数字图像处理实验三中值滤波和均值滤波实验报告材料
数字图像处理实验报告
目录实验一数字图像滤波处理 (2)实验二数字图像锐化处理 (10)实验三数字图像平滑处理 (14)实验四数字图像的直方图规定化 (16)实验五数字图像的傅立叶变换 (20)实验一 数字图像滤波处理一、 实验目的(一) 掌握数字图像滤波处理的算法原理。
(二) 熟悉数字图像滤波处理的算法原理。
二、 实验原理和方法(一)均值滤波平滑线形空间滤波的输出(响应)是包含在滤波掩模邻域内像素的简单平均值。
因此,这些滤波器也称均值滤波器,指的是低通滤波器。
它是用滤波掩模确定的邻域内像素的平均灰度值代替图像中每个像素点的值,这种处理减小了图像灰度的“尖锐”变化。
图1-1显示了两个33⨯的平滑滤波器。
第一个滤波器产生掩模下的标准像素平均值,把掩模系数代入式z w z w z w z w i i i R ∑==+++=91992211 (1.1)(w 为掩模系数,z 为与该系数对应的灰度值)即可得∑=911i z R (1.2)图1-1 两个33⨯均值滤波器掩模。
R 是由掩模定义的33⨯邻域像素灰度的平均值。
一个n m ⨯掩模应有mn 1的归一化常数。
图1-1第二种掩模更重要,也称加权平均,处于掩模中心位置的像素比其他任何像素就显得不太重要 。
由于对角项离中心比离正交方向相邻的像素更远,所以它的重要性比与中心直接相邻的四个像素低。
把中心点加强的最高,而随着距中心加强为最高,而随着距中心点距离的增加减小系数值,是为了减小平滑处理中的模糊。
所有系数的和是16,2的整数次幂,便于计算机的实现。
一幅N M ⨯的图像经过一个n m ⨯(m 和n 是奇数)的加权均值滤波器滤波的过程可由下式给出:)())(()(∑∑∑∑-=-=-=-=++=a a s bbt a a s bbt t s w t y s x f t s w y x g ,,,, (1.3)可理解为一幅完全滤波的图像是由对1,2,1,0-=M x 和1,2,1,0-=N y 执行式(1.3)得到的。
均值滤波和中值滤波的比较分析
均值滤波和中值滤波的比较分析一、图像系统中的常见噪声一般在图像中常见的噪声有:1、按噪声幅度分布形状而分,成高斯分布的称为高斯噪声,主要由阻性元器件内部产生。
2、按噪声和信号之间的关系分为加性噪声和乘性噪声。
加性噪声与输入图像信号无关,含噪图像可表示为),(),(),(y x n y x g y x f +=。
乘性噪声往往随图像信号的变化而变化其含噪图像可表示为),(),(),(),(y x g y x n y x g y x f +=3、椒盐(Salt and pepper)噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。
4、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。
本文为了分析不同去噪方法的应用范围,将原图像分别加入高斯噪声及椒盐噪声,运用Matalab 编程实现两种不同滤波方法的去噪结果,并据此进行比较得出相应结论。
下面几幅图为本文所选用的经过灰度变换后得到的图像、添加椒盐噪声和高斯噪声后的图像:二.去噪的两种常用方法1.均值滤波均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点),(y x ,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点),(y x ,作为处理后图像在该点上的灰度),(y x g ,即∑∈=),(),(1y x sf f y x g M ,其中,s 为模板,M 为该模板中包含当前像素在内的像素总个数。
如下即分别为用中值滤波对加有高斯噪声、椒盐噪声、的图像处理后的对比图:2.中值滤波中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。
其实现原理如下:将某个像素邻域中的像素按灰度值进行排序,然后选择该序列的中间值作为输出的像素值,让周围像素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点。
《数字图像处理》实验报告
《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理滤波报告
2010年4月一,实验目的。
1.了解在数字图像处理中滤波的概念和意义。
2.掌握数字图像处理滤波程序。
二,实验原理。
图像的中值滤波是一种非线性的图像处理方法,它通过对邻域内像素按灰度排序的结果决定中心像素的灰度。
图像的中值滤波是统计排序滤波器的一种常见应用,它是通过对邻域内采样数据进行排序并取得中值来决定中心像素灰度的一种处理手段,图像的中值滤波在少量离散杂点的消除方面效果显著。
前面介绍过图像简单平滑和高斯平滑,以这两种算法为代表的平滑线性滤波算法在消除离散型杂点方面,都采取的是将杂点的干扰分摊到整个邻域中的每个像素,以减少杂点的影响,然而这样做的代价就是图像清晰度的大量损失。
如图11-14所示,a表示一个5×5邻域的像素灰度,其中中点位置的像素为孤立的杂点,b为对a进行一次简单平滑处理的结果,c 为对b进行简单平滑的结果,从图中可看出简单平滑将杂点对图像的影响分担到了邻域的其他像素。
图11-14 孤立杂点的简单平滑从图11-14中可以发现简单平滑对于孤立的杂点消除较为有效,而对于稍大的杂点或是密集的杂点,图像简单平滑的效果就不够理想。
如图11-15所示,其中a表示一个5×5邻域的像素灰度,其中灰度为0的点为杂点,b为对a进行简单平滑的结果,从图中可以看出简单平滑使画面质量严重下降,并且并没有很好地去除杂点影响。
图11-15 稍大杂点的简单平滑分析原因,可以发现平滑线性滤波器的工作原理可以比喻为用水冲洗桌面上的污点,冲洗的结果污点并没有消失,只是被淡化,如果污点较大较密集,则冲洗的结果是整个桌面都被污点所影响。
