.自点(-1, 4)作圆1)3()2(22=-+-y x 的切线,则切线长为_____________.8.圆1)4()3(22=++-y x 关于直线x+y=0对称的圆的方程为_________________.9.已知正三角形的两个顶点是(0,0),(6,0),则它的外接圆方程为________________.10.已知一圆的圆心是(2,-3),它的一条直径的两个端点分别在x 轴和 y 轴上,则此圆的方程为____________________________.三、解答题11.已知一圆经过点A (2,-3)和B (-2,-5),且圆心C 在直线l :230x y --=上,求此圆的标准方程.12.已知△ABC 的三个项点坐标分别是A (4,1),B (6,-3),C (-3,0),求△ABC 外接圆的方程.13.已知一个圆和y 轴相切,在直线y=x 上截得的弦长为27,且圆心在直线x-3y=0上,求圆的方程.14.一条光线从点A (-1,1)出发,经x 轴反射到圆C :1)3()2(22=-+-y x 上,求光线的最短路程和最长路程.15.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半,求:(1)动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹.参考答案:一、选择题1.B2..C3.B4.C5. D二、填空题6.124-7. 38.1)3()4(22=++-y x 9.12)3()3(22=++-y x 或 12)3()3(22=-+-y x 10. 13)3()2(22=++-y x三、解答题11.解:因为A (2,-3),B (-2,-5),所以线段AB 的中点D 的坐标为(0,-4),又 5(3)1222AB k ---==--,所以线段AB 的垂直平分线的方程是24y x =--. 联立方程组23024x y y x --=⎧⎨=--⎩,解得12x y =-⎧⎨=-⎩.所以,圆心坐标为C (-1,-2),半径||r CA=== 所以,此圆的标准方程是22(1)(2)10x y +++=.12.解:解法一:设所求圆的方程是222()()x a y b r -+-=. ①因为A (4,1),B (6,-3),C (-3,0)都在圆上,所以它们的坐标都满足方程①,于是 222222222(4)(1),(6)(3),(3)(0).a b r a b r a b r ⎧-+-=⎪-+--=⎨⎪--+-=⎩可解得21,3,25.a b r =⎧⎪=-⎨⎪=⎩所以△ABC 的外接圆的方程是22(1)(3)25x y -++=. 解法二:因为△ABC 外接圆的圆心既在AB 的垂直平分线上,也在BC 的垂直平分线上,所以先求AB 、BC 的垂直平分线方程,求得的交点坐标就是圆心坐标. ∵31264AB k --==--,0(3)1363BC k --==---, 线段AB 的中点为(5,-1),线段BC 的中点为33(,)22-, ∴AB 的垂直平分线方程为11(5)2y x +=-, ① BC 的垂直平分线方程333()22y x +=-. ② 解由①②联立的方程组可得1,3.x y =⎧⎨=-⎩∴△ABC 外接圆的圆心为E(1,-3),半径||5r AE ===.故△ABC 外接圆的方程是22(1)(3)25x y -++=.13. 9)1()3(22=-+-y x 或 9)1()3(22=+++y x14. 最短路程 4 ,最长路程 615.解:(1)设动点M (x ,y )为轨迹上任意一点,则点M 的轨迹就是集合 P 1{|||||}2M MA MB ==. 由两点距离公式,点M 适合的条件可表示为= 平方后再整理,得 2216x y +=. 可以验证,这就是动点M 的轨迹方程.(2)设动点N 的坐标为(x ,y ),M 的坐标是(x 1,y 1).由于A (2,0),且N为线段AM 的中点,所以122x x +=, 102y y +=.所以有122x x =-,12y y = ① 由(1)题知,M 是圆2216x y +=上的点,所以M 坐标(x 1,y 1)满足:221116x y +=②将①代入②整理,得22(1)4x y -+=.所以N 的轨迹是以(1,0)为圆心,以2为半径的圆(如图中的虚圆为所求).。

高中数学第四章圆与方程4.1圆的方程4.1.1圆的标准方程检测新人教A版必修2(2021年整理)

高中数学第四章圆与方程4.1圆的方程4.1.1圆的标准方程检测新人教A版必修2(2021年整理)

2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程检测新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程检测新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程检测新人教A版必修2的全部内容。

