高等代数习题集

合集下载

高等代数-第5章习题及解答

高等代数-第5章习题及解答

习题 5.1解答A ⊆B A B =A A B =B 1. 设,证明:,.ααααααα∀∈A ⊆B ∈B ∴∈A B⊆A BAB ⊆AB =A∀∈A B ∈∈B A ⊆B ∈BA B ⊆B B ⊆A BAB =B证 A ,由,得 即得证A 又A 故 ,则A 或 但,因此无论那一种情形都有 此即,但 所以(B C C 2. :1)A =A B A 证明 )()();(((((((x x x x x x x x x x x x x x ∀∈∈∈∈∈∈∈⊆∈∈∈∈∈∈∈证 A (B C ),则A 且(B C )在后一情形,B 或C, 于是AB 或AC 所以AB)AC )由此得A (B C )A B)AC )反之,若A B)A C ),则AB 或AC在前一情形,A,B,因此B C 故A B C )在后一情(((((((x x x x ∈∈∈∈⊆形,A,C, 因此BC也得A BC ) 故A B)AC )AB C ) 于是AB C )=AB)AC )C C 2A B =A B A .)()()()x x x x x x x x x x x ∈∈∈∈∈∈∈∈∈∈∈∴⊆⊆ 证 若A (B C ),则A 或者BC在前一情形AB 且A C因而(A B )(AC )在后一情形B ,C ,因而AB 且AC即(A B )(A C ) A (B C )(A B )(A C )同理可证(A B )(AC )A (BC )故A (BC )=(AB )(AC )3:|,:|a b a b b f a bc d c d a ⨯⎛⎫⎛⎫→→+ ⎪ ⎪⎝⎭⎝⎭22 、问:法则g 是否为Q 到Q 的映射?单射还是双射?22(((a f f Q g g g ⨯⎛⎫⎛⎫∀∈∈⇒ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴解 当取0时在中没有象,所以不是映射;a 0a 0 a Q,有)=a,但000012121212)=3=),而00420042g 是满射不是单射.2()(),:()|()[]f x f x f x f x Q x φϕ'→→4. 问:满足:|是否为的变换?单射还是双射?φφφ'∈∴∀∈Φ解 (f(x))=f (x)Q[x] 是变换;又f(x)Q[x],有((x))=f(x),而22(())()(())(())()()f x f x f x f x f x f x φφφϕϕϕϕϕΦ∈'≠∴∀∈=∈∴∀∈=-=-≠∴⎰x(x)=f(x)dx Q[x],又 (f(x))=(f(x)+1)=f (x),而f(x)f(x)+1是满射不是单射.又f(x)Q[x],Q[x]是变换,又f(x)Q[x],但f(x)并且-f(x)没有原象,既不是单射又不是满射.{}|01y y y A B ≤<5. 设是一切非负实数构成的集合,又=是实数且:|1x f x x→A B + 证明: 是到的一个双射.()(),1,,1,111a ba b f a f b a ba b f yy y yyy fy y y f f ∀∈=+∴=∴∀∈≤≤∴≥-⎛⎫∴∈= ⎪--⎝⎭∴ 证 A,==1+ 是A 到B 的一个单射. B 00,A,且使得 是A 到B 的满射.综上所述得,是A 到B 的一个双射.{},:11,21,32,42;1223,4,1f g A →→→→→→→→6. 设=1,2,3,4规定 :,34.,f g fg gf fg gf A 1) 说明都是的变换;2) 求和,问和是否相等?(),():11,22,32,41:12,22,33,43.f x Ag x Af g fg gf g gf ∀∈∈∈∴→→→→→→→→≠证明 (1)x A,与都是由A 到A 的映射, 从而都是A 的变换. (2)所以f,,:::A B C f A B g B C gf A C g →→→7.证明是三个非空集合,是满射,,但是单射,证明是单射.1212121212,(),()()()()()f a a f a f a f a f a f a a f a f a ∈∴∃∈==⇒=⇒==∴12121212证明:设b ,b B,且g(b )=g(b )因是满射,A,使得b b 即有g()=g()g 是单射 即b b g 是单射习题 5.2解答1. 检验以下集合对所规定的代数运算是否作成数域上F 的线性空间.{}{}{}{}()|,()|,()|0,()|0n n n ij n ij i j a i j a 1) S=A M F A =A T=A M F A =-A U=A M F 时 L=A M F 时'∈'∈∈>=∈<=∴解S ,T ,U ,L 分别对称矩阵、反对称矩阵、上三角矩阵和下三角矩阵,所以S 、T 、U 、L 都非空,又根据其相应性质知,S 、T 、U 、L 中的元素关于矩阵的加法与F 中的数与矩阵的乘法都封闭,S 、T 、U 、L 都作成数域F 上的线性空间。

高等代数习题课_厦门大学中国大学mooc课后章节答案期末考试题库2023年

高等代数习题课_厦门大学中国大学mooc课后章节答案期末考试题库2023年

高等代数习题课_厦门大学中国大学mooc课后章节答案期末考试题库2023年1.特征值全为0且秩为3的10阶方阵, 互不相似的Jordan有____种.参考答案:32.设A是n阶矩阵,且A的有理标准型只包含一个Frobenius块,下列命题中错误的是____.参考答案:A的特征值两两互异3.设n阶复方阵A的相似于对角矩阵, 则下列叙述中错误的是____.参考答案:A的任一行列式因子没有重根4.以下映射的合成的命题中,正确的有____个。

