2014年河南省普通高中毕业班高考适应性测试数学(文)试卷

合集下载

河南省实验中学2014届高三第一次模拟考试 数学(文) 含答案

河南省实验中学2014届高三第一次模拟考试 数学(文) 含答案

2014年普通高等学校招生全国统一考试模拟卷(一)文科数学一、选择题:(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.) 1. 已知集合2{|320}A x x x =-+<,41{|log }2B x x =>,则( )A .AB ⊆ B .B A ⊆C .R A C B R =D .AB =∅2。

已知复数521i i z +=,则它的共轭复数z 等于( )A .2i -B .2i -+C .2i +D .2i --3。

.命题“2cos sin ,,2>-⎥⎦⎤⎢⎣⎡∈∃x x x ππ”的否定是( )A .2cos sin ,,2<-⎥⎦⎤⎢⎣⎡∈∀x x x ππB .2cos sin ,,2≤-⎥⎦⎤⎢⎣⎡∈∀x x x ππC .2cos sin ,,2≤-⎥⎦⎤⎢⎣⎡∈∃x x x ππD .2cos sin ,,2<-⎥⎦⎤⎢⎣⎡∈∃x x x ππ 4.已知,αβ是两个不同的平面,下列四个条件中能推出//αβ的是( )①在一条直线,,a a a αβ⊥⊥, ③存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂;②存在一个平面,,γγαγβ⊥⊥; ④存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂。

A.①③B.②④C.①④D.②③5.已知平面向量,m n 的夹角为,6π且3,2m n ==,在ABC ∆中,22AB m n =+,26AC m n =-,D 为BC 中点,则AD =( )A.2B.4 C 。

6 D 。

86.能够把圆O :1622=+y x 的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数",下列函数不是..圆O 的“和谐函数"的是( ) A .3()4f x xx =+B .5()15x f x n x-=+ C .()xx f x ee -=+D .()tan 2x f x =7.已知sin α+错误!cos α=错误!,则tan α=( ) A .错误! B .错误! C .- 错误! D .-错误! 8.已知等比数列{}na 的前An 项和为nS ,且1352a a +=,2454aa +=,则n n S a =( )A .14n - B .41n- C .12n - D .21n-9.执行如图所示的程序框图后,输出的值为4,则P 的取值范围是 ( )A . 715816P <≤ B.1516P >C . 715816P ≤< D. 3748P <≤1 0.已知实数,x y 满足2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩,则347x y +-的最大值为( )A .11B .12C .13D .14 11.设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使11A B =22A B ,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )(A)2323⎛⎤ ⎥ ⎝⎦(B)2323⎡⎫⎪⎢⎪⎣⎭(C)33⎛⎫+∞ ⎪ ⎪⎝⎭ (D )233⎡⎫+∞⎪⎢⎪⎣⎭ 12.已知函数()3111,0,36221,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩,函数()()sin 220,6g x a x a a π⎛⎫=-+> ⎪⎝⎭若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是( )A 。

