实数小结与复习
实数 小结与复习 教学课件
平方根 1.概念:如果一个数的平方等于a,那么这个 数就叫做a 的平方根(二次方根).即若x2=a, 则x叫做a的平方根.
2.性质 (1)一个正数有两个平方根,它们互为相反数. (2)0有一个平方根,它是0本身. (3)负数没有平方根 3.开平方:求一个数a的平方根的运算,叫做开 平方的运算.
4. 实数的相反数:
a ( a 0 ) 5.实数的绝对值 : | a | 0(a 0) a ( a 0)
二次根式的乘、除法。 ①乘法法则: a b ab (a≥0,b≥0),即两个二次根式相乘,被开 方数相乘,根指数不变; ②除法法则: a a
b b
(a≥0,b>0),即两个二次根式相除,被开
立方根的表示方法:
数a的立方根用 a表示
3
开立方:求一个数的立方根的运算,叫做开立 方。 一个正数有几个立方根,负数、0呢?
1.无理数定义:无限不循环小数叫做无理数.
断以下说法是否正确? (1)无限小数都是无理数; (2)无理数都是无限小数;
(3)带根号的数都是无理数. 2.实数的定义:有理数和无理数统称为实数.
方数相除,根指数不变。
4.表示方法:
根指数 可以省略
2
根号
2
a
被开方数
读作“二次根号”;
2
a 读作“二次根号a” a 表示正数a的负的平方根
2
立方根的定义:一个数的立方等于a,那么这个 数就叫做a的立方根。或X3=a,把X叫做a的立方 根。 如:0.53=0.125 则把0.5叫做0.125的立方根
3.实数的分类:
(1)按定义分类
正有理数 环小数 有限循环小数或无限循 有理数0 负有理数 实数 无理数正无理数 无限不循环小数 负无理数
人教版七年级数学下册第六章《实数》小结和复习教学设计
第六章《实数》小结与复习教学设计一、教材分析(一)教材的地位和作用从《数学课程标准》看,关于数的内容,初中学段主要学习有理数和实数,它们是“数与代数”领域的重要内容。
对于有理数和实数,初中学段共有安排三个章节的内容,分别是七年级上册第一章《有理数》,七年级下册第六章《实数》和八年级下册第十六章《二次根式》。
本章可以看成其后的代数内容的起始章,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围。
虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,它不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。
(二)学情诊断本节课之前,学生已掌握了平方根,立方根,以及实数有关概念和运算。
新课标对实数要求并不高,但实数的知识却贯穿于中学数学始终。
无理数和实数比较抽象,尤其是无理数不能像有理数那样具体描述出某个数的特点,在学生思维中想象不出它的存在,因此教学中借助数轴加以理解,让学生自己动手设计相关的数学问题,变被动为主动,有利于学生更好的理解,运用。
(三)教学目标解析1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.4.知道数的发展过程.(四)教学重难点重点:1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.4.知道数的发展过程.难点:1.平方根与算术平方根的区别于联系。
《实数》教学反思范文(通用15篇)
《实数》教学反思《实数》教学反思范文(通用15篇)《实数》教学反思篇1本节课的内容不多,但这是学生平方根的关键,为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,也是一个关键。
从选择课题,到设计教案,板书设计,每一个环节都经历了反复的推敲和修改,只为达到课堂设计的最佳效果,令学生有收获。
从教学环节的设计,例题练习题的选取,甚至是对学生设置的每一个问题每一个用词都是细心修改。
最终这节课得以顺利完成。
上完这节课后,我谈谈自己的几点看法:1、通过生活中的实例引入,体现数学来源于生活,用于生活;并且设置悬念,激发了学生后续学习的兴趣。
2、最后小结的环节设置比较好,能够让学生自己主说出本节课学到的知识以及感受,这样不仅能够了解学生对本节课知识的掌握程度,还能锻炼学生的语言表述能力。
3、学生第一次接触到与乘方互为逆运算的“开方”,只要能突破这个难点,学生在意义上理解了解算术平方根,后面的计算也就容易多了。
这也是这节公开课做得不足的地方,新课的容量有限,所以将绝大部分时间用在了帮助学生理解算术平方根的意义和求某一个非负数的算术平方根的计算上。
在后面的课时,应该帮助学生理解乘方与开放互为逆运算。
当然这节课还存在很多细节问题,以后有待改进。
最后,要感谢涂老师、龚老师课前耐心的帮我听课,帮我提出宝贵的意见;感谢前来听课的各位领导,各位老师!感谢课后童校长的精彩点评和细心指导!通过这次公开课,我觉得自己学到了很多,比如课前应该做足功课,了解前后章节之间的联系,做大量的练习来领会要点等。
每一次公开课的经历,都将成为我工作历程中重要的一笔,现在我也信心百倍,全力以赴迎接未来的挑战!平方根教学反思我执教了《平方根》一课。
课后反思一节课的得失,感触颇多。
一、明确的学习目标是有效学习的前提美国著名心理学家、教育家布鲁姆说:“有效的教学,始于期望达到的目标。
学生开始时就知道教师期望他们做什么,那么他们便能更好地组织学习。
实数 小结与复习 教法建议
实数小结与复习教法建议
1.首先引导学生回顾在本章中学习的主要内容,再通过小组间的合作与交流,理顺知识的脉络和相互间的联系,最后由教师进行概括和归纳,对知识以及相互间的联系进行必要的讲解和说明,需要注意的是,在学生活动的过程中,要给学生留有足够的时间和空间,不要以教师的讲授来替代学生的回顾与反思。
2.在总结与反思中,教师要设计或选择几个典型事例(为了便于学生操作,可设计成问题串的形式),让学生在探索、交流和解决问题的过程中去体会和认识,教师在学生活动的过程中进行适当的引导和点拨。
3.通过回顾与反思,进一步认识实数和有理数的联系与区别。
第四章 实数(小结与思考)(复习课件)八年级数学上册(苏科版)
轴于点,则点所表示的数介于( C )
B
A. 和之间
B. 和之间
C. 和之间
D. 和之间
A
-1
O
1
2
3
4
考点分析
考点六
实数的大小比较
例 比较下列各数的大小:
(1)
−
______
,
<
(2)−_______−
解:(1)观察有理数a,b,c在数轴上对应
的点,可知:
b<﹣a<c<﹣c<a<﹣b;
(2)|c|﹣|c+b|+|a﹣c|﹣|b+a|
=﹣c+c+b+a﹣c+b+a
=﹣c+2b+2a.