A 单射的合成还是单射 B 满射的合成还是满射C 可逆映射的合成还是可逆映射D 线性映射的合成还是线性映射参考答案:45.设A是n阶实对称矩阵,若____,则A必为正定矩阵.参考答案:A的特征值全大于零6.设φ是线性空间V到W的线性映射, 则____.参考答案:φ把V中线性相关向量组变成W中线性相关向量组7.设U, W是n维线性空间V的真子空间, 且V等于U直和W. 又设V中向量α∉U,且α∉W,记S为α生成的子空间. 则dim((U+S)∩(W+S))=____参考答案:2##%_YZPRLFH_%##28.设φ是三维行空间的变换, 下列变换中____不是线性变换.参考答案:φ(a, b, c)=(ab, bc, ac)9.设f(x), g(x)是有理系数多项式, 下列命题成立的有____个.(1) 在有理数域上f(x), g(x)互素的充要条件是在复数域上f(x), g(x)互素(2) 在有理数域上f(x)整除g(x)的充要条件是在复数域上f(x)整除g(x)(3) 在有理数域上f(x), g(x)的最大公因式是d(x)的充要条件是在复数域上f(x), g(x)的最大公因式是d(x)(4) 在有理数域上f(x), g(x)的最小公倍式是k(x)的充要条件是在复数域上f(x), g(x)的最小公倍式是k (x)参考答案:410.设A是n阶复方阵, 则____不是A可对角化的充要条件.参考答案:A有n个不变因子11.两个n阶实对称阵正交相似的充要条件是____.参考答案:它们相似12.设φ是n维线性空间V的线性变换, 若φ是单射,则φ一定是满射.参考答案:正确。

湖南省考研数学复习资料推荐高等代数习题集

湖南省考研数学复习资料推荐高等代数习题集

湖南省考研数学复习资料推荐高等代数习题集湖南省考研数学复习资料推荐——高等代数习题集高等代数是湖南省考研数学科目中的重要一部分,对于考生来说,掌握高等代数的基本理论和解题技巧至关重要。

在复习过程中,一本优质的高等代数习题集,既可以帮助考生巩固知识点,又能够检验自己的学习成果。

本文将为湖南省考研数学考生推荐几本优秀的高等代数习题集,希望能够对考生的复习备考工作有所帮助。

1.《高等代数习题集》- 王式同编著这本习题集是湖南省考研数学中较为经典的一本教辅资料。

它包含了高等代数的各个知识点,习题难度适中,涵盖了基本概念、性质和解题方法。

作者编著的习题旨在考察学生对高等代数知识点的掌握程度,有助于考生训练解题的思维方式和技巧。

此外,习题解析详细,为考生提供了充分的解题思路和方法,能够帮助考生理解难点,提高解题效率。

2.《高等代数习题集与指南》- 李鸣与彭军编著该书是湖南省考研数学中另一本较为知名的习题集。

它从题目的选材和难度上具有一定特色,突出了高等代数中的典型问题和难点。

习题集中的部分题目相对较难,适合对高等代数有一定基础的考生进行深入练习。

此外,习题集的解析详尽,对考生进行了全面的解题指导,有助于考生巩固和拓展知识点。

3.《高等代数习题集》- 朱光编著这本习题集是湖南省考研数学中的经典教材之一,曾经多次被推荐给考生作为复习资料。

它的特点是习题分析透彻,解题方法详细,能够帮助考生理解高等代数中的重难点和解题思路,提高解题能力。

此外,习题集中的题目难度适中,有助于考生温故知新、巩固基础,帮助考生顺利备考。

总结:对于湖南省考研数学复习来说,高等代数是其中的重点内容。

选择一本合适的高等代数习题集进行练习对于考生来说非常重要。

本文推荐的三本习题集都得到了广大考生的认可,它们分别是《高等代数习题集》- 王式同编著、《高等代数习题集与指南》- 李鸣与彭军编著、《高等代数习题集》- 朱光编著。

这些习题集的特点是题目全面、解析详尽,对考生复习备考起到了很大的帮助。

高等代数北大版(第三版)答案

高等代数北大版(第三版)答案

令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4

f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),

d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3

第一章习题(基本题)

第一章习题(基本题)

第一章 多项式习题基本题一、填空题1.用2()2g x x x =-+除4()25f x x x =++,商式为 ;余式为 。

2.当,,m p q 满足关系 时,241|x mx x px q ++++.3.4322()(441,1)d x x x x x x x =--++-+= ;存在()u x 注= ,()v x = ,使得()()()()()d x f x u x g x v x =+.4.设3232235(2)(2)(2)x x x a x b x c x d -+-=-+-+-+,则,,,a b c d 的值为 。

5.当t 满足 时,32()31f x x x tx =-+-有重根。

6.3()f x x px q =++有重根的条件是 。

7.42()4751f x x x x =---的有理根集合为 。

8. 当f (x )与g (x ) 时,由f (x )|g (x )h (x )可推出f (x )|h (x ).9. 数域P 的非零不可约多项式f (x )的因子为 与 。

10. 若2x -是多项式f (x )的3重因式,则2x -是''()f x 的 重因式。

二. 判断题1. 数集}{1,,|2-=+i b a bi a 是有理数关于数的四则运算是数域。

( )2.数集}{1,,|2-=+i b a bi a 是整数关于数的四则运算是数域。

() 3. 若f (x )|g (x )+h (x ),f (x )|g (x ),则f (x )|h (x ). () 4. 如果f (x )在有理数域上是可约的,则f (x )必有有理根。

() 5. 若p (x )是'()f x 的k 重因式,则p (x )是f (x )的k +1重因式。

() 6. 若f (x )|g (x )h (x ),且f (x )|g (x ),则(f (x ),h (x ))=1. ( )7. 奇次数的实系数多项式必有实根。

(完整版)高等代数习题集

(完整版)高等代数习题集

《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。

A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。

高等数学 高等代数习题集

高等数学 高等代数习题集

第一章 多项式§1.1一元多项式的定义和运算1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是(6) 222)()()(x xh x xg x f +=,那么.0)()()(===x h x g x f2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h3.证明:!))...(1()1(!)1)...(1()1(!2)1(1n n x x n n x x x x x x nn---=+---+--+-§1.2 多项式的整除性1.求)(x f 被)(x g 除所得的商式和余式:( i ) ;13)(,14)(234--=--=x x x g x x x f (ii);23)(,13)(3235+-=-+-=x x x g x x x x f2.证明:k x f x )(|必要且只要).(|x f x3.令()()()x g x g x f x f 2121,,),(都是数域F上的多项式,其中()01≠x f 且()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++5.设F 是一个数域,.F a ∈证明:a x -整除.n na x -6.考虑有理数域上多项式()()()()()(),121211nkn k nk x x x x x x f ++++++=-++这里k 和n 都是非负整数.证明:()()().11|1n k 1+++++-x x f x x k7.证明:1-dx整除1-n x 必要且只要d 整除.n§1.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式: ( i ) ()();32103,34323234-++=---+=x x x x g x x x x x f(ii)()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=2. 设()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()x f 和()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个最大公因式.3.令()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F中的数,并且0≠-bc ad证明:()()()()()()).,(),(x g x f x dg x cf x bg x af =++4. 证明: (i )h g f ),(是fh 和gh 的最大公因式;(ii )),,,,(),)(,(212121212211g g f g g f f f g f g f =此处h g f ,,等都是][x F 的多项式。

