2019届高三适应性考试数学试题(理科A)
广西南宁市2019届高三毕业班第一次适应性测试数学(理科)试卷及解析
…○…………装学校:___________姓名…○…………装广西南宁市2019届高三毕业班第一次适应性测试数学(理科)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设全集U =R ,集合A ={x|x >0},B ={x|−7<2+3x <5},则C U (A ∪B)=( )A. {x|0<x <1}B. {x|x ≤0或x ≥1}C. {x|x≤−3}D. {x|x>−3}2.已知复数z 1,z 满足z 1=−1−i ,z 1z =4,则复数z 在复平面内对应点的坐标为( )A. (−2,−2)B. (−2,2)C. (2,2)D. (2,−2)3.在等比数列{a n }中,若a 2=2,a 5=−54,则a 1=( )A. 23 B. −23C. −32D. 324.已知−90°<α<90°,tanα=sin76°cos46°−cos76°sin46°,则sinα=( )A.2√55 B. −2√55C. −√55D. √555.如图所示,长方体ABCD−A 1B 1C 1D 1的棱AB 和A 1D 1的中点分别为E ,F ,AB =6,AD =8,AA 1=7,则异面直线EF 与AA 1所成角的正切值为( )A. 75B. 57C.5√7474D.7√74746.已知直线l :3x−4y −15=0与圆C :x 2+y 2−2x −4y +5−r 2=0(r >0)相交于A ,B 两点,若|AB |=6,则圆C 的标准方程为( ) A. (x −1)2+(y −2)2=25 B. (x −1)2+(y −2)2=36 C. (x −1)2+(y −2)2=16D. (x −1)2+(y −2)2=497.已知P(π,1),Q(5π,−1)分别是函数f(x)=sin(ωx +φ)(ω>0,|φ|<π)图象上相邻的最高答案第2页,总17页…○…………订…………○……※装※※订※※线※※内※※答※※题※※…○…………订…………○……点和最低点,则ωφ=( )A. π2B. −π2C. −3π4D. 3π48.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中13的酒量”,即输出值是输入值的13,则输入的x=( )A. 35B. 911C. 2123D. 45479.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有( ) A. 60种B. 90种C. 150种D. 240种10.已知球的半径为4,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2√2,若球心到这两个平面的距离相等,则这两个圆的半径之和为( ) A. 6B. 8C. 10D. 1211.已知抛物线y 2=2px(p >0)的焦点为F ,准线为l ,直线y =k(x −p 2)交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,若等边三角形AFE 的面积为36√3,则ΔBEF 的面积为( ) A. 6√3B. 12√3C. 16D. 24√312.已知函数f(x)={e x−1x ,x >0ax +3,x ≤0(a ∈R),若方程f(f(x))−2=0恰有5个不同的根,则a 的取值范围是( )外…………○………订…学校:________考号内…………○………订… A. (−∞,0) B. (0,+∞) C. (0,1) D. (1,+∞)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.在正方形ABCD 中,E 为线段AD 的中点,若EC ⃑⃑⃑⃑⃑⃑ =λAD ⃑⃑⃑⃑⃑⃑⃑ +μAB ⃑⃑⃑⃑⃑⃑⃑ ,则λ+μ=_______.14.已知数列{a n }的前n 项和为S n ,若a n+2−a n+1=a n+1−a n ,a 1=2,a 3=8,则S 4=___.15.已知函数f(x)=1x+1+x +a −1是以(−1,−1)为中心的中心对称图形,g(x)=e bx +ax 2+bx ,曲线y =f(x)在点(1,f(1))处的切线与曲线y =g(x)在点(0,g(0))处的切线互相垂直,则a+b =__________.16.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.三、解答题(题型注释)17.在ΔABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且3b 2+3c 2−4√2bc =3a 2.(1)求sinA ; (2)若3csinA=√2asinB ,ΔABC 的面积为√2,求ΔABC 的周长18.2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000](单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为X ,求X 的分答案第4页,总17页…………线……………线…布列和数学期望. 19.如图,在四棱锥P−ABCD 中,底面ABCD 为菱形,∠ABC =60°,PB =PC ,E 为线段BC 的中点,F 为线段PA 上的一点.(1)证明:平面PAE ⊥平面BCP .(2)若PA =AB =√22PB ,二面角A −BD −F 的余弦值为35,求PD 与平面BDF 所成角的正弦值.20.设D 是圆O:x 2+y 2=16上的任意一点,m 是过点D 且与x 轴垂直的直线,E 是直线m 与x 轴的交点,点Q 在直线m 上,且满足2|EQ|=√3|ED|.当点D 在圆O 上运动时,记点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知点P(2,3),过F(2,0)的直线l 交曲线C 于A,B 两点,交直线x =8于点M .判定直线PA,PM,PB 的斜率是否依次构成等差数列?并说明理由.21.已知函数f(x)=lnx −ax(a ∈R).(1)讨论f(x)的单调性; (2)若x 1,x 2满足f(x 1)=f(x 2)=1,证明:x 1+x 2>2e 2.22.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =√3+rcosφy =1+rsinφ(r >0,φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos(θ+π6)+1=0.若直线l 与曲线C 相切.(1)求曲线C 的极坐标方程;(2)在曲线C 上任取两点M ,N ,该两点与原点O 构成ΔMON ,且满足∠MON =π6,求ΔMON 面积的最大值.23.已知函数f (x )=|ax ﹣1|﹣|2x +a |的图象如图所示. (1)求a 的值;(2)设g (x )=f (x +12)+f (x ﹣1),g (x )的最大值为t ,若正数m ,n 满足m +n =t ,证明:4m +9n ≥256.…线…………○……线…………○…答案第6页,总17页参数答案1.C【解析】1.解不等式得集合B ,再求A ∪B ,最后求补集即可得解. 因为A={x|x >0},B ={x|−3<x <1},所以A ∪B ={x|x >−3},C U (A ∪B)={x|x ≤−3}.故选:C. 2.A【解析】2.先由复数的除法运算得z ,再求z ,即可得解. 因为z=4−1−i=−4(1−i)(1+i)(1−i)=−2+2i ,所以z =−2−2i ,对应点的坐标为(−2,−2).故选:A 3.B【解析】3.由a5a 2=q 3可得q ,进而可得首项.因为a 5a 2=q 3=−27,所以q =−3,从而a 1=a 2q =−23.故选:B. 4.D【解析】4.由两角差的正弦得tanα=sin30°=12,进而有{sinαcosα=12sin 2α+cos 2α=1,结合角的范围可得解.因为tanα=sin (76°−46°)=sin30°=12>0,由−90°<α<90°,可得0°<α<90°…○…………订_____班级:___________考…○…………订所以{sinαcosα=12sin 2α+cos 2α=1得sinα=√55.故选:D 5.B【解析】5. 作FG⊥AD ,垂足为G ,连接EG ,因为FG//AA 1,所以∠EFG 为异面直线EF 与AA 1所成的角(或补角),进而根据边长求解即可. 作FG⊥AD ,垂足为G ,连接EG ,因为FG//AA 1,所以∠EFG 为异面直线EF 与AA 1所成的角(或补角),且tan∠GFE =EG FG,因为EG=√32+42=5,FG =AA 1=7,所以tan∠GFE =57.故选:B 6.A【解析】6.先求得圆心到直线的距离,再结合弦长为6,利用垂径定理可求得半径. 圆C :x 2+y 2−2x −4y +5−r 2=0可化为(x −1)2+(y −2)2=r 2, 设圆心(1,2)到直线l 的距离为d ,则d =|3−8−15|5=4,又|AB |=6,根据r 2=32+42=25,所以圆C 的标准方程为(x −1)2+(y −2)2=25.故选:A 7.D【解析】7.根据两个最值的横坐标的距离可得周期,进而得ω,把P(π,1)的坐标代入方程y =sin(3x +φ),答案第8页,总17页可得φ,从而得解. 因为2×(5π12−π12)=T =2πω,所以ω=3,把P(π12,1)的坐标代入方程y =sin(3x +φ),得φ=π4+2kπ(k ∈Z),因为|φ|<π2,所以φ=π4,ωφ=3π4.故选:D 8.C【解析】8.模拟执行程序框图,使得最后退出循环时8x−7=13x ,即可得解.i =1时,x =2x −1;i =2时,x =2(2x −1)−1=4x −3;i =3时,x =2(4x −3)−1=8x −7;i =4时,退出循环.此时,8x −7=13x ,解得x =2123.故选:C 9.C【解析】9.先将5人分成3组,3,1,1和2,2,1两种分法,再分配,应用排列组合公式列式求解即可.将5个班分成3组,有两类方法:(1)3,1,1,有C 53种;(2)2,2,1,有C 52C 322!种.所以不同的安排方法共有(C 53+C 52C 322!)×A 33=150种.故选:C. 10.A【解析】10.设两圆的圆心为O 1,O 2,球心为O ,公共弦为AB ,中点为E ,可知OO 1EO 2为正方形,根据|OE |=√2|OO 1|和|OE |2+|AE |2=|OA |2,代入长度求解即可.如图,设两圆的圆心为O 1,O 2,球心为O ,公共弦为AB ,中点为E , 因为圆心到这两个平面的距离相等,则OO 1EO 2为正方形.两圆半径相等,设两圆半径为r ,|OO 1|=√16−r 2,|OE |=√2|OO 1|=√32−2r 2,装…………○…………………线…………○_姓名:___________班级:________装…………○…………………线…………○又|OE |2+|AE |2=|OA |2,32−2r 2+2=16,r 2=9,r =3.这两个圆的半径之和为6.故选:A 11.B【解析】11.由ΔAFE 为等边三角形,得k=√3,ΔAFE 边长为2p ,结合条件中的面积可得p ,进而由直线与抛物线联立可得交点坐标,利用面积公式求解即可.因为ΔAFE 为等边三角形,所以∠EFO =∠AFE =∠AFx =60°,k =√3,ΔAFE 边长为2p ,由12×2p ×2p ×√32=36√3,得p =6,抛物线方程为y 2=12x ,联立{y =√3(x −3)y 2=12x,得x 2−10x +9=0,所以{x A =9x B =1 ,所以|BF |=4,|AF |=12.故S ΔBEF =12×4×12×√32=12√3.故选:B 12.B【解析】12.当x>0时,对函数求导判断单调性求出最值,即可画出函数的图像,设t =f (x ),则f(t)=2,结合图答案第10页,总17页…………外……订…………※※内※※答※※题※※…………内……订…………像分析即可得到答案. 当x >0时,f(x)=e x−1x,f ′(x)=e x−1(x−1)x 2, 当0<x <1时,f ′(x)<0,函数f(x)单调递减; 当x>1时,f ′(x)>0,函数f(x)单调递增,所以f(x)min =f(1)=1,当x ≤0时,f(x)=ax +3的图象恒过点(0,3),当a≤0,x ≤0时,f(x)≥f(0)=3,当a >0,x ≤0时,f(x)≤f(0)=3,作出大致图象如图所示.方程f(f(x))−2=0有5个不同的根,即方程f(f(x))=2有五个解,设t=f(x),则f(t)=2.结合图象可知,当a >0时,方程f(t)=2有三个根t 1∈(−∞,0),t 2∈(0,1),t 3∈(1,3)(∵f(3)=e 23>2,∴1<t 3<3),于是f(x)=t 1有一个解,f(x)=t 2有一个解,f(x)=t 3有三个解,共有5个解,而当a≤0时,结合图象可知,方程f(f(x))=2不可能有5个解.综上所述:方程f(f(x))−2=0在a >0时恰有5个不同的根.故选:B 13.32【解析】13.由EC ⃑⃑⃑⃑⃑⃑ =ED ⃑⃑⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑⃑⃑ =12AD ⃑⃑⃑⃑⃑⃑⃑ +AB⃑⃑⃑⃑⃑⃑⃑ 即可得解.因为EC ⃑⃑⃑⃑⃑⃑ =ED ⃑⃑⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑⃑⃑ =12AD ⃑⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑⃑⃑ ,所以λ+μ=12+1=32.第11页,总17页故答案为:3214.26【解析】14.根据条件可知数列{a n }为等差数列,先求数列的公差,进而利用求和公式求和即可. 因为a n+2−a n+1=a n+1−a n ,所以数列{a n }为等差数列,设公差为d ,则d =8−22=3,所以S 4=4×2+4×32×3=26.故答案为:26. 15.13【解析】15.由中心对称得f(0)+f(−2)=−2,可解得a ,再由两切线垂直,求导数得斜率,令其乘积为-1,即可得解.由f(0)+f(−2)=−2,得a +a −4=−2,解得a =1,所以f(x)=1x+1+x .又f′(x)=−1(x+1)2+1,所以f′(1)=34, 因为g(x)=e bx +x 2+bx ,g′(x)=be bx +2x +b ,g′(0)=2b ,由2b =−43,得b =−23,所以a+b =13.故答案为:1316.516【解析】16.按照①全是1;②第一个格子是1,另外4个格子有一个0;③第一个格子是1,另外4个格子有2个0,分类计算满足条件的基本事件数,总事件为25个,利用古典概型公式求解即可. 5个格子用0与1两个数字随机填入共有25=32种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有1+4+5=10答案第12页,总17页○…………外…………※请※○…………内………种基本方法,那么概率P =1032=516.故答案为:51617.(1)sinA =13;(2)2+3√2+√6【解析】17.(1)根据余弦定理直接求解可得cosA ,进而可得sinA ; (2)由正弦定理角化边可得b =√2,再利用面积公式求解即可.(1)因为3b 2+3c 2−4√2bc =3a 2,所以b 2+c 2−a 2=4√23bc ,所以cosA =b 2+c 2−a 22bc=2√23,从而sinA=√1−cos 2A =√1−89=13.(2)因为3csinA =√2asinB ,所以3ac =√2ab ,即b =√2.因为ΔABC 的面积为√2,所以12bcsinA =√2,即12×2√2×13=√2,所以c 2=4,解得c=2.18.(1)3360元;(2)见解析【解析】18.(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X 的可能取值,再求X 的分布列和数学期望值. (1)记每个农户的平均损失为元,则x̅=1000×0.3+3000×0.4+ 5000×0.18+7000×0.06+9000×0.06=3360; (2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)×2000×50=15(户),损失超过8000元的农户共有0.00003×2000×50=3(户), 随机抽取2户,则X 的可能取值为0,1,2; 计算P (X =0)==,P (X =1)==,第13页,总17页……………○………………○…P (X =2)==,所以X 的分布列为;数学期望为E (X )=0×+1×+2×=.19.(1)见解析;(2)√210【解析】19. (1)由PE⊥BC ,BC ⊥AE 得BC ⊥平面PAE ,进而可得证;(2)先证得PA⊥平面ABCD ,设AC ∩BD =O ,以O 为坐标原点,OB⃑⃑⃑⃑⃑⃑⃑ 的方向为x 轴正方向,建立空间直角坐标系O −xyz ,分别计算平面BDF 的法向量为n ⃑⃑ 和PD⃑⃑⃑⃑⃑⃑⃑ ,设PD 与平面BDF 所成角为θ,则sinθ=|n⃑ ⋅PD ⃑⃑⃑⃑⃑⃑ ||n ⃑ ||PD ⃑⃑⃑⃑⃑⃑ |,代入计算即可得解.