河南省实验中学2014届高三第二次模拟考试数学文试题 W

河南省实验中学2014届高三第二次模拟考试数学文试题 W

河南省实验中学2014届高三二测模拟卷数学(文科)【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点来挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为A .7B .12C .32D .64 【知识点】集合及运算. A1【答案解析】D 解析:()()()()()(){}*=3,63,74,64,75,65,7P Q ,,,,,,所以P*Q 中有6个元素,所以P*Q 的子集个数为62=64,故选D.【思路点拨】由P*Q 定义得P*Q 中元素个数为6,所以P*Q 的子集个数为62=64. 【题文】2.已知复数2ii ia b -=+(a ,b ∈R ,i 为虚数单位),则2a b -= A. 1 B. 2 C. 3 D.4【知识点】复数的运算. L4 【答案解析】C 解析:由2ii i a b -=+得121232a a i i a b b =-⎧-=-+⇒⇒-=⎨=-⎩, 故选C.【思路点拨】利用复数乘法及复数相等条件,得a,b 值,从而求得a-2b 值. 【题文】3. “p 或q ”为真命题是“p 且q ”为真命题的 A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【知识点】充分条件;必要条件. A2【答案解析】C 解析:因为命题:若“p 或q ”为真命题则“p 且q ”为真命题,是假命题;而命题:若“p 且q ”为真命题则p 或q ”为真命题,是真命题.所以“p 或q ”为真命题是“p 且q ”为真命题的必要不充分条件.故选C.【思路点拨】根据:若p 则q 为假命题,若q 则p 为真命题时,p 是q 的必要不充分条件得结论.【题文】4.一个几何体的三视图如图所示,则该几何体的体积是A .6B .8C .10D .12 【知识点】空间几何体的三视图. G2【答案解析】D 解析:该几何体是两个全等的斜四棱 柱对接而成的几何体,其中每个四棱柱是底面邻边长分 别为3, 2的长方形,高为1,所以该几何体的体积为:2321⨯⨯⨯=12.故选D.【思路点拨】由几何体的三视图得该几何体的结构,该几何体是两个全等的斜四棱 柱对接而成的几何体,进而求得该几何体的体积.【题文】5.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aa a aa a a 中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为A .16B .32C .36D .72 【知识点】等差数列. D2【答案解析】D 解析:根据等差数列的性质得: 11121312212223223,3a a a a a a a a ++=++=,313233323a a a ++=,且122232223a a a a ++=,所以这9个数的和为:()122232223339872a a a a ++=⨯=⨯=,故选D.【思路点拨】根据等差数列的性质求解.【题文】6.如图所示的程序框图,它的输出结果是A .3B .4C .5D .6 【知识点】算法与程序框图. L1【答案解析】 C 解析:由框图可知循环的结果依次为:(1)90,2k α==,(2)135,3,k α==(3)180,4,k α== (4)225,5k α== ,此时满足sin cos αα<,所以输出k=5,故选C.【思路点拨】依次写出循环结果可得输出的k 值. 【题文】7.已知三个数2,m ,8构成一个等比数列,则圆锥曲线2212x y m +=的离心率为A .2B .C.2或D.2或2【知识点】等比数列;圆锥曲线. D3 H5 H6【答案解析】 C 解析:因为2,m ,8构成等比数列,所以2164,m m =⇒=±当m=4时,圆锥曲线2212x y m +=;当m=-4时,圆锥曲线2212x y m +=为双曲C.【思路点拨】由2,m ,8成等比数列得m 值,由m 值确定圆锥曲线2212x y m +=是椭圆还是双曲线,进而求得相应的离心率.【题文】8.若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则以b a ,为坐标的点),(b a P 所形成的平面区域的面积是 A .21 B .4π C .1 D .2π 【知识点】简单的线性规划;不等式恒成立. E5 E1【答案解析】 C 解析:不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域是以点(0,0),(1,0),(0,1)为顶点的三角形及其内部,当a,b 中有的取0时,满足条件得点是点或线段,其面积为0,当a>0,b>0时,要恒有≤+by ax 1,即恒有111x y a b +≤,则1111ab⎧≥⎪⎪⎨⎪≥⎪⎩,解得0101a b <≤⎧⎨<≤⎩,所以以b a ,为坐标的点),(b a P 所形成的平面区域的面积是111⨯=,故选C.【思路点拨】若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则直线1ax by +=在不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域的上方,由此得 a,b 满足的条件.【题文】9.在平行四边形ABCD 中,1,60AD BAD =∠=,E 为CD 的中点.若12AD BE ⋅= ,则AB 的长为 A.12 B.1 C .32D .2 【知识点】向量的线性运算;向量的数量积. F1 F3【答案解析】D 解析:设AB 长为x ,则CE 长12x ,又1,,2BC AD CE BA == 所以12BE BC CE AD BA =+=+ ,所以12AD BE AD AD BA ⎛⎫⋅=⋅+ ⎪⎝⎭()21111cos12022AD AD BA x =+⋅=+⨯⨯⨯ =14x -=12,所以x=2,故选D.【思路点拨】 根据向量加法的三角形法则,将BE 用,AB AD表示,再利用向量数量积的定义式求线段ABG 的长.【题文】10.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若(1)AF FB λλ=>,则λ的值为A .5B .4C .34 D .25 【知识点】抛物线及其几何性质;直线与圆锥曲线. H7 H8【答案解析】B 解析:不妨取p=2,则直线AB 方程为4x-3y-4=0,代入抛物线方程消去x 得2340y y --=,解得124,1y y ==-. 因为(1)AF FB λλ=>,所以设A ()()12,4,,1xB x -,又F (1,0),所以()()121,41,1x x λ--=--,所以44λλ-=-⇒=, 故选B.【思路点拨】把直线AB 方程代入抛物线方程消去x ,解得点A,B 的纵坐标,用坐标表示条件(1)AF FB λλ=>,利用A,B 的纵坐标求得λ值.【题文】11.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(l o g)af f fa << B. 2(3)(log )(2)a f f a f << C. 2(l o g )(3)(2)af a f f<< D. 2(log )(2)(3)a f a f f << 【知识点】函数的对称性、单调性. B1 B3【答案解析】C 解析:由()f x =(4)f x -得()()22f x f x +=-,所以函数()f x 图像关于x=2对称,由()2()xf x f x ''>得()()20x f x '->,所以x>2时,()0f x '>,所以()f x 是()2,+∞的增函数,因为2<a<4,所以224,1log 2a a ><<, 2log a 关于x=2的对称的数是24log a -,且224log 3a <-<,所以24log a -<3<2a,所以选C.【思路点拨】根据题设条件得函数()f x 的对称性和单调性,利用对称性把自变量取值化到 同一单调区间上,再利用单调性得结论.【题文】12.函数[]11,0,2()1(2),(2,)2x x f x f x x ⎧--∈⎪=⎨-∈+∞⎪⎩,则下列说法中正确命题的个数是①函数()ln(1)y f x x =-+有3个零点; ②若0x >时,函数()k f x x ≤恒成立,则实数k 的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭; ③函数()f x 的极大值中一定存在最小值,④)(),2(2)(N k k x f x f k ∈+=,对于一切[)0,x ∈+∞恒成立.A .1B .2C .3D .4【知识点】分段函数的图像;函数的零点;不等式恒成立;函数的极值. B1 B9 E1 【答案解析】B 解析:函数()()[]*11121,22,2,2n f x x n x n n n N -⎡⎤=---∈-∈⎣⎦ 其图像为① 函数()ln(1)y f x x =-+的零点个数,即函数()y f x =与函数()ln 1y x =+的交点个数,由由图可知两函数交点个数是2,故①不正确;②因为函数()y f x =的极大值点是*21,x n n N =-∈,极大值是112n -,所以0x >时,函数()kf x x≤恒成立,即11121,2122n n k n k n ---≥⇒≥-在*n N ∈时恒成立,因为1212n n --在2n =时有最大值32,所以32k ≥,故②正确;③由函数()y f x =的图像可知,函数()f x 的极大值中不存在最小值故③不正确;④由函数解析式可知,当[]*22,2,x k k k N ∈-∈时,()()2222,22x k k k +∈-⎡⎤⎣⎦,所以()()()211222122212k k k f x k x k k -⎡⎤+=⋅-+-⋅-⎣⎦()()111212k x k f x -⎡⎤=---=⎣⎦,当0k =时,显然成立,故④正确.所以选B. 【思路点拨】变形已知函数得()()[]*11121,22,2,2n f x x n x n n n N -⎡⎤=---∈-∈⎣⎦, 由图像可知①、③不正确;对于②由不等式恒成立条件求k 范围即可;对于④将2(2),()k f x k k N +∈的表达式求出,其与()f x 表达式相同,故④正确.二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置. 【题文】13.若非零向量,满足||||=,0)2(=⋅+,则a 与b 的夹角为______. 【知识点】向量的数量积;向量的夹角. F3【答案解析】120解析:由()22(2)22cos 0a b b a b ba b b θ+⋅=⋅+=+=及a b = 得1cos 2θ=-,因为[]0,θπ∈,所以120θ=【思路点拨】由向量向量数量积的运算律,及向量数量积的定义公式求解.【题文】14.函数()sin cos f x x x =+,在各项均为正数的数列{}n a 中对任意的*n N ∈都有()()n n f a x f a x +=-成立,则数列{}n a 的通项公式可以为(写一个你认为正确的)______【知识点】数列与函数. D1【答案解析】34n a n π⎛⎫=-⎪⎝⎭,*n N ∈ 解析:()4f x x π⎛⎫=+ ⎪⎝⎭,因为()()n n f a x f a x +=-,所以n a 是函数()f x 的对称轴,由42x k πππ+=+()k Z ∈得函数()f x 的对称轴为()4x k k Z ππ=+∈,取*1,k n n N =-∈得34n a n π⎛⎫=-⎪⎝⎭,*n N ∈. 【思路点拨】根据题设条件得n a 是函数()f x 的对称轴,因此求出函数()f x 的对称轴即可. 【题文】15.将一颗骰子先后投掷两次分别得到点数b a 、,则直线0=+by ax 与圆2)2(22=+-y x 有公共点的概率为_______.【知识点】古典概型. K2【答案解析】712 解析:a b ≤≤,而点(),a b 共有6636⨯=种,其中满足a b ≤的有21种,所以所求概率为2173612=. 【思路点拨】基本事件总数为6636⨯=,满足直线0=+by ax 与圆2)2(22=+-y x 有公共点的基本事件数为21,所以所求概率为2173612=. 【题文】16.已知四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,且21=AA ,底面ABCD 的边长均大于2,且︒=∠45DAB ,点P 在底面ABCD 内运动,且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥MN D P 1-体积的最大值为______.【知识点】三棱锥的体积;正弦定理;两角和与差的三角函数;二倍角公式. G1 C5 C6【答案解析】13解析:1111233P D MN D PMN PMN PMN V V S AA S --∆∆==⨯⨯=,因为︒=∠45DAB ,,PN AD PM AB ⊥⊥所以135MPN ∠= 且PMN ∆的外接圆直径为PA=2,设,PMN θ∠=则45PNM θ∠=-,由正弦定理得:()2sin 45,PN 2sin PM θθ=-= ,所以()11sin1352sin 452sin 222PMN S PM PN θθ∆=⋅⋅=⨯-⨯⨯()()45sin cos sin sin θθθθθ-=- 2sin cos sin θθθ=-=1242πθ⎛⎫+- ⎪⎝⎭,当2428πππθθ+=⇒=时PMN S ∆,故三棱锥MN D P 1-体积的最大值为13.【思路点拨】因为1111233P D MN D PMN PMN PMN V V S AA S --∆∆==⨯⨯=,所以只需求PMN ∆面积的最大值,因为︒=∠45DAB ,,PN AD PM AB ⊥⊥所以135MPN ∠=且PMN ∆的外接圆直径为PA=2,设,PMN θ∠=则45PNM θ∠=-,由正弦定理得:()2sin 45,PN 2sin PM θθ=-= ,所以()11sin1352sin 452sin 222PMN S PM PN θθ∆=⋅⋅=⨯-⨯⨯()()45sin cos sin sin θθθθθ-=- 2sin cos sin θθθ=-=12242πθ⎛⎫+- ⎪⎝⎭,当2428πππθθ+=⇒=时PMN S ∆,故三棱锥MN D P 1-体积的最大值为13. 三、解答题:本大题共6个小题,共70分.解答应写文字说明、证明过程或演算步骤 【题文】17.(本小题满分12分)在ABC ∆中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直线1:10l ax y ++=与直线()222:40l b c bc x ay +-++=互相平行(其中4a ≠).(I )求角A 的值, (II )若22,,sin cos 2232A C B B ππ+⎡⎫∈+⎪⎢⎣⎭求的取值范围. 【知识点】两条直线的位置关系;三角函数的求值、化简;解三角形. H2 C7 C8 【答案解析】(I )3π;(II )171,324⎡⎫--⎪⎢⎣⎭解析:(I )由12l l 得()2224a b c bc a =+-≠, 即222b c a bc +-=,--------2分所以2221cos 22b c a A bc +-==,又()0,A π∈,所以3A π=.---------5分 (II )2sincos 22A C B ++2221cos 1cos 2cos 2cos 1222B B B B +=+-=+- 22111172cos cos 2cos 22832B B B ⎛⎫=+-=+- ⎪⎝⎭,--------8分因为2,23B ππ⎡⎫∈⎪⎢⎣⎭,所以1cos ,02B ⎛⎤∈- ⎥⎝⎦,-----9分 所以21172cos 832B ⎛⎫+- ⎪⎝⎭171,324⎡⎫∈--⎪⎢⎣⎭,------11分即2sincos 22A C B ++的取值范围为171,324⎡⎫--⎪⎢⎣⎭.------12分 【思路点拨】(I )由两直线平行则对应系数比相等得222b c a bc +-=,再由余弦定理得A值;(II )利用三角公式将2sincos 22A C B ++化为21172cos 832B ⎛⎫+- ⎪⎝⎭,由角B 范围得 cos B 范围,从而求得2sin cos 22A CB ++的取值范围. 【题文】18.(本小题满分12分) 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人. (Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求() P E F .【知识点】频率分布直方图;用样本估计总体;古典概型. I2 K2【答案解析】(Ⅰ)0.06;(Ⅱ)中位数174.5, 身高在180cm 以上(含180cm )的人数144人; (Ⅲ)715.解析:(Ⅰ)第六组的频率为40.0850=,所以第七组的频率为:10.085(0.00820.0160.0420.06)0.06--⨯⨯++⨯+=; ………4分(Ⅱ)身高在第一组[155,160)的频率为0.00850.04⨯=, 身高在第二组[160,165)的频率为0.01650.08⨯=, 身高在第三组[165,170)的频率为0.0450.2⨯=, 身高在第四组[170,175)的频率为0.0450.2⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=> 估计这所学校的800名男生的身高的中位数为m ,则170175<<m 由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m所以可估计这所学校的800名男生的身高的中位数为174.5 …………………………6分 由直方图得后三组频率为0.060.080.00850.18++⨯=,所以身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. ………………8分 (Ⅲ)第六组[180,185)的人数为4人,设为,,,a b c d ,第八组[190,195]的人数为2人, 设为,A B ,则有,,,,,,ab ac ad bc bd cd ,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,因事件=E {5x y -≤}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为,,,,,,ab ac ad bc bd cd AB 共7种情况,故7()15P E =. ……………………10分由于max 19518015x y -=-=,所以事件F ={15->x y }是不可能事件,()0P F =, 由于事件E 和事件F 是互斥事件,所以7()()()15P E F P E P F =+=………12分 【思路点拨】(Ⅰ)由第七组的频率等于1减去其它七组的频率求得;(Ⅱ)依次求出每组的频率,由于前3组的频率和0.32<0.5,前4组的频率和0.52>0.5,所以估计身高中位数()170,175m ∈,由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m ,所以可估计这所学校的800名男生的身高的中位数为174.5 .又由直方图可知身高在180cm 以上(含180cm )的 频率为0.18,所以估计该校的800名男生的身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. (Ⅲ)先求出第六组、第八组的人数分别为4人、2人,用列举法写出从这六人中随机抽取两人共有15种情况,其中满足E 中条件的有7种,满足F 中条件的有0种,由于事件E 、F 是互斥事件,所以7()()()15P E F P E P F =+=. 【题文】19.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.【知识点】折叠形;线面平行的判定;函数的最值. G4 G5 B3 【答案解析】(Ⅰ) 存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=,理由:略; (Ⅱ)当x =3时,A CDF V -有最大值,最大值为3.解析:(Ⅰ)存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=.…………… 2分 下面证明:当32λ=时,即此时32AP PD = ,可知35AP AD =,过点P 作MP ∥FD ,与AF 交于点M ,则有35MP FD =,又FD =5,故MP =3,又因为EC =3,MP ∥FD ∥EC ,故有MP //=EC ,故四边形MPCE 为平行四边形,所以PC ∥ME ,又CP ⊄平面ABEF ,ME ⊂平面ABEF ,故有CP ∥平面ABEF 成立.……………………… 6分(Ⅱ)因为平面ABEF ⊥平面EFDC ,平面ABEF 平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC .由已知BE =x ,所以AF =x (0<x …4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A C D F V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3.【思路点拨】(Ⅰ)在平面EFCD 内作CN DF ⊥于N,在平面ADF 内作NP DF ⊥交AD 于P ,可证明平面CNP 平行于平面ABEF ,从而CP ∥平面ABEF ,所以点P 为所求点,进一步求得λ值;(Ⅱ) 由已知BE =x 得AF =x (0<x …4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A CD FV x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3. 【题文】20.(本小题满分12分)已知函数xe xf =)(,若函数)(xg 满足)()(x g x f ≥恒成立,则称)(x g 为函数)(x f 的下界函数.(1)若函数kx x g =)(是)(x f 的下界函数,求实数k 的取值范围;(2)证明:对任意的2≤m ,函数x m x h ln )(+=都是)(x f 的下界函数.A B C D E F E F A BC D【知识点】导数的应用. B12【答案解析】(1) e k ≤≤0;(2)证明:略. 解析:(1)若kx x g =)(为xe xf =)(的下界函数,易知0<k 不成立,而0=k 必然成立.当0>k 时,若kx x g =)(为xe xf =)(的下界函数,则)()(xg x f ≥恒成立,即0≥-kx e x 恒成立.-------(2分)令kx e x x-=)(ϕ,则k e x x-=')(ϕ.易知函数)(x ϕ在)ln ,(k -∞单调递减,在),(ln +∞k 上单调递增.-------(4分)由0)(≥x ϕ恒成立得0ln )(ln )(min ≥-==k k k k x ϕϕ,解得e k ≤<0.综上知e k ≤≤0.---------(6分)(2) 由(1)知函数ex x G =)(是xe xf =)(的下界函数,即)()(x G x f ≥恒成立, 若2≤m ,构造函数)0(ln )(>--=x m x ex x F ,--------(8分) 则11()ex F x e x x -'=-=,易知02)1()(min ≥-==m eF x F , 即x m x h ln )(+=是ex xG =)(的下界函数,即)()(x h x G ≥恒成立.-----(11分)所以)()()(x h x G x f ≥≥恒成立,即2≤m 时,x m x h ln )(+=是=)(x f xe 的下界函数.--------(12分)【思路点拨】(1)因为直线y=kx 恒过定点(0,0),由图像可知当直线y=kx 自x 轴开始绕原点逆时针旋转到与曲线x y e =相切时满足条件,所以只需求过(0,0)与曲线xy e =相切的切线的斜率,利用导数求此斜率;(2)即证: ln xe x m -≥在2m ≤时恒成立.由(1)知函数ex x G =)(是x e x f =)(的下界函数,只需证函数x m x h ln )(+=是ex x G =)(的下界函数,构造函数)0(ln )(>--=x m x ex x F , 则11()ex F x e x x-'=-=,又2≤m ,故易知02)1()(m i n ≥-==m eF x F ,即x m x h ln )(+=是ex xG =)(的下界函数,即)()(x h x G ≥恒成立.所以)()()(x h x G x f ≥≥恒成立,即2≤m 时,x m x h ln )(+=是=)(x f xe 的下界函数.【题文】21.(本小题满分12分)已知2212221x y F F a b+=、是椭圆的左、右焦点,O 为坐标原点,点P ⎛- ⎝⎭在椭圆上,线段PF 2与y 轴的交点M 满足20PM F M += ; (I )求椭圆的标准方程;(II ) O 是以12F F 为直径的圆,一直线:l y kx m =+ 与相切,并与椭圆交于不同的两点A 、B.当23,34OA OB AOB λλ⋅=≤≤∆ 且满足时,求面积S 的取值范围.【知识点】椭圆及其几何性质. H5【答案解析】(I )2212x y +=;(II23s ≤≤. 解析:(I )因为20,PM F M == 所以点M 是线段2PF 的中点,所以OM 是12PF F ∆的中位线,又12OM F F ⊥,所以112PFF F ⊥, 所以2222211112c a b a b c=⎧⎪⎪+=⎨⎪⎪=+⎩,解得2222,1,1a b c ===所以椭圆方程为2212x y +=.--------5分 (II )因为圆O 与直线l1=,即221m k =+由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222124220k x kmx m +++-= 因为直线l 与椭圆相交于两个不同点,所以200k ∆>⇒>,设()()1122,,,A x y B x y ,则122412km x x k +=-+,2212222221212m k x x k k -⋅==++,---7分()()()2212121212y y kx m kx m k x x km x x m =++=+++=2211k k-+ 212122112k OA OB x x y y k λ+⋅=+==+ ,所以222133124k k +≤≤+,解得2112k ≤≤S=112AB ⨯==-------10分设42u kk =+,则332,s ,244u u ⎡⎤≤≤=∈⎢⎥⎣⎦因为s 在u ∈3,24⎡⎤⎢⎥⎣⎦上单调递增,()32243s s ⎛⎫== ⎪⎝⎭,所以:243s ≤≤. ------12分 【思路点拨】(Ⅰ)由20PM F M +=得点M 是线段2PF 的中点,所以OM 是12PF F ∆的中位线,又12OM F F ⊥,所以112PF F F ⊥,所以2222211112c a b a b c=⎧⎪⎪+=⎨⎪⎪=+⎩,解得2222,1,1a b c === 所以椭圆方程为2212x y +=.(Ⅱ)由圆O 与直线l 相切,得221m k =+ 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222124220k x kmx m +++-=,由200k ∆>⇒>, 设()()1122,,,A x y B x y ,则122412km x x k +=-+,2212222221212m k x x k k-⋅==++,从而 12y y =2211k k -+,所以212122112k OA OB x x y y k λ+⋅=+==+ ,所以222133124k k +≤≤+, 解得2112k ≤≤ ,所以S=112AB ⨯=设42u kk =+,则332,s ,244u u ⎡⎤≤≤=∈⎢⎥⎣⎦因为s 在u ∈3,24⎡⎤⎢⎥⎣⎦上单调递增,()322443s s ⎛⎫== ⎪⎝⎭23s ≤≤. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。

