4-1.2.1任意角的三角函数(3)--高一上学期必修四【文教案】
新课标高一数学必修4任意角的三角函数 教案
高一数学必修4任意角的三角函数第一课时:1.2.1 任意角的三角函数(一)教学要求:掌握任意角的三角函数的定义;已知角α终边上一点,会求角α的各三角函数值. 教学重点:熟练求值.教学难点:理解定义.教学过程:一、复习准备:1. 用弧度制写出终边在下列位置的角的集合:坐标轴上;第二、四象限2. 锐角的三角函数如何定义?3. 讨论:以上定义适应任意角的三角函数吗?如何定义?二、讲授新课:1. 教学任意角的三角函数的定义:①讨论:锐角α的终边交单位圆于点P (x,y)的坐标与α三角函数有何关系?→推广:任意角②定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x, y),则sinα=y,cosα=x,tanα=yx.②讨论:与点P的位置是否有关?α与2kπ+α的三角函数值有何关系?当α的终边落在x轴、y轴上时,哪些三角函数值无意义?任何实数是不是有三角函数值?三个三角函数的定义域情况是怎样的?2. 教学例题:①出示例1:求下列各角的正弦、余弦、正切值3π、-2π、32π、-72π讨论求法→试求(学生板演)→订正→小结:画终边与单位圆,求交点,求值.②思考:已知角终边上任一点P (x, y),如何求它的三角函数值呢?结论:先求r sinyrα=、cosxrα=、tanyxα=.③出示例2:已知角α的终边过点P(-2,-4),求α的正弦、余弦和正切值.(学生试求→订正→小结解法:先求r,再按定义求. )④讨论:正弦、余弦、正切值在各个象限的符号情况?⑤讨论:终边相同的角同一三角函数的值有何关系?结论:sin(2)sinkαπα+=,cos(2)coskαπα+=,tan(2)tankαπα+=,其中k Z∈.作用:把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.⑥练习:求下列各角的正弦、余弦和正切值:73π、-94π.3. 小结:单位圆定义任意角的三角函数;由终边上任一点求任意角的三角函数;各象限的符号情况;诱导公式(一).三、巩固练习:1. 已知角α的终边在直线y=2x上,求α的正弦、余弦和正切值.2. 口答下列各特殊角的正弦、余弦、正切值:0°、90°、180°、270°、360°.3. 已知点(3,4)P a a-(0)a≠,在角α的终边上,求sinα、cosα、tanα的值4. 作业:书P17 1、2、3题.第二课时:1.2.1 任意角的三角函数(二)教学要求:掌握三角函数的符号,灵活运用诱导公式(一),把求任意角的三角函数值转化为求0°~360°间的三角函数值.教学重点:灵活运用诱导公式.教学难点:理解转化.教学过程:一、复习准备:1. 提问:三个三角函数的定义、定义域及在各个象限的符号情况怎样?(填表形式)2. 在0~2π或0°~360°间求出与下列终边相同的角:750°、174π、-116π、-1020°二、讲授新课:1. 教学三角函数值的符号:①讨论:各个象限的符号情况?②出示例:判别下列各三角函数值的符号,然后用计算器验证.sin250°、cos(-4π)、tan(-666°36’)、tan113π、sin174π、cos1020°(分析:如何用诱导公式(1)转化到0°~360°?→试练→订正)③出示例:根据下列已知,判别θ所在象限:sinθ>0且tanθ<0 、 tanθ×cosθ<0(口答→分析思路)2. 教学诱导公式的运用:① 讨论:根据三角函数的定义,θ与2k π+θ的三个三角函数情况怎样?② 提出:诱导公式一(三个)分析作用:求任意角的三角函数转化到0~2π间求值.③ 出示例:求下列各角的三角函数的值(正弦、余弦、正切).750°、174π、-116π、-1020°(教师示例750°→学生试求其它三个→订正)④ 练习:函数cos tan cos tan x xy xx=+的值域. 解法:分象限讨论,去绝对值. 变式:求sin cos |tan |sin cos tan x x x y xxx=++的值域. 3. 小结:三角函数的符号及诱导公式的运用;利用诱导公式一,可以把求任意角的三角函数值, 转化为0°~360°而求,或用计算器求. 三、巩固练习:1. 已知θ∈(52π,3π),求:39tan log 4θ⋅+tan tan 1421θθ+-+的值.2. 解方程:|sin x |=-sin x(思路:根据各象限的符号,分情况讨论) 3. 作业:教材P17 5、7题.第三课时:用单位圆中的线段表示三角函数值教学要求:理解正弦线、余弦线、正切线的概念,掌握作已知角α的正弦线、余弦线和正切线. 教学重点:掌握作已知角α的正弦线、余弦线、正切线. 教学难点:理解正弦线、余弦线、正切线的概念. 教学过程: 一、复习准备:1. 什么叫单位圆?(以原点为圆心,单位长为半径作的圆)2. 三个三角函数是怎样定义的?二、讲授新课:1. 教学三角函数线概念:① 定义有向线段:直线规定方向→轴;线段规定方向→有向线段; ② 讨论有向线段表示:与轴正向同为正,否则为负. ③ 练习:如图,AB = BA = OC = CD = DC =④ 画出下列角度与单位圆的交点P ,并作x 轴的垂线PM ,写出PM 、OM 的值,并与正弦、余弦值比较: 120°、240°⑤ 定义正余弦线:设角α的终边与单位圆交点P (x ,y ),过P 作x 轴的垂线,垂足为M ,则有向线段MP 为正弦线,OM 为余弦线.⑥ 练习:画出各象限终边角的正弦线、余弦线,并分析符号.⑦ 定义正切线:过点A (1,0)作单位圆的切线,与终边或延长线交于T ,则有向线段AT 叫角α的正切线. ⑧ 练习:画出各象限终边角的正切线,并分析符号.2. 讨论问题:① 讨论一:三角函数线为什么可以表示三角函数值? 先单位圆中计算得sin α=y ,cos α=x ; 比较MP 的长度与|y |、OM 的长度与|x |;比较MP 的符号与y 的符号,OM 的符号与x 的符号; 所以 sin α=y =MP , cos α=x =OM , tan α=y x =MP OM =AT OA=AT (由三角形相似得) ② 讨论二:α终边在坐标轴上时的正弦线、余弦线、正切线的情况? 3. 教学例题: ① 出示例:已知42ππα<<,试比较,tan ,sin ,cos αααα的大小.(分析:如何通过三角函数线比较? → 小结:利用三角函数线比大小 → 变式:04πα<<)② 练习:利用三角函数线比较下列各组数的大小:2sin3π与4sin 5π;2tan 3π与4tan 5π. 4. 小结:三角函数线概念与作法;三角函数线的运用. 三、巩固练习: 1. 作4π、53π、-40°的正弦线、余弦线、正切线.2. 利用单位圆写出符合下列条件的角x 的范围: sin x =12; tan x >33;1cos 2x <-3. 作业:教材P19 第2题.D yC A B x第四课时 1.2.2 同角三角函数的基本关系(一)教学要求:掌握同角三角函数的三个基本关系式,掌握已知一个角的某一个三角函数值,求这个角的其他三角函数值.教学重点:运用关系式.教学难点:理解同角三角函数关系式. 教学过程: 一、复习准备:1.提问:任意角的三个三角函数是怎样定义的?2.提问:初中研究锐角的三个三角函数,它们有怎样的关系式? 二、讲授新课:1. 教学同角三角函数的三个基本关系式:① 讨论:从三个三角函数的定义,你能发现哪些三角函数有平方关系?哪些三角函数与其他三角函数有商数关系?