(1)证明:连接AC ,因为PB =PC ,E 为线段BC 的中点,所以PE ⊥BC .又AB=BC ,∠ABC =60°,所以ΔABC 为等边三角形,BC ⊥AE . 因为AE ∩PE =E ,所以BC ⊥平面PAE ,又BC⊂平面BCP ,所以平面PAE ⊥平面BCP .(2)解:设AB =PA =a ,则PB =√2a =PC ,因为PA 2+AB 2=PB 2,所以PA ⊥AB ,同理可证PA ⊥AC ,所以PA ⊥平面ABCD .如图,设AC∩BD =O ,以O 为坐标原点,OB⃑⃑⃑⃑⃑⃑⃑ 的方向为x 轴正方向,建立空间直角坐标系O −xyz . 易知∠FOA 为二面角A −BD −F 的平面角,所以cos∠FOA =35,从而tan∠FOA =43.由AFa2=43,得AF =23a . 又由F(0,−a 2,2a 3),B(√32a,0,0),知BF⃑⃑⃑⃑⃑⃑⃑ =(−√3a2,−a 2,2a 3),OF ⃑⃑⃑⃑⃑⃑⃑ =(0,−a 2,2a 3). 设平面BDF 的法向量为n⃑⃑ =(x,y,z),答案第14页,总17页………订…………○…※※线※※内※※答※※题※※………订…………○…由n ⃑⃑ ⊥BF ⃑⃑⃑⃑⃑⃑⃑ ,n ⃑⃑ ⊥OF⃑⃑⃑⃑⃑⃑⃑ ,得{−√3a2x −a 2y +2a 3z =0−a 2y +2a3z =0,不妨设z=3,得n⃑⃑ =(0,4,3). 又P(0,−a 2,a),D(−√32a,0,0),所以PD⃑⃑⃑⃑⃑⃑⃑ =(−√3a 2,a2,−a).设PD 与平面BDF 所成角为θ,则sinθ=|n⃑ ⋅PD ⃑⃑⃑⃑⃑⃑ ||n ⃑ ||PD⃑⃑⃑⃑⃑⃑ |=5√34a 2+14a 2+a 2=√210.所以PD 与平面BDF 所成角的正弦值为√210.20.(1)x 216+y 212=1;(2)见解析【解析】20.(1)设点Q(x,y),D(x 0,y 0),由条件的线段比例可得x 0=x ,|y 0|=√3y |,代入圆的方程中即可得解;(2)设直线l 的方程为y=k(x −2),与椭圆联立得得(4k 2+3)x 2−16k 2x +16(k 2−3)=0设A(x 1,y 1),B(x 2,y 2),由k 1+k 2=y 1−3x 1−2+y 2−3x 2−2 =y 1x 1−2+y 2x 2−2−3(1x 1−2+1x 2−2) =2k −3×x 1+x 2−4x 1x 2−2(x 1+x 2)+4,结合韦达定理代入求解即可.(1)设点Q(x,y),D(x 0,y 0),因为2|EQ |=√3|ED |,点Q 在直线m 上,所以x 0=x ,|y 0|=3y |.① 因为点D 在圆O :x 2+y 2=16上运动,所以x 02+y 02=16.②将①式代入②式,得曲线C 的方程为x 216+y 212=1. (2)由题意可知l 的斜率存在,设直线l 的方程为y =k(x −2),令x=8,得M 的坐标为(8,6k).第15页,总17页由{x 216+y 212=1y =k(x −2),得(4k 2+3)x 2−16k 2x +16(k 2−3)=0. 设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=16k24k 2+3,x 1x 2=16(k 2−3)4k 2+3.③记直线PA ,PB ,PM 的斜率分别为k 1,k 2,k 3, 从而k 1=y 1−3x 1−2,k 2=y 2−3x 2−2,k 3=6k−38−2=k −12. 因为直线AB 的方程为y =k(x −2),所以y 1=k(x 1−2),y 2=k(x 2−2),所以k 1+k 2=y 1−3x 1−2+y 2−3x 2−2 =y 1x 1−2+y 2x 2−2−3(1x 1−2+1x 2−2)=2k −3×x 1+x 2−4x 1x 2−2(x 1+x 2)+4.④把③代入④,得k 1+k 2=2k −3×16k24k 2+3−416(k 2−3)4k 2+3−32k 24k 2+3+4=2k −1.又k 3=k −12,所以k 1+k 2=2k 3, 故直线PA ,PM ,PB 的斜率成等差数列. 21.(1)见解析;(2)见证明【解析】21.(1)首先对函数求导,对参数a 的范围进行讨论,求得函数的单调性; (2)根据f (x 1)=f (x 2)=1,得到lnx 1−1x 1−a =lnx 2−1x2−a =0,构造新函数g (x )=lnx−1x−a ,求导研究函数的单调性,进而证得结果. (1)因为f (x )=lnx −ax ,所以f ′(x )=1x −a =1−ax x .①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,故函数f (x )在(0,+∞)上单调递增. ②当a>0时,由f ′(x )>0,得0<x <1a,由f ′(x )<0,得x >1a,即函数f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减.综上,当a ≤0时,函数f (x )在(0,+∞)上单调递增;当a>0时,函数f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减. (2)证明: 由(1)知,a>0,f(x)在(0,1a )上单调递增,在(1a,+∞)上单调递减,答案第16页,总17页由f(x 1)=f(x 2)=1,得f(x)−1=0有两个不同的解,所以有f(1a)>1,即ln 1a−1>1,所以1a>e 2, 不妨设x 1<1a<x 2,则2e 2−x 2<1a, 欲证x 1+x 2>2e 2,只需证x 1>2a−x 2>2e 2−x 2,令F(x)=f(x)−f(2a−x)=lnx −ax −ln(2a−x)+a(2a−x),x ∈(0,1a),f′(x)=1x−2a +12a−x=2(ax−1)2x(2−ax)>0,所以F(x)在(0,1a)上是增函数,F(1a)=ln 1a−1−ln 1a+a(2a−1a)=0,所以F(x)<0,即f(x)−f(2a−x)<0,f(x 2)=f(x 1)<f(2a−x 1),因为x 2>1a ,2a −x 1>1a ,又f(x)在(1a,+∞)上是减函数, 所以x 2>2a −x 1,所以x 1+x 2>2a, 所以x 1+x 2>2e 2.22.(1)ρ=4sin(θ+π3);(2)2+√3【解析】22.(1)由直线与圆相切,可得圆心到直线的距离等于半径,列方程求解,进而由直角坐标转化为极坐标即可;(2)设M(ρ1,θ),N(ρ2,θ+π6)(ρ1>0,ρ2>0,−π3<θ<2π3),由S ΔMON=12|OM ||ON |sin π6=14ρ1ρ2=4sin(θ+π3)sin(θ+π2),展开利用三角函数求最值即可. (1)由题意可知,直线l 的直角坐标方程为√3x −y +2=0. 曲线C 是圆心为(√3,1),半径为r 的圆,由直线l 与曲线C 相切可得r =|√3×√3−1+2|2=2.可知曲线C 的直角坐标方程为(x −√3)2+(y −1)2=4.所以曲线C 的极坐标方程为ρ2−2√3ρcosθ−2ρsinθ=0,即ρ=4sin(θ+π3).(2)由(1)不妨设M(ρ1,θ),N(ρ2,θ+π6)(ρ1>0,ρ2>0,−π3<θ<2π3).S ΔMON =12|OM ||ON |sin π6=14ρ1ρ2第17页,总17页=4sin(θ+π3)sin(θ+π2)=2sinθcosθ+2√3cos 2θ =sin2θ+√3cos2θ+√3=2sin(2θ+π3)+√3.当θ=π12时,ΔMON 面积的最大值为2+√3.23.(1)a =2;(2)见解析【解析】23. (1)由图知f(0)=−1和f(−1)=3,得a =2;(2)写出g(x)的分段形式,求得函数的最大值t =6,由4m +9n =16(m +n)(4m +9n)展开利用基本不等式即可得证. (1)解:由f(0)=−1,得1−|a |=−1,即a =±2.由f(−1)=3,得|a +1|−|a −2|=3,所以a =2.(2)证明:由(1)知f(x)=|2x −1|−|2x +2|,所以g(x)=f(x +12)+f(x −1)=|2x −3|−|2x +3| ={6,x ≤−32−4x,−32<x ≤32−6,x >32 ,显然g(x)的最大值为6,即t =6.因为m+n =6(m >0,n >0),所以4m +9n =16(m +n)(4m +9n )=16(13+4nm +9m n). 因为4nm+9m n ≥2√4n m ⋅9mn =12(当且仅当m =125,n =185时取等号),所以4m +9n ≥16×(13+12)=256.。
2019届浙江省宁波市镇海中学高三下学期高考适应性考试数学试题解析
绝密★启用前2019届浙江省宁波市镇海中学高三下学期高考适应性考试数学试题学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合3{|0}2xA x Z x -=∈≥+,B ={y ∈N |y =x ﹣1,x ∈A },则A ∪B =( ) A .{﹣1,0,1,2,3} B .{﹣1,0,1,2}C .{0,1,2}D .{x ﹣1≤x ≤2}答案:A解出集合A 和B 即可求得两个集合的并集. 解析:∵集合3{|0}2xA x Z x -=∈≥=+{x ∈Z |﹣2<x ≤3}={﹣1,0,1,2,3},B ={y ∈N |y =x ﹣1,x ∈A }={﹣2,﹣1,0,1,2},∴A ∪B ={﹣2,﹣1,0,1,2,3}. 故选:A . 点评:此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素. 2.“是函数()()1f x ax x =-在区间内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案:C()()21f x ax x ax x =-=-,令20,ax x -=解得1210,x x a==当0a ≤,()f x 的图像如下图当0a >,()f x 的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法. 3.若2m>2n>1,则( ) A .11m n> B .πm ﹣n>1C .ln (m ﹣n )>0D .1122log m log n >答案:B根据指数函数的单调性,结合特殊值进行辨析. 解析:若2m >2n >1=20,∴m >n >0,∴πm ﹣n >π0=1,故B 正确; 而当m 12=,n 14=时,检验可得,A 、C 、D 都不正确, 故选:B . 点评:此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l答案:D解析:试题分析:由m ⊥平面α,直线l 满足l m ⊥,且l α⊄,所以//l α,又n ⊥平面β,,l n l β⊥⊄,所以l β//,由直线,m n 为异面直线,且m ⊥平面,n α⊥平面β,则α与β相交,否则,若//αβ则推出//m n ,与,m n 异面矛盾,所以,αβ相交,且交线平行于l ,故选D .【考点】平面与平面的位置关系,平面的基本性质及其推论.5.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )A .B .C .D .答案:C试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C 是符合要求的.【考点】三视图6.已知x,y满足不等式224xyx y tx y≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7] 答案:B作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.解析:画出不等式组24xyx y≥⎧⎪≥⎨⎪+=⎩所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在224x y tx y+=⎧⎨+=⎩的交点(82433t t--,)处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.点评:此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.7.已知,a b 是平面内互不相等的两个非零向量,且1,a a b =-与b 的夹角为150,则b 的取值范围是( )A .B .[1,3]C .D .[3,2]答案:C试题分析:如下图所示,,,AB a AD b ==则AC DB a b ==-,因为a b -与b 的夹角为150,即150DAB ∠=︒,所以30ADB ∠=︒,设DBA θ∠=,则0150θ<<︒,在三角形ABD 中,由正弦定理得sin 30sin b a θ=︒,所以sin 2sin sin 30a b θθ=⨯=︒,所以02b <≤,故选C .【考点】1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.8.设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于22a a b + ( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(2,0)(0,2)-D .(,2)(2,)-∞+∞答案:A 解析:由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于22a a b ++,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .9.已知符号函数sgnx 100010x x x ⎧⎪==⎨⎪-⎩,>,,<f (x )是定义在R 上的减函数,g (x )=f (x )﹣f (ax )(a >1),则( )A .sgn [g (x )]=sgn xB .sgn [g (x )]=﹣sgnxC .sgn [g (x )]=sgn [f (x )]D .sgn [g (x )]=﹣sgn [f (x )]答案:A根据符号函数的解析式,结合f (x )的单调性分析即可得解. 解析:根据题意,g (x )=f (x )﹣f (ax ),而f (x )是R 上的减函数,当x >0时,x <ax ,则有f (x )>f (ax ),则g (x )=f (x )﹣f (ax )>0,此时sgn [g ( x )]=1,当x =0时,x =ax ,则有f (x )=f (ax ),则g (x )=f (x )﹣f (ax )=0,此时sgn [g ( x )]=0,当x <0时,x >ax ,则有f (x )<f (ax ),则g (x )=f (x )﹣f (ax )<0,此时sgn [g ( x )]=﹣1,综合有:sgn [g ( x )]=sgn (x ); 故选:A . 点评:此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.10.已知函数()2x f x x x ln a ⎛⎫=- ⎪⎝⎭,关于x 的方程f (x )=a 存在四个不同实数根,则实数a 的取值范围是( ) A .(0,1)∪(1,e )B .10e ⎛⎫ ⎪⎝⎭,C .11e ⎛⎫ ⎪⎝⎭,D .(0,1)答案:D原问题转化为221x x a a -=有四个不同的实根,换元处理令t =,对g (t)21lnt t t ⎫=--⎪⎭进行零点个数讨论.解析:由题意,a >0,令t =, 则f (x )=a ⇔2x x x ln a a ⎛⎫-= ⎪⎝⎭⇔221x x a a -=⇔221t =⇔210lnt t t ⎫-=⎪⎭. 记g (t)21lnt t t ⎫=-⎪⎭.当t <0时,g (t )=2ln (﹣t)t 1t-)单调递减,且g (﹣1)=0, 又g (1)=0,∴只需g (t )=0在(0,+∞)上有两个不等于1的不等根.则210lnt t t ⎫-=⎪⎭221tlntt =-, 记h (t )221tlntt =-(t >0且t ≠1), 则h ′(t )()()()22222222212122141(1)(1)t t lnt lnt t t lnt t t t ⎛⎫-+- ⎪+--+⎝⎭==--.令φ(t )2211t lnt t -=-+,则φ′(t )()()2222222221211(1)(1)(1)t t t t t t t t t +---=-=-++<0.∵φ(1)=0,∴φ(t )2211t lnt t -=-+在(0,1)大于0,在(1,+∞)上小于0.∴h ′(t )在(0,1)上大于0,在(1,+∞)上小于0, 则h (t )在(0,1)上单调递增,在(1,+∞)上单调递减. 由211222112t t tlnt lnt limlim t →→+==-1,即a <1.∴实数a 的取值范围是(0,1). 故选:D . 点评:此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.二、填空题 11.已知复数z 1a ii+=-是纯虚数,则实数a =_____,|z |=_____. 