【教育文档】高等代数习题集

【教育文档】高等代数习题集

其中 a0 , a1, , an 属于数域 F,称为数域 F上的一元多项式.
2.多项式的运算 (1)加法 设
n
n
∑ ∑ f (x) = an xn + an−1xn−1 + + a0 = ai xi , g(x) = bn xn + bn−1xn−1 + + b0 = bi xi ,
i=0
i=0
(如果二者的次数不相等,则可以在次数小的前面加一些系数为零的项), 定义 f (x) 与
高等代数习题集
第一章 多项式
一、内容提要
§1.1 数域
数域定义
设 F是由一些复数组成的集合,其中包括 0 和 1. 如果 F中任意两数(这两个数可以相 同)的和、差、积、商(除数不为零)仍然是 F中的数,那么 F就称为一个数域.
§1.2 一元多项式
1. 一元多项式定义
设 n 是一非负整数. 形式表达式 an xn + an−1xn−1 + + a0 ,
d (x) ,且 d (x) 可以表示成 f (x), g(x) 的一个组合,即有 F[x] 中多项式 u(x), v(x) 使
d(x) = u(x) f (x) + v(x)g(x) .
4. 互素定义
设 f (x), g(x) ∈ F[x],若 ( f (x), g(x)) = 1,则称 f (x) 与 g(x) 互素.
(5)若 ( f (x), g1(x)) = 1, ( f (x), g2 (x)) = 1,则 ( f (x), g1(x)g2 (x)) = 1.
-3-
高等代数习题集
§1.5 因式分解定理
z f (x) | f (x) ;

高等代数学习题集

高等代数学习题集

高等代数学习题集一、线性方程组1. 解下列线性方程组:(1)$3x+2y=7$$2x-3y=4$(2)$2x-y+z=4$$x+3y-2z=5$$2x-y+z=1$(3)$3x+y=5$$4x-y=8$2. 通过矩阵表示以下线性方程组,并求出其解:(1)$4x+2y=6$$-2x+y=3$(2)$x-2y+3z=1$$2x+y+3z=9$$3x+2y+4z=12$(3)$x+y+z=0$$x+2y+3z=1$$x-3y+2z=2$二、矩阵运算与性质1. 计算以下矩阵的乘积:$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$\begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix}$2. 求下列矩阵的逆矩阵:(1)$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & 0 & 3 \end{bmatrix}$3. 判断下列矩阵是否可逆,并求其逆矩阵:(1)$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$(2)$\begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ 2 & -4 & 3 \end{bmatrix}$4. 求矩阵的转置:(1)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$三、特征值与特征向量1. 求矩阵的特征值与特征向量:$\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$2. 计算以下矩阵的迹:(1)$\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix}$四、向量空间1. 判断向量组是否线性相关:(1)$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$2. 求以下向量组的一个极大线性无关组:(1)$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1\end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$五、线性变换1. 判断以下线性变换是否为一一映射:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x+y \\ 3y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y \\ y+z \\ x+z \end{bmatrix}$2. 求下列线性变换的矩阵表示:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x-y \\ 3x+2y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y+z \\ 2x+3y-z \\ 3x-2y+2z\end{bmatrix}$六、二次型1. 对以下二次型进行分类:(1)$f(x,y)=2x^2+3y^2-4xy$(2)$f(x,y,z)=x^2+y^2+z^2-2xy+4xz$2. 将以下二次型化为标准形:(1)$f(x,y,z)=3x^2+4y^2+2z^2+4xy+4xz-8yz$(2)$f(x,y,z)=x^2+2y^2+3z^2-2xy+6xz$以上为《高等代数学习题集》的内容,希望对你的学习有所帮助。

高等代数(上)_习题集(含答案)

高等代数(上)_习题集(含答案)

《高等代数(上)》课程习题集一、填空题11. 若31x -整除()f x ,则(1)f =( )。

2. 如果方阵A 的行列式0=A ,则A 的行向量组线性( )关。

3. 设A 为3级方阵,*A 为A 的伴随矩阵,且31=A ,则=--1*A A ( )。

4. 若A 为方阵,则A 可逆的充要条件是——( )。

5. 已知1211A ⎡⎤=⎢⎥⎣⎦,1121B ⎡⎤=⎢⎥⎣⎦,且3AB C A B +=+,则矩阵C =( )。

6. 每一列元素之和为零的n 阶行列式D 的值等于( )。

7. 设行列式014900716=--k,则=k ( )8. 行列式22357425120403---的元素43a 的代数余子式的值为( )9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则=α( )10. 设A 为3阶矩阵,51=A ,则12--A =( ) 11. 已知:s ααα,,,21Λ是n 元齐次线性方程组0=Ax 的基础解系,则系数矩阵A 的秩=)(A R ( )12. 多项式)(),(x g x f 互素的充要条件是( ) 13. 多项式)(x f 没有重因式的充要条件是( )14. 若排列n j j j Λ21的逆序数为k ,则排列11j j j n n Λ-的逆序数为( )15. 当=a ( )时,线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 有零解。

16. 设A 为n n ⨯矩阵,线性方程组B AX =对任何B 都有解的充要( )17. 设00A X C ⎡⎤=⎢⎥⎣⎦,已知11,A C --存在,求1X -等于( ) 18. 如果齐次线性方程组0=AX 有非零解,则A 的列向量组线性( )关 19. )(x p 为不可约多项式,)(x f 为任意多项式,若1))(),((≠x f x p ,则( ) 20. 设A 为4级方阵,3-=A ,则=A 2( )21. 设m ααα,,,21Λ是一组n 维向量,如果n m >.,则这组向量线性( )关22. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则k=( )。