② 结论:平方关系22sin cos 1αα+=;商数关系sin tan cos ααα=. ③ 讨论:利用三角函数线的定义, 如何推导同角三角函数的基本关系? ④ 讨论几个问题:A.上述两个关系式,在一些什么情况下成立?B.“sin 2α+cos 2β=1”对吗?C. 同角三角函数关系式可以解决哪些问题?(求值:已知一个角的三角函数值,求这个角的其他三角函数的值; 化简;证明) 2. 教学例题:① 出示例1:已知cos α=-35,并且它是第三象限的角,求sin α,tan α的值. 思考:由已知可以根据哪些关系式分别求其它三角函数值?注意什么问题? 解答→订正→小结:关系式的运用;注意符号问题;再思考:假如没有已知所在象限,结果将怎样?假如是填空选择,有何捷径求解? ② 练习:已知sin α=513,求cos α,tan α的值. 小结:注意符号(象限确定);同角三基本式的运用(分析联系);知一求二. 3. 练习:① 若tan α=m ,322παπ<<,求sin α.② 化简cos θtan θ. (化简方法:切化弦) ③4. 小结:① 给值求值:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值. ② 化简的要求(化简后的式子,三角函数的种类最少;分母不含根式;项数最少;能求出值的求出值) 三、巩固练习:1. 已知β的一个三角函数值,求其它三角函数值:cos β=13; tan β=-4 2. 已知tan α=m (m ≠0),求sin α,cos α的值. (分象限讨论) 3. 作业:教材P23 练习1、2、4题.第五课时:1.2.2 同角三角函数的基本关系(2)教学要求:能熟练运用同角三角函数的三个基本关系式,掌握已知一个角的某一个三角函数值,求这个角的其它三角函数值;能利用关系式化简三角函数式. 能够利用三角函数的基本关系式证明有关的三角恒等式. 教学重点:运用公式.教学难点:合理选用关系式. 教学过程: 一、复习准备:1. 根据下列条件,求角α的其它三角函数值.:sin α=-45,α在第四象限; tan α=2 2. 提问:同一个角的三个三角函数有哪些基本关系式? 二、讲授新课: 1. 教学例题:① 出示例1:用多种方法证明:1sin cos x x +=cos 1sin xx- 学生讨论证法,逐一补充完整 证法一:1sin cos x x+=(1sin )cos cos cos x xx x +•=…证法二:1sin cos x x+=(1sin )(1sin )cos (1sin )x x x x +-•-=…证法三、四:从右边开始,…… 证法五:(1+sin x )(1-sin x )=…② 小结方法:由其它等式而转化(先证交叉乘积相等);或证和(差),或证商→比较法;直接证明左边等于右边.③ 练习:求证:sin 2x tan 2x =tan 2x -sin 2x .④ 出示例2:已知tan ,求α的其它三角函数的值;求sin cos sin cos αααα+-的值. 分析:如何运用同角三角函数基本关系式求解? 变式:如何直接求第2问? (弦化切) 训练:sin cos αα (技巧:切用分母1) 2 . 练习:① 已知sin α=2sin β,tan α=3tan β,求2cos α的值. ② 已知α4sin +α4cos =1,求sin α+cos α的值.3. 小结:注意象限定符号和联系关系式. 灵活运用公式,注意平方关系,切化弦;化繁为简. 三、巩固练习:1. 已知α是第二象限角,且tan(2π+α)=12-, 求cos α和sin α的值.2. 已知θsin θcos 和θtan 的值.3. 已知tan α=2 223sin 4sin cos cos αααα-+.4. 作业:教材P24 11、12、13题.。
数学:1.2.1《任意角的三角函数》教案(必修4) 最新!!
高中数学必修④:1.2.1《任意角的三角函数》教案1.教学目标:一、借助单位圆理解任意角的三角函数的定义。
一、根据三角函数的定义,能够判断三角函数值的符号。
一、通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的 能力,从中感悟数学概念的严谨性与科学性。
一、 让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。
2.教学重点与难点:重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。
难点:任意角的三角函数概念的建构过程。
授课过程:一、 引入在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。
如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。
二、创设情境三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P 的坐标。
问题:1、锐角三角函数能否表示成第二种比值方式?2、点P能否取在终边上的其它位置?为什么?3、点P 在哪个位置,比值会更简洁?(引出单位圆的定义)。
指出sina =MP 的函数依旧表示一个比值,不过其分母为1而已。
练习:计算4πα=的各三角函数值。
三、任意角的三角函数的定义角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢? 尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗? 评价学生给出的定义。
给出任意角三角函数的定义。
四、解析任意角三角函数的定义三角函数首先是函数。
你能从函数观点解析三角函数吗? (定义域)对于确定的角a ,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
普通高中数学必修4《任意角的三角函数》教案
课题:§1.2.1随意角的三角函数教材:人教A版·一般高中课程标准实验教科书·数学·必修 4一、教课目的1、知识目标:(1)理解随意角三角函数(正弦、余弦、正切 )的定义2)判断三角函数值的符号3)理解引诱公式一2、能力目标:(1)培育学生知识迁徙的能力(2)培育学生自主研究、合作沟通的能力3、感情目标:(1)在给出三角函数定义的过程中领会从一般到特别的思想2)在深入三角函数定义的过程中领会从特别到一般的思想二、教课要点与难点要点:(1)随意角的正弦、余弦、正切的定义2)三角函数在各象限的符号难点:(1)用角的终边上的点的坐标来刻画三角函数2)对三角函数定义的理解三、教课方法与手段本节课的教课方法主假如“问题研究、指引启迪、合作议论”相联合,用“问题”组织教课,经过“指引启迪、合作议论”,让学生学会在研究中学习.为了让学生更直观形象地理解问题,利用几何画板作图;为了防止不用要的繁琐的计算,借助了计算器进行协助计算.四、教课过程教课环节:创建情形研究新知建构观点知识应用概括总结部署作业教课问题师生活动设计企图环节实物演示:教师演示实验,学生察看.为了突出三角函数是刻画周(一)“装满细沙的漏斗在做期变化规律的数学模型;体现出数学根源于现实生活.单摆运动时,沙子落在与单摆创运动方向垂直运动的木板上设提出本节课的学习的任务就的轨迹”.情怎样将锐角的三角函数是学习随意角的三角函数.景推行到随意角的三角函数呢?(1) 你能说出初中锐角的三 教师提出问题,学生口头回 从原有的知识基础出发,为推角函数的定义吗?答.教师在课件中显示直角 广到随意角的三角函数打下三角形及三个三角函数值 基础.(二)的定义.