答案:1 1根据复数运算法则计算复数z 1122a a i -+=+,根据复数的概念和模长公式计算得解. 解析: 复数z ()()()()()()11111111222a i i a a i a i a a i i i i ++-+++-+====+--+, ∵复数z 是纯虚数,∴102102a a -⎧=⎪⎪⎨+⎪≠⎪⎩,解得a =1,∴z =i ,∴|z |=1, 故答案为:1,1. 点评:此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.12.已知在△ABC 中,AB =(2sin 32°,2cos 32°),BC =(cos 77°,﹣cos 13°),则AB ⋅BC =_____,△ABC 的面积为_____.答案:2①根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;②结合①求出22BA BC cos ABC AB BC⋅∠==,根据面积公式即可得解. 解析:①2327723213AB BC sin cos cos cos ⋅=︒⋅︒-︒⋅︒=2(sin 32°•cos 77°﹣cos 32°•sin 77°)()23277245sin sin =︒-︒=-︒=②21AB BC ==,,22BA BC cos ABC AB BC⋅∠==,∴2sin ABC ∠=,∴112122ABCSAB BC sin ABC =⋅∠=⨯⨯=.故答案为: 点评:此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.13.已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________. 答案:16 4只需令x =0,易得a 5,再由(x +1)3(x +2)2=(x +1)5+2(x +1)4+(x +1)3,可得a 4=45C +234C +23C . 解析:令x =0,得a 5=(0+1)3(0+2)2=4,而(x +1)3(x +2)2=(x +1)3[(x +1)2+2(x +1)+1]=(x +1)5+2(x +1)4+(x +1)3; 则a 4=45C +234C +23C =5+8+3=16. 故答案为:16,4. 点评:本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.14.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D (ξ1)=_____,E (ξ1)﹣E (ξ2)=_____. 答案:2 0.2分别求出随机变量ξ1和ξ2的分布列,根据期望和方差公式计算得解. 解析:设a ,b ∈{1,2,3,4,5},则p (ξ1=a )1=,其ξ1分布列为:E (ξ1)15=⨯(1+2+3+4+5)=3. D (ξ1)15=⨯[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.ξ2=1.4|a ﹣b |的可能取值分别为:1.4,2.8,4.2,5.6, P (ξ2=1.4)25425==,P (ξ2=2.8)253310==,P (ξ2=4.2)252210==,P (ξ2=5.6)251110==,可得分布列.E (ξ2)=1.425⨯+2.8310⨯+4.2210⨯+5.6110⨯=2.8.∴E (ξ1)﹣E (ξ2)=0.2. 故答案为:2,0.2. 点评:此题考查随机变量及其分布,关键在于准确求出随机变量取值的概率,根据公式准确计算期望和方差.15.已知二面角α﹣l ﹣β为60°,在其内部取点A ,在半平面α,β内分别取点B ,C .若点A 到棱l 的距离为1,则△ABC 的周长的最小值为_____. 答案:3作A 关于平面α和β的对称点M ,N ,交α和β与D ,E ,连接MN ,AM ,AN ,DE ,根据对称性三角形ADC 的周长为AB +AC +BC =MB +BC +CN ,当四点共线时长度最短,结合对称性和余弦定理求解. 解析:作A 关于平面α和β的对称点M ,N ,交α和β与D ,E , 连接MN ,AM ,AN ,DE ,根据对称性三角形ABC 的周长为AB +AC +BC =MB +BC +CN ,当M ,B ,C ,N 共线时,周长最小为MN 设平面ADE 交l 于,O ,连接OD ,OE , 显然OD ⊥l ,OE ⊥l ,∠DOE =60°,∠MOA+∠AON =240°,OA =1, ∠MON =120°,且OM =ON =OA =1,根据余弦定理, 故MN 2=1+1﹣2×1×1×cos 120°=3, 故MN 3=. 故答案为:3.点评:此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解. 16.已知x ,y >0,且2811x y+=,则x +y 的最小值为_____. 答案:6处理变形x +y =x (281x y +)+y 8x y x y=++结合均值不等式求解最值. 解析:x ,y >0,且2811x y+=,则x +y =x (281x y +)+y 8x y x y=++≥=6, 当且仅当8xy x y==时取等号,此时x =4,y =2,取得最小值6. 故答案为:6 点评:此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.17.在正奇数非减数列{}1,3,3,3,5,5,5,5,5,⋅⋅⋅中,每个正奇数k 出现k 次.已知存在整数b 、c 、d ,对所有的整数n 满足n a b d =+,其中[]x 表示不超过x 的最大整数.则b c d ++等于______. 答案:2 解析:将已知数列分组为(1)()(),3,3,3,5,5,5,5,5,⋅⋅⋅,() 21,21,,21k k k --⋅⋅⋅-, 共21k -个组.设n a 在第k 组,21n a k =-,则有135231135211k n k +++⋅⋅⋅+-+≤<+++⋅⋅⋅+-+, 即()22111k n k -+≤<+.注意到0k >1k <≤.所以,11k ⎤==+⎦.因此,21n a =+.故()2112b c d ++=+-+=.三、解答题18.已知△ABC 三内角A 、B 、C 所对边的长分别为a ,b ,c ,且3sin 2A +3sin 2B =4sinAsinB +3sin 2C . (1)求cosC 的值;(2)若a =3,c =ABC 的面积.答案:(1)23;(2. (1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值; (2)根据余弦定理求出b =1或b =3,结合面积公式求解. 解析:(1)已知等式3sin 2A +3sin 2B =4sinAsinB +3sin 2C ,利用正弦定理化简得:3a 2+3b 2﹣3c 2=4ab ,即a 2+b 2﹣c 243=ab , ∴cosC 222223a b c ab +-==;(2)把a =3,c =3a 2+3b 2﹣3c 2=4ab 得:b =1或b =3,∵cosC 23=,C 为三角形内角,∴sinC ==,∴S △ABC 12=absinC 12=⨯3×b =b ,则△ABC . 点评:此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余弦定理求解边长,根据面积公式求解面积. 19.如图,在AOB 中,已知2AOB π∠=,6∠=BAO π,4AB =,D 为线段AB 的中点,AOC △是由AOB 绕直线AO 旋转而成,记二面角B AO C --的大小为θ.(1)当平面COD ⊥平面AOB 时,求θ的值; (2)当23πθ=时,求二面角--B OD C 的余弦值. 答案:(1) 2πθ=;(2)55-. (1)平面COD ⊥平面AOB ,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角. 解析:(1) 如图,以O 为原点,在平面OBC 内垂直于OB 的直线为x 轴,,OB OA 所在的直线分别为y 轴,z 轴,建立空间直角坐标系O xyz -,则(0,0,23),(0,2,0),3),(2sin ,2cos ,0)A B D C θθ,设1(,,)n x y z =为平面COD 的一个法向量,由1100n OD n OC ⎧⋅=⎪⎨⋅=⎪⎩得sin cos 030x y y z θθ+=⎧⎪⎨+=⎪⎩,取sin z θ=,则1(3cos ,3sin ,sin )n θθθ=-因为平面AOB 的一个法向量为2(1,0,0)n =由平面COD ⊥平面AOB ,得120n n ⋅=所30θ=即2πθ=.(2) 设二面角--B OD C 的大小为α,当2,3πθ=平面COD的一个法向量为12223(3cos,,sin )=(-,333222n πππ=-1212cos 53nn n n α⋅===-+‖, 综上,二面角--B OD C 的余弦值为5-. 点评:本题考查用空间向量求平面间的夹角, 平面与平面垂直的判定,二面角的平面角及求法,难度一般.20.已知数列{a n }的各项均为正,S n 为数列{a n }的前n 项和,a n 2+2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n 3nna =,求数列{b n }的前n 项和. 答案:(1)a n =2n +1;(2)223n n +-.(1)根据题意求出首项,再由(a n +12+2a n +1)﹣(a n 2+2a n )=4a n +1,求得该数列为等差数列即可求得通项公式;(2)利用错位相减法进行数列求和. 解析:(1)∵a n 2+2a n =4S n +3,∴a 12+2a 1=4S 1+3,即211230a a --=,解得:a 1=3或a 1=﹣1(舍), 又∵a n +12+2a n +1=4S n +1+3,∴(a n +12+2a n +1)﹣(a n 2+2a n )=4a n +1, 整理得:(a n +1﹣a n )(a n +1+a n )=2(a n +1+a n ), 又∵数列{a n }的各项均为正, ∴a n +1﹣a n =2,∴数列{a n }是首项为3、公差为2的等差数列, ∴数列{a n }的通项公式a n =3+2(n ﹣1)=2n +1; (2)由(1)可知b n 2133n n n a n +==,记数列{b n }的前n 项和为T n ,则T n =3•13+5•213++(2n +1)•13n , 13T n =3•213+5•313•…+(2n ﹣1)•13n +(2n +1)•113n +, 错位相减得:23T n =1+2(231133+•13n +)﹣(2n +1)•113n +=1+221111121331313n n n -+⎛⎫- ⎪+⎝⎭⨯--142433n n ++=-, ∴T n 32=(142433n n ++-)=223n n +-.点评:此题考查求等差数列的基本量,根据递推关系判定等差数列,根据错位相减进行数列求和,关键在于熟记方法准确计算.21.已知抛物线E :y 2=2px (p >0),焦点F 到准线的距离为3,抛物线E 上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4.线段AB 的垂直平分线与x 轴交于点 C .(1)求抛物线E 的方程; (2)求△ABC 面积的最大值. 答案:(1)y 2=6x (2)3. (1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB |和点到直线的距离,得出面积,利用均值不等式求解最大值. 解析:(1)抛物线E :y 2=2px (p >0),焦点F (2p,0)到准线x 2p =-的距离为3,可得p=3,即有抛物线方程为y 2=6x ;(2)设线段AB 的中点为M (x 0,y 0),则12022x x x +==, y 0122y y +=,k AB 21212221211206366y y y y y y x x y y y --====-+-,则线段AB 的垂直平分线方程为y ﹣y 003y =-(x ﹣2),① 可得x =5,y =0是①的一个解,所以AB 的垂直平分线与x 轴的交点C 为定点, 且点C (5,0),由①可得直线AB 的方程为y ﹣y 003y =(x ﹣2),即x 03y=(y ﹣y 0)+2 ②代入y 2=6x 可得y 2=2y 0(y ﹣y 0)+12,即y 2﹣2y 0y +2y 02=0 ③, 由题意y 1,y 2是方程③的两个实根,且y 1≠y 2,所以△=4y 02﹣4(2y 02﹣12)=﹣4y 02+48>0,解得﹣y 0<, |AB|=====又C (5,0)到线段AB 的距离h =|CM|== 所以S △ABC 12=|AB |h==≤=,当且仅当9+y 02=24﹣2y 02,即y 0A,B,或A,-,B所以S △ABC . 点评:此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值. 22.已知函数()(2)ln(1)()f x x x ax a R =++-∈(Ⅰ)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若()0f x ≥在[)0,+∞上恒成立,求实数a 的取值范围;(Ⅲ)若数列{}n a 的前n 项和231n S n n =+-,4n nb a =,求证:数列{}n b 的前n 项和ln(1)(2)n T n n <++.答案:(Ⅰ)0x y -=;(Ⅱ)(,2]-∞;(Ⅲ)证明见解析.试题分析:()1将1a =,求出切线方程()2求导后讨论当2a ≤时和2a >时的单调性证明,求出实数a 的取值范围()3先求出n a 、n b 的通项公式,利用当0x >时,()()2ln 12x x x ++>得()2ln 12xx x +>+,下面证明:()()ln 12n T n n <++ 解析:(Ⅰ)因为1a =,所以()()()2ln 1f x x x x =++-,()()002ln100f =+⨯-=,切点为()0,0.由()()2ln 111x f x x x +=++-+',所以()()020ln 011101f '+=++-=+,所以曲线()y f x =在()0,0处的切线方程为()010y x -=-,即0x y -=(Ⅱ)由()()2ln 11x f x x a x +=++-+',令()()[)()0,g x f x x ∈'=+∞, 则()()()22110111x g x x x x =-=≥+++'(当且仅当0x =取等号).故()f x '在[)0,+∞上为增函数.①当2a ≤时,()()00f x f ''≥≥,故()f x 在[)0,+∞上为增函数, 所以()()00f x f ≥=恒成立,故2a ≤符合题意;②当2a >时,由于()020f a ='-<,()1110aa f e e-=+>',根据零点存在定理, 必存在()0,1at e ∈-,使得()0f t '=,由于()f x '在[)0,+∞上为增函数,故当()0,x t ∈时,()0f t '<,故()f x 在()0,x t ∈上为减函数,所以当()0,x t ∈时,()()00f x f <=,故()0f x ≥在[)0,+∞上不恒成立,所以2a >不符合题意.综上所述,实数a 的取值范围为(],2-∞(III )证明:由24,13,1331,.22,22,21n n n n n S n n a b n n n n ⎧=⎪=⎧⎪=+-⇒=⇒=⎨⎨+≥⎩⎪≥⎪+⎩ 由(Ⅱ)知当0x >时,()()2ln 12x x x ++>,故当0x >时,()2ln 12xx x +>+, 故2222ln 1212n n n n⋅⎛⎫+>= ⎪+⎝⎭+,故1122ln 11nn k k k k ==⎛⎫+> ⎪+⎝⎭∑∑.下面证明:()()ln 12n T n n <++因为1222222ln 1ln 1ln 1ln 1ln 1ln 11231nk k n n =⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++++⋅⋅⋅++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑()()()()1245612ln 3ln ln 12ln223412n n n n n n n n ++++⎛⎫=⨯⨯⨯⨯⋅⋅⋅⨯⨯==++- ⎪-⎝⎭而,4222321311n T n =+++⋅⋅⋅++++ 1222222224111111213122131233nn n k T T kn n ==+++⋅⋅⋅+=+++⋅⋅⋅+=+-=-++++++++∑所以,()()1ln 12ln23n n n T ++->-,即:()()1ln 12ln23n n n n T T ++>-+> 点睛:本题考查了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题.。
2019届浙江省十校联盟高三下学期4月高考适应性考试数学试题(解析版)
【答案】D
【解析】先化简函数解析式,再根据函数 的图象变换规律,可得所求函数的解析式为 ,再由正弦函数的对称性得解.