北大高代复习题集全

北大高代复习题集全

北大高代复习题集全北高大代复习题集全高等代数是数学专业学生必须掌握的一门基础课程,它不仅涵盖了线性代数的基本概念,还深入探讨了群、环、域等代数结构。

以下是北大高等代数的复习题集,旨在帮助学生系统复习和巩固所学知识。

第一部分:线性代数基础1. 向量空间的定义与性质- 描述向量空间的公理,并给出一个非标准的例子。

- 证明一个集合是否构成向量空间。

2. 线性相关与线性无关- 给出线性相关和线性无关的定义,并举例说明。

- 解释向量组的线性相关性如何影响其生成的向量空间。

3. 基与维数- 定义基和维数,并解释它们之间的关系。

- 证明一个向量组是否是某个向量空间的基。

4. 线性变换与矩阵表示- 描述线性变换的性质,并给出矩阵表示。

- 解释如何通过矩阵变换来理解线性变换。

5. 特征值与特征向量- 定义特征值和特征向量,并解释它们在矩阵理论中的作用。

- 求解给定矩阵的特征值和特征向量。

6. 正交性与正交矩阵- 描述正交向量和正交矩阵的概念。

- 证明一个矩阵是否为正交矩阵。

7. 行列式与矩阵的逆- 解释行列式的性质,并说明如何使用行列式求解矩阵的逆。

第二部分:群论基础1. 群的定义与性质- 给出群的定义,并解释群的四个基本性质。

- 举例说明不同类型的群。

2. 子群与陪集- 定义子群,并解释如何找到一个群的子群。

- 描述陪集的概念,并解释其在群论中的重要性。

3. 正规子群与商群- 定义正规子群,并解释商群的概念。

- 举例说明如何构造一个群的商群。

4. 群的同态与同构- 解释群的同态和同构的概念,并给出它们的性质。

- 判断两个群是否同构。

5. 阿贝尔群与循环群- 描述阿贝尔群和循环群的特点,并给出例子。

- 解释为什么所有的阿贝尔群都是循环群。

第三部分:环论基础1. 环的定义与性质- 给出环的定义,并解释环的基本性质。

- 举例说明不同类型的环。

2. 理想与商环- 定义理想,并解释如何使用理想构造商环。

- 举例说明商环的性质。

高等代数习题及答案

高等代数习题及答案

高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“V” ,错的打“X”;每小题1分,共10分)1、p(x)若是数域F上的不可约多项式,那么p(x)在F中必定没有根。

()2若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。

()3、实二次型f(x i,x2, ,x n)正定的充要条件是它的符号差为n。

()4、W x1t x2 ,x3 x i R,i 1,2,3;为x2 x3是线性空间R1 2 3的一个子空间。

()5、数域F上的每一个线性空间都有基和维数。

()6、两个n元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。

()7、零变换和单位变换都是数乘变换。

()8线性变换的属于特征根°的特征向量只有有限个。

()9、欧氏空间V上的线性变换是对称变换的充要条件为关于标准正交基的矩阵为实对称矩阵。

()n10、若1, 2, , n是欧氏空间V的标准正交基,且人i ,那么i 1① f n x ,g n x f x ,g x1.n11。

()二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10 分)1、关于多项式的最大公因式的下列命题中,错误的是(②f1, f2, , f n 1 f i, f j 1, i j,i, j 1,2, ,n ;③ f x ,g x f x g x ,g x ;④若f x , g x 1 f x g x , f x g x 1 。

2、设D是一个n阶行列式,那么()①行列式与它的转置行列式相等;②D中两行互换,则行列式不变符号;③若D 0 ,则D中必有一行全是零;④若D 0,则D中必有两行成比例。

3、设矩阵A的秩为r(r>1),那么()①A中每个s(s <r)阶子式都为零;②A中每个r阶子式都不为零;③A中可能存在不为零的r 1阶子式;④A中肯定有不为零的r阶子式。

高等代数真题答案

高等代数真题答案
(b) Span(S1 ∪ S2 ) = Span(S1) + Span(S2 ) .
(c) Span(S1 ∩ S2 ) ⊆ Span(S1) ∩ Span(S2 ) .
姓名
学号
(高等代数习题册)
3
6. 如果 f1, f2, f3 是实数域上一元多项式全体所成的线性空间 R[x] 中三个互素的多项式, 但其中任意两个 都不互素, 那么它们线性无关.试证之.
}∞ n=0
|
xn

R}
关于数列的加法和数乘.
2. 设V 是数域 F 上的线性空间, 证明 k(α − β) = kα − kβ , 这里 α,β ∈V , k ∈ F.
姓名
学号
(高等代数习题册)
2
3. 下述集合是否是 M n (R) 的子空间
(a) V = {A∈ M n (R) | AT = − A}
姓名
学号
(高等代数习题册)
8
3. 设V ,W 是数域 F 上的两个线性空间, L(V ,W ) 是V 到W 的所有线性映射所组成的集合.证明 L(V ,W )
关于线性映射的加法与数量乘法, 成为数域 F 上的一个线性空间.
4.
在 F[x] 中,
定义
T1 (
f
( x))
:=
df (x) dx
,
T2 ( f (x)) := xf (x) , 证明: T1T2 − T2T1 = E
⎜⎝ 5 ⎟⎠
⎛1 5 8 1⎞
⎛0 2 3 4⎞
15.
设 AP = PB,
其中
P
=
⎜ ⎜ ⎜
0 0
2 0
6 3
9 7
⎟ ⎟ ⎟