直角三角形不可以知足非锐角探怎样将锐角的三角函数学生合作议论,教师一边引的三角函数,学生产生认知冲(2) 究导启迪.突,激发学生的求知欲念,也推行到随意角的三角函数新培育学生的合作精神.呢?知(3) 你能用直角坐标系中锐教师在课件中成立直角坐 指引学生用坐标法来研究锐角 的终边上的点P (x ,y ) 标系,显示锐角的终边及 角三角函数,使学生形成知识(不一样于坐标原点 )的坐标来 终边上的一点 P (x ,y ),学 迁徙的能力.表示锐角 的三角函数吗?生思虑并回答.教课问题师生活动设计企图环节(4)当点P在角终边上的地点改变时,上述三个比值会随之改变吗?(二)探究新知可否经过取适合点来将比值简化?给出随意角三角函数定义 .(三)建构概请同学们从函数的观点分析念三角函数定义中的对应关系.【示例练习】例1的教课总结:已知角的大小,求三角函数值的方法【深入三角函数定义】思虑1:(四)若已知角终边上随意一点知的坐标为P(x,y),怎样求识角的三角函数值?应变式练习2用总结:求三角函数值的方法①已知角的大小②已知角终边上点的坐标P15练习1、2【研究三角函数定义域】思虑2:正弦、余弦和正切函数的定义域是什么?教课问题环节教师利用几何画板演示点P在终边上滑动的过程,再取一点P/,计算比值;学生观察比值的变化状况,获得详细认识,由相像三角形得出结论.教师指引学生考虑点P到原点的距离,当距离为1时,可使比值化简.引入单位圆:圆心为原点,半径为1的圆.类比锐角的三角函数定义,给出随意角三角函数定义.教师指引学生以正弦为例,考虑角与纵坐标y能否知足函数关系,特别注意角用弧度数表示时是一个实数.近似得出余弦与正切也知足函数关系.教师在课件中演示角的终边地点,指引学生经过解直角三角形的知识,联合角的象限,先求出这个角的终边与单位圆的交点坐标,再由三角函数的定义求解.解题过程由学生自主达成.先由学生独立思虑,教师在课件演出示将随意点转变到单位圆上的点,再利用三角形相像得出结论的过程.练习由学生在黑板上操练,教师与学生一同评论.学生自主研究并达成书上P13的研究.师生活动要学生明确关于确立的角,这三个比值与点P在角终边上的地点没关,进而理解点P的随意性.引入单位圆,点P为终边与单位圆的交点,使正弦值用点P的纵坐标表示,余弦值用点P的横坐标表示,此设计表现由一般到特别的思想.使学生的学习成立在已有的认知经验基础上,对随意角的三角函数的定义的理解更深刻更全面.经过对对应关系的认识,深入对三角函数定义的理解.只给出角的大小,增强学生求交点的坐标的意识,进而达到懂得应用三角函数定义作为解题工具的目的.帮助学生打破原有知识的限制,领会从特别到一般的思想.经过总结加深对三角函数定义的实质的理解.让学生学习从定义出发研究三角函数的定义域,增强对定义的应企图识 .设计企图【研究三角函数的符号】思虑3:学生自主研究并达成书上三角函数在各象限的符号是P13的研究.什么?【研究特别角三角函数值】思虑4:学生自主研究并达成书上特别角三角函数值.P15的练习3.【示例练习】教师剖析证明思路,由学生例3的教课作出解答,师生对解答过程(四)进行评论.知P15练习6识【研究引诱公式一】应思虑5:用终边同样的角相差2的整教师指引学生从角的终边数倍,那么这些角的同一三角的关系到函数值之间的关函数值有何关系?怎样用数系得出结论.学公式表达?【研究引诱公式一】引诱公式一【示例练习】例4、例5的教课P15练习5、7请同学们从以下几个方面进行总结:1、从锐角三角函数推行就任(五)意角三角函数的过程先让学生自己总结,教师在2、随意角三角函数的定义学生总结的基础上再增补,归3、求三角函数值的方法特别是这节课表现的数形纳①已知角的大小联合、从一般到特别、从特总②已知角终边上点结坐标4、三角函数值在各象限的符号规律5、特别角的三角函数值6、本节表现的数学思想方法P20,习题,A组2,3,4,6(六)增补:若三角形的两内角布知足sincos<0,则此三角置形必为,,()作A.锐角三角形业B.钝角三角形C.直角三角形D.以上三种状况都可能五、教课反省让学生学习从定义出发研究三角函数的符号规律,增强对定义的应企图识.让学生学习从定义出发研究特别角的三角函数值,增强对定义的应企图识.培育学生谨慎的逻辑思想.练习让学生熟习三角函数符号规律及特别角的三角函数值.让学生领会三角函数值有“循环往复”的变化规律.懂得引诱公式一的作用.经过例题和练习,熟习引诱公式一的应用.学生对学习过程进行反应,对知识点、议论问题的思想方法进行总结,优化学生的认知结构. 增补的题目,使学生学会把三角函数值的符号与三角形的形状联系起来,掌握知识的应用.1.教课中应着厚利用三角函数刻画周期现象的重要性来引入这部分的知识,增强数学与生活的联系.给出三角函数定义需要经历一个逐渐化归的过程,以锐角三角函数为引子,由直角三角形中边的比到直角坐标系中坐标的比再到用单位圆上点的坐标定义三角函数,使学生的学习成立在已有任知经验基础上,对随意角的三角函数的定义的理解才能全面、深刻.我们在议论三角函数的相关问题时,能够从三角函数与单位圆之间的这类密切的内部联系中获得启迪,希望能够帮助学生在学习知识的同时学会数学地思虑问题.§1.2.1随意角的三角函数的教课设计说明教材:人教A版·一般高中课程标准实验教科书·数学·必修 4本节教课设计是在学生已经学过锐角三角函数的基础上,针对自学能力一般的班级设计的.教课环节按照学生的认知规律,表现顺序渐进与启迪式的教课原则.一.对教材的剖析本节内容利用单位圆上的点的坐标来定义随意角的三角函数,为后续学习同角三角函数的基本关系、引诱公式、三角函数图像与性质打下基础.所以,本节内容拥有承上启下的作用. 二.对教课目的和教课重难点的认识:依据学生的认知特色,本节课从认知、能力、感情三个层面确立了相应的教课目的.要点是随意角的正弦、余弦、正切的定义、三角函数在各象限的符号;而难点是用角的终边上的点的坐标来刻画三角函数、对三角函数定义的理解.三.对教课方法和教课手段的选择:采纳“问题研究、指引启迪、合作议论”相联合的教课方法,用“问题”组织教课,经过“指引启迪、合作议论”,让学生学会在研究中学习,增强学生能力的培育.为了让学生更直观形象地理解问题,利用几何画板作图,经过生动形象的演示,激活学生思想.四.对教课过程的说明:针对学生已有的知识以及学生的认知水平,把教课过程分为了①创建情形②研究新知③建构观点④知识应用⑤概括总结⑥部署作业共六个环节,让学生在老师的指引下,自主研究知识的形成过程,研究知识的实质应用.。
高中数学必修四4-1.2.1任意角的三角函数(二教案新人教A版必修4
三条有向线段中两条在单位圆内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向
的终边与单位圆的交点;余弦线由原点指
向垂
足;正切线由切点指向与
的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与
x 轴或 y 轴同向的为正值,与 x 轴或 y 轴反
向的
为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
sin
y MP , cos
x OM , tan
r1
r1
x OM
AT AT
OA
我们就分别称有向线段 MP , OM , AT 为正弦线、余弦线、正切线。
说明:
(1)三条有向线段的位置:正弦线为
的终边与单位圆的交点到 x 轴的垂直线段;余弦线
在 x 轴上;正切线在过单位圆与 x 轴正方向的交点的切线上,
4.例题分析: 例 1.作出下列各角的正弦线、余弦线、正切线。
( 1) ; ( 2) 5 ;
3
6
解:图略。
( 3)
2
;
3
13
( 4)
.