4.1.1 圆的标准方程[A级基础巩固]一、选择题1.已知圆(x-2)2+(y+8)2=(-3)2,下列说法正确的是( )A.圆心是(2,-8),半径长为-3B.圆心是(-2,8),半径长为3C.圆心是(2,-8),半径长为3D.圆心是(-2,8),半径长为-3解析:由圆的标准方程(x-a)2+(y-b)2=r2,知圆心是(2,-8),半径长不可能是负数,故为3.答案:C2.圆x2+y2=1的圆心到直线3x+4y-25=0的距离是()A.5 B.3 C.4 D.2解析:圆x2+y2=1的圆心为(0,0),所以d=错误!=5。

答案:A3.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是( )A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析:若点(1,1)在圆的内部,则(1-a)2+(1+a)2<4,化简得a2〈1,因此-1<a<1,故选A。

答案:A4.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+错误!C.2+错误!D.1+2错误!解析:圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为错误!=2,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+错误!.答案:B5.圆的标准方程为(x-5)2+(y-6)2=a2(a>0).若点M(6,9)在圆上,则a的值为() A。

高中数学 阶段质量检测(四)圆与方程 新人教A版必修2

高中数学 阶段质量检测(四)圆与方程 新人教A版必修2

阶段质量检测(四) 圆与方程(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3. 6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为123-12+1-02=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2C .2D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =2-02+-3+22=5,∴圆C的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y -a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +12+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ­ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ­ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4--2-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2. 则⎩⎪⎨⎪⎧1-a 2+-2-b 2=R 2,-1-a 2+4-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5a -22=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5a -22-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点, 所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3kk 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。