尝试换一种思路,如果不采取冲淡污点的办法而是将污点直接去除,这样就可以避免污点数量较多时难以去除的困难,这也就是中值滤波的基本思想。
在中值滤波算法中,对于孤立像素的属性并不非常关注,而是认为图像中的每个像素都跟邻域内其他像素有着密切的关系,对于每一个邻域,算法都会在采样得到的若干像素中,选择一个最有可能代表当前邻域特征的像素的灰度作为中心像素灰度,这样就有效避免了离散型杂点对图像的影响。
中值滤波&均值滤波
数字图像处理作业(中值滤波&均值滤波)学院:电子信息工程学院专业:控制工程姓名:苏良碧1中值滤波1.1、中值滤波原理:中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)},其中,f(x,y),g(x,y)分别为原始图像和处理后图像。
W为二维模板,通常为2*2,3*3区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
1.2、实现方法:(1)通过从图像中的某个采样窗口取出奇数个数据进行排序;(2)用排序后的中值取代要处理的数据即可;1.3、matlab程序(zhongzhilvbo.m)clear;close all;I=imread('I3_256.bmp');figure,imshow(I),title('原始图象');J=imnoise(I,'salt&pepper',0.02);imshow(J);title('噪声干扰图像')X=J;a=3;b=3;%3*3的邻域k=floor(a*b/2)+1;%求出中值,即k=5[M,N]=size(X);%求出输入图像的行数M和列数Nuint8Y=zeros(M,N);funBox=zeros(a,b);temp=zeros(a*b);%X(a:b,c:d)表示A矩阵的第a到b行,第c到d列的所有元素for i=1:M-afor j=1:N-bfunBox=X(i:i+a,j:j+b);%把图像中的一个3*3领域赋给funboxtemp=funBox(:);%把领域中的每个元素赋给temptempSort=sort(temp);%对其中的像素值进行排序Y(i,j)=tempSort(k);%将模板的中值(k=5)赋给模板中心位置的元素end;end;figure,imshow(Y);title('中值滤波图像')1.4、结果:2均值滤波2.1、均值滤波原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
数字图像处理实验三 图像滤波实验(模板运算)
实验三图像滤波实验(模板运算)一.实验目的:模板运算是空间域图象增强的方法,也叫模板卷积。
(1)平滑:平滑的目的是模糊和消除噪声。
平滑是用低通滤波器来完成,在空域中全是正值。
(2)锐化:锐化的目的是增强被模糊的细节。
锐化是用高通滤波器来完成,在空域中,接近原点处为正,在远离原点处为负。
二.实验内容:(1)利用线性空间滤波(均值滤波)对一幅图象进行平滑,验证模板尺寸和滤波参数对图象的模糊效果的影响。
(2)利用非线性空间滤波器(中值滤波)对一幅噪声图象(椒盐噪声)进行平滑去噪,同时检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×3中值滤波器)对噪声的滤波效果。
(3)利用线性空间滤波器,对灰度图象分别利用二阶标准Laplacian算子和对角线Laplacian算子对其进行锐化操作,增强图像边缘,验证检测效果。
三.实验原理:1.用31×31均值滤波模板,并分别采用参数boundary_options默认值和‘replicate’对图像test_pattern进行平滑处理;用3×3,5×5,7×7均值滤波模板对图像lena平滑处理,观察不同参数、不同模板尺寸对滤波效果的影响。
1.线性空间滤波函数imfilter来实现线性空间滤波,语法为:g = imfilter(f, w, filtering_mode, boundary_options, size_options)其中,f是输入图像,w为滤波模板,g为滤波结果,filtering_mode用于指定在滤波过程中是使用相关运算(‘corr’)还是卷积运算(‘conv’),相关就是按模板在图像上逐步移动运算的过程,卷积则是先将模板旋转180度,再在图像上逐步移动的过程,显然,若模板中心对称,则相关和卷积运算是相同操作,默认为相关运算;boundary_options用于处理边界充零问题,默认为赋零,若该参数为’replicate’表示输出图像边界通过复制原图像边界的值来扩展;size_options可以是’full’或’same’,默认为’same’,表示输出图像与输入图像的大小相同。
数字图像处理实验三(邻域平均法和中值滤波)
数字图像处理 实验三
邻域平均法(box 模板)和中值滤波处理
加入脉冲噪声后的图像:testnoise.bmp 去噪过程 结果图像
请设计程序,分别用邻域平均法,其模板为:
和中值滤波法对testnoise 图像进行去噪处理(中值滤波的模板的大小也设为3×3)。
得出实验结果图像后,比较这两种方法去噪的效果好坏,并分析具体原因。
完成上述工作后,使用程序进行验证分析:使用邻域平均法时,3×3和5×5模板大小对图像进行处理的效果有何差别?并分析原因。
附加说明:程序框架可以参考第二次实验指导书上给出的示例程序。
邻域平均法 中值滤波法
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡1111*1111191。
数字图像处理实验三中值滤波和均值滤波实验资料报告材料
数字图像处理实验三均值滤波、中值滤波的计算机实现12281166 雪莹计科1202班一、实验目的:1)熟悉均值滤波、中值滤波处理的理论基础;2)掌握均值滤波、中值滤波的计算机实现方法;3)学习VC++ 6。