6
例 2. 若 0
,证明 sin cos 1. 2
例 3.比较大小:
(1) sin 2 与sin 4
3
5
(3) tan 2 与 tan 4
3
5
(2) cos 2 与 cos 4
3
3
练习 2. 若 sin θcosθ 0, 则θ在 ________. B
A . 第一、二象限
B. 第一、三象限
C. 第一、四象限
D. 第二、四象限
练习 3.
若 cosθ 0,且 sin2 0则 θ的终边在 ____ C
高中数学必修4《任意角的三角函数》教案
高中数学必修4《任意角的三角函数》教案高中数学必修4《任意角的三角函数》教案【一】教学准备教学目标1、知识与技能(1)能根据三角函数的定义,导出同角三角函数的基本关系;(2)能正确运用进行三角函数式的求值运算;(3)能运用同角三角函数的基本关系求一些三角函数(式)的值,并从中了解一些三角运算的基本技巧;(4)运用同角三角函数的基本关系式进行三角函数恒等式的证明。
2、过程与方法回忆初中所学的几个三角函数之间的关系,用高中所学的同角三角函数之间的关系试着进行证明;掌握几种同角三角函数关系的应用;掌握在具体应用中的一定技巧和方法;理解并掌握同角三角关系的简单变形;提高学生恒等变形的能力,提高分析问题和解决问题的能力。
3、情感态度与价值观通过本节的学习,使同学们加深理解基本关系在本章中的地位;认识事物间存在的内在联系,使学生面对问题养成勤于思考的习惯;培养学生良好的学习方法,进一步树立化归的数学思想方法。
教学重难点重点: 同角三角函数之间的基本关系,化简与证明。
难点: 化简与证明中的符号,同角三角函数关系的灵活运用。
教学工具投影仪教学过程【创设情境,揭示课题】同角三角函数之间的关系我们在初中就已经学过,只不过当时应用不是很多,那么到底有哪些?它们成立的条件是什么?学习实践中,你还发现了哪些关系?今天这节课,我们就来讨论这些问题。
【探究新知】在初中我们已经知道,对于同一个锐角α,存在关系式:2.学生课堂练习教材P66练习1和P67练习2五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业教材P68习题中1—6课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
人教版数学必修四1.2.1《任意角的三角函数(第一课时)》教学设计
“任意角的三角函数”第一课时教学设计一、教学目标设置1、知识与技能:①借助单位圆让学生认识和理解任意角的三角函数的定义②让学生能根据定义判定三角函数的符号③让学生知道公式一,并由此体会三角函数的周期性特点.2、过程与方法:①通过回忆初中的锐角三角函数定义,发现角概念推广后其局限性,必须寻找其它方式定义;②在形成新的锐角三角函数定义的过程中领悟坐标法的优越性,加深对函数概念的理解;③由特殊到一般的思想推广到任意角的三角函数定义;④通过探究任意角正弦函数定义,类比得到任意角的余弦函数和正切函数,培养学生类比分析的能力;⑤通过对三角函数值在各个象限符号的确定,培养学生利用规律解决问题的意识;⑥通过对公式一的学习,培养学生数形结合的意识,让学生体会三角函数的周期性.3、情感态度与价值观:①培养学生在运动变化的过程中认识知识的发生和发展,体会知识之间的内在联系,感悟知识的整体性;②通过小组合作交流,倡导学生主动参与课堂,培养学生团队合作的意识;③通过对新知识的探究,培养学生分析解决问题的能力和理性思维的能力.二、教学重点1、对任意角的三角函数定义的理解;2、正弦、余弦、正切函数值在各个象限内符号的确定;3、三角函数的周期性特点(公式一).三、教学难点任意角的三角函数概念的建构过程.四、学生学情分析学生在初中学习的锐角三角函数是以锐角为自变量,以边的比值为函数值的函数,以及高中学习过的函数的定义和任意角及弧度制,这些是学生学习任意角的三角函数知识的基础和依据.本节课从研究锐角三角函数的概念出发,更容易激发学生学习的热情,从而催生学生创造性思维.在概念建构的过程中,学生必需经历由特殊到一般的认识过程以及把新的概念纳入到一般函数的结构之中,这是认知过程的一道坎,又是认知的一次升华.五、教学策略分析本课采用“引”“探”相结合的方式,将问题以问题串的形式展现,让学生在问题中形成认知冲突,体会、感悟数学研究的一般思路和方法.课堂中以学生为主体,将学生分成若干小组,使学生全员参与课堂,通过学生之间合作交流,教师间或参与学生的讨论,对有困惑的小组或者个别学生进行帮助和引导,培养学生主动探究新知识的能力.此外,为了提高教学效果,使课堂教学更生动形象,利用多媒体课件进行教学.六、教学过程(一)创设情境,导入新课(问题1到问题2是温故知新化过程)问题1 初中我们在直角三角形中学习过锐角三角函数,你能回忆出初中锐角的正弦、余弦、正切函数是怎样定义的吗?你能说出它们的自变量是什么,又以什么为函数值呢?自变量的范围是什么?设计意图:要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,因此对锐角三角函数的复习是必不可少的.将锐角三角函数融入学生已有的函数知识结构中,容易为学生建立起任意角的三角函数获取心理逻辑的自然.问题2 在高中,随着角的概念的推广和弧度制的引入,角的范围变成了全体实数R,那么对于任意角α,比如当α为钝角时,角α的“斜边”这种说法还存在吗?那么任意角的三角函数该如何定义呢?设计意图:利用角α的变化作为思维的切入点,打破学生已有的认知结构的平衡,感受学习新知识的必要性,即角的范围扩大了,初中锐角三角函数的定义也应该与时俱进,这有利于将探究的主动权交给学生.(二)提出问题,探求新知(问题3到问题5是定义坐标化过程)问题3 中国有句古话说的好,“工欲善其事,必先利其器”.随着角的概念推广和弧度制的引入,我们一般借助什么工具来研究角?设计意图:依托学生已有的经验,启发学生联想,触发学生的灵感,为坐标法的实施奠定研究的基础.问题4 我们先研究哪种角呢?是直接研究任意角的情形还是先研究锐角的情形呢?设计意图:以锐角三角函数的研究为本节课知识的“生长点”,这样的研究符合学生的认知规律,学生有思考的落脚点,更能够激发学生的求知欲,由特殊到一般的思想突破本节课任意角三角函数概念的建构这一教学难点.问题5 对于任意角α都有始边和终边.在直角坐标系中,如何放置锐角α可以方便研究?在锐角α的终边上任取一点(,)P a b ,它与原点O 的距离为r ,你能用点P 的坐标及r 来表示锐角α的三角函数吗?设计意图:把锐角α放在直角坐标系下对学生来说比较简单,构造直角三角形也是一目了然的,这样可以把复习的初中的锐角三角函数的定义纳入直角坐标系,将边长的比变成坐标关系,为任意角的三角函数定义的给出做好铺垫.提及“始边”、“终边”也是为了概念一般化做铺垫.(问题6到问题7是表达式形式优化过程)问题6 当锐角α确定,如果改变α的终边上的P 点位置,角α的正弦值会发生改变吗? 设计意图:问正弦值这一种情况,方便师生研究.余弦值和正切值可以类比得到,更方便学生理解(下面有类似问法也是同样考虑);由三角形相似,说明在终边上任意取点不影响三角函数值.这是为单位圆定义的提出做好铺垫.问题7 数学追求“简洁美”,既然这三个比值与终边上点P 的位置无关,那么当P 点选在何处时,sin cos αα和的形式最简单?设计意图:通过问题的形式过渡,自然得出单位圆的概念.由此便可顺势得出sin cos αα和的简化形式,体现了数学的“简洁美”.同时也明确在单位圆的背景下,锐角和单位圆上P 点有对应关系.(问题8到问题10是函数化过程)问题8 当锐角α发生变化时,P 点的坐标会发生相应的改变吗?(追问)当锐角α确定了,P 点的坐标是否唯一确定?(配合动画演示)(教师板书:任意锐角α(实数)→唯一实数b ;任意锐角α(实数)→唯一实数a .)