《高等代数》第三章习题及答案

《高等代数》第三章习题及答案

习题3.1计算下列行列式:①5312--+a a ②212313121+----a a a解 ①5312--+a a =(a+2)(a-5)+3=a 2-3a-7②212313121+----a a a =(a-1)(a-1)(a+2)-3-12+2(a-1)-3(a-1)+6(a+2)= a 3+2a习题3.2求从大到小的n 阶排列(n n-1 … 2 1)的逆序数. 解 τ(n n-1 … 2 1)=(n-1)+(n-2)+…+1+0=2)1(-n n 习题3.31.在6阶行列式中,项a 23a 31a 42a 56a 14a 65和项a 32a 43a 14a 51a 66a 25应各带有什么符号?解 因为a 23a 31a 42a 56a 14a 65=a 14a 23a 31a 42a 56a 65,而τ(4 3 1 2 6 5)=3+2+0+0+1+0=6,所以项a 23a 31a 42a 56a 14a 65带有正号.又因为项a 32a 43a 14a 51a 66a 25=a 14a 25a 32a 43a 51a 66,而τ(4 5 2 3 1 6)=3+3+1+1+0+0=8,所以项a 32a 43a 14a 51a 66a 25带有正号. 2.计算:000400010002000300050000 解 因为a 15a 24a 33a 42a 51的逆序数为τ(5 4 3 2 1)=5×4/2=10,带有正号,所以000400010002000300050000=5×3×2×1×4=120 习题3.4计算:6217213424435431014327427246-解 6217213424435431014327427246-=6211003424431001014327100246-=100×621134244*********1246-=-294×105习题3.51.计算下列行列式:①1723621431524021----- ②6234352724135342------解 ①1723621431524021-----=1374310294111120001------=137410291111-----=-726②6234352724135342------=1035732130010313410------=0105731331310---- =05723133710----=-5×72337--=-1002. 计算下列n 阶行列式(n ≥2):①ab ba b a b a 000000000000 ②1210010010011110-n a a a③n n n n x x x x x x a a a a x a 1322113211000000000-----+④111)()1()()1()()1(111n a a a n a a a n a a a n n n n n n --------- 解 ① n n a b b a b a b a ⨯000000000000=)1()1(00000000000-⨯-⨯n n a b a b a b a a+)1()1(1000000000000)1(-⨯-+⨯-n n n b a b b ab b=a n+(-1)n+1b n② D n =1210010*********-n a a a=a n-1×D n-1+(-1)n+1×)1)(1(2100000000001111---n n n a a= a n-1D n-1+(-1)n+1×(-1)1+(n-1)×)2)(2(232100000000----n n n n a a a a=a n-1D n-1-a 1a 2…a n-2=a n-1(a n-2D n-2-a 1a 2…a n-3)-a 1a 2…a n-2 =a n-1a n-2D n-2-a n-1a 1a 2…a n-3-a 1a 2…a n-2 …= a n-1a n-2…a 2D 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2= a n-1a n-2…a 21110a -a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2=-a n-1a n-2…a 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2 =-∑---11211)...(n i in a a a a ③ D n =nn n n x x x x x x a a a a x a 1322113211000000000-----+=112111...)1()1(---++-⨯-n n n n n n D x x x x a =a n x 1x 2…x n-1+x n D n-1=a n x 1x 2…x n-1+x n (a n-1x 1x 2…x n-2+x n-1D n-2) =a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+x n x n-1D n-2 …=a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+…+x n x n-1…x 4a 3x 1x 2+x n x n-1…x 4x 3D 2=a n x 1x 2...x n-1+x n a n-1x 1x 2...x n-2+...+x n x n-1...x 4a 3x 1x 2+x n x n-1...x 4x 3[(a 1+x 1)x 2+a 2x 1] =)( (1)1121121∑=+--+ni n i i i n n x x a xx x x x x x④D n+1=111)()1()()1()()1(111n a a a n a a a n a a a n n n nn n ---------=nn n n n n n n a a a n a a a n a a a )1()1()()1()()1(111)1(1112)1(----------+=)1()]}1([)2)(1)]{(()2)(1[()1(2)1(---------+ n n n n=2!3!...n!3.计算下列n 阶行列式(n ≥1):①n a a a a ++++1111111111111111321②ax x x x x a x x x x a x a x x x x x a x n n nn ----- 321321321321解 ① D n =na a a a ++++1111111111111111321=na a a a +++++++11110111*********11321=1111111111111111321a a a ++++na a a a111011101110111321+++ =110010010321a a a +1-n n D a =a n D n-1-a 1a 2…a n-1=a n (a n-1D n-2-a 1a 2…a n-2)-a 1a 2…a n-1 =a n a n-1D n-2-a n a 1a 2…a n-2-a 1a 2…a n-1 =n ni n i i a a a a a aa 211111)(+∑=+-=⎪⎪⎭⎫ ⎝⎛+∑=ni i n a a a a 12111 (a i ≠0) ②D n =a x x x x x a x x x x a x a x x x x x a x n n n n -----321321321321=ax x x x x a x x x x a x a x x x x x a x n n n n -+-+--+- 321321321321000=n n n n x x x x x a x x x x a x a x x x x x a x 321321321321----+ax x x a x x x a x a x x x x a x -----321321321321000 =x n (-a)n-1(x 1+x 2+…+x n )+(-a)n4.证明:n 阶行列式yz z x y y x z xzz zz y y x z z yy y x z yy y y x nn ----=)()( 其中z ≠y .解 D n =xzz zzy y x z z yy y x z x y zx00--=(x-z)D n-1-(y-x))1()1(-⨯-n n x zz zy y x zy y y z=(x-z)D n-1-(y-x)z)1()1(111-⨯-n n x z z y y x y yy=(x-z)D n-1-(y-x)z)1()1(10010001-⨯-----n n y x yz y z y x=(x-z)D n-1-(y-x)z(x-y)n-2=(x-z)D n-1+z(x-y)n-1即有D n =(x-z)D n-1+z(x-y)n-1(1)又D n =xzz zy y x z yy y x x z yy y y y x--=(x-y)D n-1-(z-x))1()1(-⨯-n n x zz zy y x zy y y y=(x-y)D n-1-(z-x)y)1()1(1111-⨯-n n x z z z yy x z=(x-y)D n-1-(z-x)y)1()1(001111-⨯-----n n z x z y z y z x=(x-y)D n-1-(z-x)y(x-z)n-2即有D n =(x-y)D n-1+y(x-z)n-1(2) 联立式(1)和式(2)得yz z x y y x z xzz zzy y x z z yy y x z yy y y x nn ----=)()( 习题3.61.