0 的编程方法;4)验证均值滤波、中值滤波处理理论;5)观察均值滤波、中值滤波处理的结果。
二、实验的软、硬件平台:硬件:微型图像处理系统,包括:主机, PC机;摄像机;软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验容:1)握高级语言编程技术;2)编制均值滤波、中值滤波处理程序的方法;3)编译并生成可执行文件;4)考察处理结果。
四、实验要求:1)学习VC++确6。
0 编程的步骤及流程;2)编写均值滤波、中值滤波的程序;3)编译并改错;4)把该程序嵌入试验二给出的界面中(作适当修改);5)提交程序及文档;6)写出本次实验的体会。
五、实验结果截图实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。
边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。
六、实验体会本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。
本次实验更加增加了对数字图像处理的了解与学习。
七、实验程序代码注释及分析// HistDemoADlg.h : 头文件//#include "ImageWnd.h"#pragma once// CHistDemoADlg 对话框class CHistDemoADlg : public CDialogEx{// 构造public:CHistDemoADlg(CWnd* pParent = NULL); // 标准构造函数int nWidth;int nHeight;int nLen;int nByteWidth;BYTE *lpBackup;BYTE *lpBitmap;BYTE *lpBits;CString FileName;CImageWnd source,dest;// 对话框数据enum { IDD = IDD_HISTDEMOA_DIALOG };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:HICON m_hIcon;// 生成的消息映射函数virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();DECLARE_MESSAGE_MAP()public:void LoadBitmap(void);afx_msg void OnOpen();afx_msg void OnHist();void HistogramEq(void);void NoColor(void);void HistogramEq1(int nWidth,int nHeight,BYTE *lpInput,BYTE*lpOutput);void MeanFilter(int nWidth,int nHeight,BYTE *lpInput,BYTE*lpOutput);void MedianFilter(int nWidth,int nHeight,BYTE *lpInput,BYTE*lpOutput);afx_msg void OnBnClickedClose();afx_msg void OnBnClickedMeanfilter();afx_msg void OnBnClickedMedianfilter();};HistDemoADlg.cpp对HistDemoADlg.h进行具体的实现,OnOpen()函数响应ID为IDC_OPEN的按钮事件,而且会调取文件选择对话框,选取文件之后,会显示在原始图像区域显示对应的位图图像,OnHist()函数会响应ID为IDC_HIST的按钮事件,调用HistogramEq()进行直方图均衡化的处理,HistogramEq()会调用HistogramEq1()进行直方图均衡化的处理,并用dst.setImage()显示处理之后的图像,以及NoColor()函数,对原始图像转化为灰度图像之后再显示。
数字图像处理实验-滤波
实验三1.实验目的:(1)对指定图像进行均值、中值滤波增强,比较增强的效果;(2)对图片进行噪声处理,进行图像恢复;2.实验内容:对指定图像进行均值、中值滤波增强,比较增强的效果。
图1是一张原始人物图像,图2是一张近似20%像素带有冲激噪声后的人物图像。
现分别利用①5×5区域的邻域平均法和②5×5中值滤波法对图2进行去噪声处理,进行图像恢复。
将原始图像及增强后的图像都显示于屏幕上,观察两种方法对去噪的不同作用。
图1图23.实验结果(代码&结果可视化)1、利用已有的图像处理应用软件集成环境编写相应的平滑程序。
5×5邻域平均法:邻域平均是最简单的平滑滤波,即是将原图的一个像素的灰度值和它周围邻近的24个像素的灰度值相加,然后求得的平均值作为新图该像素的灰度值。
具体算法类似与图像锐化。
5×5中值滤波法:采用滑动窗口法设窗口为5×5 的矩形,该窗口在被处理的图像上逐点移动内含25个像素,每次移动均计算一次中值,赋给窗口中间点,作为其灰度,具体算法类似邻域平均。
2、核心程序:邻域平均核心算法类似梯度锐化,本报告只给出中值滤波的核心程序:// 开始中值滤波// 行(除去边缘几行)for(i = iFilterMY; i < lHeight - iFilterH + iFilterMY + 1; i++){// 列(除去边缘几列)for(j = iFilterMX; j < lWidth - iFilterW + iFilterMX + 1; j++){// 指向新DIB第i行第j个像素的指针lpDst = (unsigned char*)lpNewDIBBits + lLineBytes * (lHeight - 1 - i) + j;// 读取滤波器数组for (k = 0; k < iFilterH; k++){for (l = 0; l < iFilterW; l++){lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i + iFilterMY - k) + j - iFilterMX + l;// 保存像素值aValue[k * iFilterW + l] = *lpSrc;}}// 获取中值* lpDst = GetMedianNum(aValue, iFilterH * iFilterW);}}4.实验分析和总结采用滤波器(低频/高频)处理后的图像可以更加平滑,可以对图像去除噪音,恢复到原始图像。