设计意图:初中学生对函数理解还比较肤浅,这里提出的问题扣准了函数概念的内涵,突出了变量之间的依赖关系及对应关系,是从一般函数知识演绎到三角函数知识的重要环节,是准确理解三角函数概念的关键.问题9 你能给这个函数(任意锐角α(实数)→唯一实数b )命名吗?设计意图:只单问一个函数,可以方便学生思考,也方便师生共同总结,还可以让学生在自行总结任意角的三角函数概念时有参照对象.问题10 既然是函数,你能说出锐角α正弦函数的自变量吗?以什么为函数值呢?设计意图:让学生能更好的理解锐角三角函数的定义,同时为总结任意角三角函数定义打好基础.(问题11到问题12是特殊到一般化过程)问题11 我们现在得到的锐角三角函数的定义和初中所学锐角三角函数定义有什么区别? 设计意图:加强学生对新的定义方式的理解,让学生意识到任意角没有“斜边”,但是有“始边”、“终边”,从而发现对于任意角,如果始边放在x 轴非负半轴上,其终边定与单位圆有唯一交点,从而能形成函数关系.为归纳任意角三角函数概念扫清心理障碍.问题12 由特殊到一般的思想,你能给任意角的三角函数下一个定义吗?(教师在与学生交流中,板书定义)设计意图:利用类比、迁移的认知规律,学生容易给出任意角的三角函数定义.学生可以意识到锐角三角函数是任意角三角函数的特例,任意角三角函数是锐角三角函数的自然延伸.(三)分析思考,加深理解(下列问题是概念理解强化过程)问题13 既然它们是函数,就要注意其定义域,它是函数的“生命之域”,那么正弦、余弦、正切函数的定义域分别是什么?设计意图:因为角的集合与实数集之间可以建立一一对应的关系,故三角函数也可以看成实数为自变量的函数,强调了其函数属性.问题14 当α为锐角时,sin ,cos ,tan ααα的值都是正数,当α的终边落在各个象限时,它们分别取什么符号?设计意图:对比锐角三角函数,让学生再次回忆任意角三角函数的定义,培养学生利用规律解决问题的意识.设置一个阅读环节,让学生阅读“三角函数名称由来简史”.设计意图:通过三角知识简史的阅读,让学生有新奇感,同时提高课堂的数学文化感,让学生感知数学是源于生活的.以此,进一步激发学生的学习热情.(四)强化训练,巩固双基第一关 求53π的正弦、余弦和正切的值. 设计意图:将例题以闯关的形式呈现,和综艺节目设置相似,寓教于乐,能激发学生的学习热情;明确已知角的终边,要求其三角函数值,可以先求终边与单位圆的交点坐标,通过运用概念,巩固对概念的理解.问题15 (追问)求113π的正弦、余弦和正切的值. 设计意图:引起学生发现这两个角的终边是重合的,所以它们与单位圆的交点坐标相同,由任意角三角函数的定义可知,终边相同的角的同一三角函数值是相等的.让学生体验到公式一的作用和三角函数的周期性.第二关 确定下列三角函数值的符号:(1)cos 260; (2)sin()4π-; (3)tan(700)-; (4)tan3π.第三关 求下列三角函数值:(1)sin(1050)-; 9(2)cos 4π; 11(3)tan()6π-. 设计意图:判断三角函数值的正负符号,是本节课的教学目标之一,引导学生抓住定义、数形结合判断三角函数值的正负符号,同时应用终边相同的角的同一三角函数值是相等的这一结论.第四关 已知角α的终边经过点0(3,4),P --求角α的正弦,余弦和正切值.0(3,4)(0),P a a a--≠情况又如何?设计意图:该点不在单位圆上,与例题1的解法对比;为课后探究“角α终边上任一点(,)Q x y,求角α的正弦、余弦和正切的值.”这一问题作铺垫;增加了一个问题,加强了学生对任意角三角函数定义的理解,同时渗透了分类讨论的思想.(五)课堂小结,升华提高知识与技能:任意角三角函数的定义(单位圆);能根据定义判定三角函数的符号;公式一(终边相同的角的同一三角函数值相等)即三角函数的周期性特点.思想与方法:坐标法、特殊到一般、数形结合、类比、转化、分类讨论.设计意图:让学生自己总结,教师补充,并且提醒学生知识重要,探究的思想与方法更重要,体现了教学应以学生为主体,教师为主导的新课标理念.(六)作业布置:1、课本15页练习2、3、5.2、假设角α的顶点是直角坐标系的原点,始边与x轴的非负半轴重合,已知角α终边上任一点(,)Q x y,求角α的正弦、余弦和正切函数值.3、通过本节课学习,你对任意角三角函数有哪些新的认识?利用定义你能解决哪些问题?你还有哪些不明白的地方?请把它写下来.。
高中数学必修4第一章三角函数完整教案
第一章 三角函数 4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义 教学难点:“旋转”定义角 课标要求:了解任意角的概念 教学过程: 一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。
三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:如图1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。
旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
师:在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300. 师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。
本节课将在已掌握~角的范围基础上,重新给出角的定义,并研究这些角的分类及记法. 2.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。
必修4任意角的三角函数教案
《任意角的三角函数》教学设计教学过程教学环节教学内容教师教学学生活动设计意图复习导入探究新知情景导入旋转水车做周而复始的运动.如何用函数模型描述水车上的点p的运动轨迹?PMyxOαP(a,b)1.将点P取在使线段OP的长r=1的特殊位置上探究新知2P(a,b)M A(1,0)xyα1O以原点O为圆心,以单位长度为半径的圆称为单位圆.sin,cos,tanMPbOPOMaOPMP bOM aααα======师:同学们,思考初中学习的锐角三角形的三边关系说出锐角的正弦、余弦、正切的数量关系。
将直角放入坐标中,你会表示吗?生:通过老师所给直角三角形,回答老师所提问题。
仔细观察OP的长度为特殊情况1时,这三个函数值与P点坐标这间关系。
通过设置情景,引导学生在直角标系中表示角,让学生尝试用直角坐标系中角的终边上的点坐标来表示锐角三角函数,为后面的任意角的三角函数做铺垫。
并取OP的长度为特殊情况1时,为引入单位圆做铺垫,渗透数形结合的思想。