b
c 0
a
巩固练习
1.实数a、b在数轴上的对应点的位置如图所示,下列结论正确的是( D )
A.a<-2
B.b<2
C.a>b
而. − . = . ,. − . = . ,
∵. > .
∴. 更接近0.75.
)
巩固练习
2.(2020·江苏宿迁)在△ABC中,AB=1,BC= ,下列选项中,可
以作为AC长度的是( A )
A.2
B.4
C.5
解:∵在△ABC中,AB=1,BC= ,
±
解:∵ = − + − + ,且根号下不能为负,
∴ − = , − = ,
∴ = ,
∴ = ,
∴ + = ,
∴ + 的平方根是±.
第6章 实数复习小结 人教版数学七年级下册大单元教学课后作业(含答案)
[ 课后提升训练] 6.3复习小结1.在,,,,2022这五个数中无理数的个数为()A.2B.3C.4D.52.下列运算正确的是( )A.=4B.﹣|﹣2|=2C.=±3D.23=63.下列说法中正确的是().A.0.09的平方根是0.3B.C.0的立方根是0D.1的立方根是4.已知,那么的值为()A.1B.-1C.D.5.已知表示取三个数中最小的那个数,例加:,当时,则x的值为()A.B.C.D.6.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是()A.6cm B.12cm C.18cm D.24cm7.下列关于数轴的叙述,正确的有()个(1)实数m,n在数轴上的对应点的位置如图所示,则,;(2)数轴上表示数m和的点到原点的距离相等,则m为1;(3)数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数轴上有一点D,D点所表示的数为d,且,则D点的位置介于C、O之间;A.0B.1C.2D.38.若=0,则x的值是( )A.﹣1B.0C.1D.29.(填“”“”“”).10.若=0,则(b﹣a)2009=___.11.若两个连续的整数、满足,则的值为__________ .12.对实数a、b,定义“★”运算规则如下:a★b=,则★(★)=_________.13.如图,实数,,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为________.14.计算:+++.15.已知某正数的两个平方根分别是和,b的算术平方根是2,求的平方根.16.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知,且x为整数.∵,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵,∴x的十位数字一定是______;∴______.(2),且y为整数,按照以上思考方法,请你求出y的值.17.用“”定义一种新运算:规定,如:.(1)若,求的值;(2)若,求的值.18.已知正数a的两个不同平方根分别是和,的算术平方根是4.(1)求这个正数a以及b的值;(2)求的立方根.【参考答案】1.A【分析】根据无理数的概念,无限不循环小数是无理数即可判断.【详解】解:在,,,,2022这五个数中无理数为和,共2个.故选:A.【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键.2.A【分析】由算术平方根的含义可判断A,C,由绝对值的含义可判断B,由立方的含义可判断D,从而可得答案.【详解】解:=4,故A符合题意;故B不符合题意;故C不符合题意;故D不符合题意;故选:A.【点睛】本题考查的是绝对值的含义,乘方运算,算术平方根的含义,掌握“求解一个数的算术平方根”是解本题的关键.3.C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A、0.09的平方根是±0.3,故选项错误;B、,故选项错误;C、0的立方根是0,故选项正确;D、1的立方根是1,故选项错误;故选:C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.4.B【分析】根据非负数的性质求出x、y的值再代入计算即可.【详解】∵∴∴∴故选:B【点睛】本题是一道主要考查算术平方根和绝对值的非负数的题目,理解算术平方根的定义和非负数的性质是解答关键.5.D【分析】根据题意可知都小于1且大于0,根据平方根求得的值即可求解.【详解】解:∵∴都小于1且大于0(负值舍去)故选D【点睛】本题考查了求一个数的平方根,判断的范围是解题的关键.6.D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3,∴小立方体的棱长,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.7.A【分析】(1)先由点n,m在数轴上的位置确定n,m的取值范围,再比较即可;(2)由题意可知数m和数m+2相等或是互为相反数,进而求出答案;(3)根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:(1)由数轴可得:-1<m<0<2<n<3,且|m|<|n|.∴,-2<2m<0,∴,故(1)错误;(2)由题意得:|m|=|m+2|,∴m=m+2或m=-(m+2),∴m=-1.