河南省扶沟县高级中学2014届高三第一次适应性考试数学(文)试题 Word版含答案.pdf

河南省扶沟县高级中学2014届高三第一次适应性考试数学(文)试题 Word版含答案.pdf

2014届高三第一次适应性考试数学(文)试题 本试卷分第I卷(选择题)和第II卷(非选择题)两部分.其中第II卷第22~24题为选考题,其他题为必考题. 第I卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.将答案直接填涂在答题卷上. 1.已知集合,则( ) (A) (B) (C) (D) 2.复数的模为( ) (A) (B) (C) (D) 3.曲线在点(1,0)处的切线方程为( ) (A) (B) (C) (D) 4.椭圆的离心率为( ) (A) (B) (C) (D) 5.在中,,则( ) (A) (B) (C) (D) 6.执行右面的程序框图,如果输入的是6,那么输出的是( ) (A)120 (B)720 (C)1440 (D)5040 7.在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为( ) 8.设,则( ) (A) (B) (C) (D) 9.设为等差数列的前项和,,则( ) (A) (B) (C) (D) 10.设抛物线的焦点为,直线过且与交于两点.若,则的方程为( ) (A) (B) (C) (D) 11.已知函数,下列结论中错误的是( ) (A)若是的极小值点,则在区间单调递减 (B)函数的图象是中心对称图形 (C) (D)若是的极值点,则 12.已知函数y=f(x) 的周期为2,当x时 f(x)=x2,那么函数y=f(x) 的图像与函数y=的图像的交点共有( ) (A)8个 (B)9个 (C)10个 (D)1个 第II卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分.将答案直接填写在答题卷上. 13.从中任取两个不同的数,则取出的两个数之差的绝对值为的概率是 . 14.若满足约束条件,则的最小值为 . 15.等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q= . 16.已知直三棱柱的个顶点都在球的球面上.若,,则球的直径为 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.将解答直接答在答题卷上. 17.(本小题满分12分) 设向量. (Ⅰ)若,求的值; (Ⅱ)设函数,求的最大值. 18.(本小题满分12分) 如图,四棱锥中,底面为平行四边形., 底面. (I)证明:; (II)设,求棱锥的高. (本小题满分12分) 近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机对入院50人进行了问卷调查,得到了如下的列联表. (Ⅰ)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人? (Ⅱ)在上述抽取的6人中选2人,求恰有一名女性的概率; (Ⅲ)为了研究心肺疾病是否与性别有关,请计算出统计量,并回答有多大把握认为心肺疾病与性别有关? 下面的临界值表供参考: (本小题满分12分) 在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为. (I)求圆心的轨迹方程; (II)若点到直线的距离为,求圆的方程. (本小题满分12分) 设函数. (Ⅰ)若,求的单调区间; (Ⅱ)若当时,求的取值范围. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. (本小题满分10分)选修4-1:几何证明选讲 如图,分别为的边上的点,且不与的顶点重合.已知的长为m,的长为n,的长是关于的方程的两个根. (Ⅰ)证明:四点共圆; (Ⅱ)若,且,求所在圆的半径. 23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线C1的参数方程为(为参数), M是C1上的动点,P点满足,P点的轨迹为曲线C2 (Ⅰ)求C2的方程; (Ⅱ)在以为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求. 24.(本小题满分10分)选修4-5:不等式选讲 设函数,其中. (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为 ,求的值.扶沟高中2013-2014学年度(上)高三第一次考试(适应性) 文数参考答案 一、选择题: 题号123456789101112答案BDADBBDBACAC二、填空题: 13. 14. 15. 16. 18.解:(Ⅰ?)因为, 由余弦定理得 从而BD2+AD2=AB2,故BDAD 又PD底面ABCD,可得BDPD 所以BD平面PAD. 故PABD (Ⅱ)过D作DE⊥PB于E,由(I)知BC⊥BD,又PD⊥底面, 所以BC⊥平面PBD,而DE平面PBD,故DE⊥BC,所以DE⊥平面PBC 由题设知PD=1,则BD=,PB=2, 由DEPB=PDBD得DE=,即棱锥的高为 (Ⅱ) 21.解:(Ⅰ)时,,。

河南省濮阳市2014届高三第二次模拟考试 数学(文) 含答案

河南省濮阳市2014届高三第二次模拟考试 数学(文) 含答案

高中三年级模拟考试数学(文科)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷l 至3页,第Ⅱ卷3至5页。

2.答卷前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试卷上无效。

4.考试结束后,将本试题和答题卡一并交回。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}=<<=-+>,则A B=()A x xB x x x|02,|(1)(1)0A。

(0,1) B.(1,2) C.( -∞,-l)U(0,+∞)D.(-∞,—l)U(l,+∞)i+对应的点位于()(2)在复平面内,复数22A.第一象限B.第二象限C.第三象限D.第四象限(3)如图,一个封闭的长方体,它的六个表面各标出A、B、C、D、E、F这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已表明,则字母A、B、C对面的字母依次分别为( )A 。

E.D 。

F B. F 。

D.E C 。

E.F 。

D D. D.E.F (4)将函数sin y x =的图象上所有点向右平行移动10π个单位长度,再把所得的各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 ( ) A . sin(2)10y x π=-B .sin(2)5y x π=-C . sin()220x y π=-D 。

sin()210x y π=-(5)设n S 是公差不为0的等差数列 {}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 ( )A .1B .2C .3D .4(6)在△ABC 中,内角A ,B,C 的对边分别是a ,b,c ,若223,sin 23sin a b bc C B -==,则A= ( )A 。

30 B 。

60 C.120D. 150(7)过P (2,0)的直线 l 被圆22(2)(3)9x y -+-=截得的线段长为2时,直线的斜率为 ( ) A 。

河南省实验中学2014届高三第二次模拟考试 数学(文) Word版含答案

河南省实验中学2014届高三第二次模拟考试 数学(文) Word版含答案

4545输出河南省实验中学2014届高三二测模拟卷数学(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为A .7B .12C .32D .642.已知复数2ii ia b -=+(a ,b ∈R ,i 为虚数单位),则2a b -= A. 1 B. 2 C. 3 D.4 3. “p 或q ”为真命题是“p 且q ”为真命题的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 4.一个几何体的三视图如图所示,则该几何体的体积是A .6B .8C .10D .125.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aa a aa a a 中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为A .16B .32C .36D .72 6.如图所示的程序框图,它的输出结果是A .3B .4C .5D .67.已知三个数2,m ,8构成一个等比数列,则圆锥曲线2212x y m +=的离心率为A .B. C.或 D8.若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则以b a ,为坐标的点),(b a P 所形成的平面区域的面积是 A .21 B .4π C .1 D .2π 9.在平行四边形ABCD 中,1,60AD BAD =∠=,E 为CD 的中点.若12AD BE ⋅=, 则AB 的长为A.12 B.1 C .32D .2 10.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若)1(>=λλFB AF ,则λ的值为A .5B .4C .34 D .25 11.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(l o g)af f fa << B. 2(3)(log )(2)a f f a f << C. 2(l o g )(3)(2)af a f f<< D. 2(log )(2)(3)a f a f f << 12.函数[]11,0,2()1(2),(2,)2x x f x f x x ⎧--∈⎪=⎨-∈+∞⎪⎩,则下列说法中正确命题的个数是①函数()ln(1)y f x x =-+有3个零点; ②若0x >时,函数()k f x x ≤恒成立,则实数k 的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭; ③函数()f x 的极大值中一定存在最小值,④)(),2(2)(N k k x f x f k ∈+=,对于一切[)0,x ∈+∞恒成立.A .1B .2C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置. 13.若非零向量b a ,满足||||b a =,0)2(=⋅+b b a ,则与的夹角为______.14.函数()sin cos f x x x =+,在各项均为正数的数列{}n a 中对任意的*n N ∈都有()()n n f a x f a x +=-成立,则数列{}n a 的通项公式可以为(写一个你认为正确的)______15.将一颗骰子先后投掷两次分别得到点数b a 、,则直线0=+by ax 与圆2)2(22=+-y x 有公共点的概率为_______.16.已知四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,且21=AA ,底面ABCD 的边长均大于2,且︒=∠45DAB ,点P 在底面ABCD 内运动,且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥MN D P 1-体积的最大值为______.三、解答题:本大题共6个小题,共70分.解答应写文字说明、证明过程或演算步骤17.(本小题满分12分)在ABC ∆中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直线1:10l ax y ++=与直线()222:40l b c bc x ay +-++=互相平行(其中4a ≠).(I )求角A 的值, (II )若22,,sin cos 2232A C B B ππ+⎡⎫∈+⎪⎢⎣⎭求的取值范围.18.(本小题满分12分) 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率; (Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求()P E F .19.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.20.(本小题满分12分)已知函数xe xf =)(,若函数)(xg 满足)()(x g x f ≥恒成立,则称)(x g 为函数)(x f 的下界函数.(1)若函数kx x g =)(是)(x f 的下界函数,求实数k 的取值范围;A B C D EFE F A B CD(2)证明:对任意的2≤m ,函数x m x h ln )(+=都是)(x f 的下界函数.21.(本小题满分12分)已知2212221x y F F a b +=、是椭圆的左、右焦点,O 为坐标原点,点P ⎛- ⎝⎭在椭圆上,线段PF 2与y 轴的交点M 满足20PM F M +=; (I )求椭圆的标准方程;(II )O 是以12F F 为直径的圆,一直线:l y kx m =+与相切,并与椭圆交于不同的两点A 、B.当23,34OA OB AOB λλ⋅=≤≤∆且满足时,求面积S 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。

河南省实验中学2014届高三数学第一次模拟考试试题 文(含解析)

河南省实验中学2014届高三数学第一次模拟考试试题 文(含解析)

河南省实验中学2014届高三第一次模拟考试文科数学【试卷综析】本试卷是高三文科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、复数、向量、三视图、导数、简单的线性规划、直线与圆、圆锥曲线、立体几何、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、命题、程序框图、频率分布直方图及独立性检验思想,不等式选讲、几何证明选讲、参数方程极坐标等;考查学生解决实际问题的综合能力,是份较好的试卷.个小题给出的四个选项中,只有一项是符合题目要求的.)【题文】1. 已知集合2{|320}A x x x =-+<,41{|log }2B x x =>,则( ) A .A B ⊆ B .B A ⊆ C .R AC B R= D .A B =∅【知识点】集合A1 【答案解析】D解析:因为{}2{|320}12A x x x x x =-+<=<<,{}41{|log }22B x x x x =>=>,所以A B =∅,选D.【思路点拨】一般遇到不等式的解集,可先对不等式求解再判断集合之间的关系.【题文】2.已知复数521i iz +=,则它的共轭复数z 等于( )A .2i -B .2i -+C . 2i +D .2i -- 【知识点】复数的概念与运算L4【答案解析】C 解析:因为512122i iz i i i ++===-,所以2z i =+,则选C.【思路点拨】复数的概念及代数运算是常考知识点,熟记运算规则是解题的关键.【题文】3.命题“2cos sin ,,2>-⎥⎦⎤⎢⎣⎡∈∃x x x ππ”的否定是( )A .2cos sin ,,2<-⎥⎦⎤⎢⎣⎡∈∀x x x ππB .2cos sin ,,2≤-⎥⎦⎤⎢⎣⎡∈∀x x x ππ C .2cos sin ,,2≤-⎥⎦⎤⎢⎣⎡∈∃x x x ππ D .2cos sin ,,2<-⎥⎦⎤⎢⎣⎡∈∃x x x ππ【知识点】特称命题与全称命题A3【答案解析】B 解析:根据特称命题的否定是全称命题,其否定格式是特称变全称,结论变否定,所以选B.【思路点拨】熟悉特称命题与全称命题的否定格式是快速判断的关键.【题文】4.已知,αβ是两个不同的平面,下列四个条件中能推出//αβ的是( ) ①在一条直线,,a a a αβ⊥⊥, ③存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂; ②存在一个平面,,γγαγβ⊥⊥; ④存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂. A.①③ B.②④ C.①④ D.②③ 【知识点】两面平行的判定G4【答案解析】C 解析:由垂直同一直线的两面平行知①正确,排除B,D ,两个平面内各有一个直线与另一个面平行,两面还可能相交所以③错误,排除A ,则选C. 【思路点拨】对于多项选择问题,可用排除法进行判断.【题文】5.已知平面向量,m n 的夹角为,6π且3,2m n ==,在ABC ∆中,22AB m n =+,26AC m n =-,D 为BC 中点,则AD =( )A.2B.4C.6D.8【知识点】向量的数量积F3【答案解析】A解析:因为()1222AD AB AC m n =+=-,所以()22222AD m n m n=+=-== .【思路点拨】求向量的模通常利用模的平方等于向量的平方进行转化求值.【题文】6.能够把圆O :1622=+y x 的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数不是圆O 的“和谐函数”的是( )A .3()4f x x x =+ B .5()15x f x nx -=+ C .()x xf x e e -=+ D .()tan 2xf x =【知识点】奇函数、圆B4 H3【答案解析】C 解析:若为和谐函数,则该函数为过原点的奇函数,显然A,B,D 都满足条件,而C 不是奇函数,所以不是圆O 的和谐函数,所以答案为C.【思路点拨】由“和谐函数”的定义及选项知,该函数若为“和谐函数”,其函数须为过原点的奇函数,由此逐项判断即可得到答案.【题文】7.已知sin α+2cosα=3,则tan α=( ) A .22 B . 2 C .- 22D .- 2 【知识点】同角三角函数基本关系式C2【答案解析】A 解析:因为 sin α+2cosα=3,所以22sin 2cos 22cos 3αααα++=,得22tan 2223tan 1ααα++=+,整理得)222121,tan 2ααα-=-=,所以选A.【思路点拨】本题主要考查的是同角三角函数基本关系式及其应用,可把已知通过两边平方转化为熟悉的正弦余弦二次式,再化切求值.【题文】8.已知等比数列{}n a 的前An 项和为n S ,且1352a a +=,2454a a +=,则n n S a =( ) A .14n - B .41n - C .12n - D .21n-【知识点】等比数列D3【答案解析】D 解析:设等比数列的公比为q ,则241312a a q a a +==+,所以1111121122112n n n n n a S a a -⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭-==-⎛⎫⎪⎝⎭,所以选D.【思路点拨】抓住等比数列特征直接求出公比,再利用前n 项和与通项公式特征求其比值.【题文】9.执行如图所示的程序框图后,输出的值为4,则P 的取值范围是 ( )A . 715816P <≤ B.1516P > C . 715816P ≤<D. 3748P <≤【知识点】程序框图L1【答案解析】D 解析:依次执行循环结构得:第一次执行s=12,n=2,第二次执行s=12+21324=,n=3,第三次执行s= s=12+23117228+=,n=4,因为输出的值为4,所以3748p <≤,则选D.【思路点拨】对于循环结构的程序框图,可依次执行循环体,直到跳出循环,再进行解答.【题文】1 0.已知实数,x y 满足2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩,则347x y +-的最大值为( )A .11B .12C .13D .14【知识点】二元一次不等式组表示的平面区域E5【答案解析】D 解析:不等式组2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩表示的平面区域为如图三角形ABC 表示的区域,则34734755x y x y +-+-=⨯,显然点A 到直线3x+4y ﹣7=0的距离最大,又A 点坐标为(﹣1, ﹣1),所以A 到直线3x+4y ﹣7=0的距离为3471455---=,则所求的最大值为14,所以选D..【思路点拨】一般遇到不等式组表示的平面区域问题时经常利用其几何意义数形结合解答.【题文】11.设双曲线C 的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使11A B =22A B ,其中A1,B1和A2,B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )(A)23,23⎛⎤ ⎥ ⎝⎦ (B)2323⎡⎫⎪⎢⎪⎣⎭ (C)33⎛⎫+∞ ⎪ ⎪⎝⎭ (D)3,3⎡⎫+∞⎪⎢⎪⎣⎭【知识点】双曲线的几何性质H6【答案解析】A 解析:由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x 轴的情形.因为有且只有一对相较于点O 、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x 轴对称,并且直线A1B1和A2B2,与x 轴的夹角为30°,双曲线的渐近线与x 轴的夹角大于30°且小于等于60°,否则不满足题意.则有tan 30tan 60b a ︒<≤︒,得222212313,233c a e e a -<=-≤<≤,所以选A.【思路点拨】本题抓住双曲线的对称性得到两直线的相互位置,再结合双曲线的渐近线确定两直线的变化范围,进而得到其离心率的范围.【题文】12.已知函数()3111,0,36221,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩,函数()()sin 220,6g x a x a a π⎛⎫=-+>⎪⎝⎭若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是( )[A. 2,13⎡⎤-⎢⎥⎣⎦ B.14,23⎡⎤⎢⎥⎣⎦ C. 43,32⎡⎤⎢⎥⎣⎦ D. 1,23⎡⎤⎢⎥⎣⎦【知识点】函数的值域B3【答案解析】B 解析:因为当1,12x ⎛⎤∈ ⎥⎝⎦时,()()32246'01x x f x x +=>+,所以此时函数单调递增,其值域为1,16⎛⎤ ⎥⎝⎦,当x 10,2⎡⎤∈⎢⎥⎣⎦时,值域为10,6⎡⎤⎢⎥⎣⎦,所以函数f(x)在其定义域上的值域为[0,1],又函数g(x)在区间[0,1]上的值域为[﹣2a+2, ﹣32a +2],若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则3202221a a ⎧-+≥⎪⎨⎪-+≤⎩ 解得1423a ≤≤,所以选B . 【思路点拨】本题的本质是两个函数的值域交集非空,可通过求值域解答.第Ⅱ卷(非选择题 共90分)二.填空题(每题5分,共20分。