【详解】
,
将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为
,
再向右平移 个单位长度,所得函数的解析式为
,
,
可得函数图象的一个对称中心为 ,故选D.
【点睛】
画出 的图象,
由图象可得:
对于①, 在 上单调递减,所以①正确;
对于②,函数 与 的图象没有交点,即 没有零点,所以②错误;
对于③,由函数图象的对称性可知③错误;
对于④,函数 和 图象关于原点对称,则 中用 代替 ,用 代替 ,可得 ,所以④正确.
故选:C
【点睛】
本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.
【答案】 52
【解析】设从第2天开始,每天比前一天多织 尺布,由等差数列前 项和公式求出 ,由此利用等差数列通项公式能求出 .
【详解】
设从第2天开始,每天比前一天多织d尺布,
则 ,
解得 ,即每天增加的数量为 ,
,故答案为 ,52.
【点睛】
本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.
A. B. C. D.
【答案】B
【解析】由 得 ,即 ,所以得 ,利用基本不等式求出最小值,得到 ,再由递推公式求出 .
【详解】
由 得 ,
即 ,
,当且仅当 时取得最小值,
此时 .
故选:B
【点睛】
本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.
江苏南通市2019-2020学年度第二学期高三数学适应性测试(含答案)
2020届高三数学适应性练习参考公式:样本数据12n x x x L ,,,的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合{}13=A ,,{}2|20B x x x =-<,则集合A B I = . 2. 已知复数(1i)43i z -=-(i 为虚数单位),则复数z 的模为 . 3. 现有5位病人,他们服用某种药物后的康复时间(单位:天)记录如下:10,11,12,13,14,则康复时间的方差为 . 4. 一个算法的伪代码如图所示,执行此算法,则最后输出的S 的值是 .5. 一张方桌有四个座位,A 先坐在如图所示的座位上,B ,C ,D 三人随机坐到其他三个位置上,则A 与B 相对而坐的概率为 .6. 已知向量,,a b c 在正方形网格中的位置如图所示.若λμλμ=+∈R (,)a b c ,则λμ+的值为 .7. 将函数()π()sin 23f x x =+的图象向右平移ϕ个单位长度,所得函数为偶函数,则ϕ的最小正值是 .8. 已知{}n a 是等比数列,n S 是其前n 项和.若31412a a -=,4217S S =,则2a 的值为 .I ← 1While I < 6 I ← I +2 S ←2I +3 End While Print S(第4题)(第5题)cba(第6题)(第11题)BCDEFA(第14题)9. 过双曲线2221(0)5y x b b-=>的右焦点F 作渐近线的垂线,垂足为P .若△POF 的面积5,则该双曲线的离心率为 . 10.已知直线80ax by +-=()a b ∈,R 经过点(12)-,,则124a b +的最小值是 .11.过年了,小张准备去探望奶奶,到商店买了一盒点心.为了美观起见,售货员用彩绳对点心盒做了一个捆扎(如图(1)所示),并在角上配了一个花结.彩绳与长方体点心盒均相交于棱的四等分点处.设这种捆扎方法所用绳长为l 1,一般的十字捆扎(如图(2)所示)所用绳长为l 2.若点心盒的长、宽、高之比为2:2:1,则12l l 的值为 . 12.已知函数()f x x =,则不等2(2)()f x f x ->式的解集是 .13.已知A (x 1,y 1)、B (x 2,y 2)为圆M :224x y +=上的两点,且121212x x y y +=-,设00()P x y ,为弦AB 的中点,则00|3410|x y +-的最小值为 .14.已知等边ABC △的边长为1,点D ,E ,F 分别在边AB ,BC ,AC 上,且ADF DEF S S =△△13ABC S =△.若AD =x ,CE =y ,则yx的取值范围为 .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在ABC △中,角A B C ,,所对的边分别为a ,b ,c ,sin sin sin sin sin sin sin B C B AA B C--=+. (1)若ABC △3ab 的值; (2)若223c b a +=,求cos A .16.(本小题满分14分)如图,已知EA 和DC 都垂直于平面ABC ,AB=AC =BC =AE =2CD ,F 是BE 的中点. (1)若G 为AF 中点,求证:CG ∥平面BDE ; (2)求证:AF ⊥平面BDE .17.(本小题满分14分)如图,某度假村有一块边长为4百米的正方形生态休闲园ABCD ,其内有一以正方形中心O 为圆心,2百米为半径的圆形观景湖.现规划修建一条从边AB 上点P 出发,穿过生态园且与观景湖相切的观赏道PQ (其中Q 在边AD 上). (1)设APQ θ∠=,求观赏道PQ 的长l 关于θ的函数关系式()f θ; (2)试问如何规划设计,可使观赏道PQ 的长l 最短?G (第16题)BDFE CA(第17题)θQOAD18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)y x a b a b+=>>的离心率为22,点(21,在椭圆上.若直线l 与椭圆有且只有一个公共点P ,且l 与直线2-=x 相交于Q .(1)求椭圆的方程;(2)当直线l 的斜率为21时,求直线l的方程;(3)点T 是x 轴上一点,若总有0uu u r uu u rPT QT ⋅=,求T 点坐标.19.(本小题满分16分)设数列{a n }的前n 项和为S n ,且满足1(2)0n n n S nS n ---+=,N 2n n *∈,≥,22a =.(1)求数列{a n }的通项公式;(2)记221111i i i b a a +=++,1(1)nn i i T b ==-∑.① 求T n ;② 求证:11ln ln n n n T T T ++<.20.(本小题满分16分)已知函数2()(1)f x ax a x =-+-,21()ln 2g x x x ax x =--.(1)若函数f (x )与g (x )在(0)+∞,上均单调递减,求实数a 的取值范围; (2)当(e 0]a ∈-,(其中e 为自然对数的底数)时,记函数()g x 的最小值为m .求证:312em -<-≤;(3)记()()()2ln h x g x f x x '=--,若函数h (x )有两个不同零点,求实数a 的取值范围.(第18题)POxy Q2020届高三数学适应性练习附加21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在.........答题卡...相应的答题区......域内作答.....若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)已知a b ∈,R ,矩阵13a b ⎡⎤=⎢⎥⎣⎦M 的特征值3λ=所对应的一个特征向量为11⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)若曲线1C :292y x x =-在矩阵M 对应的变换作用下得到另一曲线2C ,求曲线2C 的方程.B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为3112x y t ⎧=+⎪⎨⎪=⎩,(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=,求直线l 被曲线截得的弦长.C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 是正实数,且=5x y z ++,求证:222210≥x y z ++.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中, 已知点A (0,1),点B 在直线:1l y =-上,点T 满足TB u u r ∥OA u u u r,()2AB AB TB ^-u u u r u u u r u u r ,T 点的轨迹为曲线C .(1)求曲线C 的方程;(2)过点P ()()00t t ,>的直线交曲线C 于点M N ,,分别过M ,N 作直线l 的垂线,垂足分别为11M N ,.① 若1190M PN ?°,求实数t 的值;② 点M 关于y 轴的对称点为Q (与N 不重合),求证:直线NQ 过一定点,并求出这个定点的坐标.23.(本小题满分10分)已知数列}{n a 满足:11||n n a a n n*+-∈N ≤,.(1)证明:||n k n k a a n k n*+-∈≤,,N ;(2)证明:221(1)||2m i mi m m a a m *=--∈∑≤,N .y A TBO(第22题)参考答案及评分细则一、填空题:本大题共14小题,每小题5分,共计70分.1. {}1; 2. 522; 3. 2; 4. 17;5.13; 6. 0; 7. 512π; 8. 4±;9. 35; 10. 32; 11. 2; 12. -21(,); 13.5710-; 14.130222⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U ,,. 二、解答题:本大题共6小题,共计90分.15.【解】(1)因为 (sin sin )(sin sin )sin (sin sin )B C B C A B A +-=-,在ABC V 中,由正弦定理sin sin sin a b cA B C==, 得()()()b c b c a b a +-=-,化简得222a b c ab +-=, ……3分在ABC V 中,由余弦定理得,2221cos 22a b c C ab +-==, ……4分 因为(0,)C π∈,所以3πC =,又ABC V 3,可得1sin 32ab C =,所以4ab =. ……7分(2)因为223c b a +=,在ABC V 中,由正弦定理sin sin sin a b c A B C ==,所以2sin sin 2sin 3C B A += 因为A B C π++=,所以2sin sin()2sin 3C A C A ++= ……9分由(1)得3πC =,所以2sin sin()2sin 333ππA A ++=, 化简得333sin 2A A -=,所以1sin()63πA -=. ……11分 因为203A π<<,所以662πππA -<-<,所以222cos()1sin ()66ππA A -=--=所以22311261cos cos ()6632ππA A -⎡⎤=-+=-⋅=⎢⎥⎣⎦. ……14分16.(本小题满分14分)证明:(1)取EF 中点Q ,连结GQ , 因为G 为AF 中点,所以GQ ∥AE ,且12GQ AE =. ……2分 因为EA 和DC 都垂直于平面ABC , 所以CD ∥AE ,又AE =2CD , 所以GQ ∥CD ,且GQ CD =. 所以四边形CDQG 为平行四边形,所以CG ∥DQ , ……4分 又CG ⊄平面BDE ,DQ ⊂平面BDE ,所以CG ∥平面BDE . ……6分(2)取AB 中点P ,连结FP ,CP , 因为F 是BE 的中点, 所以FP ∥AE ,且12FP AE =.因为EA 和DC 都垂直于平面ABC ,所以CD ∥AE. 又AE =2CD ,所以CD ∥PF ,且CD =PF , 所以四边形CDFP 是平行四边形.所以CP ∥DF . ……8分 因为AC =BC ,P 为AB 中点, 所以CP ⊥AB ,所以DF ⊥AB .因为EA 垂直于平面ABC ,CP ⊂平面ABC ,所以CP ⊥AE ,所以DF ⊥AE . ……10分 因为AB AE A =I ,AB AE ⊂,平面ABE ,所以DF ⊥平面ABE . 因为AF ⊂平面ABE ,所以DF ⊥AF . ……12分 因为AB=AE ,F 是BE 的中点, 所以AF ⊥BE .因为BE DF F =I ,BE DF ⊂,平面BDE ,所以AF ⊥平面BDE . ……14分17.(本小题满分14分)解:(1)以点A 为原点,AB 所在直线为x 轴建立平面直角坐标系, 则(22)O ,,(cos 0)P l θ,,(0sin )Q l θ,, 所以直线PQ 的方程为sin (cos )cos l y x l l θθθ=--,即sin cos sin cos 0x y l θθθθ⋅+⋅-=. ……3分 因为直线PQ 与圆O 相切, 所以圆心到直线PQ 的距离为222sin 2cos sin cos 2sin cos l d θθθθθθ+-==+,化简得2sin 2cos sin cos 20l θθθθ+-=, ……5分 解得2sin 2cos 2l θθ+-=,2sin 2cos 2()f θθθ+-=π5π1212θ⎡⎤∈⎢⎥⎣⎦,. ……7分(2)因为2sin 2cos 2()f θθθ+-=,则(cos sin )(2sin 2cos 22sin cos )()f θθθθθθθ-+--'=9分因为π5π1212θ⎡⎤∈⎢⎥⎣⎦,2220θθ+-≤,2222sin cos 0θθθθ+--< 令()0f θ'=,得π4θ=, ……11分则ππ124θ⎛⎫∈ ⎪⎝⎭,时,()0f θ'<,()f θ单调递减,π5π412θ⎛⎫∈ ⎪⎝⎭,时,()0f θ'>,()f θ单调递增,所以π4θ=时,()f θ取得最小值为22. 答:设计成π4APQ ∠=时,可使观赏道PQ 的长l 最短. ……14分18.(本小题满分16分) 【解】(1)设椭圆的焦距为2c ,由题意,得2222211+=1222.a b c aa b c ⎧⎪⎪⎪=⎨⎪⎪=+⎪⎩,,解得21.a b ⎧=⎪⎨=⎪⎩,所以椭圆的方程为2212x y +=. ……3分(2)由题意,设直线l 的方程为m x y +=21, 联立方程组221212y x m x y ⎧=+⎪⎨⎪+=⎩,,得 0444322=-++m mx x ,因为直线l 与椭圆有且只有一个公共点,所以()221612440m m ∆=--= 解得6m = , 所以直线l 的方程为2621±=x y . ……6分 (3)当直线l 的斜率不存在时,l 与直线2-=x 无交点,不符合题意,故直线l 的斜率一定存在,设其方程为y =kx +m , 由2212y kx m x y =+⎧⎪⎨+=⎪⎩,,得()022412222=-+++m kmx x k , 因为直线l 与椭圆有且只有一个公共点,所以()()22221681210k m m k ∆=--+=,化简得:2221m k =+, ……8分所以412,P P P k x y kx m m m =-=+=,即⎪⎭⎫⎝⎛-m m k P 1,2, 因为直线l 与直线2-=x 相交于Q ,所以)2,2(k m Q --,……10分 设(0)T t ,,所以021)2(2=-+--⎪⎭⎫⎝⎛--=⋅m k t t m k ,即0)1(12=+⎪⎭⎫ ⎝⎛++t t m k 对任意的k ,m 恒成立, ……14分 所以01=+t ,即1-=t ,所以点T 坐标为()0,1-. ……16分19.(本小题满分16分)解:(1)因为1(2)0n n n S nS n ---+=, 所以2n =时,11S =,即11a =. 因为2n ≥时,1(2)0n n n S nS n ---+=,即2n n S na n =+. n =1时也适合该式.所以2n ≥时,2n n S na n =+,112(1)1n n S n a n --=-+-,两式相减得1(2)(1)10n n n a n a ----+=, 则1(1)10n n n a na +--+=,两式相减得112(1)(1)(1)02n n n n a n a n a n -+-----=,≥. 所以11202n n n a a a n -+--=,≥,所以11n n n n a a a a +--=-. 所以数列{a n }为等差数列.因为11a =,22a =,所以公差1d =,所以1(1)1n a n n =+-⨯=. ……4分(2)①因为a n =n ,所以2222222211(1)(1)1(1)(1)i i i i i b i i i i ++++=++=++ (1)111111(1)(1)1i i i i i i i i ++==+=+-+++, ……6分所以111111111()()()()1122334111n n T n n n n =-+-+-+⋅⋅⋅+-=-=+++,…8分 ②要证11ln ln n n n T T T ++<,只要证11ln ln212n n n n n n ++<+++, 只要证+12(1)ln (2)ln1n n n n n n ++>++,即证+1+122ln ln11+1+2111n n n n n n n n n n n n ++++>--+.…10分 设+1n x n =,x >1,令ln ()11x xf x x x =>-,, 则21ln ()(1)x xf x x --'=-, ……12分 易证1ln 0x x -->,故()0f x '>在()1+∞,上恒成立. 