故(2)错误;(3)由数轴可知:c<0,b=5,|c|<5,|d-5|=|d-c|,∴BD=CD,∴D点介于O、B之间,故(3)错误;故选:A.【点睛】本题主要考查了实数与数轴之间的对应关系,比较简单,因为是选择题故可用取特殊值的方法进行比较,以简化计算.8.C【分析】利用算术平方根性质确定出x的值即可.【详解】解:∵=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.【点睛】此题考查算术平方根的性质的应用,解一元一次方程,正确理解算术平方根的性质得到x﹣1=0是解题的关键.9.>【分析】负数比较大小,绝对值大的反而小,进而得出结论.【详解】解:∵3<∴-3>-故答案为:>.【点睛】本题考查实数的大小比较,熟练掌握实数的性质是解决问题的关键.10.1【分析】先由算术平方根的非负性求出b-a=1,再代入求解即可.【详解】解:∵=0,∴a-b+1=0,则b-a=1,∴(b﹣a)2009=12009=1.故答案为:1.【点睛】本题考查代数式求值、算术平方根的非负性,利用整体代入思想求解是解答的关键.11.【分析】求出在哪两个连续整数之间即可求得两个连续整数,,进而求得的值.【详解】∵,∴,即,∵,∴,,∴,故答案为:【点睛】本题考查了估算无理数的大小,属于基础题,熟练掌握“夹逼法”的应用是解答本题的关键.12.2【分析】根据新定义得到★=,在结合新定义计算★即可得出.【详解】解:∵<,∴★=,∴★(★)=★=,故答案为:2.【点睛】本题考查了新定义下的实数运算,包括实数的大小比较等,理解题意是解题关键.13.-3【分析】先求出D点表示的数,再得到m的取值范围,最后在范围内找整数解即可.【详解】解:∵点B关于原点O的对称点为D,点B表示的数为,∴点D表示的数为,∵A点表示,C点位于A、D两点之间,∴,∵m为整数,∴;故答案为:.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.14..【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.15..【分析】根据一个数的平方根互为相反数列式求出的值,然后根据b的算术平方根是2,求出的值,代入求出的值,求平方根即可.【详解】解:∵某正数的两个平方根分别是和,∴,整理,可得,解得.∵b的算术平方根是2,∴,∴,∵,∴的平方根是.【点睛】(1)此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)此题还考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.16.(1)2#,2#,22#(2)【分析】(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.【详解】(1)解:∵,且x为整数.∵,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵,∴x的十位数字一定是2;∴22.故答案为:2,2,22.(2)∵,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵,∴y的十位数字一定是8;∴.【点睛】本题考查立方根,灵活运用立方根的计算是解题的关键.17.(1)(2)【分析】(1)根据绝对值和偶次方的非负数性质可得、的值,再按规定的运算程序运算求值即可;(2)根据新运算,先把方程转化为一元一次方程,再求的值.【详解】(1)解:,而,,,,解得,,;(2),,去括号,可得:,移项,可得:,合并同类项,可得:,系数化为,可得:.【点睛】本题考查了新定义,非负数的性质,解一元一次方程,能根据新运算展开是解此题的关键,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成.18.(1),(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“的算术平方根是4”,把a的值代入,即可得出b的值.(2)根据(1)得出,,然后把,代入,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是和,∴,解得:,∴,,∵,∴,又∵的算术平方根是4,又∵,∴,∴把代入,可得:,解得:.(2)解:由(1)可得:,,把,代入,可得:∴【点睛】本题考查了平方根的性质、算术平方根、立方根,解本题的关键在熟练掌握平方根的性质.。
湘教版初中数学八年级上册小结练习实数总复习ppt课件
3.一般形式的无限不循环小数。
湘教版初中数学八年级上册小结练习 实数总 复习ppt 课件
一.把下列各数填入相应的集合内:
9 35
64
•
0.6
3 4
3 9 3
0.13
有理数集合: 9
64
•
0.6
3
4
3
0.13
无理数集合: 3 5
3 9
整数集合: 9 64 3
•
分数集合: 0.6
3 4
实数集合:
2.若x2=3,则 x= 3,若 x 2 =3,则
x= ±3 ; 3.若(x-1)2=4,则x= 3或-1 ,
4.若一个数的一个平方根为-7,则另一个平 方根为 7 ,这个数是 49 。
5.若一个正数的两个平方根为2a-6、3a+1, 则a= 1 ,这个正数为 16 ;
9.立方根的定义:
如果一个数b,使得b3=a,那么我们把b叫作a 的一个立方根,也叫作三次方根.