2014年适应性测试文综答案

2014年适应性测试文综答案

绝密★启用前2014年河南省普通高中毕业班高考适应性测试文科综合能力测试参考答案及评分说明第Ⅰ卷1.A 2.A 3.C 4.D 5.B 6.A 7.D 8.B 9.B 10.D 11.A 12.A13.D14.B15.C16.C17.B18.A19.D20.B 21.D22.C23.A24.D 25.B 26.A 27.B 28.A 29.D 30.D 31.D 32.B 33.C 34.B 35.C第Ⅱ卷36.(24分)(1)位于河谷两侧的天山山脉将沙漠的干热气流(2分)和西伯利亚干冷寒流阻隔,气候温暖。

(2分)向西开敞的喇叭形谷地,(2分)使大量来自大西洋和北冰洋的湿润气流沿河谷上升形成地形雨,气候湿润。

(4分)(2)冬季(2分),由于山上气温高于谷底,可在逆温层安排牲畜越冬(2分),发展冬季温室蔬菜和果树(2分)。

(3)水资源短缺(土壤盐碱化);措施:节约水资源;合理灌溉。

(4分)草场退化(土地荒漠化);措施:退耕还林还草,防止水土流失和荒漠化,规定合理的载畜量。

(4分)水土污染;措施:减少农药、化肥使用量,减轻河水污染。

(4分)(任答2点给8分)37.(22分)(1)入湖河流多,(2分)降水丰富,河流水量大;(2分)与委内如拉海湾连接的水道狭窄,不利于海水和湖水的交换(2分)。

(2)分布特点:主要分布在西北部;(2分)地势较高的地方。

(2分)原因:海拔高,气候凉爽;(2分)石油丰富,石油工业发达;(2分)北部开发历史悠久;(2分)海上交通便利。

(2分)(任答3点给6分)(3)观点一:应该大力发展水电,(2分)该河水能资源丰富;发展水电可以促进经济发展;修建大坝具有防洪、灌溉、养殖等综合效益。

(6分)观点二:不应该大力发展水电,(2分)该河流域人烟稀少,电力需求小;交通不便;经济发展水平低,技术落后,发展水电能力有限;建坝容易破坏河流生态环境。

(任答3点给6分)38.(26分)(1)①科学技术是第一生产力,科技创新是推动我国生产力发展和社会进步的动力;(2分)②科技创新有利于企业开发新产品,提高生产效率,在竞争中占据优势;(3分)③科技创新促进和催生民用产品的开发,提高人民生活水平和质量;(3分)④科技创新有利于实施创新驱动发展战略,加快转变经济发展方式,实现经济持续健康发展;(3分)⑤科技创新有利于提高我国独立自主、自力更生能力,更好地维护我文综测试试题答案第1页(共3页)国经济独立和经济安全。

河南省实验中学2014届高三数学第二次模拟考试试题 文(含解析)

河南省实验中学2014届高三数学第二次模拟考试试题 文(含解析)