Q (x,y )A (1,0)xyα2. 单位圆中任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点Q (x ,y )(3)正切,记作tan α,即()tan 0yx x α=≠(1) 正弦,记作sinα,即sinα=y(2) 余弦,记作cosα,即cosα=x形成定义正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.三角函数定义域sinαcosαtanαR R {|,}2k k Z πααπ≠+∈ 3.改变点P在终边上的位置,三个比值会改变吗?﹒P 'M 'sin MP OP α=cos OM OPα=tan MP OMα=OMP ∆∽P M O ''∆M P OP ''='OM OP '='M P OM ''='OyxP(a,b)α诱思探究M三角函数值与点P 在角的终边上的位置无关.结论4.设角α 是一个任意角,P (x ,y )是终边上的任意一点,点p 与原点的距离.220r x y =+>那么①叫做的正弦,即yrαsin y r α=②叫做的余弦,即x r αcos x r α=③叫做的正切,即yxα()tan 0y x x α=≠定义推广情形二:设水车转过的角度为任意α例2.已知角α的终边经过点,求角α的正弦、余弦和正切值.0(3,4)P --()22223(4)5r x y =+=-+-=43sin ,cos 55y x r r θ==-θ==-4tan 3y x θ==于是,解:由已知可得:实例剖析设点P (x ,y )为水车上任意一点,以水车的旋转中心为圆心,其半径为r ,则点P 的运动轨迹为:解决问题x=r cos αy=r sin α描述水车上的点P 的运动轨迹x Oy P (x,y )αcos α=sin α=xryr5.根据三角函数的定义,研究三角函数值在各个象限的符号.-+++++sin cos tan yy x xααα===-----sin αcos αtan αyOxOxyOxy+探究新知3Q (x,y )A (1,0)xyα例3.求证:当下列不等式组成立时,角θ为第三角限角.sin 0,tan 0.θθ⎧⎨⎩<>①②证明:若,那么θ角的终边可能位于第三或第四象限,也可能位于y 轴的非正半轴上;又若,那么θ角的终边可能位于第一或第三象限.由于①②式都成立,故θ角的终边只能位于第三象限.于是θ为第三象限角.sin 0θ<tan 0θ>实例剖析1. 内容总结:①三角函数的概念.②三角函数的定义域.运用了定义法、数形结合法解题.化归的思想.2 .方法总结:3 .体现的数学思想:归纳总结1.设角α属于第二象限,且,则属于第几象限?2.α是第而象限,其终边上一点,且,求sin α的值?布置作业5(,)P x cos 24x α=|22|c os osc αα=-2α板书设计:1.任意角三角函数在单位圆中定义;2.任意角三角函数的定义域;3.任意角三角函数在各个象限的符号. 教学反思教学中要充分发挥单位圆的作用,并且要注意逐渐使学生形成用单位圆讨论三角函数问题的意识和习惯,引导学生自主地用单位圆探索三角函数的有关性质,提高分析和解决问题的能力.在本节课教学中,根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。
高中数学1.2.1任意角的三角函数 教案 新人教版必修4
三角函数4-1.2.1任意角的三角函数(1)教学目的:知识目标: 1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、 解决问题的能力。
德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来. 授课类型:新授课教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b === .角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课: 1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin yr α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=; (3)比值y x 叫做α的正切,记作tan α,即tan yx α=;(4)比值xy叫做α的余切,记作cotα,即cotxyα=;(5)比值rx叫做α的正割,记作secα,即secrxα=;(6)比值ry叫做α的余割,记作cscα,即cscryα=.说明:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,六个比值不以点(,)P x y在α的终边上的位置的改变而改变大小;③当()2k k Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=与secrxα=无意义;同理,当()k k Zαπ=∈时,xcoyyα=与cscryα=无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、xy、rx、ry分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。
高中数学必修4教案1.2.1任意角的三角函数(教、学案)
1. 2.1任意角的三角函数【教学目标】(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号); (2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 【教学重难点】重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 【教学过程】 一、【创设情境】提问:锐角O 的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。
数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那 (,)P a b ,它与原么它的终边在第一象限.在α的终边上任取一点点的距离220r a b =+>.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP bOP r α==;cos OM a OP r α==; tan MP bOM aα==.P 在α的终边思考:对于确定的角α,这三个比值是否会随点上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.二、【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?yP (a ,b )rαO Ma 的终边P(x,y)Oxy如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; (2)x 叫做α的余弦(cossine),记做cos α,即cos x α=; (3)y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y =+,那么22sin y x yα=+,22cos x x yα=+,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:三角函数定义域第一象限 第二象限 第三象限 第四象限角度制弧度制 sin αcos αtan α5.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=6.三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .oxy MP A xyo M TPA由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====MP cos 1x x x OM r α====OM tan y MP ATx OM OAα====AT我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
新人教版高中数学1.2.1任意角的三角函数教案必修四
《任意角的三角函数》教案一、教学任务分析 知识目标:1.借助单位圆理解任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.从定义认识三角函数的定义域、函数值的符号,理解诱导公式(一) 能力目标:1.理解并掌握任意角的三角函数的定义;2.树立映射观点,正确理解三角函数是以实数为自变量的函数;3.能初步应用定义分析解决与三角函数值有关的一些简单问题。