设A,B,P ∈Mat n ×n (F),并且P 是可逆的,证明:如果B=P -1AP ,则|B|=|A|.证 因为|P -1||P|=1,所以|B|=|P -1AP|=|P -1||A||P|=|A|. 2*.仿照例3.6.1,试用分块初等变换,证明定理3.6.1. 证 设A ,B 都是n ×n 矩阵,则nE BA -0=B A B A A E B n n n n=-=--+)1(0)1(另一方面,对nE BA -0的第2行小块矩阵乘以A 加到第一行上去,有nE BA -0=AB E BAB n=0所以B A AB =.习题3.71.求下列矩阵的伴随矩阵和逆矩阵①⎪⎪⎭⎫⎝⎛--1112 ②⎪⎪⎪⎭⎫ ⎝⎛--325436752解 ①设原矩阵为A ,则A 11=-1,A 21=-1,A 12=1,A 22=2,伴随矩阵A *=⎪⎪⎭⎫⎝⎛--2111,|A|=-2+1=-1,所以,A -1=⎪⎪⎭⎫ ⎝⎛---211111=⎪⎪⎭⎫ ⎝⎛--2111②设原矩阵为A ,则A 11=3243--=-9+8=-1,A 21=3275---=-(-15+14)=1,A 31=4375=20-21=-1,A 12=3546--=38,A 22=3572-=-41,A 32=4672-=34, A 13=2536-=-27,A 23=2552--=29,A 33=3652=-24伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛-----242927344138111,|A|=-18-84+100-105+16+90=-1,所以,A -1=⎪⎪⎪⎭⎫ ⎝⎛------24292734413811111=⎪⎪⎪⎭⎫ ⎝⎛----2429273441381112.证明:上三角形矩阵是可逆矩阵的充分必要条件是:它的主对角线元全不为零.证 因为矩阵可逆的充分必要条件是它的行列式不为零,而上三角形矩阵的行列式等于它的主对角线上所有元的乘积,所以上三角形矩阵的行列式不为零的充分必要条件是:它的主对角线元全不为零,故上三角形矩阵可逆矩阵的充分必要条件是:它的主对角线元全不为零.3.设A 是n ×n 矩阵.证明:A 是可逆的,当且仅当A *也是可逆的.证 因为 AA *=|A|E ,两边取行列式得|A||A *|=|A|n.若A 可逆,则A 的行列式|A|≠0,从而有|A *|=|A|n-1≠0,所以A *可逆.反之,若A *可逆,设A *的逆阵为(A *)-1.用反证法,假设A 不可逆,则A 的行列式|A|=0,所以AA *=|A|E=0,对AA *=0两边同时右乘(A *)-1,得A=0,从而A 的任一n-1阶子式必为零,故A *=0,这与A *可逆相矛盾,因此A 可逆. 4.证明定理3.7.2的推论1.推论1的描述:设A 是分块对角矩阵,A=diag(A 1,A 2,…,A s ),证明:A 可逆当且仅当A 1,A 2,…,A s 均可逆,并且A -1=diag(A 1-1,A 2-1,…,A s -1).证 A 可逆,当且仅当A 的行列式|A|≠0,而|A|=|A 1||A 2|…|A s |,所以|A|≠0当且仅当|A 1|,|A 2|,…,|A s |都不为零,即A 1,A 2,…,A s 均可逆.令B=diag(A 1-1,A 2-1,…,A s -1),则有AB=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛S A A A21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11211s A A A =⎪⎪⎪⎪⎪⎭⎫⎝⎛S E E E21=E 故A -1=diag(A 1-1,A 2-1,…,A s -1).4.设A=⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a 是实矩阵(实数域上的矩阵),且a 33=-1.证明:如果A 的每一个元都等于它的代数余子式,则|A|=1.证 如果A 的每一个元都等于它的代数余子式,则A 的伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =A T .所以|A *|=|A|,又AA *=|A|E ,两边取行列式得|A|2=|A|3. 由a 33=-1,得AA *=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a aa a a a a a ⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛-12313322212312111a a a a a a a a ⎪⎪⎪⎭⎫⎝⎛-12313322212312111a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛++1232231a a =⎪⎪⎪⎭⎫ ⎝⎛||000||000||A A A比较最后一个等式两端第3行3列的元素知|A|=a 312+a 322+1≠0,对|A|2=|A|3两边同时除以|A|2得|A|=1.6.设A=(a ij )是n ×n 可逆矩阵,有两个线性方程组(Ⅰ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++u x c x c x c bx a x a x a b x a x a x a b x a x a x a n n nn nn n n n n n n (221122112222212111212111)(Ⅱ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n nn nn n n n n n n (221122112222211211221111)如果(Ⅰ)有解.证明:当且仅当u =v 时,(Ⅱ)有解.证 设方程组(Ⅰ)的解为x 1*, x 2*,…, x n *,代入方程组(Ⅰ)得(Ⅲ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++ux c x c x c bx a x a x a b x a x a x a b x a x a x a n n n n n nnn n n n n **2*1**2*12*2*22*211*1*12*11................................................ (212)12121 当u =v 时,因为 A=(a ij )是n ×n 可逆矩阵,A 的行列式不等于零,根据克莱姆法则,方程组(Ⅱ)的前n 个方程作为一个线性方程组,它有唯一解,记该解为x 1**, x 2**,…, x n **,代入方程组(Ⅱ)的前n 个方程中得(Ⅳ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----nnn n n n nn n n n n c x a x a x a cx a x a x a c x a x a x a c x a x a x a n n nn ****2**11**1**12**112**2**22**121**1**21**11......................................................21212121 对等式组(Ⅳ)中第1个等式的两端同时乘以x 1*,第2个等式的两端同时乘以 x 2*,…, 第n个等式的两端同时乘以 x n *,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅲ)式,可得b 1x 1**+b 2x 2**+…+b n x n **=c 1x 1*+ c 2x 2*+…+ c n x n *=u由u =v ,得b 1x 1**+b 2x 2**+…+b n x n **=u即x 1**, x 2**,…, x n **也满足(Ⅱ)中最后一个方程.所以方程组(Ⅱ)有解.反之,若方程组(Ⅱ)有解,设其解为x 1**, x 2**,…, x n **,代入(Ⅱ)得到(Ⅴ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++-vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n n n n n nn n n n n ****2**11****2**12**2**22**121**1**21**11......................................................21212121 对等式组(Ⅲ)中第1个等式的两端同时乘以x 1**,第2个等式的两端同时乘以 x 2**,…,第n 个等式的两端同时乘以 x n **,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅴ)式,可得c 1x 1*+c 2x 2*+…+c n x n *=b 1x 1**+ b 2x 2**+…+ b n x n **将上式左端与(Ⅴ)式中最后一个等式比较,将上式右端与(Ⅲ)式中最后一个等式比较,得 u =v .7.设A 是n ×n 矩阵.证明:|A *|=|A|n-1证 因为AA *=|A|E ,两边取行列式得 |A||A *|=|A|n .如果|A|≠0,两边除以|A|,得|A *|=|A|n-1如果|A|=0,也可写成|A *|=|A|n-1,总之,有|A *|=|A|n-1成立.。