13.实数的分类: 湘教版初中数学八年级上册小结练习实数总复习ppt课件
按定义分:
按正负分:
正整数(自然数)
整数 零(自然数)
正整数
负整数
正有理数
有理数
正分数
正分数
正实数
分数
正无理数
实
负分数
数
正无理数
无理数
实零 数
负整数 负有理数
负无理数
负实数
负分数
负无理数
湘教版初中数学八年级上册小结练习 实数总 复习ppt 课件
0.13
9 35
64
•
0.6
3 4
3 9
3
0.13
初中数学_第六章《实数》复习教学设计学情分析教材分析课后反思
教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备课件、计算器.教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示《实数》复习学情分析本章属于“数与代数”这个范畴的数的内容,学生已经系统学过有理数,对有理数的概念和运算有了较深刻的认识。
第六章实数复习与小结
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0第六章 实数小结与复习一、本章知识结构图二、本章知识应用(一) 平方根概念立方根概念:1、16的平方根是( ) A .±2 B. 4 C. ±4 D.-42、下列式子中,正确的是( ) A .3273-=- B.6.06.3-=-C. 13)13(2-=-D. 636±=3、4的算术平方根是 ,36的平方根是 , 49-= 二 比较大小:4.、;23-23-;三 利用平方根立方根的相关知识点综合应用题 5、 若52=x ,则=x ;若22)3(-=x ,则=x ;若16)1(2=-x ,=x ;6、37-的相反数是 , 绝对值等于3的数是7、已知12-a 的平方根是3±,13-+b a 的算术平方根是4,求b a 2+的平方根.8、已知某数的平方根为1523-+a a 和,求这个数的是多少?四、 估算 9、 若a =20, 则=2.0 ;289.114.23≈,且89.123=-x 则=x .五、考查实数概念10、下列说法正确的是 ( )A .无限小数是无理数 B.带根号的数都是无理数 C .无理数是无限小数 D.无理数是开方开不尽的数 11、将下列各数的序号填在相应的集合里. (1) ①3512,②π,③3.1415926,④-0.456,⑤3.030030003……(每相邻两个3之间0的个数逐渐多1),⑥0, ⑦115,⑧-39,⑨2)7(-,⑩1.0有理数集合:{ …};无理数集合:{ …}; 正实数集合:{ …};整数集合: { …};六、考查计算题 12、计算⑪242523-+ ⑫ 174757333-+- (3) 33325533++--⑷化简12+-+- ⑸π++221(414.12≈精确到0.01)七、比较大小应用14、实数b a 、在数轴上的位置如图所示,化简:2a b a --.15、如图,数轴上A B 与点A 到,设点B 所表示的数为x,求(0x 的值.、一个正数有两个平方根,并且互为相反数b a。
八年级数学实数教案5篇
八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。
浙教版数学七年级上册第三章《实数》复习教学设计
浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。
本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。
本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。
但实数概念较为抽象,学生可能难以理解。
因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。
三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。
2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和分类。
2.实数的运算规则。
3.实数与数轴的关系。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。
2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。
3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。
六. 教学准备1.准备相关实数的教学案例和实例。
2.制作数轴教具,用于教学演示。
3.准备实数运算的练习题,用于巩固练习。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。
为学生引入实数的概念做铺垫。
2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。
通过讲解和示例,让学生理解实数与数轴的关系。
3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。
教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。
4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。
教师可适时给予指导,帮助学生巩固实数的运算规则。
5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。
实数的基本概念
1、下列各组数中,互为相反数的是( c ) 1 2 2 A.2与 B. 1 与1 C. 1与 1 D.2与 2 2
2、若|a-3|-3+a=0,则a的取值范围是( c ) A.a≥3 B.a<3 C.a≤3 D.a>3
3、 3 的相反数是 A.-3 B. -1/3 ( A ) C. 3 D. 3 (2004广东)
返回
1 4, 3+ 2 、含有的数: ,
二、实数的基本概念
一.负数:在正数前面加“—”的数; 0既不是正数,也不是负数。 1、判断: 1)a一定是正数; (× 2)-a一定是负数; (× 3)-(-a)一定大于0; ( × 4)0是正整数。 (×
) ) ) )
2、(1)如果零上5℃记作5℃,则零下2℃记作_____ (2) 如果上升10m记作10m,那么-5m表示____
已知 x a(a 0), 求x时,注意x a。 即绝对值的原数是双值性。
1、已知数轴上的A点所表示的数是2,那么在数 B 轴上到A点的距离是3的点所表示的数有() A.1个 B.2个 C.3个 D.4个 2 2、若x的相反数是3,∣y∣=5,则x+y的值为 -8或 . 3、若3,m,5为三角形三边,化简: 2m-10 •绝对值的性质——要注意正确区分数的三种情 况,尤其是负数去掉绝对值应变为其相反数。
a 0 (a 0)
a
2003
1、若 3a 4 (4b 3) 0, 求
b
2004
的值。
解:∵|3a+4(4b-3)2=0 ∴|3a+4|=0且(4b-3)2=0 ∴a=-4/3,b=3/4 ∴a2003b2004=(-4/3)2003· (3/4)2004=-3/4
八年级数学上册PPT精美课件《实数》小结与复习
8. 9 的算术平方根是 3 ; 9. (-5)3 的立方根是 -5 ; 10. 10-2 的平方根是 ±0.1 .