河南省实验中学2014届高三二测模拟卷数学(文科)【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点来挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.集合P={3,4,5},Q={6,7},定义},|),{(*QbPabaQP∈∈=,则QP*的子集个数为A.7 B.12 C.32 D.64 【知识点】集合及运算. A1【答案解析】D 解析:()()()()()(){}*=3,63,74,64,75,65,7P Q,,,,,,所以P*Q 中有6个元素,所以P*Q的子集个数为62=64,故选D.【思路点拨】由P*Q定义得P*Q中元素个数为6,所以P*Q的子集个数为62=64.【题文】2.已知复数2iiiab-=+(a,b∈R,i为虚数单位),则2a b-=A.1B.2C.3D.4【知识点】复数的运算. L4【答案解析】C 解析:由2iiiab-=+得121232aa i i a bb=-⎧-=-+⇒⇒-=⎨=-⎩,故选C.【思路点拨】利用复数乘法及复数相等条件,得a,b值,从而求得a-2b值.【题文】3. “p或q”为真命题是“p且q”为真命题的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【知识点】充分条件;必要条件. A2【答案解析】C 解析:因为命题:若“p或q”为真命题则“p且q”为真命题,是假命题;而命题:若“p且q”为真命题则p或q”为真命题,是真命题.所以“p或q”为真命题是“p且q”为真命题的必要不充分条件.故选C.【思路点拨】根据:若p则q为假命题,若q则p为真命题时,p是q的必要不充分条件得开始0k =45α=sin cos ?αα<是45αα=+1k k =+否输出k 结束结论.【题文】4.一个几何体的三视图如图所示,则该几何体的体积是 A .6 B .8 C .10 D .12 【知识点】空间几何体的三视图. G2【答案解析】D 解析:该几何体是两个全等的斜四棱 柱对接而成的几何体,其中每个四棱柱是底面邻边长分 别为3, 2的长方形,高为1,所以该几何体的体积为:2321⨯⨯⨯=12.故选D.【思路点拨】由几何体的三视图得该几何体的结构,该几何体是两个全等的斜四棱柱对接而成的几何体,进而求得该几何体的体积.【题文】5.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aa a aa a a中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为 A .16 B .32 C .36 D .72 【知识点】等差数列. D2【答案解析】D 解析:根据等差数列的性质得:11121312212223223,3a a a a a a a a ++=++=,313233323a a a ++=,且122232223a a a a ++=,所以这9个数的和为:()122232223339872a a a a ++=⨯=⨯=,故选D.【思路点拨】根据等差数列的性质求解.【题文】6.如图所示的程序框图,它的输出结果是 A .3 B .4 C .5D .6【知识点】算法与程序框图. L1 【答案解析】 C 解析:由框图可知循环的结果依次为:(1)90,2k α==,(2)135,3,k α==(3)180,4,k α==(4)225,5k α==,此时满足sin cos αα<,所以输出k=5,故选C.【思路点拨】依次写出循环结果可得输出的k 值. 【题文】7.已知三个数2,m ,8构成一个等比数列,则圆锥曲线2212x y m +=的离心率为A .2 B ..2或.2或2【知识点】等比数列;圆锥曲线. D3 H5 H6【答案解析】 C 解析:因为2,m ,8构成等比数列,所以2164,m m =⇒=±当m=4时, 圆锥曲线2212x y m +=为椭圆,其离心率为2;当m=-4时,圆锥曲线2212x y m +=为双曲,故选C.【思路点拨】由2,m ,8成等比数列得m 值,由m 值确定圆锥曲线2212x y m +=是椭圆还是双曲线,进而求得相应的离心率.【题文】8.若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则以b a ,为坐标的点),(b a P 所形成的平面区域的面积是 A .21 B .4π C .1 D .2π【知识点】简单的线性规划;不等式恒成立. E5 E1【答案解析】 C 解析:不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域是以点(0,0),(1,0),(0,1)为顶点的三角形及其内部,当a,b 中有的取0时,满足条件得点是点或线段,其面积为0,当a>0,b>0时,要恒有≤+by ax 1,即恒有111x ya b +≤,则1111a b ⎧≥⎪⎪⎨⎪≥⎪⎩,解得0101a b <≤⎧⎨<≤⎩,所以以b a ,为坐标的点),(b a P 所形成的平面区域的面积是111⨯=,故选C.【思路点拨】若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则直线1ax by +=在不等式组001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域的上方,由此得 a,b 满足的条件.【题文】9.在平行四边形ABCD 中,1,60AD BAD =∠=,E 为CD 的中点.若12AD BE ⋅=,则AB 的长为A.12B.1 C .32 D .2【知识点】向量的线性运算;向量的数量积. F1 F3【答案解析】D 解析:设AB 长为x ,则CE 长12x ,又1,,2BC AD CE BA ==所以 12BE BC CE AD BA=+=+,所以12AD BE AD AD BA ⎛⎫⋅=⋅+ ⎪⎝⎭ ()21111cos12022AD AD BA x =+⋅=+⨯⨯⨯=14x -=12,所以x=2,故选D.【思路点拨】 根据向量加法的三角形法则,将BE 用,AB AD 表示,再利用向量数量积的定义式求线段ABG 的长.【题文】10.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若(1)AF FB λλ=>,则λ的值为A .5B .4C .34D .25【知识点】抛物线及其几何性质;直线与圆锥曲线. H7 H8【答案解析】B 解析:不妨取p=2,则直线AB 方程为4x-3y-4=0,代入抛物线方程消去x得2340y y --=,解得124,1y y ==-. 因为(1)AF FB λλ=>,所以设A()()12,4,,1x B x -,又F (1,0),所以()()121,41,1x x λ--=--,所以44λλ-=-⇒=,故选B.【思路点拨】把直线AB 方程代入抛物线方程消去x ,解得点A,B 的纵坐标,用坐标表示条件(1)AF FB λλ=>,利用A,B 的纵坐标求得λ值.【题文】11.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(log )a f f f a <<B. 2(3)(log )(2)a f f a f <<C. 2(log )(3)(2)a f a f f <<D. 2(log )(2)(3)a f a f f <<【知识点】函数的对称性、单调性. B1 B3【答案解析】C 解析:由()f x =(4)f x -得()()22f x f x +=-,所以函数()f x 图像关于x=2对称,由()2()xf x f x ''>得()()20x f x '->,所以x>2时,()0f x '>,所以 ()f x 是()2,+∞的增函数,因为2<a<4,所以224,1log 2a a ><<, 2log a 关于x=2的对称的数是24log a-,且224log 3a <-<,所以24log a-<3<2a,所以选C.【思路点拨】根据题设条件得函数()f x 的对称性和单调性,利用对称性把自变量取值化到同一单调区间上,再利用单调性得结论.【题文】12.函数[]11,0,2()1(2),(2,)2x x f x f x x ⎧--∈⎪=⎨-∈+∞⎪⎩,则下列说法中正确命题的个数是①函数()ln(1)y f x x =-+有3个零点;②若0x >时,函数()k f x x ≤恒成立,则实数k 的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭;③函数()f x 的极大值中一定存在最小值,④)(),2(2)(N k k x f x f k∈+=,对于一切[)0,x ∈+∞恒成立. A .1 B .2 C .3 D .4【知识点】分段函数的图像;函数的零点;不等式恒成立;函数的极值. B1 B9 E1【答案解析】B 解析:函数()()[]*11121,22,2,2n f x x n x n n n N -⎡⎤=---∈-∈⎣⎦其图像为函数()ln(1)y f x x =-+的零点个数,即函数()y f x =与函数()ln 1y x =+的交点个数,由由图可知两函数交点个数是2,故①不正确;②因为函数()y f x =的极大值点是*21,x n n N =-∈,极大值是112n -,所以0x >时,函数()k f x x ≤恒成立,即11121,2122n n k n k n ---≥⇒≥-在*n N ∈时恒成立,因为1212n n --在2n =时有最大值32,所以32k ≥,故②正确;③由函数()y f x =的图像可知,函数()f x 的极大值中不存在最小值故③不正确;④由函数解析式可知,当[]*22,2,x k k k N ∈-∈时,()()2222,22x k k k +∈-⎡⎤⎣⎦,所以()()()211222122212k k k f x k x k k -⎡⎤+=⋅-+-⋅-⎣⎦ ()()111212k x k f x -⎡⎤=---=⎣⎦,当0k =时,显然成立,故④正确.所以选B.【思路点拨】变形已知函数得()()[]*11121,22,2,2n f x x n x n n n N -⎡⎤=---∈-∈⎣⎦,由图像可知①、③不正确;对于②由不等式恒成立条件求k 范围即可;对于④将2(2),()k f x k k N +∈的表达式求出,其与()f x 表达式相同,故④正确.二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置. 【题文】13.若非零向量b a ,满足||||b a =,0)2(=⋅+b b a ,则a 与b 的夹角为______. 【知识点】向量的数量积;向量的夹角. F3【答案解析】120 解析:由()22(2)22cos 0a b b a b ba b b θ+⋅=⋅+=+=及a b=得1cos 2θ=-,因为[]0,θπ∈,所以120θ=【思路点拨】由向量向量数量积的运算律,及向量数量积的定义公式求解.【题文】14.函数()sin cos f x x x =+,在各项均为正数的数列{}n a 中对任意的*n N ∈都有()()n n f a x f a x +=-成立,则数列{}n a 的通项公式可以为(写一个你认为正确的)______【知识点】数列与函数. D1【答案解析】34n a n π⎛⎫=- ⎪⎝⎭,*n N ∈ 解析:()4f x x π⎛⎫=+ ⎪⎝⎭,因为()()n n f a x f a x +=-,所以na 是函数()f x 的对称轴,由42x k πππ+=+()k Z ∈得函数()f x 的对称轴为()4x k k Z ππ=+∈,取*1,k n n N =-∈得34n a n π⎛⎫=- ⎪⎝⎭,*n N ∈. 【思路点拨】根据题设条件得na 是函数()f x 的对称轴,因此求出函数()f x 的对称轴即可.【题文】15.将一颗骰子先后投掷两次分别得到点数b a 、,则直线0=+by ax 与圆2)2(22=+-y x 有公共点的概率为_______.【知识点】古典概型. K2【答案解析】712 解析:a b≤⇒≤,而点(),a b 共有6636⨯=种,其中满足a b ≤的有21种,所以所求概率为2173612=. 【思路点拨】基本事件总数为6636⨯=,满足直线0=+by ax 与圆2)2(22=+-y x 有公共点的基本事件数为21,所以所求概率为2173612=.【题文】16.已知四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,且21=AA ,底面ABCD 的边长均大于2,且︒=∠45DAB ,点P 在底面ABCD 内运动,且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥MN D P 1-体积的最大值为______.【知识点】三棱锥的体积;正弦定理;两角和与差的三角函数;二倍角公式. G1 C5 C6【答案解析】213- 解析:1111233P D MN D PMN PMN PMNV V S AA S --∆∆==⨯⨯=,因为︒=∠45DAB ,,PN AD PM AB ⊥⊥所以135MPN ∠=且PMN ∆的外接圆直径为PA=2,设,PMN θ∠=则45PNM θ∠=-,由正弦定理得:()2sin 45,PN 2sin PM θθ=-=,所以()112sin1352sin 452sin 222PMN S PM PN θθ∆=⋅⋅=⨯-⨯⨯=()()2sin 45sin cos sin sin θθθθθ-=-2sin cos sin θθθ=-=21sin 2242πθ⎛⎫+- ⎪⎝⎭,当2428πππθθ+=⇒=时PMN S ∆有最大值212-, 故三棱锥MN D P 1-体积的最大值为213-.【思路点拨】因为1111233P D MN D PMN PMN PMNV V S AA S --∆∆==⨯⨯=,所以只需求PMN ∆面积的最大值,因为︒=∠45DAB ,,PN AD PM AB ⊥⊥所以135MPN ∠=且PMN ∆的外接圆直径为PA=2,设,PMN θ∠=则45PNM θ∠=-,由正弦定理得:()2sin 45,PN 2sin PM θθ=-=,所以()112sin1352sin 452sin 222PMN S PM PN θθ∆=⋅⋅=⨯-⨯⨯=()()245sin cos sin sin θθθθθ-=-2sin cos sin θθθ=-=12242πθ⎛⎫+- ⎪⎝⎭,当2428πππθθ+=⇒=时PMN S ∆有最大值12, 故三棱锥MN D P 1-体积的最大值为.三、解答题:本大题共6个小题,共70分.解答应写文字说明、证明过程或演算步骤 【题文】17.(本小题满分12分)在ABC ∆中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直线1:10l ax y ++=与直线()222:40l b c bc x ay +-++=互相平行(其中4a ≠).(I )求角A 的值, (II )若22,,sin cos 2232A C B B ππ+⎡⎫∈+⎪⎢⎣⎭求的取值范围.【知识点】两条直线的位置关系;三角函数的求值、化简;解三角形. H2 C7 C8【答案解析】(I )3π;(II )171,324⎡⎫--⎪⎢⎣⎭ 解析:(I )由12l l 得()2224a b c bc a =+-≠,即222b c a bc +-=,--------2分所以2221cos 22b c a A bc +-==,又()0,A π∈,所以3A π=.---------5分 (II )2sin cos 22A C B ++2221cos 1cos 2cos 2cos 1222B B B B +=+-=+-22111172cos cos 2cos 22832B B B ⎛⎫=+-=+-⎪⎝⎭,--------8分 因为2,23B ππ⎡⎫∈⎪⎢⎣⎭,所以1cos ,02B ⎛⎤∈- ⎥⎝⎦,-----9分所以21172cos 832B ⎛⎫+- ⎪⎝⎭171,324⎡⎫∈--⎪⎢⎣⎭,------11分 即2sin cos 22A C B ++的取值范围为171,324⎡⎫--⎪⎢⎣⎭.------12分【思路点拨】(I )由两直线平行则对应系数比相等得222b c a bc +-=,再由余弦定理得A值;(II )利用三角公式将2sin cos 22A C B++化为21172cos 832B ⎛⎫+- ⎪⎝⎭,由角B 范围得cos B 范围,从而求得2sin cos 22A CB ++的取值范围.【题文】18.(本小题满分12分) 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人. (Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求()P E F .【知识点】频率分布直方图;用样本估计总体;古典概型. I2 K2【答案解析】(Ⅰ)0.06;(Ⅱ)中位数174.5, 身高在180cm 以上(含180cm )的人数144人;(Ⅲ)715.解析:(Ⅰ)第六组的频率为40.0850=,所以第七组的频率为:10.085(0.00820.0160.0420.06)0.06--⨯⨯++⨯+=; ………4分 (Ⅱ)身高在第一组[155,160)的频率为0.00850.04⨯=, 身高在第二组[160,165)的频率为0.01650.08⨯=, 身高在第三组[165,170)的频率为0.0450.2⨯=, 身高在第四组[170,175)的频率为0.0450.2⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=> 估计这所学校的800名男生的身高的中位数为m ,则170175<<m 由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m所以可估计这所学校的800名男生的身高的中位数为174.5 …………………………6分 由直方图得后三组频率为0.060.080.00850.18++⨯=,所以身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. ………………8分 (Ⅲ)第六组[180,185)的人数为4人,设为,,,a b c d ,第八组[190,195]的人数为2人, 设为,A B ,则有,,,,,,ab ac ad bc bd cd ,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况, 因事件=E {5x y -≤}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为,,,,,,ab ac ad bc bd cd AB 共7种情况,故7()15P E =. (10)分 由于max 19518015x y -=-=,所以事件F ={15->x y }是不可能事件,()0P F =,由于事件E 和事件F 是互斥事件,所以7()()()15P E F P E P F =+=………12分【思路点拨】(Ⅰ)由第七组的频率等于1减去其它七组的频率求得;(Ⅱ)依次求出每组的频率,由于前3组的频率和0.32<0.5,前4组的频率和0.52>0.5,所以估计身高中位数()170,175m ∈,由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m ,所以可估计这所学校的800名男生的身高的中位数为174.5 .又由直方图可知身高在180cm 以上(含180cm )的 频率为0.18,所以估计该校的800名男生的身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. (Ⅲ)先求出第六组、第八组的人数分别为4人、2人,用列举法写出从这六人中随机抽取两人共有15种情况,其中满足E 中条件的有7种,满足F 中条件的有0种,由于事件E 、F 是互斥事件,所以7()()()15P EF P E P F =+=.【题文】19.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.【知识点】折叠形;线面平行的判定;函数的最值. G4 G5 B3【答案解析】(Ⅰ) 存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=,理由:略;(Ⅱ)当x =3时,A CDFV -有最大值,最大值为3.解析:(Ⅰ)存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=.…………… 2分下面证明:当32λ=时,即此时32AP PD=,可知35AP AD =,过点P 作MP ∥FD ,与AF 交于点M ,则有35MP FD =,又FD =5,故MP =3,又因为EC =3,MP ∥FD ∥EC ,故有MP //=EC ,故四边形MPCE 为平行四边形,所以PC ∥ME ,又CP ⊄平面ABEF ,ME ⊂平面ABEF ,故有CP ∥平面ABEF 成立.……………………… 6分 (Ⅱ)因为平面ABEF ⊥平面EFDC ,平面ABEF 平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC .由已知BE =x ,所以AF =x(0<x4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A CDF V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x=3时,A CDFV -有最大值,最大值为3.【思路点拨】(Ⅰ)在平面EFCD 内作CN DF ⊥于N,在平面ADF 内作NP DF ⊥交AD 于P ,可证明平面CNP 平行于平面ABEF ,从而CP ∥平面ABEF ,所以点P 为所求点,进一步求得λ值;(Ⅱ) 由已知BE =x得AF =x(0<x4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A CDF V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x=3时,A CDFV -有最大值,最大值为3.【题文】20.(本小题满分12分)A B C D E F E FA BC D已知函数xe xf =)(,若函数)(xg 满足)()(x g x f ≥恒成立,则称)(x g 为函数)(x f 的下界函数.(1)若函数kx x g =)(是)(x f 的下界函数,求实数k 的取值范围; (2)证明:对任意的2≤m ,函数x m x h ln )(+=都是)(x f 的下界函数. 【知识点】导数的应用. B12【答案解析】(1) e k ≤≤0;(2)证明:略. 解析:(1)若kx x g =)(为xe xf =)(的下界函数,易知0<k 不成立,而0=k 必然成立.当0>k 时,若kx x g =)(为x e x f =)(的下界函数,则)()(x g x f ≥恒成立,即0≥-kx e x 恒成立.-------(2分)令kx e x x-=)(ϕ,则k e x x -=')(ϕ.易知函数)(x ϕ在)ln ,(k -∞单调递减,在),(ln +∞k 上单调递增.-------(4分)由0)(≥x ϕ恒成立得0ln )(ln )(min ≥-==k k k k x ϕϕ,解得e k ≤<0.综上知e k ≤≤0.---------(6分)(2) 由(1)知函数ex x G =)(是xe xf =)(的下界函数,即)()(x G x f ≥恒成立,若2≤m ,构造函数)0(ln )(>--=x m x ex x F ,--------(8分)则11()ex F x e x x -'=-=,易知02)1()(min ≥-==m e F x F ,即x m x h ln )(+=是ex x G =)(的下界函数,即)()(x h x G ≥恒成立.-----(11分)所以)()()(x h x G x f ≥≥恒成立,即2≤m 时,x m x h ln )(+=是=)(x f xe 的下界函数.--------(12分)【思路点拨】(1)因为直线y=kx 恒过定点(0,0),由图像可知当直线y=kx 自x 轴开始绕原点逆时针旋转到与曲线x y e =相切时满足条件,所以只需求过(0,0)与曲线xy e =相切的切线的斜率,利用导数求此斜率;(2)即证: ln xe x m -≥在2m ≤时恒成立.由(1)知函数ex x G =)(是x e x f =)(的下界函数,只需证函数x m x h ln )(+=是ex x G =)(的下界函数,构造函数)0(ln )(>--=x m x ex x F , 则11()ex F x e x x -'=-=,又2≤m ,故易知2)1()(min ≥-==m e F x F ,即x m x h ln )(+=是ex x G =)(的下界函数,即)()(x h x G ≥恒成立.所以)()()(x h x G x f ≥≥恒成立,即2≤m 时,x m x h ln )(+=是=)(x f xe 的下界函数.【题文】21.(本小题满分12分)已知2212221x y F F a b +=、是椭圆的左、右焦点,O 为坐标原点,点1,2P ⎛⎫- ⎪ ⎪⎝⎭在椭圆上,线段PF 2与y 轴的交点M 满足20PM F M +=; (I )求椭圆的标准方程; (II )O 是以12F F 为直径的圆,一直线:l y kx m =+与相切,并与椭圆交于不同的两点A 、B.当23,34OA OB AOBλλ⋅=≤≤∆且满足时,求面积S 的取值范围.【知识点】椭圆及其几何性质. H5【答案解析】(I )2212x y +=;(II)243s ≤≤. 解析:(I )因为20,PM F M ==所以点M 是线段2PF 的中点, 所以OM 是12PF F ∆的中位线,又12OM F F ⊥,所以112PF F F ⊥,所以2222211112c a b a b c =⎧⎪⎪+=⎨⎪⎪=+⎩,解得2222,1,1a b c === 所以椭圆方程为2212x y +=.--------5分(II )因为圆O 与直线l1=,即221m k =+由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222124220k x kmx m +++-=因为直线l 与椭圆相交于两个不同点,所以200k ∆>⇒>,设()()1122,,,A x y B x y ,则122412kmx x k +=-+,2212222221212m k x x k k -⋅==++,---7分 ()()()2212121212y y kx m kx m k x x km x x m =++=+++=2211k k -+212122112k OA OB x x y y k λ+⋅=+==+,所以222133124k k +≤≤+,解得2112k ≤≤S=112AB ⨯==-------10分设42u kk =+,则332,s ,244u u ⎡⎤≤≤=∈⎢⎥⎣⎦ 因为s 在u ∈3,24⎡⎤⎢⎥⎣⎦上单调递增,()322443s s ⎛⎫==⎪⎝⎭,所以:23s ≤≤. ------12分【思路点拨】(Ⅰ)由20PM F M +=得点M 是线段2PF 的中点,所以OM 是12PF F ∆的中位线,又12OM F F ⊥,所以112PF F F ⊥,所以2222211112c a b a b c =⎧⎪⎪+=⎨⎪⎪=+⎩,解得2222,1,1a b c === 所以椭圆方程为2212x y +=.(Ⅱ)由圆O 与直线l 相切,得221m k =+由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222124220k x kmx m +++-=,由200k ∆>⇒>,设()()1122,,,A x y B x y ,则122412kmx x k +=-+,2212222221212m k x x k k -⋅==++,从而 12y y =2211k k -+,所以212122112k OA OB x x y y k λ+⋅=+==+,所以222133124k k+≤≤+,CA解得2112k ≤≤ ,所以S=()2212121111422AB k x x x x ⨯=++-()()4242241k k k k +++设42u k k =+,则3232,s ,,24214u u u u ⎡⎤≤≤=∈⎢⎥+⎣⎦ 因为s 在u ∈3,24⎡⎤⎢⎥⎣⎦上单调递增,()3622443s s ⎛⎫== ⎪⎝⎭,所以:6243s ≤≤. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。