MATLAB数字图像均值和中值滤波实验-新
实验数字图像的空间域滤波
一、实验目的
1、理解图像空间域滤波的原理;
2、掌握图像均值滤波、中值滤波的原理与实现方法;
3、掌握上述方法的改进方法。
二、实验原理
均值滤波的主要步骤为:
(1)将模板在途中漫游,并将模板中心与途中某个象素位置重合;(2)将模板上系数与模板下对应象素相乘;
(3)将所有乘积相加;
(4)将和(模板的输出响应)赋给途中对应模板中心位置的象素。
中值滤波的主要步骤为:
(1)将模板在途中漫游,并将模板中心与途中某个象素位置重合;(2)读取模板下各对应象素的灰度值;
(3)将这些灰度值从小到大排成1列;
(4)找出这些值里排在中间的1个;
(5)将这个中间值赋给对应模板中心位置的象素。
三、实验内容
基本要求:
1、自己编程实现图像的均值滤波;
2、自己编程实现图像的中值滤波;
3、利用matlab图像处理工具箱中的函数实现图像的上述处理;
扩展要求:
4、实现一种图像加权中值滤波或加权均值滤波;
四、实验步骤
1、编程实现图像的均值滤波
程序代码:
运行程序得到如下结果:
2、编程实现图像的中值滤波
程序代码:
运行程序后得到如下结果:
3、实现一种图像加权中值滤波或加权均值滤波设计x模板为:
运行程序可得均值滤波后的结果:
运行程序可得中值滤波后的结果:
五、实验结果分析
从实验结果可以看出,中值滤波较均值滤波效果好些,并且滤波与所选的模板有关,若选择权值相同(本实验为0.1/9)相对不同权值的效果好些。
模板的不同对均值滤波的影响较大。
数字图像处理实验 图像空间滤波
数字图像处理实验报告实验三图像空间滤波1、实验目的图像的空间滤波能够实现对图像锐化、亮度增强等操作,通过此功能能够得到所需图像,进行观察各种滤波器的区别与使用范围。
2、实验步骤(1).通过如下污染一幅图像的方式创建一组带噪声的图像:•a加入高斯噪声 b加入椒盐噪声•使用如下技术:•创建2个平滑线形滤波器并分别对上述加噪图像实现线性滤波,比较其优劣, 并写入实验报告:•[ 1 1 1 [ 1 2 1• 1 1 1 2 4 2• 1 1 1 ] 1 2 1 ](2).实现中值滤波对上述加噪图像的处理结果,总结中值滤波和均值滤波各适合用于处理的噪声类型,并写入实验报告。
(3).对一幅模糊的图像使用两种锐化空间滤波器进行增强,并比较效果。
3、实验源码(1)加入高斯噪声makeI=imnoise(W,'gaussian',0,0.005);figure,imshow(makeI);imwrite(makeI,'3-1-gaussian.jpg')(2)加入椒盐噪声makeI=imnoise(W,'salt & pepper',0.01);figure,imshow(makeI);imwrite(makeI,'3-1-salt.jpg')(3)创建两个平滑线性滤波器h=[1 1 1;1 1 1; 1 1 1]a.高斯噪声的图像I=imread('3-1-gaussian.jpg')K=rgb2gray(I)imshow(i)h=[1 1 1;1 1 1;1 1 1]I2 = filter2(h,K);imshow(I2,[]), colorbarb.椒盐噪声的图像W=imread('3-1-salt.jpg')T=rgb2gray(W)I2 = filter2(h,T);imshow(I2,[]), colorbarh=[1 2 1;2 4 2;1 2 1]a.高斯噪声的图像h=[1 2 1;2 4 2;1 2 1]I2 = filter2(h,i);imshow(I2,[]), colorbarb.椒盐噪声的图像I2 = filter2(h,T);imshow(I2,[]), colorbar实现中值滤波(椒盐),观察处理结果可知适于处理椒盐噪声R=imread('3-1-salt.jpg')T=rgb2gray(R)makeI=medfilt2(T,'symmetric');figure,imshow(makeI);实现中值滤波(高斯)R=imread('3-1-gaussian.jpg')T=rgb2gray(R)makeI=medfilt2(T,'symmetric');figure,imshow(makeI);4、实验截图原图加入高斯噪声后如下图:加入椒盐噪声后如下图:A.高斯噪声的图像处理如下:B .椒盐噪声的图像处理如下:平滑线性滤波器h=[1 2 1;2 4 2;1 2 1] A .对高斯噪声图像的处理如下:B.对椒盐噪声图像的处理如下:对已加入椒盐噪声的图像的处理如下:对已加入高斯噪声图像的处理如下:5、实验小结通过本次实验的观察:(1)、中值滤波更适于处理含有椒盐噪声的图像,噪声有明显的消除。
数字图像处理 实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
均值滤波的实验报告
均值滤波的实验报告引言在图像处理领域,均值滤波是一种常用的图像平滑方法。
它通过计算像素周围邻域的平均值来替代该像素的灰度值,以达到图像平滑的效果。
均值滤波可以有效地去除图像中的噪声,同时也能够保持图像的整体特征。
本实验旨在探究均值滤波对图像的影响,并比较不同滤波半径下的滤波效果。