高等代数第三版习题答案

高等代数第三版习题答案

高等代数第三版习题答案高等代数是一门研究线性代数、多项式、群、环、域等代数结构及其性质的数学分支。

第三版的高等代数教材通常会包含大量的习题,旨在帮助学生更好地理解和掌握代数的基本概念和技巧。

以下是一些习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的题目来确定。

第一章:线性空间习题1:判断下列集合是否构成线性空间,并说明理由。

- 解:集合\{(x, y) ∈ R^2 | x + y = 1\}不构成线性空间,因为它不满足加法封闭性。

例如,取两个元素(1, 0)和(0, 1),它们的和(1, 1)不在集合中。

习题2:证明线性空间的基具有唯一性。

- 解:设{v1, v2, ..., vn}和{w1, w2, ..., wm}是线性空间V的两个基。

根据基的定义,任何向量v ∈ V都可以唯一地表示为v =c1*v1 + c2*v2 + ... + cn*vn和v = d1*w1 + d2*w2 + ... + dm*wm。

由于表示是唯一的,我们可以得出n = m,并且存在一个可逆矩阵P,使得[v1, v2, ..., vn] = [w1, w2, ..., wn]P。

这意味着两个基是等价的,从而证明了基的唯一性。

第二章:线性变换习题1:确定线性变换T: R^3 → R^3,定义为T(x, y, z) = (x + y, x - y, z)的核和像。

- 解:核N(T)是所有满足T(v) = 0的向量的集合。

设(x, y, z) ∈ N(T),则(x + y, x - y, z) = (0, 0, 0)。

解这个方程组,我们得到x = 0,y = 0,z可以是任意实数。

因此,核是一维的,由向量(0, 0, 1)生成。

习题2:证明线性变换的复合是线性的。

- 解:设T: V → W和S: W → X是两个线性变换。

对于任意的v1, v2 ∈ V和任意的标量c,我们需要证明(S ∘ T)(cv1 + v2) = c(S∘ T)(v1) + (S ∘ T)(v2)。

湖北省考研高等代数习题集精选

湖北省考研高等代数习题集精选

湖北省考研高等代数习题集精选在湖北省考研高等代数复习中,练习习题是提高理解和应用能力的重要方法。

为了帮助考生更好地复习,本文整理了一些湖北省考研高等代数习题,并对其中的一些重要知识点进行了解析和讲解。

一、线性代数1. 设A为n阶方阵,k为非零实数,若kA的秩为r,证明rA的秩也为r。

解析:由于kA的秩为r,说明kA的列向量组线性无关,而kA的列向量组是rA的列向量组的倍数,故rA的列向量组也线性无关。

因此,rA的秩也为r。

2. 设A为n阶方阵,若A可逆,证明A的转置矩阵也可逆,并且(A的转置矩阵)的逆等于(A的逆)的转置矩阵。

解析:设B为A的逆矩阵,则AB=BA=I。

对两边同时取转置得到(B的转置矩阵)(A的转置矩阵)=(A的转置矩阵)(B的转置矩阵)=I。

由此可见,A的转置矩阵也可逆,并且(A的转置矩阵)的逆等于(A的逆)的转置矩阵。

二、群论1. 设G为群,H为G的一个子群,证明H的幺元是G的幺元。

解析:设e1是H的幺元,e2是G的幺元。

由于H是G的子群,H 是G的子集,故e1也是G的元素,且满足e1e2=e2e1=e2。

由此可见,H的幺元也是G的幺元。

2. 设G为有限群,n为正整数,证明:G中阶数为n的元素的个数是G的正除子的数目。

解析:设G中阶数为n的元素为a,设G的正除子的个数为m。

由拉格朗日定理可知,n|m。

另外,设G的正除子为H1、H2、…、Hm,则由于H1、H2、…、Hm两两不相交且都包含单位元e,故每个Hk与G的交集只含有一个元素,即Hk中恰好有一个幺元。

由此可得,G中阶数为n的元素的个数等于G的正除子的数目。

三、域论1. 设F为有限域,n为正整数,证明:F中具有n个元素的子域存在且唯一。

解析:设F中具有n个元素的子域为K,则根据域的定义,K满足所有域的性质,且K是F的子集,故K是F的子域。

另外,设存在另一个F中具有n个元素的子域L,由于L是F的子集,故L中的元素也属于K,而K中的元素也属于L,故K与L相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。

A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。

A . DB . D -C ./D D . (1)n D -9.行列式41032657a --中,元素a 的代数余子式是( )。

A .4067- B .4165 C .4067-- D .4165- 10.以下乘积中( )是5阶行列式ij D a =中取负号的项。

A .3145122453a a a a a ;B .4554421233a a a a a ;C .2351324514a a a a a ;D .1332244554a a a a a11. 以下乘积中( )是4阶行列式ij D a =中取负号的项。

A .11233344a a a a ;B .14233142a a a a ;C .12233144a a a a ;D .23413211a a a a12. 设,A B n 均为阶矩阵,则正确的为( )。

A . det()det det AB A B +=+ B .AB BA =C . det()det()AB BA =D .222()2A B A AB B -=-+13. 设A 为3阶方阵,321,,A A A 为按列划分的三个子块,则下列行列式中与A 等值的是( )A .133221A A A A A A --- B .321211A A A A A A +++ C .32121A A A A A -+ D .311132A A A A A +- 14. 设A 为四阶行列式,且2-=A ,则=A A ( )A .4B .52C .52-D .815. 设A 为n 阶方阵,k 为非零常数,则=)det(kA ( )A .)(det A kB .A k detC .A k n detD .A k n det16.设A ,B 为数域F 上的n 阶方阵,下列等式成立的是( )。