所以()f x 在()1+∞,上单调递增, 因为121n n n n ++>+,所以12()()+1n n f f n n ++>.所以所证不等式成立. ……16分 20.(本小题满分16分)【解】(1)因为函数2()(1)f x ax a x =-+-在(0)+∞,上单调递减,所以0102a a a-<⎧⎪⎨-⎪-⎩,≤,解得1a ≥.因为21()ln 2g x x x ax x =--在(0)+∞,上单调递减,所以()ln 110g x x ax '=+--≤在(0)+∞,上恒成立, 即ln 0x ax -≤在(0)+∞,上恒成立,所以ln x a x≥在(0)+∞,上恒成立. ……2分令ln ()x t x x =,则21ln ()x t x x-'=,令()0t x '=,得e x =, 当()0e x ∈,时,()0t x '>,()t x 单调递增; 当()e +x ∈∞,时,()0t x '<,()t x 单调递减, 所以max 1()e t x =,所以1ea ≥.故实数a 的取值范围为[)1+∞,. ……4分 (2)因为()ln g x x ax '=-,所以11()ax g x a x x -''=-=.当(e 0]a ∈-,时,[0e)a -∈,,所以11()0ax g x a x x -''=-=>恒成立,所以()ln g x x ax '=-在(0,+∞)上单调递增. 因为1e (1)()10e e ea a g a g +''=-=--=-<≥0,,所以(011e x ⎤∃∈⎥⎦,,使得0()0g x '=.,即00ln 0x ax -=.所以当00x x <<时,()0g x '<,()g x 单调递减;当0x x <时,()0g x '>,()g x 单调递增. 从而2000min00000ln ()()ln 22ax x x m g x g x x x x x ===--=-. ……8分令(ln 1()12e x x x x x ϕ⎤=-∈⎥⎦,,,则ln 1()02x x ϕ-'=<.所以ln ()2x x x x ϕ=-在(11e ⎤⎥⎦,单调递减,因此()(1)1x ϕϕ=-≥,13()()e 2ex ϕϕ<=-.所以312em -<-≤. ……10分(3) 因为2()(1)f x ax a x =-+-,21()ln 2g x x x ax x =--,所以2()()()2ln (1)ln 112ln h x g x f x x ax a x x ax x '=--=+-++---, 即2()ln h x ax x x =--.所以2121()21ax x h x ax x x--'=--=, 当0a ≤时,()0h x '<在(0)+∞,上恒成立,则h (x )在(0)+∞,上单调递减,故h (x )不可能有两个不同的零点. ……12分当0a >时,22ln ()x x h x x a x ⎛⎫+=- ⎪⎝⎭,令2ln ()x x F x a x +=-, 则函数()h x 与函数()F x 零点相同.因为312ln ()x x F x x -+'=,令()12ln G x x x =-+,则2()10G x x'=+>在(0)+∞,上恒成立,因为(1)0G =,则x(01),1 (1)+∞,()F x '- 0 + ()F x递减极小值递增所以()F x 的极小值为(1)1F a =-,所以要使()F x 由两个不同零点,则必须(1)10F a =-<,所以a 的取值范围为()01,. ……14分 因为(1)0F <,1()0e F >,又()F x 在()01,内连续且单调, 所以()F x 在()01,内有唯一零点. 又()()()()22222222ln 2022a a a a a a F a a a a⋅--+=->=,且21a >, 又()F x 在()1+∞,内连续且单调,所以()F x 在()1+∞,内有唯一零点. 所以满足条件的a 的取值范围为()01,. ……16分21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)【解】(1)因为11⎡⎤⎢⎥⎣⎦是矩阵13a b ⎡⎤=⎢⎥⎣⎦M 的特征值3λ=所对应的一个特征向量, 所以1111λ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M ,即1113311a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以1333a b +=⎧⎨+=⎩,,解得20a b =⎧⎨=⎩,.所以矩阵2130⎡⎤=⎢⎥⎣⎦M ……4分 (2)设曲线1C 上任一点00()Q x y ,在矩阵M 的作用下得到曲线2C 上一点()P x y ,, 则002130x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以00023x y x x y +=⎧⎨=⎩,,解得00323y x y x y ⎧=⎪⎨⎪=-⎩,.因为200092y x x =-, 所以()2292333yy x y -=-⋅,即曲线2C 的方程为2y x =. ……10分B .[选修4-4:坐标系与参数方程](本小题满分10分)【解】曲线的直角坐标方程为2240x y x +-=, ……3分即22(2)4x y -+=,圆心(20),,半径2r =,直线l 的普通方程为310x -=, ……6分 所以圆心(20),到直线l 的距离12d =,所以直线l 被曲线C 截得的线段长度()22221222152L r d =-=-=……10分C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 是正实数,且=5x y z ++,求证:222210≥x y z ++. 证明:由柯西不等式得()()22222222211x z x y z ⎡⎤⎡⎤⎢⎥++++++⎢⎥⎣⎦⎢⎥⎣⎦≥ …… 6分 因为=5x y z ++, 所以2225(2)252≥x y z ++⋅,所以222210≥x y z ++,当且仅当2a b c ==时取等号.……………… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)设T 的坐标为(),x y ,则B 为(),1x -,因为 A (0,1),所以()0,1TB y =--u u r ,(),2AB x =-u u u r因为()2AB AB TB ^-u u u r u u u r u u r ,所以()20AB AB TB ?=u u u r u u u r u u r,所以220AB AB TB -?u u u r u u u r u u r,所以()24440x y +-+=,即 24x y =,所以曲线C 的方程为24x y = ……4分 (2)法一:由题意,直线MN 的斜率必存在,设为k则直线MN 的方程为:y kx t =+, 由24y kx tx yì=+ïí=ïî可得:2440x kx t --= 设()()1122,,,M x y N x y , 则21212Δ1616044k t x x k x x t ì=+>ïï+=íï?-ïî①因为1190M PN ?°,所以110PM PN ?u u u u r u u u u r因为()()1112,1,,1PM x t PN x t =--=--u u u u r u u u u r所以()21210x x t ++=,所以()2410t t -++=解得:1t = ……6分 ②因为点M 关于y 轴的对称点为Q ,所以()()1112,0Q x y x x -+?xyPN 1MNM 1O所以222121212121444QNx x y y x x k x x x x ---===++ 所以直线NQ 的方程为:()21114x x y y x x --=+ 令0x =得:()22211121112144444xx x x x x x x x y y t -=+=-+==- 所以直线NQ 过定点,定点坐标为()0,t - ……10分(2)法二:设()()222,,2,M m m N n n ()m n ¹,因为,,M N P 三点共线,所以MP NP k k =,所以2222m t n t m n --=,化简得:()()0mn t m n +-= 因为m n ¹,所以mn t =- ①由题意:()()112,1,2,1M m N n --,所以()()112,1,2,1PM m t PN n t =--=--u u u u r u u u u r因为1190M PN ?°,所以110PM PN ?u u u u r u u u u r,所以()()2,12,10m t n t --?-=,所以()2410mn t ++=,所以()2410t t -++=,解得:1t = ……6分②因为点M 关于y 轴的对称点为Q ,所以()22,Q m m -()0m n +?所以22222QNn m n m k n m --==+, 所以直线NQ 的方程为:()222n my m x m --=+ 令0x =得:()222n m my m mn t -=+==- 所以直线NQ 过定点,定点坐标为()0,t - ……10分23.(本小题满分10分)【解析】(1)证明:||=n k n a a +-1121|()()()|n k n k n k n k n n a a a a a a ++-+-+-+-+-++-L1121||||||n k n k n k n k n n a a a a a a ++-+-+-+-+-++-L ≤11112n k n k n ++++-+-L ≤kn≤. ……3分(2)用数学归纳法证明.① 当1=m 时,左边0||22=-=a a =右边;当2=m 时,由(1)得左边||||4424a a a a -+-=2222||12a a +=-=≤=右边;② 设当k m =时,结论成立,即有221(1)||2k i ki k k a a =--∑≤, ……5分 则当1+=k m 时,∑+=-+1122||1k i i k a a||221221i k k k a a a aki -+-=∑=+1221||k k ki a a +=-∑≤∑=-+ki i ka a122||由(1)得||221k k a a -+||222k kk a a -=+212kk =≤,所以1221||k k ki a a k +=-∑≤, ……8分所以∑+=-+1122||1k i i k a a 221||k i ki k a a =+-∑≤(1)2k k k -+≤(1)[(1)1]=2k k ++- 所以1+=k m 时结论成立.由①②可知原不等式成立. ……10分。
2020年高考数学一轮复习考点48圆的方程必刷题理(含解析)
考点48 圆的方程1.(广东省2019届高考适应性考试理)若向量a ,b ,c 满足a b ≠,0c ≠,且()()0c a c b -⋅-=,则a b a bc++-的最小值是()AB .C .2D .32【答案】C 【解析】设向量a OA =,b OB =,c OC =,则由()()0c a c b -⋅-=得0AC BC ⋅=,即C 的轨迹为以AB 为直径的圆,圆心为AB 中点M ,半径为1||2AB , 因此11||||||(||)||22c OC OM r OA OB AB =≤+=++ 1111(||)(||)(||)(||)2222OA OB OA OB a b a b =++-=++- 从而2a b a bc++-≥,选C.2.(河南省重点高中2019届高三4月联合质量检测数学理)设是圆 上的点,直线与双曲线:的一条斜率为负的渐近线平行,若点到直线距离的最大值为8,则()A .9B .C .9或D .9或【答案】C 【解析】 因为双曲线的一条斜率为负的渐近线的斜率为,所以,解得. 圆的圆心坐标是,半径为,因为圆心到直线距离为, 所以点到直线距离的最大值为,解得或.当时,;当时,.综上,或.故选.3.(广西桂林市、崇左市2019届高三下学期二模联考数学理)过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A.5 B.4 C.3 D.2【答案】A【解析】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.4.(福建省龙岩市2019届高三5月月考数学理)已知点A 在圆22(2)1x y -+=上,点B 在抛物线28y x =上,则||AB 的最小值为( ) A .1 B .2 C .3 D .4【答案】A 【解析】由题得圆()2221x y -+=的圆心为(2,0),半径为1. 设抛物线的焦点为F(2,0),刚好是圆()2221x y -+=的圆心, 由题得|AB|≥|BF|-|AF|=|BF|-1, 设点B 的坐标为(x,y),所以|AB|≥x -(-2)-1=x+1,因为x≥0, 所以|AB|≥1,所以|AB|的最小值为1. 故选:A5.(新疆2019届高三第三次诊断性测试数学理)若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能【答案】B 【解析】解:因为直线1ax by +=与圆221x y +=有两个公共点,1<,。
2019年高考真题和模拟题分项汇编数学(理):专题08 数列(含解析)
专题08 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=,511711,12162a =>>+,【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.5.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 6.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.7.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.8.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-. (I )证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (II )求{a n }和{b n }的通项公式. 【答案】(I )见解析;(2)1122n n a n =+-,1122nn b n =-+. 【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.9.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式. 【答案】(Ⅰ) 1,3,5,6(答案不唯一);(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)1,3,5,6.(答案不唯一) (Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤. 所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.【名师点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.10.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n nn ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .【名师点睛】本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.11.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.12.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(I )求数列{},{}n n a b 的通项公式;(II)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(I )()21n a n =-,()1n b n n =+;(II )证明见解析. 【解析】(I )设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(II)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<那么,当1n k =+时,121k k c c c c +++++<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.13.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A .66 B .132C .-66D .- 32【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-,又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D.【名师点睛】本题主要考查了等差数列的性质,等差中项,数列的求和公式,属于中档题.14.【四川省百校2019年高三模拟冲刺卷数学试题】定义在 +∞)上的函数 )满足:当 时, ) ;当 时, ) ).