实验步骤1. 实验环境准备:在计算机上安装图像处理软件,并导入实验所需图像。
2. 实验设计:选择适当大小的滤波半径,并记录下实验所用的滤波半径。
3. 均值滤波处理:对图像进行均值滤波处理,根据实验设置的滤波半径计算每个像素的邻域平均灰度值,并用该平均值替代原像素的灰度值。
4. 实验结果观察:观察并记录均值滤波后的图像效果,包括图像的平滑度、噪声去除程度等。
5. 不同滤波半径的对比:重复步骤3-4,使用不同的滤波半径进行均值滤波处理,比较不同半径下的滤波效果。
6. 结果分析:根据实验观察和对比结果,分析均值滤波在不同滤波半径下的优缺点。
实验结果经过实验,我们得到了以下结果:实验图像下图为实验所用原始图像,以及采用不同滤波半径进行均值滤波处理后的图像。
![原始图像](image/original_image.jpg)![滤波半径为3的处理结果](image/result_radius_3.jpg)![滤波半径为5的处理结果](image/result_radius_5.jpg)![滤波半径为7的处理结果](image/result_radius_7.jpg)结果观察通过对比实验图像,我们可以得到以下观察结果:1. 均值滤波能够有效地去除图像中的噪声,使图像更加平滑。
2. 随着滤波半径的增加,图像的平滑度增加,噪声去除程度也更好。
3. 但是,当滤波半径较大时,图像细节会被模糊化,失去一部分细节信息。
结果分析根据实验结果观察,我们可以得出以下分析结论:1. 均值滤波对图像处理中的噪声去除具有较好的效果,能够使图像更加平滑。
2. 滤波半径的选择对均值滤波的效果有重要影响。
均值滤波,中值滤波报告
数字与图像处理报告
姓名:罗钰婧班级:12信国学号:20121378032
1.均值滤中值滤波对去除噪声
⑴.椒盐噪声:出现位置是随机的,但噪声的幅值是基本相同的。
对于椒盐噪声,中值滤波比均值滤波好。
因为椒盐噪声图像中既有干净点又有污染点,中值滤波是选适当的点来代替污染点,随意处理效果好;
而噪声均值不为0,所以均值滤波不能很好的去除椒盐噪声。
⑵.高斯噪声:出现位置是一定的(每一个点上),噪声的幅值是随机的。
对于高斯噪声,均值滤波比中指滤波好。
因为图像中每个点都是污染点,中值滤波找不到合适的干净点。
而正态分布的均值为0,所以均值滤波可以较好的减弱噪声。
对于中值滤波,可以发现取的领域越大,图像越模糊。
因为随着领域变大,精度降低。
同中值滤波,可以发现取的领域越大,图像越模糊。
2.傅里叶变换频谱图
3.伪彩色。
数字图像 中值滤波实验报告 matlab
中值滤波一、实验目的:①掌握中值滤波的原理、滤波过程;②熟悉Matlab 编程。
二、实验内容:利用中值滤波,对图像进行滤波;三、实验原理:中值滤波是一种非线性滤波,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。
中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。
在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。
但是对一些细节多,特别是点、线、尖顶细节多的图像不宜采用中值滤波的方法。
中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替。
设有一个一维序列1f ,2f ,…,n f ,取窗口长度为m(m 为奇数),对此序列进行中值滤波,就是从输入序列中相继抽出m 个数,v i f -,…,1-i f ,…,1f ,…,1+i f ,…,v i f +,其中i 为窗口的中心位置,21-=m v ,再将这m 个点按其数值大小排列,取其序号为正中间的那作为出。
用数学公式表示为:{}v i i v i i f f f Med Y +-=,,,, 21,-=∈m v Z i (2-2)例如:有一个序列为{0,3,4,0,7},则中值滤波为重新排序后的序列{0,0,3,4,7}中间的值为3。
此例若用平均滤波,窗口也是取5,那么平均滤波输出为()8.2570430=++++。
因此平均滤波的一般输出为:()m f f f f Z v i i v i v i i ++--+++++= 1Z i ∈(2-3)对于二位序列{}ij X 进行中值滤波时,滤波窗口也是二维的,但这种二位窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。
二维数据的中值滤波可以表示为:为滤波窗口A X Med Y ij A j i },{,=(2-4)在实际使用窗口时,窗口的尺寸一般先用33⨯再取55⨯逐渐增大,直到其滤波效果满意为止。
中值滤波器实验报告
数字图像处理实验实验三中值滤波器实验目的●深入理解空域滤波的概念,掌握模板卷积的计算方法●掌握中值滤波器的构建方法,并会中值滤波器对图像进行噪声去除。
实验要求1.读入lena图像,将lena图像转换为灰度图,可用rgb2gray2.用imnoise加入方差为0.2的椒盐噪声。
3.用medfilt2函数对图像进行空间滤波,所用模板为3*3的中值滤波器。
4.改用5*5的中值滤波器重做3中的步骤,比较结果的不同。
实验原理在图像处理中,在进行如边缘检测这样的进一步处理之前,通常需要首先进行一定程度的降噪。
中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声。
这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。
观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。
然后,丢弃最早的值,取得新的采样,重复上面的计算过程。
中值滤波是图像处理中的一个常用步骤,它对于斑点噪声(en:speckle noise)和椒盐噪声(en:salt-and-pepper noise)来说尤其有用。