河南省实验中学2014届高三数学第三次模拟考试试题 文(含解析)

河南省实验中学2014届高三数学第三次模拟考试试题 文(含解析)

河南省实验中学2014届高三第三次模拟考试文科数学【试卷综析】这套试题基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移.以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能.一、选择题:本大题共12小题,每小题5分。

l.已知复数21izi+=-,则复数z的共轭复数在复平面内对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限【知识点】复数代数形式的乘除运算.L4【答案解析】D 解析:∵z==,∴.∴复数z的共轭复数在复平面内对应的点的坐标为().在第四象限.故选:D.【思路点拨】利用复数代数形式的除法运算化简,然后求出,得到的坐标,则答案可求.【题文】2.已知集合{}2|230A x x x=-->,则集合中元素的个数为A.无数个 B 3 C. 4 D.5【知识点】交、并、补集的混合运算.A1【答案解析】C 解析:由A中不等式变形得:(x﹣3)(x+1)>0,解得:x<﹣1或x>3,即A={x|x<﹣1或x>3},∴∁RA={x|﹣1≤x≤3},∴集合N∩∁RA={0,1,2,3},即集合N∩∁RA中元素的个数为4个.故选:C.【思路点拨】求出A中不等式的解集确定出A,根据全集R求出A的补集,找出A补集与自然数集的交集即可.【题文】3.执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为A. 4B. 16 C 256 D.65536【知识点】程序框图.L1【答案解析】C 解析:若a=2,则log3a=log32>4不成立,则a=22=4,若a=4,则log3a=log34>4不成立,则a=42=16,若a=16,则log3a=log316>4不成立,则a=162=256若a=256,则log3a=log3256>4成立,输出a=256,故选:C【思路点拨】根据程序框图,依次运行,直到满足条件即可得到结论.【题文】4.设非零向量,,a b c,满足,a b c a b c==+=,b与c的夹角为A. 60 B.90 C.120 D 150【知识点】平面向量数量积的运算.F3【答案解析】A 解析:设,,.∵非零向量,,,满足||=||=||,+=,∴△ABC为等边三角形,∴与的夹角为60°.故选:A.【思路点拨】设,,.由已知条件可得:△ABC为等边三角形,即可得出答案.【题文】5.已知正方形ABCD,其中顶点A、C坐标分别是 (2,0)、(2,4),点P(x,y)在正方形内部(包括边界)上运动,则Z=2x+y的最大值是A.10 B. 8 C.12 D.6【知识点】简单线性规划.E5【答案解析】A 解析:作出平行四边形ABCD内的区域,由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,则由图象可知当直线经过点D时,直线y=﹣2x+z的截距最大,此时z 最大.设ABCD是平行四边形,则N(2,2),则DN=CN=2,即D(4,2),代入目标函数z=2x+y 得z=2×4+2=10.故选:A.【思路点拨】利用条件先确定点C的坐标,由z=2x+y得y=﹣2x+z,然后平移直线,利用z 的几何意义确定目标函数的最大值即可.【题文】6.设函数()cos()3),(0,)2f x x xπωϕωϕωϕ=++><,且其图像相邻的两条对称轴为0,2x xπ==,则A.()y f x=的最小正周期为2π,且在(0,)π上为增函数B.()y f x=的最小正周期为π,且在(0,)π上为减函数C.()y f x=的最小正周期为π,且在(0,)2π上为增函数D .()y f x=的最小正周期为π,且在(0,)2π上为减函数【知识点】两角和与差的正弦函数.C5【答案解析】D 解析:∵f(x)=cos(ωx+φ)﹣sin(ωx+φ)=2[cos(ωx+φ)﹣sin(ωx+φ)]=2cos(ωx+φ+),且f(x)的图象相邻的两条对称轴为x=0,x=,∴它的半周期为×=﹣0,∴ω=2,T=π;当x=0时,f(x)=2cos(φ+)=kπ,k∈Z,∴φ=﹣;∴f(x)=2cos2x,∴f(x)的最小正周期是π,且在(0,)上是减函数.故选:D.【思路点拨】利用两角和的余弦公式化简函数f(x),由题意求出ω、φ的值,即可确定函数f(x)的解析式,并求出周期,判定函数f(x)的单调区间.【题文】7.函数2log1()2xf x xx=--的图像为【知识点】函数的图象;指数函数的图像与性质.B7【答案解析】D 解析:由题设条件,当x≥1时,f(x)=﹣(x﹣)=当x<1时,f(x)=﹣(﹣x)=﹣(﹣x)=x故f(x)=,故其图象应该为综上,应该选D【思路点拨】观察题设中的函数表达式,应该以1为界来分段讨论去掉绝对值号,化简之后再分段研究其图象.【题文】8.下列命题正确的个数是①命题“ 2000,13x R x x ∃∈+>”的否定是“ 2,13x R x x ∀∈+≤”:②函数22()cos sin f x ax ax =-的最小正周期为“ π”是“a=1”的必要不充分条件; ③ 22x x ax +≥在 []1,2x ∈上恒成立 2min max (2)()x x ax +≥在 []1,2x ∈上恒成立; ④“平面向量 a 与 b 的夹角是钝角”的充分必要条件是“ 0a b ⋅<”A .1 B. 2 C. 3 D .4【知识点】命题的真假判断与应用.A2【答案解析】B 解析:(1)根据特称命题的否定是全称命题,∴(1)正确;(2)f (x )=cos2ax ﹣sin2ax=cos2ax ,最小正周期是=π⇒a=±1,∴(2)正确;(3)例a=2时,x2+2x≥2x 在x∈[1,2]上恒成立,而(x2+2x )min=3<2xmax=4,∴(3)不正确;(4)∵,当θ=π时,•<0.∴(4)错误.∴正确的命题是(1)(2).故选:B【思路点拨】(1)根据特称命题的否定是全称命题来判断是否正确;(2)化简三角函数,利用三角函数的最小正周期判断;(3)用特例法验证(3)是否正确;(4)根据向量夹角为π时,向量的数量积小于0,来判断(4)是否正确.【题文】 9.设双曲线 22221(0,0)x y a b a b -=>>,离心率 2e =,右焦点(,0)F c 。

2014届河南省南阳市高三第三次联考文科数学试题扫描版

2014届河南省南阳市高三第三次联考文科数学试题扫描版
且 b = 25 ´ (2)因为第 1,2,3 组共有 25+25+100=150 人,利用分层抽样在 150 名员工中抽取 6 人, 每组抽取的人数分别为: 第 1 组的人数为 6 ´
25 = 1 ,………………………………4 分 150 25 第 2 组的人数为 6 ´ = 1 ,………………………………5 分 150 100 第 3 组的人数为 6 ´ = 4 ,…………………………………6 分 150
1 ( x - 2) 4k
1 ì y = - ( x - 2) ï 34 1 64k 1 64k 1 16 ï 4k 由í ),Q k > 0 Þ MN = Þ N( , + ³2 × = 15 15k 15 15k 15 15k 15 ï x = 34 ï 15 î
所以 k = -
1 时: MN 8
设 S ( x 0 , y 0 ) 则 x0 × ( -2) =
16k 2 - 4 2 - 8k 2 Þ x = , y 0 = k ( x0 + 2) 即 0 1 + 4k 2 1 + 4k 2
BS: y = -
S(
y0 1 2 - 8k 2 4k =- , , ) ,又 B(2,0)所以 k BS = 2 2 x0 - 2 4k 1 + 4k 1 + 4k
(C1 , C2 ) , (C1 , C3 ) , (C1 , C4 ) , (C2 , C3 ) , (C2 , C4 ) , (C3 , C4 ) , 共 有 15
种.……………………………9 分
第 5 页 共 9 页
其中恰有 1 人年龄在第 3 组的所有结果为: ( A, C1 ) , ( A, C2 ) , ( A, C3 ) , ( A, C4 ) ,