记函数 )的极大值点从小到大依次记为 并记相应的极大值为 则 + + + 的值为 A . + B . + C . + D . +【答案】A【解析】由题意当 时,22()2(1)1f x x x x =-=--+ 极大值点为1,极大值为1,当 时,()()32f x f x =-.则极大值点形成首项为1公差为2 的等差数列,极大值形成首项为1公比为3 的等比数列,故 . ,故 ) ,设S= + + + + + + + , 3S= + + + ,两式相减得-2S=1+2( + + + )- + )∴S= + , 故选:A.【名师点睛】本题考查数列与函数综合,错位相减求和,确定 及 的通项公式是关键,考查计算能力,是中档题. 15.【福建省2019届高三毕业班质量检查测试数学试题】数列 中, ,且112(2)n n n n na a n a a --+=+≥-,则数列)前2019项和为A .B .C .D .【答案】B【解析】:∵ ++ ( ),∴()22112n n n n a a a a n ----=﹣, 整理得: ) ) ,∴ ) ) + )+ + ,又 , ∴ ) ) , 可得:)).则数列)前2019项和为:++ +. 故选:B .【名师点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.16.【内蒙古2019届高三高考一模试卷数学试题】《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁“哀”得100,60,36,21.6个单位,递减的比例为40%,今共有粮(0)m m >石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m 的值分别为 A .20% 369B .80% 369C .40% 360D .60% 365【答案】A【解析】设“衰分比”为a ,甲衰分得b 石,由题意得23(1)80(1)(1)16480164b a b a b a b m ⎧-=⎪-+-=⎨⎪++=⎩,解得125b =,20%a =,369m =. 故选A .【名师点睛】本题考查等比数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.17.【山东省德州市2019届高三第二次练习数学试题】设数列{}n a 的前n 项和为n S ,已知1212a a ==,,且2123n n n a S S ++=-+,记22122log log n n n b a a -=+,则数列(){}21nn b -⋅的前10项和为______.【答案】200【解析】∵1212a a ==,,且2123n n n a S S ++=-+, ∴32332a =-+=, ∵2123n n n a S S ++=-+,∴2n ≥时,1123n n n a S S +-=-+, 两式相减可得,()()21112n n n n n n S a a S S S ++-+-=---,(2n ≥) 即2n ≥时,2112n n n n a a a a +++-=-即22n n a a +=, ∵312a a =,∴数列{}n a 的奇数项和偶数项分别成等比数列,公比均为2,∴12222n nn a -=⨯=,1121122n n n a ---=⨯=,∴22122log log 121n n n b a a n n n -=+=-+=-, 则数列()()()221211nnn b n -⋅-=-,则(){}21nn b -⋅的前10项和为()()()22222231751917S =-+-++-()2412202836=⨯++++200=.故答案为200.【名师点睛】本题考查数列的递推公式在数列的通项公式求解中的应用,考查等比数列的通项公式及数列的求和方法的应用,属于中档题.18.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【答案】1【解析】因为11,()(1)n n a a n n n *+=+∈+N所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-...,201920181120182019a a -=-, 各式相加,可得20191112019a a -=-, 201911120192019a -=-,所以,20191a =,故答案为1.【名师点睛】本题主要考查利用递推关系求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:(1)项的序号较小时,逐步递推求出即可;(2)项的序数较大时,考虑证明数列是等差、等比数列,或者是周期数列;(3)将递推关系变形,利用累加法、累乘法以及构造新数列法求解.19.【2019北京市通州区三模数学试题】设{}n a 是等比数列,且245a a a =,427a =,则{}n a 的通项公式为_______.【答案】13-=n n a ,n *∈N .【解析】设等比数列{}n a 的公比为q , 因为245a a a =,427a =, 所以223542427a a a a q q q ====,解得3q =,所以41327127a a q ===, 因此,13-=n n a ,n *∈N . 故答案为13-=n n a ,n *∈N .【名师点睛】本题主要考查等比数列基本量的计算,熟记等比数列的通项公式即可,属于常考题型.20.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=. (I )求数列{}n a 与{}n b 的通项公式;(II )求数列{}n n a b +的前n 项和.【答案】(I )21,3nn n a n b =+=;(II )()331(2)2n n n -++.【解析】(I )由11a b =,42a b =,则4212341223()()12S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =. 所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3nn b =;(II )(21)3n n n a b n +=++, 所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++2(3521)(333)nn =++++++++(321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++. 【名师点睛】本题主要考查等差数列与等比数列,熟记通项公式、前n 项和公式即可,属于常考题型.21.【山东省烟台市2019届高三3月诊断性测试数学试题】已知等差数列{}n a 的公差是1,且1a ,3a ,9a 成等比数列.(I )求数列{}n a 的通项公式; (II )求数列{}2n na a 的前n 项和n T . 【答案】(I )n a n =;(II )222n nnT +=-. 【解析】(I )因为{}n a 是公差为1的等差数列,且1a ,3a ,9a 成等比数列,所以2319a a a =,即2111(2)(8)a a a +=+,解得11a =.所以1(1)n a a n d n =+-=.(II )12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,2311111112(1)22222n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得1231111111222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以111111112211222212n n n n n n T n +++⎛⎫- ⎪⎛⎫⎝⎭=-⨯=-- ⎪⎝⎭-. 所以222n n nT +=-. 【名师点睛】本题考查了等差数列与等比数列的通项公式、错位相减法,考查了推理能力与计算能力,属于常考题型.22.【安徽省1号卷A10联盟2019年高考最后一卷数学试题】已知等差数列{}n a 满足636a a =+,且31a -是241,a a -的等比中项.(I )求数列{}n a 的通项公式; (II )设()11n n n b n a a *+=∈N ,数列{}n b 的前项和为n T ,求使1n T <成立的最大正整数n 的值 【答案】(I )21n a n =+.(II )8.【解析】(I )设等差数列{}n a 的公差为d ,6336a a d -==Q ,即2d =,3113a a ∴-=+,2111a a -=+,416a a =+, 31a -Q 是21a -,4a 的等比中项,()()232411a a a ∴-=-⋅,即()()()2111+3=16a a a ++,解得13a =. ∴数列{}n a 的通项公式为21n a n =+.(II )由(I )得()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 1212n n T b b b ∴=++⋅⋅⋅+=11111135572123n n ⎛⎫-+-+⋅⋅⋅+- ⎪++⎝⎭()1112323323nn n ⎛⎫=-= ⎪++⎝⎭,由()13237n n <+,得9n <.∴使得1n T <成立的最大正整数n 的值为8.【名师点睛】本题考查等差数列通项公式以及裂项相消法求和,考查基本分析求解能力,属中档题.23.【重庆一中2019届高三下学期5月月考数学试题】已知数列{}n a 满足:1n a ≠,()112n na n a *+=-∈N ,数列}{nb 中,11n n b a =-,且1b ,2b ,4b 成等比数列. (I )求证:数列}{n b 是等差数列;(II )若n S 是数列}{n b 的前n 项和,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(I )见解析;(II )21nn +. 【解析】(I )111111111121n n n n n nb b a a a a ++-=-=------1111n n n a a a =-=--, ∴数列}{n b 是公差为1的等差数列;(II )由题意可得2214b b b =,即()()211113b b b +=+,所以11b =,所以1n b =,∴(1)2n n n S +=,∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 11111212231n T n n ⎛⎫=⨯-+-+⋯+- ⎪+⎝⎭122111nn n ⎛⎫=⨯-=⎪++⎝⎭. 【名师点睛】本题主要考查等差数列性质的证明,考查等差数列的前n 项和的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
专题04 二项式定理-2019年高考理数母题题源系列全国Ⅲ专版(解析版)
【母题原题1】【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .【名师点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.【母题原题2】【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .80【答案】C【解析】由题可得522x x ⎛⎫+ ⎪⎝⎭的展开式的通式为()521031552C C 2rr r rr r r T x x x --+⎛⎫⋅⋅== ⎪⎝⎭,令1034r -=,得2r =,所以展开式中4x 的系数为225C 240⨯=.故选C .【名师点睛】本题主要考查二项式定理,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,专题04 二项式定理由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-,可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C .【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.【命题意图】高考对本部分内容的考查以能力为主,重点考查二项式定理的通项公式及其应用,要求同学们熟练掌握并灵活应用二项式定理的通项公式,考查分类讨论的数学思想.【命题规律】高考试题对该部分内容考查的主要角度有两种:一种是利用通项公式求解指定的项;一种利用通项公式考查系数、指数问题,如常数项、2x 项的系数等.重点对该部分内容的考查仍将以能力考查为主,利用题意写出通项公式是关键,通项公式是解决本类问题的核心与灵魂. 【答题模板】解答本类题目,一般考虑如下两步: 第一步:考查()na b +的展开式的通项公式其通项公式为1C r n r rr n T a b -+=,通项公式是后面进行讨论和计算的基础;第二步:结合代数式的整体进行考查结合题意,考查r 的某个值的特殊情形,据此分类讨论即可求得的系数. 【方法总结】 1.二项式()()na b n *+∈N 展开式()011222nn n n r n r rn nn n n n n a b C a C a b C a b C a b C b ---+=++++++,从恒等式中我们可以发现以下几个特点: (1)()na b +完全展开后的项数为()1n +;(2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点.指数和为n ;(3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1n x +与()1nx +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列.如果是()na b -,则视为()na b +-⎡⎤⎣⎦进行展开;(4)二项展开式的通项公式1r n r rr n T C a b -+= (注意是第1r +项).2.二项式系数:项前面的01,,,nn n n C C C 称为二项式系数,二项式系数的和为2n ;二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项.对于()na b +可看作是n 个()a b +相乘,对于n r r a b - 意味着在这n 个()a b +中,有()n r -个式子出a ,剩下r 个式子出b ,那么这种出法一共有r n C 种.所以二项式展开式的每一项都可看做是一个组合问题.而二项式系数便是这个组合问题的结果. 3.系数:是指该项经过化简后项前面的数字因数.注:(1)在二项式定理中要注意区分二项式系数与系数.二项式系数是展开式通项公式中的C rn ,对于确定的一个二项式,二项式系数只由r 决定.而系数是指展开并化简后最后项前面的因数,其构成一方面是二项式系数,同时还有项本身的系数.例如:()521x +展开式中第三项为()32235C 21T x =⋅⋅,其中25C 为该项的二项式系数,而()322335C 2180T x x =⋅⋅=,化简后的结果80为该项的系数.(2)二项式系数与系数的概念不同,但在某些情况下可以相等:当二项式中每项的系数均为1时(排除项本身系数的干扰),则展开后二项式系数与系数相同.例如()51x + 展开式的第三项为()32235C 1T x =⋅⋅,可以计算出二项式系数与系数均为10.4.有理项:系数为有理数,次数为整数的项,比如212,5x x就不是有理项. 5.()na b +与()na b -的联系 首先观察他们的通项公式,()na b +:1r n r r r n T C a b -+=;()n a b -:()()'11r rr n r r n r rr n n T C a b C a b --+=-=-.两者对应项的构成是相同的,对应项的系数相等或互为相反数.其绝对值相等.所以在考虑()na b -系数的绝对值问题时,可将其转化为求()na b +系数的问题.1.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】23(1)(31)x x -+的展开式中4x 的系数是 A .27 B .–27 C .26 D .–26【答案】B【解析】()()32131x x -+展开式中4x 的系数,1x -中的x 与()3231x +展开式中3x 项相乘,但()3231x +展开式中没有3x 项,1x -中的1-与()3231x +展开式中4x 项相乘,()21243C 327xx =,所以4x 的系数是27-,故选B .【名师点睛】本题考查二项式的展开式与多项式相乘,得到项的系数,属于简单题.2.【云南省2019届高三第一次高中毕业生复习统一检测数学】在102()x x-的二项展开式中,6x 的系数等于 A .–180 B .53- C .53D .180【答案】D【解析】102()x x-的二项展开式的通项公式为102110C (2)r r r r T x -+=-⋅⋅, 令1026r -=,求得2r =,可得6x 的系数为2210(21C )80-⋅=.故选D .【名师点睛】本题主要考查二项式定理的应用,考查二项展开式的通项公式,考查二项展开式的特定项的系数的求法,属于基础题.3.【西藏拉萨市2019届高三第三次模拟考试数学】若()52a x x x ⎛⎫+- ⎪⎝⎭展开式的常数项等于–80,则a = A .