高中数学第四章圆与方程4.1.1圆的标准方程练习(含解析)新人教A版必修2

高中数学第四章圆与方程4.1.1圆的标准方程练习(含解析)新人教A版必修2

4.1.1圆的标准方程A组1.圆(x-2)2+(y+3)2=2的圆心和半径分别为()A.(-2,3),1B.(2,-3),3C.(-2,3),D.(2,-3),答案:D2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2) ()A.是圆心B.在圆上C.在圆内D.在圆外解析:∵(3-2)2+(2-3)2=2<4,∴点P在圆内.答案:C3.函数y=的图象是()A.一条射线B.一个圆C.两条射线D.半圆弧解析:y=可化为x2+y2=9(y≥0),所以y=的图象是半圆弧.答案:D4.已知一圆的圆心为点A(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52解析:设该直径的两个端点分别为P(a,0),Q(0,b),则A(2,-3)是线段PQ的中点,故P(4,0),Q(0,-6),圆的半径r=|PA|=.所以圆的方程为(x-2)2+(y+3)2=13.答案:A5.若P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0解析:由题意知圆心为C(1,0).由圆的几何性质,得AB⊥CP,k CP=-1,∴k AB=1.∴直线AB的方程为y+1=x-2,即x-y-3=0.答案:A6.与圆(x-2)2+(y+3)2=16同心,且过点P(-1,1)的圆的方程是.解析:由已知得,所求圆的圆心为(2,-3).又该圆过点P(-1,1),则所求圆的半径r==5.所以,所求圆的方程为(x-2)2+(y+3)2=25.答案:(x-2)2+(y+3)2=257.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为.解析:设圆心(0,b),圆的方程为(x-0)2+(y-b)2=1,把(1,2)代入得12+(2-b)2=1,∴b=2.∴圆的方程为x2+(y-2)2=1.答案:x2+(y-2)2=18.已知点A(8,-6)与圆C:x2+y2=25,P是圆C上任意一点,则|AP|的最小值是.解析:由于82+(-6)2=100>25,故点A在圆外,从而|AP|的最小值为-5=10-5=5.答案:59.已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),求圆的标准方程.解:线段AB的垂直平分线方程为x=3,又圆心在x轴上,所以圆心坐标为(3,0),半径r=2,所以圆的标准方程为(x-3)2+y2=4.10.已知圆C的标准方程为(x-5)2+(y-6)2=a2(a>0).(1)若点M(6,9)在圆上,求半径a;(2)若点P(3,3)与Q(5,3)有一点在圆内,另一点在圆外,求a的取值范围.解:(1)∵点M(6,9)在圆上,∴(6-5)2+(9-6)2=a2,即a2=10.又a>0,∴a=.(2)∵|PC|=,|QC|==3,|PC|>|QC|,故点P在圆外,点Q在圆内,∴3<a<.11.求圆(x+2)2+(y-6)2=1关于直线3x-4y+5=0的对称图形的方程.解:设圆心坐标为(a,b),则有解得故圆的方程为(x-4)2+(y+2)2=1.B组1.已知圆(x-a)2+(y-1)2=2a(0<a<1),则原点O在()A.圆内B.圆外C.圆上D.圆上或圆外解析:将O(0,0)代入圆的方程可得a2+1>2a(0<a<1),即原点在圆外.答案:B2.若圆心在x轴上,半径为的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C的方程是()A.(x-)2+y2=5B.(x+)2+y2=5C.(x-5)2+y2=5D.(x+5)2+y2=5解析:如图,设圆心C(a,0),则圆心C到直线x+2y=0的距离为,解得a=-5或a=5(舍去),∴圆心是(-5,0).即圆的方程是(x+5)2+y2=5.答案:D3.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.D.(-∞,-4)∪(4,+∞)解析:(法一)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=x+,即ax-4y+2a=0,令d==1,化简后,得3a2=16,解得a=±.再进一步判断便可得到正确答案为C.(法二)(数形结合法)如图,在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=,再由图直观判断,故选C.答案:C4.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为.解析:设圆心坐标为(a,0),易知,解得a=2.所以圆心为(2,0),半径长为,所以圆C的方程为(x-2)2+y2=10.答案:(x-2)2+y2=105.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程是.解析:将直线方程整理为(x+1)a-(x+y-1)=0,可知直线恒过点(-1,2),从而所求圆的方程为(x+1)2+(y-2)2=5.答案:(x+1)2+(y-2)2=56.一束光线从点A(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上,则最短路程是.解析:由题意,得最短路程即为A'(-1,-1)与圆上点的最近距离,故d min=|A'C|-1=5-1=4.答案:47.已知点A(1,2)和圆C:(x-a)2+(y+a)2=2a2,试分别求满足下列条件的实数a的取值范围:(1)点A在圆的内部;(2)点A在圆上;(3)点A在圆的外部.解:(1)∵点A在圆的内部,∴(1-a)2+(2+a)2<2a2,即2a+5<0,解得a<-.故a的取值范围是.(2)将点A(1,2)坐标代入圆的方程,得(1-a)2+(2+a)2=2a2,解得a=-.(3)∵点A在圆的外部,∴(1-a)2+(2+a)2>2a2,即2a+5>0,解得a>-.故a的取值范围是.8.若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,求当半径最小时圆的方程.解法一:设圆心坐标为(a,-2a+3),则圆的半径r==.当a=时,r min=.故所求圆的方程为.解法二:易知,圆的半径的最小值就是原点O到直线y=-2x+3的距离.如图,此时r=.设圆心为(a,-2a+3),则,解得a=,从而圆心坐标为.故所求圆的方程为.。