保存边缘的特性使它在不希望出现边缘模糊的场合也很有用。
实验心得1.MA TLAB中提供的加噪声的函数和中值滤波函数对本实验的实现提供了便利,直接调用函数即可实现本实验。
2.实验可以分别使用相同类型但方差不同的噪声、模板半径不同的中值滤波器进行实验,用控制变量法观察噪声方差、中值滤波器模板半径对滤波效果的影响。
3.实验可以通过中值滤波器对不同类型噪声污染后的图像的滤波效果进行比较,体会中值滤波器对不同噪声的滤波效果。
4. 自己编写函数对图像进行噪声污染和滤波时,为了方便,不考虑图像边缘滤波,这样程序编写较为方便,而另一方面,图像的滤波不彻底,其边缘噪声不能滤去。
实验源代码1. 用系统函数对图像进行噪声污染和滤波:clcclear all%读入位于D盘\tuxiang的lena图像A=imread('D:\tuxiang\lena.bmp');%将读入的彩色图像转化为灰度图像B=rgb2gray(A);%对图像加入方差为0.2的椒盐噪声C=imnoise(B,'salt & pepper',0.2);F=imnoise(B,'salt & pepper',0.5);%对图像加入均值为0,方差为0.01的高斯噪声I=imnoise(B,'gaussian',0,0.05);%用模板为3*3的中值滤波器对噪声污染后的图像进行空间滤波D=medfilt2(C,[3,3]);G=medfilt2(F,[3,3]);J=medfilt2(I,[3,3]);%用模板为5*5的中值滤波器对噪声污染后的图像进行空间滤波E=medfilt2(C,[5,5]);H=medfilt2(F,[5,5]);K=medfilt2(I,[5,5]);%绘制原始图像figuresubplot(2,2,1);imshow(B);title('原始图像');%绘制被噪声污染的图像subplot(2,2,2);imshow(C);title('方差0.2的椒盐噪声污染后的图像');%绘制用3*3模板的中值滤波器滤波后的图像subplot(2,2,3);imshow(D);title('3*3模板滤波后的后的图像');%绘制用5*5模板的中值滤波器滤波后的图像subplot(2,2,4);imshow(E);title('5*5模板滤波后的后的图像');%绘制原始图像figuresubplot(2,2,1);imshow(B);title('原始图像');%绘制被噪声污染的图像subplot(2,2,2);imshow(F);title('方差0.5的椒盐噪声污染后的图像');%绘制用3*3模板的中值滤波器滤波后的图像subplot(2,2,3);imshow(G);title('3*3模板滤波后的后的图像');%绘制用5*5模板的中值滤波器滤波后的图像subplot(2,2,4);imshow(H);title('5*5模板滤波后的后的图像');%绘制原始图像figuresubplot(2,2,1);imshow(B);title('原始图像');%绘制被噪声污染的图像subplot(2,2,2);imshow(I);title('均值为0、方差0.05的高斯噪声污染后的图像');%绘制用3*3模板的中值滤波器滤波后的图像subplot(2,2,3);imshow(J);title('3*3模板滤波后的后的图像');%绘制用5*5模板的中值滤波器滤波后的图像subplot(2,2,4);imshow(K);title('5*5模板滤波后的后的图像');2. 自己编写程序对图像进行噪声污染和滤波:clcclear allrow=512;%图像的行像素点col=512;%图像的列像素点n1=3;n2=5;N1=zeros(n1*n1);%申明3*3模版,且初始化N2=zeros(n2*n2);%申明5*5模版,且初始化%读入位于D盘\tuxiang的lena图像A=imread('D:\tuxiang\lena.bmp');%将读入的彩色图像转化为灰度图像B=rgb2gray(A);n=rand(row,col);C=B;%申明被噪声污染后的图像C,且初始化%生成噪声污染图像,达到和系统椒盐噪声污染相同的效果for i=1:rowfor j=1:colif(n(i,j)<=0.1)C(i,j)=0;elseif(n(i,j)>=0.9)C(i,j)=255;endendendendD=C;%申明用3*3模版滤波后的图像D,且初始化E=C;%申明用5*5模版滤波后的图像D,且初始化%用模版为3*3的中值滤波器进行滤波,不考虑边缘for x=2:row-1for y=2:col-1N1=[C(x-1,y-1:y+1),C(x,y-1:y+1),C(x+1,y-1:y+1)];N1=sort(N1);D(x,y)=N1((n1*n1+1)/2);endend%用模版为5*5的中值滤波器进行滤波,不考虑边缘for x=3:row-2for y=3:col-2N2=[C(x-2,y-2:y+2),C(x-1,y-2:y+2),C(x,y-2:y+2),C(x+1,y-2:y+2),C(x+2,y-2:y+2)]; N2=sort(N2);E(x,y)=N2((n2*n2+1)/2);endend%绘制原始图像、被噪声污染后的图像及用两种模版滤波后的图像figuresubplot(2,2,1);imshow(B);title('原始图像');subplot(2,2,2);imshow(C);title('噪声污染后的图像');subplot(2,2,3);imshow(D);title('3*3模版滤波后的图像');subplot(2,2,4);imshow(E);title('5*5模版滤波后的图像');实验结果(一)用系统函数对图像进行噪声污染和滤波:1.在原始图像上所加的噪声为方差为0.2的椒盐噪声,分别用模板为3*3的中值滤波器和模板为5*5的中值滤波器对加噪声后的图像进行空间滤波2.在原始图像上所加的噪声为方差为0.5的椒盐噪声,分别用模板为3*3的中值滤波器和模板为5*5的中值滤波器对加噪声后的图像进行空间滤波3.在原始图像上所加的噪声为均值为0、方差为0.05的椒盐噪声,分别用模板为3*3的中值滤波器和模板为5*5的中值滤波器对加噪声后的图像进行空间滤波(二)自己编写程序对图像进行噪声污染和滤波:实验结果分析1.图像在同种椒盐噪声污染的情况下,用模板为5*5的中值滤波器对被噪声污染后的图像进行空间滤波,效果比模板为3*3的中值滤波器好;因为在一定范围内增大滤波器模板的半径,其半径范围内的图像像素点都被污染的概率减小。