–2 B .2 C .–4 D .4【答案】A【解析】由题意3325C (1)80a ⨯-=-,解得2a =-.故选A .【名师点睛】本题考查二项式定理,解题关键是掌握二项展开式的通项公式,同时掌握多项式乘法法则. 4.【西藏拉萨市2019届高三下学期第二次模拟考试数学】5()(2)x y x y +-的展开式中33x y 的系数为 A .–80 B .–40 C .40 D .80【答案】C【解析】要求()()52x y x y +-的展开式中33x y 的系数,则x y +中x 与()52x y -展开式中23x y 相乘,以及x y +中y 与()52x y -展开式中32x y 相乘,而()52x y -展开式中,23x y 项为()()233235C 240x y x y -=-,32x y 项为()()322325C 280x y x y -=.所以()()52x y x y +-的展开式中33x y 的项为333333408040x y x y x y -+=,故选C .【名师点睛】本题考查二项式展开式与多项式相乘,其中某一项的系数,属于基础题.5.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】二项式621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为 A .64 B .30 C .15 D .1【答案】C【解析】二项式621x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为66316621C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令630r -=,求得2r =,故展开式中的常数项为26C 15=,故选C .【名师点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.6.【广西柳州市2019届高三毕业班1月模拟考试高三数学】设0sin d x a x π=⎰,则6a x ⎛ ⎝的展开式中的常数项为__________.(用数字填写) 【答案】60【解析】0sin d x a x π=⎰cos πcos02=-+=,则662a x x ⎛⎛= ⎝⎝,展开式的通项为(6162rrr r T C x -+⎛⎫= ⎪⎝⎭,当4r =时得到常数项为(2446260C x ⎛⎫= ⎪⎝⎭,故答案为60.【名师点睛】本题考查了定积分的计算,考查了二项式定理的运用,考查了计算能力,属于基础题.7.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】二项式63x⎛⎝的展开式中4x 的系数为__________.(用数字作答) 【答案】15【解析】因为二项式63x⎛ ⎝的展开式的通项为()()()1718632216611kk kkk k kk T C x x C x ---+⎛⎫=-=- ⎪⎝⎭,令71842k -=得4k =, 所以展开式中4x 的系数为()446115C -=.故答案为:15.【名师点睛】本题主要考查指定项的系数,熟记二项展开式的通项公式即可,属于基础题型. 8.【广西南宁市、玉林市、贵港市等2019届高三毕业班摸底考试数学】()()5211x x +-的展开式中的含5x 的系数为__________.(用数字作答) 【答案】11【解析】()()5211x x +-=()()55211x x x -+-而()51x -展开式的通项为()515C 1rr r r T x -+=-取3r =和5r =,得()51x -展开式中含3x 和5x 项的系数分别为10和1, 所以()()5211x x +-的展开式中的含5x 的系数为10+1=11.【名师点睛】本题考查了等价转化的数学思想,以及利用二项式展开式的通项公式解决二项展开式指定项的系数问题,属于基础题.9.【贵州省贵阳市2019年高三5月适应性考试(二)数学】621x x ⎛⎫- ⎪⎝⎭展开式中的常数项为__________. 【答案】15.【解析】通项公式T r +16C r =(x 2)6–r1()r x-=(–1)r 6C r x 12–3r,令12–3r =0,解得r =4.∴展开式中的常数项为46C =15.故答案为:15.【名师点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题. 10.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】()()341212x x +-展开式中4x 的系数为__________. 【答案】48【解析】因为()()()()()()333342221212141214214x x x x x x x+-=--=---,又()3214x-展开式的通项为()2134kk kk TC x +=-,令24k =得2k =,所以原式展开式中4x 的系数为()223448C -=.故答案为:48.【名师点睛】本题主要考查二项式定理,熟记二项展开式的通项公式即可,属于基础题型. 11.【贵州省贵阳第一中学、云南师大附中、广西南宁三中2019届高三“333”高考备考诊断联考数学】若6x ⎛+ ⎝⎭的展开式的常数项是45,则常数a 的值为__________. 【答案】3【解析】6a x ⎛+ ⎝⎭展开式的通项公式为6316·C r r r r T x -+=,令630r -=,求得2r =, 可得它的常数项为26C ·45a =,1545a ∴=,3a ∴= 故答案为:3.【名师点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.12.【贵州省遵义市2019届高三年级第一次联考试卷数学】若二项式2nm x ⎫+⎪⎭展开式的二项式系数之和为32,常数项为10,则实数m 的值为__________. 【答案】2【解析】根据题意,2nm x ⎫⎪⎭展开式中二项式系数之和是32,有2n=32,则n =5,则2nm x ⎫⎪⎭展开式的通项为T r +1=5C r •)5–r•(2m x )r =m r •5C r •552r x -,令552r-=0,可得r =1,则2nm x ⎫⎪⎭展开式中的常数项为T 2=m •15C ,则有m •15C =10,即m =2,故答案为:2.【名师点睛】本题考查二项式定理的应用,解题的关键是由二项式系数的性质求出n ,并得到该二项式的通项.13.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知(12)n x +的展开式中只有第4项的二项式系数最大,则多项式()211()nx x x++展开式中的常数项为__________. 【答案】35【解析】由()12nx +的展开式中只有第4项的二项式系数最大,所以6n =.多项式61x x ⎛⎫+ ⎪⎝⎭的通项公式:662166C C r r r r rr T x x x ---+==,其中0,1,2,,6r =.考虑61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项和含2x -的项: (1)令622r -=-,则4r =; (2)令620r -=,则3r =.故常数项为4366C C 152035+=+=.故答案为:35.【名师点睛】本题考查了二项式定理的展开式的通项公式,考查了推理能力与计算能力,属于基础题. 14.【山西省晋城市2019届高三第三次模拟考试数学】()()27231x x --的展开式中,3x 的系数为__________.【答案】–455【解析】依题意,3x 的系数为332217774C (1)12C (1)9C (1)455⨯⨯--⨯⨯-+⨯⨯-=-.故答案为:–455.【点睛】本题考查二项式定理,考查推理论证能力以及分类讨论思想,是基础题.15.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学】1(2)n x x-(n 为正整数)的展开式中各项的二项式系数之和为128,则其展开式中含x 项的系数是__________. 【答案】560-【解析】依题意可知2128n =,解得7n =,()712x x --展开式的通项公式为()()()717727721C C 2rrrr r rr x x x ----⋅-=-⋅⋅⋅,当721r -=时3r =,故含x 项的系数为()3437C 12560-⨯⨯=-.故答案为:560-.【点睛】本小题主要考查二项式系数和,考查二项式展开式的通项公式以及二项式展开式中指定项的系数的求法,属于基础题.。
2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。
【详解】,解得,所以,故选D。
【点睛】本道题考查了等差数列的性质,难度中等。
(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。
专题10 双曲线及其性质-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)
【母题原题1】【2019年高考全国Ⅲ卷理数】双曲线C:2242x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.4B.2C.D.【答案】A【解析】由2,,a b c===,2PPO PF x=∴=Q,又P在C的一条渐近线上,不妨设为在by xa=上,则222P Pby xa=⋅==,11224PFO PS OF y∴=⋅==△,故选A.【名师点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.【母题原题2】【2018年高考全国Ⅲ卷理数】设12F F,是双曲线22221x yCa b-=:(00a b>>,)的左,右焦点,O是坐标原点.过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为AB.2专题10 双曲CD【答案】B【解析】由题可知22,PF b OF c ==,∴||PO a =, 在2Rt POF △中,222cos PF bPF O OF c∠==, ∵在12PF F △中,22221212212cos 2PF F F PF b F PF F P O F c+-∠==,∴)222224322b c bc a b cc+-=⇒=⋅,∴e =,故选C . 【名师点睛】本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.【命题意图】高考对双曲线内容的考查以基础知识为主,重点考查双曲线的几何性质、方程思想及运算能力.2019年高考题考查了以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.【命题规律】主要考查双曲线的定义、标准方程和几何性质,其中离心率和渐近线问题是高考考查的重点,以选择题和填空题为主,难度中等. 【答题模板】1.求双曲线的离心率的值或范围一般考虑如下三步:第一步:将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式; 第二步:利用222b c a +=和ce a=转化为关于e 的方程或不等式; 第三步:通过解方程或不等式求得离心率的值或取值范围. 2.其他问题:(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c –a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为22b a;异支的弦中最短的为实轴,其长为2a .(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=2tan 2b θ,其中θ为∠F 1PF 2.(5)若P 是双曲线22x a22y b -=1(a>0,b>0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a . 【方法总结】1.双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题. (3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置. 2.求双曲线的标准方程的方法 (1)定义法根据双曲线的定义确定a 2,b 2的值,再结合焦点位置,求出双曲线方程,常用的关系有: ①c 2=a 2+b 2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a .求轨迹方程时,满足条件:|PF 1|–|PF 2|=2a (0<2a <|F 1F 2|)的双曲线为双曲线的一支,应注意合理取舍. (2)待定系数法 一般步骤为①判断:根据已知条件,确定双曲线的焦点是在x 轴上,还是在y 轴上,还是两个坐标轴都有可能; ②设:根据①中的判断结果,设出所需的未知数或者标准方程; ③列:根据题意,列出关于a ,b ,c 的方程或者方程组; ④解:求解得到方程. 常见设法有①与双曲线22x a –22y b =1共渐近线的双曲线方程可设为22x a –22y b=λ(λ≠0);②若双曲线的渐近线方程为y =±ba x ,则双曲线方程可设为22x a –22yb =λ(λ≠0);③若双曲线过两个已知点,则双曲线方程可设为2x m +2y n=1(mn <0);④与双曲线22x a –22y b =1共焦点的双曲线方程可设为22x a k -–22y b k+=1(–b 2<k <a 2);⑤与椭圆22x a +22y b =1(a >b >0)有共同焦点的双曲线方程可设为22x a λ-+22y b λ-=1(b 2<λ<a 2).注意:当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置,可以设双曲线的方程为mx 2+ny 2=1(mn <0). 3.求双曲线离心率的值(1)直接求出c a ,,求解e :已知标准方程或a ,c 易求时,可利用离心率公式e =ca求解; (2)变用公式,整体求e :如利用e,e; 4.双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.已知渐近线方程时,可得b a的值,于是e 2=22c a =222a b a +=1+2()b a ,因此可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即b a个解.1.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),则双曲线C 的渐近线方程为A .y x =±B .y =C .y =D .2y x =±【答案】C【解析】因为双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),所以234a +=,故21a =,因此双曲线的方程为2213y x -=,所以其渐近线方程为y =.故选C .【名师点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的性质即可,属于基础题型.2.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点为1F 、2F ,双曲线上的点P 满足121243PF PF F F +≥u u u v u u u u v u u u u v恒成立,则双曲线的离心率的取值范围是A .312e <≤B .32e ≥C .413e <≤D .43e ≥【答案】C【解析】∵OP 是12F PF △的边12F F 上的中线,∴122PF PF PO+=u u u v u u u u v u u u v. ∵121243PF PF F F u u u v u u u u v u u u u v +≥,∴1283PO F F ≥u u u v u u u u v,当且仅当12,,F P F 三点共线时等号成立. 又PO a ≥u u u v ,122F F c =u u u u v ,∴86a c ≥,∴43c e a =≤,又1e >,∴413e <≤.故离心率的取值范围为41,3⎛⎤⎥⎝⎦.故选C . 【名师点睛】解答本题时注意两点:一是注意数形结合在解题中的应用,特别是由题意得到PO a ≥u u u v;二是根据题意得到,,a b c 间的关系,再根据离心率的定义求解,属于基础题.3.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限的交点为P ,线段2PF 的中点M ,则此双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】由题意知,双曲线的渐近线方程为b y x a =±,易求点P 的坐标为,bc c a ⎛⎫ ⎪⎝⎭,中点M 的坐标为,2bc c a ⎛⎫ ⎪⎝⎭,∵2222)2bc OM c a ⎛⎫=+= ⎪⎝⎭,∴224a b =,即2b a =.故选A . 【名师点睛】本题考查双曲线的方程与简单的几何性质,考查计算能力与转化能力,属于基础题. 4.