.1圆的标准方程练习【精选】新人教A版必修2

.1圆的标准方程练习【精选】新人教A版必修2

4.1圆的标准方程练习1.已知点A(2,0)和点B(-4,2),则以AB为直径的圆的方程是().A.(x-1)2+(y+1)2=40B.(x-1)2+(y+1)2=10C.(x+1)2+(y-1)2=40D.(x+1)2+(y-1)2=10【解析】圆心坐标为(-1,1),则半径r==,∴圆的方程为(x+1)2+(y-1)2=10.【答案】D2.已知P是圆x2+y2=1上的动点,则P点到直线l:x+y-2=0的距离的最小值为().A.1B.C.2D.2【解析】由题知距离的最小值为圆心到直线l的距离减去半径.∴d min=-1=1.【答案】A3.圆心在原点,并与直线3x-4y-10=0相切的圆的方程为.【解析】∵半径r==2,∴圆的方程为x2+y2=4.【答案】x2+y2=44.求与x轴相交于A(1,0)和B(5,0)两点且半径为的圆的标准方程.【解析】(法一)设圆的标准方程为(x-a)2+(y-b)2=5.∵点A,B在圆上,∴可得到方程组:解得a=3,b=±1.∴圆的标准方程是(x-3)2+(y-1)2=5或(x-3)2+(y+1)2=5.(法二)由A、B两点在圆上可知线段AB是圆的一条弦,根据平面几何知识:这个圆的圆心在线段AB的垂直平分线x=3上,于是可设圆心为C(3,b),又|AC|=,即=,解得b=1或b=-1.因此,所求圆的标准方程为(x-3)2+(y-1)2=5或(x-3)2+(y+1)2=5.5.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为().A.-1或B.1或3C.-2或6D.0或4【解析】∵圆心到直线的距离d=,又d2+()2=22,即d2=2,∴=2,∴(a-2)2=4,∴a=0或4.【答案】D6.圆(x-4)2+(y-5)2=10上的点到原点的距离的最小值是().A. B.-C. D.+【解析】因为圆的圆心为(4,5),半径为,圆心与原点的距离为=,所以圆(x-4)2+(y-5)2=10上的点到原点的距离的最小值为-.【答案】B7.过点P(1,-2)的直线l将圆C:(x-2)2+(y+3)2=16截成两段弧,若其中劣弧的长度最短,那么直线l的方程为.【解析】由题知直线l与PC垂直的时候劣弧最短.∵k PC==-1,∴k l=1,∴直线l的方程为y+2=x-1,即x-y-3=0.【答案】x-y-3=08.已知隧道的截面是半径为4 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m,高为3 m的货车能不能驶入这个隧道?【解析】以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立直角坐标系,如图,那么半圆的方程为x2+y2=16(y≥0).将x=2.7代入,得y==<3.即在离中心线2.7 m 处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.9.圆心在直线2x-y-7=0上且与y轴交于点A(0,-4),B(0,-2)的圆的标准方程为.【解析】由圆与y轴交于点A(0,-4),B(0,-2)可知,圆心在直线y=-3上,由得故圆心坐标为(2,-3),半径r==,∴所求圆的方程为(x-2)2+(y+3)2=5.【答案】(x-2)2+(y+3)2=510.经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上,求圆的标准方程.【解析】设所求的圆的圆心为C(a,b),则解得a=7,b=-3,∴圆心C(7,-3),半径r=|CB|==,∴所求圆的方程为(x-7)2+(y+3)2=65.。

高中数学 4.1.1 圆的标准方程能力提升(含解析)新人教A

高中数学 4.1.1 圆的标准方程能力提升(含解析)新人教A

【优化方案】2013-2014学年高中数学 4.1.1 圆的标准方程能力提升(含解析)新人教A 版必修21.若直线mx +2ny -4=0始终平分圆(x -2)2+(y -1)2=9的周长,则mn 的取值范围是( ) A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1] 解析:选D.可知直线mx +2ny -4=0过圆心(2,1),有2m +2n -4=0,即n =2-m ,则mn =m ·(2-m )=-m 2+2m =-(m -1)2+1≤1.2.(2013·淮南高一评估)圆心为直线x -y +2=0与直线2x +y -8=0的交点,且过原点的圆的标准方程是________.解析:由⎩⎪⎨⎪⎧ x -y +2=0,2x +y -8=0,可得⎩⎪⎨⎪⎧ x =2,y =4.即圆心为(2,4). r =(2-0)2+(4-0)2=25,故圆的标准方程为(x -2)2+(y -4)2=20.答案:(x -2)2+(y -4)2=203.平面直角坐标系中有A (0,1),B (2,1),C (3,4),D (-1,2)四点,这四点能否在同一个圆上?为什么?解:能.设过A (0,1),B (2,1),C (3,4)的圆的方程为(x -a )2+(y -b )2=r 2.将A ,B ,C 三点的坐标分别代入得⎩⎪⎨⎪⎧ a 2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,(3-a )2+(4-b )2=r 2,解得⎩⎪⎨⎪⎧ a =1,b =3,r = 5.∴圆的方程为(x -1)2+(y -3)2=5.将D (-1,2)的坐标代入上式圆的方程左边,(-1-1)2+(2-3)2=4+1=5,即D 点坐标适合此圆的方程.故A ,B ,C ,D 四点在同一圆上.4.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域.已知港口位于台风正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解:以台风中心为原点O ,东西方向为x 轴,南北方向为y 轴,建立如图所示的直角坐标系.这样,受台风影响的圆形区域所对应的圆的方程为x 2+y 2=302,① 轮船航线所在直线l 的方程为x 70+y 40=1, 即4x +7y -280=0.②如果圆O 与直线l 有公共点,则轮船受影响,需要改变航向;如果圆O 与直线l 无公共点,则轮船不受影响,无需改变航向.由于圆心O (0,0)到直线l 的距离d =|4×0+7×0-280|42+72=28065>30,所以直线l 与圆O 无公共点.这说明轮船将不受台风影响,不用改变航向.。