12. 实数 a,b,c,d 在数轴上的对应点如图所示,则 将它们用“ < ”连接是 c < d < b < a .
c
d
其中:
ab a + b
0 ba
d c -d - c
cb b - c
八年级数学上 教学课件
第二章 实数
小结与复习
知识构架 知识梳理
当堂练习
课后作业
知识构架
实数
平方根与 立方根
概念与 性质
平方根 算术平方根 立方根 定义 分类 定义:最简二次根式
二次根式 性质:积(商)的算术平方根
运算:加、减、乘、除、乘方
知识梳理
一 实数的相关概念
1. 实数的分类
有理数(有限或无限
b
a+b = 0) ab = 1)
4. 绝对值(到原点的距离) a (a > 0)
① |a|= 0 (a = 0) |a| 为非负数,即 |a|≥0 -a (a < 0)
② 非负式的常见形式有:|a|; a2; a2; a 5. 实数的大小比较
① 利用数轴(右边的数总比左边大);
② 作差与 0 比;
⑵商的算术平方根:等于算术平方根的商;
a a a≥0,b>0
bb
3、最简二次根式 :
满足以下三个条件的二次根式叫最简二次根式:
⑴被开方数不能含有开得尽方的因数或因式; 反例:54
⑵被开方数不能含有分母; 反例:1
2
⑶分母不能含有根号. 反例:1
3
注意:二次根式的化简与运算,最后结果应化成最简
新版湘教版秋八年级数学上册第三章实数小结与复习教学设计
新版湘教版秋八年级数学上册第三章实数小结与复习教学设计一. 教材分析湘教版秋八年级数学上册第三章实数小结与复习,主要内容包括实数的定义、分类、性质以及实数的运算。
这一章是整个初中数学的基础,对于学生来说非常重要。
在本章的学习中,学生需要掌握实数的基本概念,了解实数的分类和性质,并能熟练进行实数的运算。
教材通过例题和练习题的形式,帮助学生理解和掌握实数的相关知识。
二. 学情分析八年级的学生已经掌握了实数的基本概念,对实数的分类和性质有一定的了解,能进行简单的实数运算。
但是,部分学生对于实数的理解仍然不够深入,对于一些复杂的实数运算还不够熟练。
因此,在教学过程中,需要注重巩固学生的基本知识,并通过适当的练习,提高学生的运算能力。
三. 教学目标1.知识与技能:使学生掌握实数的基本概念,了解实数的分类和性质,并能熟练进行实数的运算。
2.过程与方法:通过小组合作、讨论等方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:实数的基本概念,实数的分类和性质,实数的运算。
2.难点:实数的运算,特别是涉及到复杂运算的题目。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解实数的概念和性质。
2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。
3.案例教学法:通过分析典型案例,引导学生总结实数的运算规律。
六. 教学准备1.教学PPT:制作包含实数基本概念、分类、性质和运算的教学PPT。
2.练习题:准备一些有关实数的练习题,包括填空题、选择题和解答题。
3.小组讨论:提前分组,并分配任务,让学生在课堂上进行小组讨论。
七. 教学过程1.导入(5分钟)通过一个生活实例,引导学生回顾实数的概念和性质。
例如,我们可以通过讨论购买商品时如何计算总价,来引出实数的概念和运算。
2.呈现(10分钟)利用PPT呈现实数的基本概念、分类、性质和运算规则。
浙教版第三章实数复习
第三章实数复习导学案(浙教版)复习目标通过复习,使学生对本章的知识能得到熟练、巩固,并能灵活地运用实数知识去解决问题。
复习重点:1、用对比的方法复习概念。
2、归纳本章内容,把本章学习内容纳入自己的知识体系。
3.通过典型问题的分析,对重点知识有进一步的认识。
复习难点:无理数、实数概念的理解。
教学过程(一)基础知识梳理1、数的分类及概念2、每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。
即,实数与数轴上的点是对应的。
绝对值相反数倒数,在实数的运算中,仍然成立3、平方根、算术平方根及立方根的区别与联系实数无理数(有理数实数正数a 为a为表示方法( )( )a 的取值a 0, ≥0a 0a 是任何数性 质 0正数( 个) 互为相反数( 个) 正数( 个)0 0 0没有 没有数(一个)开方求一个数的平方根 的运算叫 。