情感目标:1.使学生认识到事物之间是有联系的,三角函数就是角度(实数)与三角函数值(实数)之间的一种对应;2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 二、教学重点、难点 教学重点:任意角三角函数(正弦、余弦、正切)的定义 教学难点:用单位圆上的点的坐标刻画三角函数。
理解三角函数就是实数与实数之间的一种对应 三、教学情景设计 1.复习引入问1 你能回忆一下锐角三角函数的定义吗?在AB Rt ∆中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b ===。
从学生原有的认知出发,来认识任意角三角函数的定义。
从角度到实数(三角函数值)之间的对应。
问2 如何用直角坐标系中角的终边上的点的坐标来表示锐角三角函数?引导学生用坐标法来研究锐角三角函数。
以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合。
2.新课讲授问3 改变终边上的点的位置,这三个比值会改变?为什么?说明比值与终边上的点的位置无关,只与角α的终边有关。
引导学生利用相似三角形的性质证明。
问4 能否通过取适当的点使表达式简化呢?引出单位圆的定义,三角函数的定义。
体现简约思想,从特殊到一般的思想。
设α是一个任意角,它的终边与单位圆交于点),(y x P ,那么: (1)y 叫做α的正弦,记作αsin ,即y =αsin ; (2)x 叫做α的余弦,记作αcos ,即x =αcos ; (3)x y 叫做α的正切,记作αtan ,即)0(tan ≠=x xyα。
人教版高中数学必修4第一章三角函数-《1.2任意角的三角函数》教案(3)
教与学过程设计第一课时 任意角的三角函数(一)(一)新课引入 提问:锐角O 的正弦、余弦、正切、余切怎样表示? 答:根据图形,手势比划。
如果现在要求 225sin 显然,不能再用初中的定义,因为,这里没有直角三角形,也就没有什么对边、邻边和斜边。
那么,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?(二)新课1.任意角的三角函数的定义在上述三角形上画上直角坐标系。
此时,∠POM 的对边,邻边分别是什么?斜边呢? 将P 点改写成坐标形式,P 的坐标是(x ,y ),它与原点的距离是=+=22(y x r r 022>+y x ),然后写出三个三角函数的定义。
我们定义:(1)比值r y 叫做α的正弦,记做sin α 即 sin α=r y ; (2)比值r x 叫做α的余弦,记做cos α 即 cos α=rx ; (3)比值x y 叫做α的正切,记做tan α 即 tan α=x y . 说明:这样定义以后,(1)当α是锐角时,此定义与初中定义相同。
(指出对边,邻边,斜边所在)(2)当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,就必然可以在终边上取点P (x ,y ),从而就必然能够算出P 到原点的距离r ,最终就可算出三角函数。
(用第三象限角示范,可能避免寻找对边的误区)所以现在大家可以完全抛开对边、邻边、斜边的概念,用我们现在新的坐标定义来研究三角函数。
(3)注意,三角函数的值与点P 在终边上的位置无关,(可在锐角的情形下任取两点P 和P /,由三角形的相似形知各类比值不变)。
追问:那三角函数的值与什么有关?答:仅与角的大小有关。
(可考察30度角和45度角的三角函数值)所以,三角函数是角的函数,又因为角与实数成一一对应,故三角函数也是实数的函数。
例1 已知角α的终边经过点P (2,-3)(如图),问角α为第几象限角?并求α的三个三角函数值。
注意:体会三角函数的符号(问为什么会出现负号?)并说明三角函数值不一定是正的。
1.2.1任意角的三角函数示范教案(人教a必修4)
1.2.1任意角的三角函数示范教案(人教a必修4)篇一:1.2.1任意角的三角函数示范教案(人教a必修4)1.2.1任意角的三角函数教学目的:1、掌握任意角的正弦、余弦、正切的定义,了解任意角的余切、正割、余割的定义;2、掌握三角函数值的符号的确定方法;3、记住三角函数的定义域、值域,诱导公式(一);4、利用三角函数线表示正弦、余弦、正切的三角函数值。
教学重点、难点重点:三角函数的定义,各三角函数值在每个象限的符号,特殊角的三角函数值难点:对三角函数的自变量的多值性的理解,三角函数的求值中符号的确定教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在Rt△aBc中,设a对边为a,B对边为b,c对边为c,锐角a的正弦、余弦、正切依次为sina?aba,cosa?,tana?.ccb角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲授新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(x,y),它与原点的距离为r(r???0),那么yy叫做α的正弦,记作sin?,即sin??;rrxx(2)比值叫做α的余弦,记作cos?,即cos??;rryy(3)比值叫做α的正切,记作tan?,即tan??;xx(1)比值说明:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,六个比值不以点P(x,y)在α的终边上的位置的改变而改变大小;③当???2?k?(k?z)时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tan??y无意义;x2.三角函数的定义域、值域注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合.(2)α是任意角,射线oP是角α的终边,α的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到oP的位置无关.(3)sin?是个整体符号,不能认为是“sin”与“α”的积.其余几个符号也是这样.3.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:y对于第一、二象限为正(y?0,r?0),对于第三、四象限为负(y?0,r?0);rx②余弦值对于第一、四象限为正(x?0,r?0),对于第二、三象限为负(x?0,r?0);ry③正切值对于第一、三象限为正(x,y同号),对于第二、四象限为负(x,y异号).x①正弦值说明:若终边落在轴线上,则可用定义求出三角函数值。
高中数学必修4《任意角三角函数》教案2篇
高中数学必修4《任意角三角函数》教案2篇Teaching plan of trigonometric function of arbitrary angle高中数学必修4《任意角三角函数》教案2篇前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:高中数学必修4《任意角三角函数》教案2、篇章2:高中数学必修4《任意角三角函数》教案篇章1:高中数学必修4《任意角三角函数》教案教学准备教学目标1、知识与技能(1)能根据三角函数的定义,导出同角三角函数的基本关系;(2)能正确运用进行三角函数式的求值运算;(3)能运用同角三角函数的基本关系求一些三角函数(式)的值,并从中了解一些三角运算的基本技巧;(4)运用同角三角函数的基本关系式进行三角函数恒等式的证明。