2019-2020学年高中数学人教A版必修2作业与测评:4.1.1 圆的标准方程

2019-2020学年高中数学人教A版必修2作业与测评:4.1.1 圆的标准方程

第四章 圆与方程4.1 圆的方程第28课时 圆的标准方程A .(1,0),4B .(-1,0),2 2C .(0,1),4D .(0,-1),2 2 答案 D解析 由圆的标准方程(x -a)2+(y -b)2=r 2,知圆心为(a ,b),半径为r ,易知答案为D .2.方程(x -1)x 2+y 2-3=0所表示的曲线是( )A .一个圆B .两个点C .一个点和一个圆D .一条直线和一个圆 答案 D 解析 (x -1)x 2+y 2-3=0可化为x -1=0或x2+y 2=3,因此该方程表示一条直线和一个圆.A .(-1,1)B .(0,1)C .⎝ ⎛⎭⎪⎫-1,15D .⎝ ⎛⎭⎪⎫-15,1答案 A解析 因为点(2a ,a +1)在圆x 2+(y -1)2=5的内部,则(2a)2 +[(a +1)-1]2<5,解得-1<a<1.故选A .4.若点A(a +1,3)在圆C :(x -a)2+(y -1)2=m 外,则实数m 的取值范围是( )A .(0,+∞)B .(-∞,5)C .(0,5)D .[0,5] 答案 C解析 由题意,得(a +1-a)2+(3-1)2>m ,即m<5,又易知m>0,∴0<m<5,故选C .准方程.解 解法一(几何法):设点C 为圆心,∵点C 在直线x -2y -3=0上,∴可设点C 的坐标为(2a +3,a).∵该圆经过A ,B 两点,∴|CA|=|CB|, ∴(2a +3-2)2+(a +3)2= (2a +3+2)2+(a +5)2, 解得a =-2,∴ 圆心坐标为C(-1,-2),半径长r =10. 故所求圆的标准方程为(x +1)2+(y +2)2=10.解法二(待定系数法):设所求圆的标准方程为(x -a)2+(y -b)2=r 2,由题设条件知⎩⎨⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10,故所求圆的标准方程为(x +1)2+(y +2)2=10.解法三(几何法):线段AB 的中点的坐标为(0,-4), 直线AB 的斜率k AB =-3-(-5)2-(-2)=12,∴弦AB 的垂直平分线的斜率为k =-2, ∴弦AB 的垂直平分线的方程为y +4=-2x , 即y =-2x -4.又圆心是直线y =-2x -4与直线x -2y -3=0的交点, 由⎩⎨⎧ y =-2x -4,x -2y -3=0,得⎩⎨⎧x =-1,y =-2,∴圆心坐标为(-1,-2), ∴圆的半径长r =(-1-2)2+(-2+3)2=10, 故所求圆的标准方程为(x +1)2+(y +2)2=10.一、选择题1.点(sin30°,cos30°)与圆x 2+y 2=12的位置关系是( )A .在圆上B .在圆内C .在圆外D .不能确定 答案 C解析 ∵sin 230°+cos 230°=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1>12,∴点在圆外.2.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A .12 B .32 C .1 D .3 答案 A解析 圆(x -1)2+y 2=1的圆心为(1,0),由点到直线的距离公式得d =⎪⎪⎪⎪⎪⎪3313+1=12.3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1 D .(x +1)2+(y -2)2=1 答案 A解析 圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆心C(2,-1),故圆C 的方程为(x -2)2+(y +1)2=1.4.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .2 答案 B解析 |PQ|的最小值为圆心到直线的距离减去半径长.因为圆的圆心为(3,-1),半径长为2,所以|PQ|的最小值d =3-(-3)-2=4.5.方程|x -1|=1-(y +1)2表示的曲线是( ) A .一个圆 B .两个半圆 C .两个圆 D .半圆 答案 A解析 方程|x -1|=1-(y +1)2两边平方得|x -1|2=(1-(y +1)2)2,即(x -1)2+(y +1)2=1,所以方程表示的曲线为一个圆,故选A .二、填空题6.已知圆C 经过A(5,1),B(1,3)两点,圆心在x 轴上,则圆C 的方程为________________.答案 (x -2)2+y 2=10解析 设圆C 的方程为(x -a)2+y 2=r 2,则⎩⎨⎧ (5-a )2+1=r 2,(1-a )2+9=r 2,解得⎩⎨⎧a =2,r 2=10,所以圆C 的方程为(x -2)2+y 2=10. 7.以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为________.答案 x 2+(y -4)2=20或(x -2)2+y 2=20解析 令x =0,得y =4,令y =0,得x =2.即直线与两坐标轴的交点为A(0,4)和B(2,0).以点A 为圆心,过点B 的圆的方程为x 2+(y -4)2=20;以点B 为圆心,过点A 的圆的方程为(x -2)2+y 2=20.8.过两点A(1,0),B(2,1),且圆心在直线x -y =0上的圆的标准方程是________.答案 (x -1)2+(y -1)2=1解析 线段AB 的中点为⎝ ⎛⎭⎪⎫32,12,A ,B 所在直线的斜率为1,所以直线AB的垂直平分线的方程为y -12=-⎝ ⎛⎭⎪⎫x -32,化简得y =-x +2,联立x -y =0,解得圆心坐标为(1,1),半径r =0+1=1,故圆的标准方程为(x -1)2+(y -1)2=1.三、解答题9.已知矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在的直线上.(1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的标准方程.解 (1)因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又点T(-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0. (2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2),因为矩形ABCD 的两条对角线的交点为点M(2,0), 所以M 为矩形ABCD 外接圆的圆心, 又r =|AM|=(2-0)2+(0+2)2=22,所以矩形ABCD 外接圆的方程为(x -2)2+y 2=8. 10.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a>0). (1)若点M(6,9)在圆上,求a 的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N 有且只有一个公共点,求a 的取值范围.解 (1)因为点M 在圆上,所以(6-5)2+(9-6)2=a 2, 又a>0,可得a =10. (2)由两点间距离公式可得 |PN|=(3-5)2+(3-6)2=13, |QN|=(5-5)2+(3-6)2=3.因为线段PQ 与圆有且只有一个公共点,即P ,Q 两点一个在圆N 内,另一个在圆N外,又3<13,所以3<a<13,即a的取值范围是(3,13).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程
学习目标:
1.掌握圆的标准方程;
2.能根据圆心坐标、半径熟练地写出圆的标准方程;
3.从圆的标准方程熟练地求出圆心和半径;
一、知识回顾并引题:
二、自学课本82P 并记下重点,积极思考问题:
三、自我检测:
1、在圆的标准方程:(x -a )2+(y -b )2=2
r 中,试按下列要求,分别写出a,b,r 应满足的条件 ⑴圆过原点: ;⑵圆心在x 轴上: ;
⑶圆心在y 轴上: ;⑷圆与x 轴相切: ;
⑸圆与y 轴相切: ;
⑹圆与两坐标轴都相切: 。