求一个数的立方根 的运算叫开立方 (二)例题讲解例1.下列判断中,错误的是( ) A .﹣1的平方根是±1 B .﹣1的倒数是﹣1C .﹣1的绝对值是1D .﹣1的平方的相反数是﹣1知识考点:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.,属于基础知识,难度不大.例2.如果一个数的平方根等于这个数本身,那么这个数是( ) A .1 B .﹣1 C .0 D .±1知识考点:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根变式:立方根是本身的数是( ) 例3.的算术平方根是( ) A .±81 B .±9 C .9 D .3知识考点:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值变式:9的平方根是( )例4.下列说法正确的是( ) A .带根号的数是无理数 B .无理数就是开方开不尽而产生的数C .无理数是无限小数D .无限小数是无理数aa知识考点:此题主要考查了无理数的定义.解答此题的关键是熟练掌握无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0). 变式:在实数﹣,0.21,,,,0.20202中,无理数的个数为( )A .1B .2C .3D .4例5.若x 2=(﹣3)2,y 3﹣27=0,则x+y 的值是( ) A .0 B .6 C .0或6 D .0或﹣6 知识考点:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0. 这类属于基本的题型,要求熟练掌握.变式:若16的平方根是m ,﹣27的立方根是n ,那么m+n 的值为 _________ . 例6.两个无理数的和,差,积,商一定是( ) A .无理数 B .有理数 C .0 D .实数知识考点:此题主要考查了实数的运算及无理数的定义,也考查了学生的综合应用能力,要注意举实例的方法.变式:已知:a 和b 都是无理数,且a ≠b ,下面提供的6个数a+b ,a ﹣b ,ab ,,ab+a ﹣b ,ab+a+b 可能成为有理数的个数有 个. 四:课堂小结1反思基础知识点,例题,巩固练习是否弄懂 2解题要点及方法 五:1、背出知识点2 、试卷一张 一、选择题1.81的平方根是 ( )A.±9B.9C.±3D.32.在下列各数3.1415,0.2060060006……(每两个6之间依次多一个1),0,0..2,-π,35,722,27中,无理数的个数是 ( ) A.1 B.2 C.3 D.43.若规定误差小于1,那么60的估算值为 ( )A.3B.7C.8D.7或B 4.已知|a|=5,2b =7,且|a+b|=a+b ,则“a-b 的值为 ( )A.2或12B.2或-12C.-2或12D.-2或-12 5.化简31--3+25的结果是 ( )A.6-3B.4-3C.-4-3D. 3-4二、填空题6.若2a =3,则a= ;若(b )2=5,则b= .7.3125.0的绝对值是 . 8.5-5的整数部分是 . 三、解答题9.画出数轴,在数轴上表示下列各数和它们的相反数,并把这些数从小到大的顺序排列,用“<”连接: 6,-3.5,21,410.全球气候变暖导致-些冰川融化并消失.在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长.每一个苔藓都会长成近似的圆形.苔藓的直径和其生长年限近似地满足如下的关系式:d=712-t (t≥12),其中d 表示苔藓的直径,单位是厘米,t 代表冰川消失的时间(单位:年).(1)计算冰川消失16年后苔藓的直径为多少厘米?(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?感谢您的阅读,祝您生活愉快。
实数小结复习
实数的分类 • (1)按定义分 类 正有理数
有理数0 有限小数或无限循环小数 负有理数 实数 无理数正无理数无限不循环小数 负无理数
(2)按大小分类
正实数 实数0 负实数
3
a a
0.000001 0.01
实
数
—— 小结复习
过风楼镇初级中学 :李莉
本章知识结构图
开平方
乘 方
互逆
开 方
开立方
平方根 立方根
算术平方根有理数 实Fra bibliotek数 无理数
1、回顾平方根和立方根的概念及表示法,
乘方运算和开方运算有什么关系? 2、平方根与立方根的区别是什么? 3、实数与数轴上的点有什么关系? 4、实数由哪些数组成?
0.001 0.1
1 1
1000 10
1000000 100
从上表你发现了什么 规律?用自己的语言 叙述这个规律? 根据你发现的规律填空: (1)已知 3 3=1.442,则 (2) 已知
3 3
被开方数扩大或缩小1000 倍,它的立方根将扩大或 缩小10倍。
3000=( 14.42 ),
3
0.003=( 0.1442 ) )
0.000456=0.07697,则 3 456=(
7.697
可要细 心呀!