A .det()det()det()AB A B +=+;B . det()det()kA k A =;C .1det()det()n kA k A -=;D .det()det()det()AB A B =17. 设*A 为n 阶方阵A 的伴随矩阵且A 可逆,则结论正确的是( )A . **1()||n A A A -=B . **1()||n A A A +=C .**2()||n A A A -=D .**2()||n A A A +=18.如果11AA A A I --==,那么矩阵A 的行列式A 应该有( )。

A .0A =;B .0A ≠;C .,1A k k =>;D .,1A k k =<-19.设A , B 为n 级方阵, m N ∈, 则“命题甲:A A -=-;命题乙:()m m mAB A B =”中正确的是( ) 。

A . 甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立20.设*A 为n 阶方阵A 的伴随矩阵,则*A A =( )。

A .2n AB .n AC .2n n A -D .21n n A -+21.若矩阵A ,B 满足AB O =,则( )。

A .A O =或B O =;B .A O ≠且B O ≠;C .A O =且B O =;D .以上结论都不正确22.如果矩阵A 的秩等于r ,则( )。

A .至多有一个r 阶子式不为零;B .所有r 阶子式都不为零;C .所有1r +阶子式全为零,而至少有一个r 阶子式不为零;D .所有低于r 阶子式都不为零23.设n 阶矩阵A 可逆(2)n ≥,*A 是矩阵A 的伴随矩阵,则结论正确的是( )。

A .()1n A A A *-*=;B .()1n A A A *+*=;C .()2n A A A *-*=;D .()2n A A A *+*= 24. 设*A 为n 阶方阵A 的伴随矩阵,则||||*A A =( )A . 2||n AB .||n AC .2||n n A -D . 21||n n A -+25.任n 级矩阵A 与-A , 下述判断成立的是( )。

A . A A =-; B .AX O =与()A X O -=同解;C .若A 可逆, 则11()(1)n A A ---=-;D .A 反对称, -A 反对称26.如果矩阵rankA r =,则 ( )A . 至多有一个r 阶子式不为零;B .所有r 阶子式都不为零C . 所有1r +阶子式全为零,而至少有一个r 阶子式不为零;D .所有低于r 阶子式都不为零27. 设A 为方阵,满足11AA A A I --==,则A 的行列式||A 应该有 ( )。

A . ||0A =B . ||0A ≠C . ||,1A k k =>D . ||,1A k k =<-28. A 是n 阶矩阵,k 是非零常数,则kA = ( )。

A . k A ;B . k A ;C . n k AD . ||n k A29. 设A 、B 为n 阶方阵,则有( ).A .A ,B 可逆,则A B +可逆 B .A ,B 不可逆,则A B +不可逆C .A 可逆,B 不可逆,则A B +不可逆D .A 可逆,B 不可逆,则AB 不可逆30. 设A 为数域F 上的n 阶方阵,满足220A A -=,则下列矩阵哪个可逆( )。

A .A B .A I - C .A I + D 2A I -31. B A ,为n 阶方阵,O A ≠,且()0R AB =,则( )。

A .OB =; B .()0R B =;C .O BA =;D .()()R A R B n +≤32. A ,B ,C 是同阶方阵,且ABC I =,则必有( )。

A . ACB I =; B . BAC I =; C .CAB I =D . CBA I =33. 设A 为3阶方阵,且()1R A =,则( )。

A .*()3R A =;B .*()2R A =;C .*()1R A =;D .*()0R A =34. 设B A ,为n 阶方阵,O A ≠,且O AB =,则( ).A .OB = B .0=B 或0=AC .O BA =D .()222B A B A +=-35. 设矩阵00400000100000000200A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,则秩A =( )。

A .1 B .2 C .3 D .436. 设A 是m n ⨯矩阵,若( ),则AX O =有非零解。

A .m n <;B .()R A n =;C .m n >D .()R A m =37. A ,B 是n 阶方阵,则下列结论成立得是( )。

A .AB O A O ≠⇔≠且B O ≠; B . 0A A O =⇔=;C .0AB A O =⇔=或B O =;D . 1||=⇔=A I A38. 设A 为n 阶方阵,且()n r A R <=,则A 中( ).A .必有r 个行向量线性无关B .任意r 个行向量线性无关C .任意r 个行向量构成一个极大无关组D .任意一个行向量都能被其他r 个行向量线性表示39. 设A 为34⨯矩阵,B 为23⨯矩阵,C 为43⨯矩阵,则下列乘法运算不能进行的是( )。

A .T T A BCB .TACB C .BAC D .ABC40.设A 是n 阶方阵,那么A A '是( )A . 对称矩阵;B . 反对称矩阵;C .可逆矩阵;D .对角矩阵41.若由AC AB =必能推出C B =(C B A ,,均为n 阶方阵),则A 满足( )。

A .0A ≠B .O A =C .O A ≠D .0≠AB42.设A 为任意阶)3(≥n 可逆矩阵,k 为任意常数,且0≠k ,则必有=-1)(kA ( ) A .1-A k n B .11--A k n C .1-kA D .11-A k43.A ,B 都是n 阶方阵,且A 与B 有相同的特征值,则( )A . A 相似于B ; B . A B =;C . A 合同于B ;D .A B =44. 设)(21I B A +=,则A A =2的充要条件是( ) A .B I =; (B )I B -=;C .I B =2 D .I B -=245. 设n 阶矩阵A 满足220A A I --=,则下列矩阵哪个可能不可逆( )A . 2A I +B . A I -C . A I +D . A46. 设n 阶方阵A 满足220A A -=,则下列矩阵哪个一定可逆( )A . 2A I -;B . A I -;C . A I +D . A47. 设A 为n 阶方阵,且()n r A R <=,则A 中( ).A .必有r 个列向量线性无关;B .任意r 个列向量线性无关;C .任意r 个行向量构成一个极大无关组;D .任意一个行向量都能被其他r 个行向量线性表示48.设A 是m n ⨯矩阵,若( ),则n 元线性方程组0AX =有非零解。

相关文档
最新文档