2、写出下列各圆的方程:
(1)圆心在原点,半径是3;
(2)圆心在点)4,3(C ,半径是5; (3)经过点)1,5(P ,圆心在点)3,8( C 。

四、提问、答疑,共同解决:
五、例题分析:
例1:求圆心在x 轴上且过点A(1,4)、B(2,-3) 圆的方程
练习:已知P(4,9)、Q(6,3),求以PQ 为直径的圆的标准方程
例2、已知圆经过点A(2,-3)和B(-2,-5),其圆心在直线032=--y x 上,求圆的标准方程
六、课后作业:
1、已知一个圆的圆心在原点,并与直线07034=-+y x 相切,求圆的方程。

2、求下列各圆的方程,并画出它的图形。

(1)过点)1,1(-C 和)3,1(D ,圆心在x 轴上; (2)半径是5,圆心在y 轴上,且与直线6=y 相切;
3、求下列条件所确定的圆的方程:
(1)圆心为)5,3(-C ,与直线027=+-y x 相切;
(2)过点)2,3(A ,圆心在直线x y 2=上,与直线52+=x y 相切。

4、已知一个圆的直径的端点是),(11y x A ,),(22y x B ,求证圆的方程是0))(())((2121=--+--y y y y x x x x
2、求下列各圆的标准方程:
(1)圆心在x y -=上且过两点(2,0),(0,-4); (2)圆心在直线835=-y x 上,且与坐标轴相切。

相关文档
最新文档