河南省郑州市2014届高三第二次模拟考试 数学文试题 含答案

河南省郑州市2014届高三第二次模拟考试 数学文试题 含答案

河南省郑州市2014年高中毕业年级第二次质量预测文科数学试题卷一、选择题:本大題共12小題,每小題5分,在每小題给出的四个选项中,只有一个符合 题目要求.1. 已知命题p: ∀32,80,x x >-> 那么⌝p 是A. ∀32,80x x ≤-≤ B. ∃32,80x x ≤-≤ C. ∀32,80x x >-≤ D. ∃32,80x x >-≤2. 设向量→a =(,1)x , →b =(4,)x ,则“→a ∥→b ”是“2x =”的 A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件A. 55B. 55i C. 1 D. i4. 阅读右边的程序框图,若输出的y =1, 则输入的x 的值可能是 A. ±2和2 B. -2和2 C. ± 2 D. 25. 一个几何体的三视图如图所示,则该几何体的体积是 A. 112B. 80C. 72D. 646.等差数列{}n a 中的14027,a a 是函数321()41213f x x x x =-++的极值点,则22014log a = A. 2 B. 3 C.4 D. 5 7. 设α、β是两个不同的平面,l 是一条直线,以下命题:①若l ⊥α, α⊥β, 则l ∥β; ②若l ∥α, α∥β, 则l ∥β; ③若l ⊥α, α∥β, 则l ⊥β; ④若l ∥α, α⊥β, 则l ⊥β. 其中正确命题的个数A. 1个B. 2个C. 3个D. 4个8. 已知∆ABC 中,平面内一点P 满足→CP =23→CA +13→CB ,若|→PB |=t |→PA |, 则t 的值为A. 3B. 13C. 2D. 12 9. 已知直线512x π=和点(,0)6π恰好是函数())f x x ωϕ=+图象的相邻的对称轴和对称中心,则()f x 的表达式可以是A. ())6f x x π=-B. ())3f x x π=-C. ())3f x x π=+D. ())6f x x π=+ 10.已知双曲线)0,0(12222>>=-b a by a x 的两个焦点分别为F 1,F 2 ,以线段F 1F 2 为直径的圆与双曲线渐近线的一个交点位(4,3),则双曲线的方程为11.若曲线2(0)y ax a =>与曲线ln y x =在它们的公共点P (s,t )处具有公共切线,则a =12. 已知正项数列{}n a 的前n 项和为S n , 若21()n n nS a a n N *+∈=, 则S 2014= A. 2014+20142014 B. 2014- 20142014C. 2014D. 2014二、填空题:本大题共4小题,每小题5分,共20分. 14.已知等比数列{}n a 的前n 项和为S n ,若253652,62a a a S ==-,则1a 的值是15.设实数,x y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2y ≥1, 则22x y +的取值范围是_______.16.已知,x y ∈(-12 ,12 ), m ∈R 且m ≠0, 若222sin 201,2sin cos 041xx m x y y y m y ⎧++=⎪+⎪⎨⎪+-=+⎪⎩ 则y x =_______.三、解答题:解答应写出说明文字,证明过程或演算步骤. 17.(本小题满分12分)已知向量→m =(cosA, -sinA ),→n = (cosB, sinB ), →m ·→n =cos2C,A,B,C 为∆ABC 的内角.(Ⅰ)求角C 的大小;(Ⅱ)若AB=6,且→CA ·→CB =18, 求AC, BC 的长.18.(本小题满分12分)正∆ABC 的边长为2, CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将∆ABC 沿CD 翻成直二面角A -DC -B (如图(2)).在图(2)中:(Ⅰ)求证:AB ∥平面DEF ;(Ⅱ)求多面体D -ABFE 的体积.抽取了45人,求n 的值;(Ⅱ)接受调查的的人同时对这项活动进行打分,其中6人打出的分数如下: 9.2,9.6,8.7,9.3,9.0,8.2.把这6个人打出的分数看作一个总体,从中任取2个数,求这两个数与总体平均数之差的绝对值都不超过0.5的概率.B20. (本小题满分12分)已知平面上的动点(,)R x y 及两定点A(-2,0),B(2,0),直线RA 、RB 的斜率分别为k 1、k 2,且k 1·k 2=- 34, 设动点R 的轨迹为曲线C.(I)求曲线C 的方程;(II)过点S(4,0)的直线与曲线C 交于M 、N 两点,过点M 作MQ ⊥x 轴,交曲线C 于点Q.求证:直线NQ 过定点,并求出定点坐标.21.(本小题满分12分)已知函数()xx f x e =. (I)求函数()f x 的单调区间和极值;(II)过点P(0,4e2 ) 作直线l 与曲线y =()f x 相切,求证: 这样的直线l 至少有两条,且这些直线的斜率之和2322121(,)e e m e e--∈.请考生从22、23、24三个小题中任选一题作答,如果多做,则按所做的第一题计分.并用铅笔在对应方框中涂黑.22. (本小题满分10分)选修4—1:几何证明选讲如图,AB 为圆O 的直径, CD 为垂直于AB 的一条弦,垂直为E ,弦BM 与CD 交于点F. (I )证明: A E F M 、、、四点共圆; (II)若MF=4BF=4,求线段BC 的长.23. (本小题满分10分)选修4一4:坐标系与参数方程在极坐标系下,已知圆O:cos sin ρθθ=+和直线l :sin()42πρθ-=. (I)求圆O 和直线l 的直角坐标方程;(II)求直线l 与圆O 的公共点的极坐标(0,02)ρθπ≥≤< .24. (本小题满分10分) 选修4―5:不等式选讲已知函数()|2|5f x x a x =-+. (Ⅰ)求不等式()51f x x >+的解集;(Ⅱ)若不等式()f x ≤0的解集为{|1}x x ≤-,求a 的值.2014年高中毕业年级第二次质量预测文科数学 参考答案 一、 选择题DBAC BAAC BADD 二、填空题13.1(0,);2 14.2;- 15.[1,4]; 16.1.2- 三、解答题17.解(Ⅰ)cos cos sin sin cos()A B A B A B ⋅=-=+m n ,因为A B C π++=,所以cos()cos cos 2A B C C +=-=,---------2分即22cos cos 10C C +-=,故1cos 2C =或cos 1C =-,---------4分 又0C π<<,所以3C π=. ---------6分(Ⅱ)因为18CA CB ⋅=,所以36CA CB ⋅=, ① 由余弦定理2222cos 60AB AC BC AC BC ︒=+-⋅⋅,---------8分及6AB =得,12AC BC +=, ②---------10分由①、②解得6,6AC BC ==. ---------12分18. 解(Ⅰ)如图(2):在ABC ∆中,由E 、F 分别是AC 、BC 的中点,所以EF //AB ,又⊄AB 平面DEF ,⊂EF 平面DEF , ∴//AB 平面DEF . ---------6分(Ⅱ)由直二面角A DC B --知平面ADC ⊥平面BCD , 又在正ABC ∆中,D 为边AB 中点,AD CD ⊥ 所以AD ⊥平面BCD ,---------9分136BCD A BCD V S AD ∆-=⋅⋅=三棱锥 , 11132224BCD FCD V S AD ∆-=⋅⋅=三棱锥E ,所以,多面体D-ABFE 的体积V =A BCD V --三棱锥FCD V -=三棱锥E -----12分 19.解(Ⅰ)所有参与调查的人数为8001004501502003002000+++++=, 由分层抽样知:452000100900n =⨯=. ---------5分 (Ⅱ)总体平均数9.29.68.79.39.08.29.06x +++++==,---------7分从这6个分数中任取2个的所有可能取法为:(9.2,9.6)、(9.2,8.7)、(9.2,9.3)、(9.2,9.0)、(9.2,8.2)、(9.6,8.7)、(9.6,9.3)、(9.6,9.0)、(9.6,8.2)、(8.7,9.3)、(8.7,9.0)、(8.7,8.2)、(9.3,9.0)、(9.3,8.2)、(9.0,8.2),共计15种.--------10分由|9.0|0.5x -≤知,当所取的两个分数都在[8.5,9.5]内时符合题意,即(9.2,8.7)、(9.2,9.3)、(9.2,9.0)、(8.7,9.3)、(8.7,9.0)、(9.3,9.0)符合,共计6种,所以,所求概率615P =. ---------12分 20.解(Ⅰ)由题知2x ≠±,且12y k x =+,22y k x =-, 则3224y y x x ⋅=-+-,---2分整理得,曲线C 的方程为221(0)43x y y +=≠.-----------5分(Ⅱ)设NQ 与x 轴交于(,0)D t ,则直线NQ 的方程为(0)x m y t m =+≠,记1122(,),(,)N x y Q x y ,由对称性知22(,)M x y -,由223412,x y x my t⎧+=⎨=+⎩消x 得:222(34)63120m y mty t +++-=,-----7分所以2248(34)0m t ∆=+->,且1,2262(34)mt y m -=+,故12221226,34312,34mt y y m t y y m ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩------------9分 由M N S 、、三点共线知NS MS k k =,即121244y y x x -=--, 所以1221(4)(4)0y my t y my t +-++-=,整理得12122(4)()0my y t y y +-+=,-----------10分所以222(312)6(4)034m t mt t m ---=+,即24(1)0m t -=,1t =, 所以直线NQ 过定点(1,0)D .--------12分 21.解(Ⅰ)由题知1()()R xxf x x e -'=∈, 当()0f x '>时,1x <,当()0f x '<时,1x >,-----------2分 所以函数()f x 的增区间为(,1)-∞,减区间为(1,)+∞, 其极大值为1(1)f e=,无极小值.-----------5分 (Ⅱ)设切点为00(,())x f x ,则所作切线的斜率001()x x k f x e-'==,所以直线l 的方程为:000001()x x x x y x x e e--=-, 注意到点24(0,)P e在l 上,所以00000214()x x x x x e e e --=-,-----7分整理得:020240x x e e-=,故此方程解的个数,即为可以做出的切线条数,令224()x x g x e e =-,则(2)()xx x g x e -'=-,当()0g x '>时,02x <<,当()0g x '<时,0x <或2x >,所以,函数()g x 在(,0),(2,)-∞+∞上单调递减,在(0,2)上单调递增,---9分注意到2244(0)0,(2)0,(1)0g g g e e e=-<=-=->, 所以方程()0g x =的解为2x =,或(10)x t t =-<<,即过点24(0,)P e恰好可以作两条与曲线()y f x =相切的直线.----10分当2x =时,对应的切线斜率121(2)k f e'==-, 当x t =时,对应的切线斜率21ttk e -=, 令1()(10)t t h t t e -=-<<,则2()0t t h t e-'=<,所以()h t 在(1,0)-上为减函数,即1(0)()(1)2h h t h e =<<-=,212k e <<,所以231222121(,)e e m k k e e--=+∈.------------12分22.解(Ⅰ)如图,连结AM ,由AB 为直径可知90AMB ︒∠= , 又CD AB ⊥ ,所以90AEF AMB ︒∠=∠=,因此A E F M 、、、四点共圆. ------4分(Ⅱ)连结AC ,由A E F M 、、、四点共圆,所以BF BM BE BA ⋅=⋅ ,---6分在RT ABC ∆中,2BC BE BA =⋅ ,------8分又由44MF BF ==知1,5BF BM == ,所以25BC = ,BC =.---10分23.解(Ⅰ)圆:cos sin O ρθθ=+,即2c o s s i n ρρθρθ=+,故圆O 的直角坐标方程为:220x y x y +--=,------2分直线:sin 42l πρθ⎛⎫-= ⎪⎝⎭,即si n cos 1ρθρθ-=, 则直线l 的直角坐标方程为:10x y -+=.------4分 (Ⅱ)由⑴知圆O 与直线l 的直角坐标方程,将两方程联立得220,10x y x y x y ⎧+--=⎨-+=⎩解得0,1,x y =⎧⎨=⎩------6分即圆O 与直线l 在直角坐标系下的公共点为(0,1),------8分将(0,1)转化为极坐标为1,2π⎛⎫⎪⎝⎭,即为所求.------10分24.解 (Ⅰ)由()51f x x >+化简可得|2|1x a ->,即21x a ->或21x a -<-,--2分解得:12a x -<或12a x +>, 所以,不等式()51f x x >+的解集为11{|}22a a x x x -+<>或.------4分 (Ⅱ)不等式|2|50x a x -+≤等价于525x x a x ≤-≤-,即52,25,x x a x a x ≤-⎧⎨-≤-⎩化简得,3,7a x a x ⎧≤-⎪⎪⎨⎪≤⎪⎩------6分 若0a < ,则原不等式的解集为{|}7ax x ≤={|1}x x ≤-, 此时,7a =- ;------8分若0a ≥ ,则原不等式的解集为{|}3a x x ≤-={|1}x x ≤-, 此时,3a = .综上所述,7a =- 或3a =.------10分。

河南省南阳市2014届高三第三次高考模拟联考数学(文)试题 含解析

河南省南阳市2014届高三第三次高考模拟联考数学(文)试题 含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U 是实数集R ,集合2={|2}M x x x >,2N={|log (1)0}x x -≤,则(C M)N U 为( )A .{|12}x x <<B .{|12}x x ≤≤C .{|12}x x <≤D .{|12}x x ≤<2。

设复数z 满足(1)32z i i +=-+(i 为虚数单位),则z 的实部是( ) A .1 B .2 C .3 D .43.等差数列{}na 中,如果14739a aa ++=,36927a a a ++=,则数列{}n a 前9项的和为( )A .297B .144C .99D .664.下列命题中正确命题的个数是( ) (1)命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”;(2)设回归直线方程12y x ∧=+中,x 增加1个单位时,y 一定增加2个单位;(3)若p q ∧为假命题,则,p q 均为假命题; (4)对命题0:p xR ∃∈,使得20010x x ++<,则:p x R ⌝∀∈,均有210x x ++≥;A .1B .2C .3D .45。

已知三棱锥的俯视图与侧视图如图所示,俯视图是变长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )6.一个算法的程序框图如图,则其输出结果是()A.0 B。

2 C. 21+ D. 217.若函数()2sin f x x ω=(0)ω>的图像在(0,2)π上恰有一个极大值和一个极小值,则ω的取值范围是( )A .3(,1]4B .5(1,]4C .34(,]45D .35(,]448。

已知抛物线243y x =的准线与双曲线22221x y a b-=两条渐近线分别交于A ,B 两点,且||2AB =,则双曲线的离心率e 为( )A .2B .43C .2 D .2339。

2014年河南省普通高中毕业班高考适应性模拟练习文科数学试卷

2014年河南省普通高中毕业班高考适应性模拟练习文科数学试卷
2014年河南省普通高中毕业班高考适应性模拟练习文科数学试卷
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.
1.已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},则CU(M∪N)的元素个数有
A.0个B.பைடு நூலகம்个C.0个D.3个
2.复数 的共轭复数是
A.144B.3
C.0D.12
7.椭圆 与直线 交于A,B两点,点M的坐标为(,0),则ABM的周长为
A. 2B.4C. 12D. 6
8.已知命题p: ,命题q: ,则下列命题中为真命题的是
A.p∧qB.p∧qC.p∧qD.p∧q
9.对于下列命题:
①在ABC中,若cos2A=cos2B,则ABC为等腰三角形;
在锐角ABC中,角A、B、C所对的边分别为 ,且满足cos2A-cos2B=cos(-A)cos(+A).
(Ⅰ)求角B的值;
(Ⅱ)若b=1,且b< ,求 的取值范围.
18.(本小题满分12分)
1895年,在伦敦有100块男性头盖骨被挖掘出土.经考证,头盖骨的主人死于1665―1666年之间的大瘟疫.人类学家分别测量了这些头盖骨的宽度,得到频率分布直方图如图所示.
(Ⅱ)当 >0时,试确定函数 的零点个数,并说明理由.
21.(本小题满分12分)
已知点F是椭圆C的右焦点,A,B是椭圆短轴的两个端点,且ABF是正三角形.
(Ⅰ)求椭圆C的离心率;
(Ⅰ)求图中m的值,并估计当年英国男性头盖骨宽度的中位数(填写下表);
m
中位数
(Ⅱ)若从[140,145)、[145,150)两组中用方程抽样的分法抽取5块头盖骨做深层检测,则从这两组中应抽取的块数分别是多少?

河南省十所名校2014届高中毕业班阶段性测试(六)——数学文

河南省十所名校2014届高中毕业班阶段性测试(六)——数学文

河南省十所名校2014届高中毕业班阶段性测试(六)——数学文2013—2014学年河南省十所名校高中毕业班阶段性测试(六)数 学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷 选择题一、选择题:本大题共12小题。

每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.i 是虚数单位,复数21i i-+的虚部为 A .2 B .-1 C .1 D .-22.已知集合U ={-1,0,1},A ={1},B ⊆U ,则B ∩(C U A )不可能为A .∅B .{0}C .{-1,0}D .{-l ,0,31}3.在边长为2的正方形内随机取一个点,则此点在正方形的内切圆内部的概率为A .4πB .44π- C .4π-1 D .4ππ- 4.函数f (x )=2xx +1的图象大致是 5.如下程序框图,若输入x =1,则输出的S =A .0B .1C .2D .-16.函数y =Asin (ωx +ϕ)的部分图象如图所示,其中A >0,ω>0,|ϕ|<2π,则其解析式为A.y=2sin(2x-3π)B.y=2sin(x+3π)C.y=2sin(12x-6π)D.y=2sin(2x+6π)7.设F1,F2是双曲线C的两焦点,点M在双曲线上,且∠MF2F1=4π,若|F1F2|=8,|F2M|=2,则双曲线C的实轴长为A.23B.43C.22D.428.放在水平桌面上的某几何体的三视图如图所示,则该几何体的表面积为A.π+4 B.π+345C .32π +4D .32π+29.已知不等式组1010330x y x x y ⎧⎪⎨⎪⎩-+≥+y -≥--≤表示的平面区域为D ,若直线l :kx -y +1=0在区域D 内的线段长度为,则实数k 的值为A .1B .3C .-1D .-310.设向量i =(1,0),i =(0,1),若向量a满足|a -2i |+|a -j,则|a +2j |的取值范围是A .,3] B .[5,2] C .4] D .,3]11.已知α,β∈R ,设p :α>β,q :α+sin αcos β>β+sin βcos α,则p 是q 的A .充分不必要条件B .充要条件C.必要不充分条件D.既不充分也不必要条件12.抛物线C:2y=2px(p>0)的焦点为F,A,B是抛物线上互异的两点,直线AB的斜率存在,线段AB的垂直平分线交x轴于点D(a,0)(a>0),n=|AF|+|BF|,则A.p,n,a成等差数列B.p,a,n成等差数列C.p,a,n成等比数列D.p,n,a成等比数列第Ⅱ卷非选择题本卷包括必考题和选考题两部分.第13~2l 题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题。

2012-2014年河南高考文科数学试卷(Word版)