2、过程与方法回忆初中所学的几个三角函数之间的关系,用高中所学的同角三角函数之间的关系试着进行证明;掌握几种同角三角函数关系的应用;掌握在具体应用中的一定技巧和方法;理解并掌握同角三角关系的简单变形;提高学生恒等变形的能力,提高分析问题和解决问题的能力。
3、情感态度与价值观通过本节的学习,使同学们加深理解基本关系在本章中的地位;认识事物间存在的内在联系,使学生面对问题养成勤于思考的习惯;培养学生良好的学习方法,进一步树立化归的数学思想方法。
教学重难点重点: 同角三角函数之间的基本关系,化简与证明。
难点: 化简与证明中的符号,同角三角函数关系的灵活运用。
(整理)普通高中数学必修4《任意角的三角函数》教案
课题:§1.2.1任意角的三角函数教材:人教A版·普通高中课程标准实验教科书·数学·必修4一、教学目标1、知识目标:(1)理解任意角三角函数(正弦、余弦、正切)的定义(2)判断三角函数值的符号(3)理解诱导公式一2、能力目标:(1)培养学生知识迁移的能力(2)培养学生自主探究、合作交流的能力3、情感目标:(1)在给出三角函数定义的过程中体会从一般到特殊的思想(2)在深化三角函数定义的过程中体会从特殊到一般的思想二、教学重点与难点重点:(1)任意角的正弦、余弦、正切的定义(2)三角函数在各象限的符号难点:(1)用角的终边上的点的坐标来刻画三角函数(2)对三角函数定义的理解三、教学方法与手段本节课的教学方法主要是“问题探究、引导启发、合作讨论”相结合,用“问题”组织教学,通过“引导启发、合作讨论”,让学生学会在探索中学习. 为了让学生更直观形象地理解问题,利用几何画板作图;为了避免不必要的繁琐的计算,借助了计算器进行辅助计算.四、教学过程教师提出问题,学生口头回教师在课件中显示直角三角形及三个三角函数值1.教学中应注重利用三角函数刻画周期现象的重要性来引入这部分的知识,加强数学与生活的联系.2.给出三角函数定义需要经历一个逐步化归的过程,以锐角三角函数为引子,由直角三角形中边的比到直角坐标系中坐标的比再到用单位圆上点的坐标定义三角函数,使学生的学习建立在已有任知经验基础上,对任意角的三角函数的定义的理解才能全面、深刻.3.我们在讨论三角函数的有关问题时,可以从三角函数与单位圆之间的这种紧密的内部联系中得到启发,期望能够帮助学生在学习知识的同时学会数学地思考问题.§1.2.1任意角的三角函数的教案说明教材:人教A版·普通高中课程标准实验教科书·数学·必修4本节教案是在学生已经学过锐角三角函数的基础上,针对自学能力一般的班级设计的.教学环节遵循学生的认知规律,体现循序渐进与启发式的教学原则.一.对教材的分析本节内容利用单位圆上的点的坐标来定义任意角的三角函数,为后续学习同角三角函数的基本关系、诱导公式、三角函数图像与性质打下基础.因此,本节内容具有承前启后的作用.二.对教学目标和教学重难点的认识:根据学生的认知特点,本节课从认知、能力、情感三个层面确定了相应的教学目标.重点是任意角的正弦、余弦、正切的定义、三角函数在各象限的符号;而难点是用角的终边上的点的坐标来刻画三角函数、对三角函数定义的理解.三.对教学方法和教学手段的选择:采用“问题探究、引导启发、合作讨论”相结合的教学方法,用“问题”组织教学,通过“引导启发、合作讨论”,让学生学会在探索中学习,加强学生能力的培养.为了让学生更直观形象地理解问题,利用几何画板作图,通过生动形象的演示,激活学生思维.四.对教学过程的说明:针对学生已有的知识以及学生的认知水平,把教学过程分为了①创设情景②探究新知③建构概念④知识应用⑤归纳总结⑥布置作业共六个环节,让学生在老师的引导下,自主探究知识的形成过程,探索知识的实际应用.。
高中数学人教必修4:1.2 任意角的三角函数 教案3
教与学过程设计第一课时 任意角的三角函数(一)(一)新课引入 提问:锐角O 的正弦、余弦、正切、余切怎样表示? 答:根据图形,手势比划。
如果现在要求 225sin 显然,不能再用初中的定义,因为,这里没有直角三角形,也就没有什么对边、邻边和斜边。
那么,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?(二)新课1.任意角的三角函数的定义在上述三角形上画上直角坐标系。
此时,∠POM 的对边,邻边分别是什么?斜边呢? 将P 点改写成坐标形式,P 的坐标是(x ,y ),它与原点的距离是=+=22(y x r r022>+y x ),然后写出三个三角函数的定义。
我们定义:(1)比值r y 叫做α的正弦,记做sin α 即 sin α=r y ; (2)比值r x 叫做α的余弦,记做cos α 即 cos α=rx ; (3)比值x y 叫做α的正切,记做tan α 即 tan α=x y . 说明:这样定义以后,(1)当α是锐角时,此定义与初中定义相同。
(指出对边,邻边,斜边所在)(2)当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,就必然可以在终边上取点P (x ,y ),从而就必然能够算出P 到原点的距离r ,最终就可算出三角函数。
(用第三象限角示范,可能避免寻找对边的误区)所以现在大家可以完全抛开对边、邻边、斜边的概念,用我们现在新的坐标定义来研究三角函数。
(3)注意,三角函数的值与点P 在终边上的位置无关,(可在锐角的情形下任取两点P 和P /,由三角形的相似形知各类比值不变)。
追问:那三角函数的值与什么有关?答:仅与角的大小有关。
(可考察30度角和45度角的三角函数值)所以,三角函数是角的函数,又因为角与实数成一一对应,故三角函数也是实数的函数。
例1 已知角α的终边经过点P (2,-3)(如图),问角α为第几象限角?并求α的三个三角函数值。
注意:体会三角函数的符号(问为什么会出现负号?)并说明三角函数值不一定是正的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-1.2.1任意角的三角函数(3)
教学目的:
知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.
2.理解握各种三角函数在各象限内的符号.
3.理解终边相同的角的同一三角函数值相等.
能力目标:1.掌握三角函数定义. 三角函数的定义域,三角函数线.
2.掌握各种三角函数在各象限内的符号.
3.掌握终边相同的角的同一三角函数值相等.
授课类型:复习课
教学模式:讲练结合
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导
公式第一组.
2.确定下列各式的符号
(1)sin100°·cos240° (2)sin5+tan5
3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为……( )
以上三种情况都可能
5 )
123><00
∴⎩⎨⎧><0tan 0sin θθ
充分性:∵sin θ<0,
∴θ是第三或第四象限角或终边在y轴的非正半轴上
∵tan θ>0,∴θ是第一或第三象限角.∵sin θ<0,tan θ>0都成立.∴θ为第三象限角.
5 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°.
三、巩固与练习
1 设α是第二象限的角,且|cos |cos ,222α
α
α
=-求的范围.
四、小结:
五、课后作业:
1、利用单位圆中的三角函数线,确定下列各角的取值范围:
(1) sinα<cosα; (2) |sinα|<|cosα| .
ab ,角β的终边上的点Q与A关于2、角α的终边上的点P与A(a,b)关于x轴对称(0)
直线y=x对称.求sinαescβ+tanαcotβ+secαcscβ的值.
六、板书设计:。