有限 有 1、0.357是______小数,所以它是___理数。
≥-1 2、当m____
时, m+1有意义。 3、绝对值大于0而又小于π 的整数有 -1、-2、-3、1、2、3 ___________ 4、如果4是5m+1的算术平方根,那么2-28 10m=____。 5、如果一个正数的平方根是2a-1和-a+2,那 -1 9 么a=____, 这个正数是______,这个数的立 3 9 方根是______。
实数小结与复习
实数小结与复习考点呈现考点1 方根问题例1 36的算术平方根是( )A .6 B.±6 C.6 D.±6解析:36的算术平方根必须满足两个条件:一是正数,二是它的平方等于36.因此,寻找36的算术平方根就是要寻找平方等于36的正数.由于6的平方等于36,所以36的算术平方根是6.故应选A. 考点2 估算问题例2 估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间解析:20的算术平方根是20,又16<20<25,即4<20<5,因此,20在4与5之间。
故应选C. 考点3 实数的分类例3 实数2-,0.3,17,2,π-中,无理数的个数是( )A .2B .3C .4D .5解析:根据实数及无理数的分类特点,2与π-是无理数.故应选A. 评注:我们目前所学的无理数可分为三类: (1)开方开不尽得到的数. 如:2,37. (2)特定意义的数. 如:2π,3π7.(3)特定结构的数. 如:1.2020020002…(每两个2之间依次多一个0). 考点4 实数的大小比较例4 请写出一个比5小的整数 .解析:属开放问题,答案不唯一,小于或等于2的整数均可,如:2,1等.评注:任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小. 考点5 算术平方根的非负性例5(安徽芜湖)已知|1|80a b ++-=,则a b -= .解析:考查绝对值的意义、算术平方根的非负性.根据题意,先求出实数a ,b ,然后代入直接计算即可.因为|1|80a b ++-=,所以1a +=0,8b -=0,所以a =-1,b =8,所以9a b -=-. 考点6 实数与数轴例6 如下图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .-2-3B .-1-3C .-2+3D .1+3解析:因为点B ,C 关于点A 对称,所以点B 到点A 的距离与点C 到点A 的距离相等,而点B 到点A 的距离为两点所表示的数的差的绝对值,即BA=|-1-3|=1+3,设点C 表示的数为x ,则CA=|x-(-1)|=|x+1|,因此,可得方程|x+1|=1+3,所以x+1=±(1+3),当x+1=1+3时,x=3; 当x+1=-(1+3)时,x=-2-3.由于点C 在点A 的左边,所以点C 表示的数x 小于点A 表示的数-1,故x 只能是-2-3.故应选A.考点7 实数的运算例7 计算: 2)2(34-⨯-.解:原式=2-3×4 =2-12=-10. 考点8 创新考查例8 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba b a -+,如3※2=52323=-+.那么12※4= . 解析:理解新定义,先根据例子读懂运算法则,再模仿运算即可.12※4=12411242+=-.误区点拨实数这一章涉及的知识点虽然只有平方根,立方根,无理数、实数等,内容不多但比较抽象,极易出现以下三类错误:误区一 理解概念出错了 例1 求64-的立方根.错解:因为-64<0,所以-64没有立方根.剖析:此题混淆了平方根与立方根的概念.负数没有平方根,但负数有立方根,仍是一个负数.正解:因为()6443-=-,所以64-的立方根是-4,即4643-=-.评注:任何数都有且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0C A O B的立方根是0.误区二:审题不清出错了 例2 求2591的值.错解:5312591=.剖析:本处将带分数的开方误认为是整数部分和分数部分分别开方,显然25912591+=≠5312591=+,所以一般地,求一个正的带分数的算术平方根,应先把它化为假分数,再求这个假分数的算术平方根.正解:2591=2534=534.误区三:考虑不周出错了例3下列说法:(1)22-是负分数;(2)若m 是有理数,n 是无理数,则mn 一定是无理数;(3)一个数的平方根等于它的算术平方根,这个数是0或1;(4)无理数包括正无理数、负无理数. 其中正确的是( )A .(1)(2)(4)B .(1)(4)C .(1)(2)(3)(4)D .(4) 错解:选B . 剖析:(1)22-是无理数所以就不是分数,这是不少初学实数的同学最容易犯的错误,所以应当把题目看清楚;(2)当0=m 时,0=mn 是有理数;(3)1的平方根是±1所以(3)也错的,只有(4)是对的. 正解:选D .基础盘点1.平方根:若一个数的____等于a ,则这个数叫做a 的平方根.记作a ±.一个正数有___个平方根,它们恰好____相反数;0的平方根是_____;负数____平方根.2.算术平方根:正数x 的____等于a ,那么x 叫做a 的算术平方根.记作a . 0的算术平方根是0,即00=.3.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.记作3a .正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.4.开平方:求一个非负数a 的______的运算,叫做开平方.其中a 叫做_____.开平方与____互为逆运算.5.开立方:求一个数a 的______的运算,叫做开立方.6.无理数:__________叫做无理数.带根号的数_____是无理数,如16是_____;不带根号的数_____是无理数,如π是_____.7.实数:____________统称实数. 实数按大小来分可分为_____、_____、_____;实数和数轴上的点是_______的.8.用计算器进行开方运算:用不同型号的计算器进行开方运算时,按键顺序可能略有不同.一般先按____键,然后再输入数据,最后按____键.9.估算:估算是对数的大约计算.估算时要注意用______的方法. 课堂检测 1.估算171+的值在( ) A .2和3之间 B .3和4之间 C .4和5之间D .5和6之间2. 16的平方根是 .3.实数8的立方根是 .4. 座钟的摆针摆动一个来回所需的时间称为一个周期,其公式2l T gπ=,其中T 表示周期(单位:秒),l 表示摆长(单位:米),9.8g =米/秒.假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声? 跟踪训练 1.已知5a =,23b=,且0ab >,则a b +的值为( ).A. 8B.-2C. 8或-8D. 2或-22.若4的平方根是m ,-8的立方根是n ,则m n +的值为( ). A .0 B .4 C .-4 D . 0或-43.在下列数中:-3,1.732,|-2|,1-2,0.643,-(-1)2n(n 为正整数),4+38-.有理数有_______;无理数有________.4.已知k 是2的算术平方根,求2x -k <72的正整数解.5.已知a 是8的整数部分,b 是8的小数部分,求(-a )3+(b +2)2的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》小结与复习
【要点梳理】
1.算术平方根、平方根、立方根的定义及性质(开方与乘方的关系);
2.有理数的概念以及实数的分类; 3.实数大小的比较以及实数的计算. 例1 (1)下列说法正确有 .(填序号) ①无限小数都是无理数;②带根号的数是无理数;③有理数都是有限小数;④实数不是有理数就是无理数;⑤两个无理数的和与积都是无理数;⑥有理数与无理数分别平方后不可能相同.