2012-2014年河南高考文科数学试卷(Word版)
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
(19)(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC= AA1,D是棱AA1的中点
(I)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC-ccosA
求A
若a=2,△ABC的面积为 ,求b,c
18.(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(A)(1- ,2) (B)(0,2) (C)( -1,2) (D)(0,1+ )
6、如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则
(A)A+B为a1,a2,…,aN的和
(B) 为a1,a2,…,aN的算术平均数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年河南省普通高中毕业班高考适应性测试数学(文)试卷一、选择题:本大题共12小题,每小题5分。

1.复数43a iz i =++为纯虚数,则实数a 的值为A .34B .-34C .43D .-432.已知集合{}2230A x x x =-->,则集合Z ∩C R A 中元素个数为A .5B .4C .3D .2 3.命题“,10x x R e x ∀∈-+≥”的否定是A .,ln 10x R x x ∀∈++<B .,10x x R e x ∃∈-+≥C .,10x x R e x ∀∈-+>D .,10x x R e x ∃∈-+<4.如右图,是一程序框图,若输出结果为511,则其中的“?”框内应填入 A .11k > B .10k > C .9k ≤ D .10k ≤5.tan(480)-︒的值为A .B .-CD 6.下列函数中,既是奇函数又在定义域内单调递减的函数为A .y =1xB .y =2x xe e -- C .y =sinx D .y =lgx7.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(2)cos cos 0a c B b C ++=.角B 的值为 A .6π B .3π C .23π D .56π8.已知,,x y z R ∈,若1,,,,4x y z --成等比数列,则xyz 的值为A .-4B .±4C .-8D .±8 9.在△ABC 中,|AB |=3,|AC |=2,2AD u u u r -DB uu u r -AC uuu r=0,则直线AD 通过△ABC 的: A .垂心 B .外心 C .重心 D .内心 10.已知一个几何体的三视图及有关数据如右图所示,则该几何体的体积为A .2 B.3 CD.311.已知圆22213x y a +=与双曲线2221(0,0)x a b a b>>2y -=的右支交于A ,B 两点,且直线AB 过双曲线的右焦点,则双曲线的离心率为 A. BC .2D . 312.已知函数0,(),0.x x f x x x ≤⎧=⎨>⎩+2,ln 若函数()y f x k =-的零点恰有四个,则实数k 的取值范围为A .(1,2]B .(1,2)C .(0,2)D .(0,2] 二、填空题:本大题共4小题,每小题5分.13.实数x ,y 满足条件40,220,00,x y x x y ≤⎧⎪≥⎨⎪≥≥⎩+--y +,则x -y 的最小值为_________.14.已知数列{n a }的通项公式为n a =32,n n n n ,⎧⎨⎩-11-为偶数,为奇数.则其前10项和为____________.15.在平面直角坐标系xOy 中,F 是抛物线C :2x =2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34.则抛物线C 的方程为___________16.已知四棱锥P -ABCD 的底面是边长为a 的正方形,所有侧棱长相等且等于2a ,若其外接球的半径为R ,则aR等于____________三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数()()2sin()(0,f x x πϕϕπ=+∈的一条对称轴为16x =.(Ⅰ)求ϕ的值,并求函数()f x 的单调增区间;(Ⅱ)若函数()f x 与x 轴在原点右侧的交点横坐标从左到右组成一个数列{n a },求数列{11n n a a +}的前n 项和n S . 18.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,E ,F ,D 分别是AA 1,AC ,BB 1的中点,且CD ⊥C 1D . (Ⅰ)求证:CD ∥平面BEF ;(Ⅱ)求证:平面BEF ⊥平面A 1C 1D .19.(本小题满分12分) 为了构建和谐社会建立幸福指标体系,某地区决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(Ⅰ)求研究小组的总人数;(Ⅱ)若从研究小组的公务员和教师中随机选3人撰写研究报告,求其中恰好有1人来自教师的概率.20.(本小题满分12分)过点C (0的椭圆2221x a b 2y +=(0a b >>)的离心率为12,椭圆与x 轴交于(),0A a 和(),0B a -两点,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(Ⅰ)当直线l 过椭圆的右焦点时,求线段CD 的长;(Ⅱ)当点P 异于点B 时,求证:OP uu u r ·OQ uuu r为定值.21.(本小题满分12分)函数()f x 的定义域为D ,若存在闭区间[a ,b]⊆D ,使得函数()f x 满足:(1)()f x 在[a ,b]内是单调函数;(2)()f x 在[a ,b]上的值域为[ka ,kb],则称区间[a ,b]为()y f x =的“和谐k 区间”.(Ⅰ)试判断函数2()g x x =,()ln h x x =是否存在“和谐2区间”,若存在,找出一个符合条件的区间;若不存在,说明理由.(Ⅱ)若函数()x f x e =存在“和谐k 区间”,求正整数k 的最小值;请考生在第22、23、24三题中任选一题做答.如果多做。

则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)如图,直线AB 经过⊙O 上一点C ,且OA =OB ,CA =CB ,⊙O 交直线OB 于点E 、D .(Ⅰ)求证:直线AB 是⊙O 的切线;(Ⅱ)若tan ∠CED =12,⊙O 的半径为6,求OA 的长.23.(本小题满分10分)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ2sin θ=cos a θ(a >0),过点(2,4)P --的直线l的参数方程为2,,2x y ⎧⎪⎪⎨⎪⎪⎩=-=-4+ (t为参数),直线l 与曲线C 相交于A ,B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若|PA |·|PB |=|AB |2,求a 的值.24.(本小题满分10分)已知函数()25f x x a x =-+,其中实数0a >. (Ⅰ)当a =3时,求不等式()46f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}2x x ≤-,求a 的值.2014年河南省普通高中毕业班高考适应性测试文科数学试题参考答案及评分标准(13) 1- (14)256 (15) y x 22= (16三、解答题17. 解:(Ⅰ)因为()2sin()((0,))f x x πϕϕπ=+∈的一条对称轴为16x =,所以sin()1((0,))6πϕϕπ+=±∈.,((0,))3πϕϕπ=∈.……………………………………………………………………4分所以()2sin()3f x x ππ=+.22,232k x k k ππππππ-++∈Z ≤≤.即5122,66k x k k -+∈Z ≤≤.所以函数()f x 的单调增区间为51[2,2],66k k k Z -+∈.……………………………6分(Ⅱ)(Ⅱ)sin()03x ππ+=,得3x n πππ+=即1()3x n n ∙=-∈N .……………………………………………8分 所以13133n n a n -=-=. ………………………………………………………………10分119113()(31)(31)3132n n a a n n n n +==⨯--+-+, 111111113()3()25583132232n S n n n =⨯-+-+⋅⋅⋅+-=--++,964n n S n =+.…………………………………………………………………………………12分18.解:(Ⅰ)连结AD , 交BE 于点M , 连结FM . ∵,E D 分别为棱的中点, ∴四边形ABDE 为平行四边形, ∴点M 为BE 的中点, 而点F 为AC 的中点, ∴FM ∥CD .∵CD ⊄面BEF , FM ⊂面BEF , ∴CD ∥面BEF . ……………………6分(Ⅱ)因为三棱柱111ABC A B C -是直三棱柱,90ACB ∠= .∴11AC⊥面1BC ,而CD ⊂面1BC . ∴11AC CD ⊥ . 又∵1CD C D ⊥.C 1ABCD A 1 B 1FEM∴CD ⊥面11ACD .由(1)知FM ∥CD ,∴FM ⊥面11AC D. 而FM⊂面BEF , ∴平面BEF ⊥面11AC D.………………………………………12分 19.解析:(Ⅰ)依题意6416328n m==.解得4,2m n ==,研究小组的总人数为42814++=(人).………………………………………………4分(Ⅱ)设研究小组中为教师12,aa ,公务员为1234,,,b b b b ,从中随机选3人,不同的选取结果有:121a a b ,122a a b ,123a a b ,124a a b ;112113114123124134,,,,,,a b b a b b a b b a b b a b b a b b212213214223224234,,,,,,a b b a b b a b b a b b a b b a b b 234134124123,,,b b b b b b b b b b b b 共20种. ………7分其中恰好有1人来自教师的结果有:112113114123124134,,,,,,a b b a b b a b b a b b a b b a b b 212213214223224234,,,,,,a b b a b b a b b a b b a b b a b b 共12种. …………………………10分 所以恰好有1人来自教师的概率为123205P==. ……………………………………12分20.解:(Ⅰ)由已知得b =12ca =,得2a =所以,椭圆22143x y +=. …………3分 椭圆的右焦点为(1,0)F ,此时直线l的方程为y =+由223412.yx y ⎧=+⎪⎨+=⎪⎩解得1280,.5x x ==所以12816.55CD x =-==…………………………………………6分(Ⅱ)当直线l 与x 轴垂直时与题意不符,所以直线l 与x 轴不垂直,即直线的斜率存在. 设直线l的方程为02y kx k k =≠≠且………………………………………7分代入椭圆的方程,化简得2234)0k x ++=(,解得1220,.34x x k -==+或代入直线l的方程,得21224).34k y k-==+或y所以,D的坐标为2(,34k -+224)).34k k -+……………………………………………9分 又直线AC的方程为12x+=,因(2,0)B -,2202BD y k x -==+ 所以直线BD的方程为22).y x =+联立解得2x y k ⎧=⎪⎨⎪=+⎩即4(Q k +…………………………………………10分 而P的坐标为(P k -所以(OP OQ k ⋅=-(40 4.k ⋅+=+=所以OP OQ ⋅为定值. …………………………………………………………………12分21. 解:(Ⅰ)函数2()g x x =存在“和谐2区间”,如区间[0,2];函数()ln h x x =不存在“和谐2区间”.下用反证法证明:…………………………………………………………………2分若函数()ln h x x =存在“和谐2区间” [,]a b ,由于()ln h x x =在区间(0,)+∞上单调递增,所以()2,()2,h a a h b b ==所以,a b 为方程()2h x x =的两个不等根,令()()2ln 2x h x x x x ϕ=-=-,则112()2x x x x ϕ-'=-=,由()0x ϕ'>,得1(0,)2x ∈,由()0x ϕ'<得1(,)2x ∈+∞,所以()x ϕ在1(0,)2单调递增,在1(,)2+∞单调递减,所以11()()ln 1022x ϕϕ=-<≤,即()2h x x <恒成立,故函数()ln h x x =不存在“和谐2区间”. …………………………………………6分(Ⅱ)由于函数()xf x e =为R 上的增函数,若()f x 在[,]a b 上的值域为[,]ka kb ,则必有(),(),f a ka f b kb ==所以,a b 为方程()f x kx =的两个不等根,………………………8分令()()()x v x f x kx e kx k *=-=-∈N ,则()x v x e k '=-,由()0xv x e k '=->知ln x k >,由()0x v x e k '=-<知0ln x k <<,所以函数()v x 在区间(,ln )k -∞单调递减,在区间(ln ,)k +∞上单调递增,所以()(ln )v x v k ≥.…10分由于()v x 在R 上有两个零点,所以ln (ln )ln (1ln )0k v k e k k k k =-=-<,所以k e >,又k 为正整数,所以k 的最小值为3. ………………………………………………………12分 22.解:(Ⅰ)如图,连接OC ,∵OA OB = ,CA CB =,∴OC AB ⊥,∴AB 是⊙O 的切线. ……………4分 (Ⅱ)∵ ED 是直径, ∴90ECD∠= ,Rt BCD ∆中,∵1tan 2CED∠=, ∴1.2CD EC =∵AB 是⊙O 的切线 ,∴BCD E ∠=∠, 又 ∵,CBD EBC ∠=∠ ∴CBD∆∽EBC ∆.∴BD BC =CD EC =12. 设BCx =,2BD x =, 又2BC BD BE =⋅,∴ 2(2)x =x ·(12)x +. 解得:120,4xx ==, ∵0BD x => , ∴4BD = .∴4610OA OB BD OD ==+=+=. ………………………………………10分23.解:(Ⅰ) 由2sin cos (0)a a ρθθ=>得22sin cos (0)a a ρθρθ=>.∴曲线C 的直角坐标方程为2(0)y ax a =>.…………………………………………………2分 直线l 的普通方程为2y x =-. …………………………………………………………4分 (Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程2(0)y ax a =>中,得28)4(8)0t a t a +++=. 设A B 、两点对应的参数分别为12,t t ,则有12128),4(8).t t a t t a +=+⋅=+…………………………………………………6分BC∵2PA PB AB ⋅=,∴21212()t t t t -=⋅ 即21212()5t t t t +=⋅.………………………………8分∴2)]20(8),a a +=+解之得:2a =或8a =- (舍去),∴a 的值为2.…………10分 24.解:(Ⅰ)当3a =时,()46f x x +≥可化为236x x --+≥,236x x --+≥或236x x --≤. 由此可得3x ≥或3x -≤.故不等式()46f x x +≥的解集为{33}x x x -≥或≤.…………………………………5分 (Ⅱ)法一:(从去绝对值的角度考虑)由()0f x ≤,得25x a x --≤,此不等式化等价于,2250.a x x a x ⎧⎪⎨⎪-+⎩≥≤或,2(2)50.a x x a x ⎧<⎪⎨⎪--+⎩≤ 解之得,2.7a x a x ⎧⎪⎪⎨⎪⎪⎩≥≤或,2.3a x a x ⎧<⎪⎪⎨⎪-⎪⎩≤ 因为0a >,所以不等式组的解集为3a x x ⎧⎫-⎨⎬⎩⎭≤,由题设可得23a-=-,故6a =.……10分 法二:(从等价转化角度考虑)由()0f x ≤,得25x a x --≤,此不等式化等价于525x x a x --≤≤,即为不等式组52,25.x x a x a x -⎧⎨--⎩≤≤,解得,3.7a x a x ⎧-⎪⎪⎨⎪⎪⎩≤≤因为0a >,所以不等式组的解集为3a x x ⎧⎫-⎨⎬⎩⎭≤,由题设可得23a-=-,故6a =.……10分。

相关文档
最新文档