数字图像处理实验 实验三 中值滤波
数字图像处理基础实验指导书
信息工程学院
2013年4月16日
实验三中值滤波
一.实验目的
1.熟悉matlab图像处理工具箱及中值滤波函数的使用;
2.理解和掌握中值滤波的方法和应用;
二.实验设备
1、PC机一台;
2、软件MATLAB;
三.实验内容及步骤
1. 启动matlab
双击桌面matlab图标启动matlab环境;
2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab 自带的图像,如:cameraman图像;给图像添加不同的噪声;再调用相应的图像增强(中值滤波)函数,设置参数;最后输出处理后的图像;
3.浏览源程序并理解含义;
4.运行,观察显示结果;
5.结束运行,退出;
四.实验参考程序及结果
在matlab环境中,程序首先读取图像,然后调用图像增强(中值滤波)函数,设置相关参数,再输出处理后的图像。
I = imread('cameraman.tif');
figure,imshow(I);
J1=imnoise(I,‘salt& pepper’,0.2);%添加椒盐噪声
J2= imnoise(I,‘gaussian’,0,0.005);%添加高斯噪声
J11=medfilt2(J1,[5,5]);
J22=medfilt2(J2,[5,5]);
figure,imshow(J11);
figure,imshow(J22);
五.实验报告要求
1、记录实验过程
2、给出完整结果(包括读入图像、加噪图像和滤波后的图像)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验三均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班一、实验目的:1)熟悉均值滤波、中值滤波处理的理论基础;2)掌握均值滤波、中值滤波的计算机实现方法;3)学习VC++ 6。
0 的编程方法;4)验证均值滤波、中值滤波处理理论;5)观察均值滤波、中值滤波处理的结果。
二、实验的软、硬件平台:硬件:微型图像处理系统,包括:主机, PC机;摄像机;软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验内容:1)握高级语言编程技术;2)编制均值滤波、中值滤波处理程序的方法;3)编译并生成可执行文件;4)考察处理结果。
四、实验要求:1)学习VC++确6。
0 编程的步骤及流程;2)编写均值滤波、中值滤波的程序;3)编译并改错;4)把该程序嵌入试验二给出的界面中(作适当修改);5)提交程序及文档;6)写出本次实验的体会。
五、实验结果截图实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。
边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。
六、实验体会本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。
本次实验更加增加了对数字图像处理的了解与学习。
七、实验程序代码注释及分析// HistDemoADlg.h : 头文件//#include "ImageWnd.h"#pragma once// CHistDemoADlg 对话框class CHistDemoADlg : public CDialogEx{// 构造public:CHistDemoADlg(CWnd* pParent = NULL); // 标准构造函数int nWidth;int nHeight;int nLen;int nByteWidth;BYTE *lpBackup;BYTE *lpBitmap;BYTE *lpBits;CString FileName;CImageWnd source,dest;// 对话框数据enum { IDD = IDD_HISTDEMOA_DIALOG };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:HICON m_hIcon;// 生成的消息映射函数virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();DECLARE_MESSAGE_MAP()public:void LoadBitmap(void);afx_msg void OnOpen();afx_msg void OnHist();void HistogramEq(void);void NoColor(void);void HistogramEq1(int nWidth,int nHeight,BYTE *lpInput,BYTE*lpOutput);void MeanFilter(int nWidth,int nHeight,BYTE *lpInput,BYTE*lpOutput);void MedianFilter(int nWidth,int nHeight,BYTE *lpInput,BYTE*lpOutput);afx_msg void OnBnClickedClose();afx_msg void OnBnClickedMeanfilter();afx_msg void OnBnClickedMedianfilter();};HistDemoADlg.cpp对HistDemoADlg.h进行具体的实现,OnOpen()函数响应ID为IDC_OPEN的按钮事件,而且会调取文件选择对话框,选取文件之后,会显示在原始图像区域显示对应的位图图像,OnHist()函数会响应ID为IDC_HIST的按钮事件,调用HistogramEq()进行直方图均衡化的处理,HistogramEq()会调用HistogramEq1()进行直方图均衡化的处理,并用dst.setImage()显示处理之后的图像,以及NoColor()函数,对原始图像转化为灰度图像之后再显示。