(2)下列数中那些是有理数?那些是无理数?
-5.2,3
8-,∙
6.0 ,
4π,
7
22, 0.010010001, 0.121121112
,3
4
, 7.
例2 (1)求下列各数的相反数与绝对值: ①7;②-3
8
27
-
;③32- (2)比较下列各组数的大小: ①7
与34;②-
211
与53-; ③51-与31-;④353与.
例3计算:
(1;(2 (3)221213-; (4024.π+
(5)2
-(最后两题均精确到0.01).
例4某种牙膏上部圆的直径为3cm ,下部底边的长为4.8cm,如图,现要制作长方形的牙膏盒,牙膏盒上面是正方形.在手工课上,小明,小毛,小丽和小芳4位同学分别制作的牙膏盒高度都一样高,且符合要求.不同
的是上面正方形的边长,如下表:
(1)这4位同学制作的盒子都能装下这种牙膏吗?
(
2)若你是这种牙膏厂的厂长,从节省材料又方便取放牙膏的角度来看,你认为谁的制作更优秀?
【课堂操练】
1
.有下列说法:
(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;
(
3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2.求下列各式中的x
(1)2
25x =;
(2)2(
1)9x -=; (3)3
64x =-;(4)3(21)2160x +-=.
313--
4.
10.1
,
= .
5.若1<x <2,则|x -3|+2)1(-x 的值为
.
6
.在5,3
2
π
--四个数中,最小的
数是 .
72的值是在( ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间 8. 观察分析下列数据,寻找规律:
那么第10个
数据应是
.
9.已知坐标平面内一点A (-2,3),将点A 先,,得到A ′,则A ′的坐标为 .
10.一个正数x 的平方根是2a -3与5-a ,则a 是多少?
11.(1)用一块面积为400 cm 2
的正方形纸片,沿着边的方向剪出一块面积为300 cm 2
的长方形纸片,你会怎样剪? (2) 若用上述正方形纸片,沿着边的方向剪
出面积为300cm 2
的长方形纸片,且其长宽之比为3:2,•你又怎样剪? (3)根据你的剪法回答:只要利用面积大的纸片一定能剪出面积小的纸片吗?
正方形
的边长
小明小毛小丽小芳
2.4cm 3cm
3.6cm
4.8cm
【课后巩固】
1.下列说法:(1)无理数一定是无限小数;
(2)带根号的数一定是无理数;(3)无限小
数是无理数;(4)不带根号的数是有理数.
其中正确的说法的个数是()
A.0B.1C.2D.3
2.下列实数
2
1
- , π , 4 ,
3
1
, 5
中是无理数的有()
A.1个B.2个C.3个D.4个
3.若=
=
-x
x,则
3
2
4.
4.若26的整数部分为a,小数部分为b,
则a-b= .
5.如图,数轴上表示1、2的对应点分别
为A、B,点B关于点A的对称点为C,则点
C所表示的数是().
A.2-1B.1-2C.2-2
D.2-2
6.如图,A是硬币圆周上一点,硬币与数轴
相切于原点O(A与O点重合),设硬币的直
径为1个单位长度,若将硬币沿数轴负方向
滚动一周,点A与
点A1重合,则A1点
所对应的实数
是.
7=,m n)
的个数是.
8.计算
(1
(2
9.写出所有适合下列条件的数
(1)大于的所有整数;
(2的所有整数.
10.(1)比较大小:①1
2
2
3-
-与, ②
2
3
3
4-
-与, ③3
4
4
5-
-与;
(2)由(1)中比较的结果,猜想n
n-
+1
与1
-
-n
n的大小关系.
11.某老师在讲实数这一节时,画了如图所
示的图形,即以数轴单位长,作为边作一个
正方形,再以O为圆心,以正方形的对角线
长为半径作弧与数轴交于两点A、B.
(1)A、B表示数;
(2)作这样图说明:.
12.利用如图的4×4方格,作出面积为8
平方单位的正方形,然后在数轴上表示实数
8和8
-.
13.已知0
1
2=
-
+
-y
x,
且x
y
y
x-
=
-,求y
x+的值.
【课外拓展】
14.已知a
=,y2=b,(y<0),并且
8
=(4a<b),
18
=,求y-x的值.
15.细心观察图,认真分析各式,然后解答下
列问题:
+=+=
,s,
22
1
1213
=+==
s,,s,
2
23
14
(1)请用含有n(n是正整数)的等式表示上
述变化规律;
(2)OA10的长为;
(3)s s s s
++++
2222
12310
的值为.
16.如图,平行四边形ABCD中,A、B、C
三点坐标分别是A11),B(1,
1),C(4,1).
(1)求D点坐标;
(2)将平行四边形向下平移2个单位长度,
则A、B、C、D各点坐标分别是多少?
(3)在(2)
则A、B、C、D的坐标又变为多少?
(4)求平行四边形的面积?
O
(A)。