// HistDemoADlg.cpp : 实现文件//#include "stdafx.h"#include "HistDemoA.h"#include "HistDemoADlg.h"#include "afxdialogex.h"#ifdef _DEBUG#define new DEBUG_NEW#endif#define Point(x,y) lpPoints[(x)+(y)*nWidth]#define Point1(x,y) lpPoints1[(x)+(y)*nWidth]// 用于应用程序“关于”菜单项的 CAboutDlg 对话框class CAboutDlg : public CDialogEx{public:CAboutDlg();// 对话框数据enum { IDD = IDD_ABOUTBOX };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:DECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialogEx(CAboutDlg::IDD){}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialogEx::DoDataExchange(pDX);}BEGIN_MESSAGE_MAP(CAboutDlg, CDialogEx)END_MESSAGE_MAP()// CHistDemoADlg 对话框CHistDemoADlg::CHistDemoADlg(CWnd* pParent /*=NULL*/): CDialogEx(CHistDemoADlg::IDD, pParent){m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);lpBitmap = 0;lpBackup = 0;}void CHistDemoADlg::DoDataExchange(CDataExchange* pDX){CDialogEx::DoDataExchange(pDX);}BEGIN_MESSAGE_MAP(CHistDemoADlg, CDialogEx)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_OPEN, &CHistDemoADlg::OnOpen)ON_BN_CLICKED(IDC_HIST, &CHistDemoADlg::OnHist)ON_BN_CLICKED(IDCLOSE, &CHistDemoADlg::OnBnClickedClose)ON_BN_CLICKED(IDC_MEANFILTER,&CHistDemoADlg::OnBnClickedMeanfilter)ON_BN_CLICKED(IDC_MEDIANFILTER,&CHistDemoADlg::OnBnClickedMedianfilter)END_MESSAGE_MAP()// CHistDemoADlg 消息处理程序BOOL CHistDemoADlg::OnInitDialog(){CDialogEx::OnInitDialog();// 将“关于...”菜单项添加到系统菜单中。
// IDM_ABOUTBOX 必须在系统命令范围内。
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){BOOL bNameValid;CString strAboutMenu;bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);ASSERT(bNameValid);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// 设置此对话框的图标。
当应用程序主窗口不是对话框时,框架将自动// 执行此操作SetIcon(m_hIcon, TRUE); // 设置大图标SetIcon(m_hIcon, FALSE); // 设置小图标// TODO: 在此添加额外的初始化代码source.Create(0,L"Source",WS_CHILD|WS_VISIBLE,CRect(40,40,360,280),this,10000);dest.Create(0,L"Destination",WS_CHILD|WS_VISIBLE,CRect(400,40,720,280),this,10001);return TRUE; // 除非将焦点设置到控件,否则返回 TRUE}void CHistDemoADlg::OnSysCommand(UINT nID, LPARAM lParam) {if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialogEx::OnSysCommand(nID, lParam);}}// 如果向对话框添加最小化按钮,则需要下面的代码// 来绘制该图标。