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为340x y +=,则该双曲线的离心率是A .53 B .54C .43或53D .53或54【答案】D【解析】33404x y y x +=⇒=-,当焦点位于横轴时,2239416b b a a =⇒=,而222c a b =+,所以22295164c a c e a a -=⇒==; 当焦点位于纵轴时,22222222416165,,3993b bc a c c a b e a a a a -=⇒==+⇒=⇒==故选D . 【名师点睛】本题考查了通过双曲线的渐近线方程求离心率问题,解题的关键是对焦点的位置进行分类.5.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,抛物线()220=>y px p 与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且12sin PF F ∠=,则双曲线C 的离心率为AB或3 C .2D .2或3【答案】D【解析】不妨设P 在第一象限且()00,P x y ,则1,02p F ⎛⎫- ⎪⎝⎭,2,02p F ⎛⎫⎪⎝⎭, 过P 作直线2px =-(抛物线的准线)的垂线,垂足为E , 则112F PE PF F ∠=∠,故112sin sin 7F PE PF F ∠=∠=, 因1F PE △为直角三角形,故可设,2p E ⎛⎫- ⎪⎝⎭,()0P x , 且25PE PF k ==,17PF k =,所以02052242p x k k px ⎧+=⎪⎨⎪=⎩,解得043p k x k =⎧⎨=⎩或062p k x k =⎧⎨=⎩, 若043p k x k =⎧⎨=⎩,则124F F k =,22752ke k k ==-; 若062p k x k =⎧⎨=⎩,则126F F k =,33752ke k k ==-. 综上可得,选D .【名师点睛】离心率的计算关键在于构建,,a b c 的一个等量关系,构建时可依据圆锥曲线的几何性质来转化,有两个转化的角度:(1)利用圆锥曲线的定义转化为与另一个焦点;(2)利用圆锥曲线的统一定义把问题转化为与曲线上的点到相应准线的距离.6.【四川省成都七中2019届高三5月高考模拟测试数学】已知双曲线1C :22142-=x y ,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,则双曲线2C 的离心率为 A .3 B .2 CD .1【解析】由题意,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,设双曲线2C 的方程为22(0)24y x λλ-=>,则双曲线2C =A . 【名师点睛】本题主要考查了双曲线的离心率的求解,其中解答中根据双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,得出双曲线2C 的方程的形式,再根据离心率的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.【四川省华文大教育联盟2019届高三第二次质量检测数学】已知双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限内的交点为P ,线段2PF 的中点M 到,则双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】设双曲线的渐近线方程为()0,0by x a b a=±>>, 根据题意可知P 点坐标,bc c a ⎛⎫ ⎪⎝⎭,M为2PF 中点,所以可得,2bc M c a ⎛⎫⎪⎝⎭, 所以222222bc OM c c a ⎛⎫=+= ⎪⎝⎭,所以224a b =,即2b a =, 所以双曲线的渐近线方程为2y x =±,故选A .【名师点睛】本题考查通过双曲线中,线段的几何关系求双曲线渐近线方程,属于简单题.8.【四川省雅安市2019届高三第三次诊断考试数学】双曲线2212x y -=的离心率为A BCD【解析】由双曲线的方程2212x y -=可得:222,1a b ==,所以2223c a b =+=,所以2c e a ===.故选D . 【名师点睛】本题主要考查了双曲线的简单性质,考查计算能力,属于基础题.9.【四川省内江市2019届高三第三次模拟考试数学】双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为34y x =,则该双曲线的离心率为 A .43 B .53C .54D .2【答案】C【解析】双曲线()2222100x y a b a b-=>>,的一条渐近线方程为34y x =,可得34b a =,即222916c a a -=,解得e 22516=,e 54=.故选C . 【名师点睛】本题考查双曲线的简单性质的应用,涉及双曲线的渐近线方程,离心率等知识,考查计算能力.10.【四川省双流中学2019届高三第一次模拟考试数学】已知M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,,A F 分别为双曲线C 的左顶点和右焦点,线段FA 的垂直平分线过点M ,60MFA ∠=︒,则双曲线C 的离心率为A B .2 C .3 D .4【答案】D【解析】设双曲线另一个焦点为F ',如下图所示.因为线段FA 的垂直平分线过点M ,60MFA ∠=︒,所以MFA △是等边三角形,边长为a c +,M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,所以有23MF MF a MF a c -=⇒='+',在MFF '△中,由余弦定理可得:'2222cos60MF MF FF MF FF ︒=+-'⋅', 即22430a ac c +-=,解得4a c =,即4ca=,双曲线的离心率为4,故选D . 【名师点睛】本题考查了双曲线的定义、离心率,考查了转化思想、数形结合思想.11.【四川省宜宾市2019届高三第三次诊断性考试数学】已知双曲线22213x y a -=的左右焦点分别为12,F F ,以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于,A B 两点,则四边形12F AF B 的面积为A .3B .4C .5D .6【答案】D【解析】因为双曲线22213x y a -=的左右焦点分别为()()12,0,0F c F c -,,双曲线的渐近线方程为y x a=±0ay -=, 以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于A ,B 两点, 根据焦点到渐近线的距离及双曲线中a b c 、、的关系,可得223a c a ==+⎪⎩,解得a c ==A ⎝⎭,则四边形12F AF B的面积为1212122622F AF B F AF S S ==⨯⨯=.故选D . 【名师点睛】本题考查双曲线的简单性质以及圆与双曲线的位置关系的应用,考查转化思想以及计算能力,属于中档题.12.【四川省成都市外国语学校2019届高三一诊模拟考试数学】过双曲线C :22221x y a b-=的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为A .221124x y -=B .22179x y -=C .22188x y -=D .221412x y -=【答案】D【解析】∵以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点), ∴半径4R c ==,则圆的标准方程为()22416x y -+=,(),0A a ,b y a b a=⋅=,即(),B a b ,则()22416a b -+=,即2281616a a b -++=,即280c a -=,即816a =,则2a =,216412b =-=,则双曲线C 的方程为221412x y -=,故选D .【名师点睛】本题主要考查双曲线方程的求解,根据圆的性质先求出半径4c =是解决本题的关键.属于简单题.13.【四川省成都市2019届高三毕业班第二次诊断性检测数学】已知双曲线()222:10y C x b b-=>的焦距为4,则双曲线C 的渐近线方程为 A.y =B .2y x =±C .3y x =± D.y =【答案】D【解析】双曲线C :()22210y x b b-=>的焦距为4,则2c =4,即c =2,∵1+b 2=c 2=4,∴b =C 的渐近线方程为y =x ,故选D .【名师点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.14.【四川省2019届高三联合诊断数学】已知双曲线()222:103x y C a a -=>的右焦点为F ,则点F 到C的渐近线的距离为 A .3 BC .a D【答案】B【解析】因为双曲线()222:103x y C a a -=>的右焦点为()0F c ,,渐近线y x =, 所以点F到渐近线y x ===B . 【名师点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为22221x y a b-=,则渐近线方程为b y x a =±.15.【四川省广安、眉山、内江、遂宁2019届高三第一次诊断性考试数学】若双曲线221x y m-=的一条渐近线为20x y -=,则实数m = A .2 B .4 C .6 D .8【答案】B【解析】∵双曲线的方程为221x y m-=,∴双曲线的渐近线方程为yx ,又∵一条渐近线方程为y =12x ,∴m =4.故选B . 【名师点睛】本题给出双曲线的方程和一条渐近线方程,求参数m 的值,属于基础题.16.【四川省高2019届高三第一次诊断性测试数学】中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆()2221x y -+=都相切,则双曲线C 的离心率是A .2B .2C2D.3或2【答案】A【解析】设双曲线C 的渐近线方程为y =kx,∴k =,得双曲线的一条渐近线的方程为3y =,∴焦点在x 、y 轴上两种情况讨论: ①当焦点在x轴上时有:b c e a a ==②当焦点在y轴上时有:23a c e b a ===.∴求得双曲线的离心率2A . 【名师点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案. 17.【贵州省遵义航天高级中学2019届高三第十一模(最后一卷)数学】设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c =2,213PF F S =△,则双曲线的两条渐近线的夹角为 A .5π B .4πC .π6D .π3【答案】D【解析】由题意可得22121216132PF PF PF PF ⎧+=⎪⎨=⎪⎩,可得212)4PF PF -=(, 可得1222PF PF a -==,可得a =1,b所以双曲线的渐近线方程为y =,可得双曲线的渐近线的夹角为π3,故选D . 【名师点睛】本题主要考察双曲线的性质及渐近线的方程,熟练掌握其性质是解题的关键.18.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知抛物线2y =的焦点为双曲线2221(0)x y a a-=>的一个焦点,那么双曲线的渐近线方程是A.3y x =±B.y =C.2y x =± D.y =【答案】C【解析】抛物线2y =的焦点为),所以双曲线中c =,由双曲线方程2221x y a-=,222+=a b c,所以a =因此双曲线的渐近线方程为2y x =±,故选C . 【名师点睛】本题考查抛物线的焦点,根据焦点求双曲线的方程和渐近线方程,属于简单题. 19.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知A 为双曲线22221(0,0)x y a b a b-=>>的右顶点,P 为双曲线右支上一点,若点P 关于双曲线中心O 的对称点Q 满足AP k ⨯14AQ k =,则双曲线的离心率为 A1BCD1【答案】B【解析】设(,),(,),P x y Q x y --∵AP k ⨯14AQ k =, ∴222000014y y y y y x a x a x a x a x a -----⋅=⋅==----+-, ∵22221x y a b -=,∴22222=()b y x a a-,∴222222()14b x a ax a -=-, ∴a =2b ,∴222244()a b c a ==-,∴2254a c =,∴2e =.故选B . 20.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知双曲线C的一个焦点坐标为0),渐近线方程为2y x =±,则C 的方程是 A .2212y x -=B .2212x y -=C .2212y x -=D .2212x y -=【答案】B【解析】因为双曲线C的一个焦点坐标为),所以c =又因为双曲线C的渐近线方程为2y x =±,所以有2b a=a ⇒=,c =而c =1a b ==,因此双曲线方程为2212x y -=,故选B .【名师点睛】本题考查了求双曲线的标准方程,考查了解方程、运算能力.21.【云南省2019届高三第一次毕业生复习统一检测数学】双曲线M 的焦点是1F ,2F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为23π的等腰三角形,则M 的离心率是 A1B1C D 【答案】C【解析】不妨设P 在第一象限,由于12PF F △是有一个内角为23π的等腰三角形,故()2P c ,代入双曲线方程得2222431c c a b -=,化简得4224480c a c a -+=,42810e e -+=,解得2e =,故e =C . 【名师点睛】本小题主要考查双曲线离心率的求法,考查等腰三角形的知识,属于基础题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】已知椭圆22221x y a b+=左右焦点分别为12,F F ,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,已知椭圆的离心率为134e =,则双曲线的离心率2e =AB .8C .4D .2【答案】B【解析】椭圆22221x y a b+=左右焦点分别为12,F F ,椭圆的离心率为134e =,不妨令4,3a c ==,则b =221167x y +=,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,可设(),,0,0P s t s t >>,可得()13,PF s t =---u u u r ,()23,PF s t =--u u u u r ,则222291167s t s t ⎧+=⎪⎨+=⎪⎩,解得22329499s t ⎧=⎪⎪⎨⎪=⎪⎩, 代入双曲线方程渐近线方程n y x m =±,可得224932n m =,双曲线的离心率为:28e ===.故选B . 【名师点睛】本题考查椭圆的简单性质以及双曲线的简单性质的应用,利用垂直关系和点在椭圆上建立方程组,求得双曲线,a b 之间满足的关系是解题关键.23.【广西柳州市2019届高三毕业班1月模拟考试高三数学】已知双曲线()2222100x y C a b a b-=>>:,的离心率为2,左焦点为1F ,点()0Q (c 为半焦距).P 是双曲线C 的右支上的动点,且1PF PQ +的最小值为6.则双曲线C 的方程为___________.【答案】2213y x -=【解析】设双曲线右焦点为2F ,则122PF PF a -=,所以122PF PQ a PF PQ +=++, 而2PF PQ +的最小值为22QF c ==,所以1PF PQ +最小值为226a c +=,又2c a =,解得12a c ==,,于是23b =,故双曲线方程为2213y x -=. 【点睛】本题考查了双曲线的方程,双曲线的定义,及双曲线的离心率,考查了计算能力,属于中档题.24.【西藏拉萨市2019届高三第三次模拟考试数学】已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点为1F 、2F ,过1F 且斜率为2的直线l 与C 的一条渐近线在第一象限相交于A 点,若21AF AF ⊥,则该双曲线的离心率为___________. 【答案】3【解析】∵21AF AF ⊥,∴12AF F △是直角三角形,又O 是12F F 中点,∴AO c =,又A 在双曲线渐近线上,∴(,)A a b ,∴12tan AF F ∠=2b ac =+, 变形可得:22230c ac a --=,()(3)0c a c a +-=,∴3c a =,3ce a==.故答案为:3. 【点睛】本题考查双曲线的几何性质,解题关键是掌握双曲线的性质:即过双曲线22221x y a b -=(0,0)a b >>的右顶点A 作x 轴垂线,交渐近线于点P ,则OP c =,AP b =.。
2021届湖南省长沙市雅礼中学高三下学期5月高考适应性考试理科数学试题
2.D
【分析】
根据复数运算,即可容易求得结果.
【详解】
.
故选:D.
【点睛】
本题考查复数的四则运算,属基础题.
3.C
【分析】
通过图表所给数据,逐个选项验证.
【详解】
根据图示数据可知选项A正确;对于选项B: ,正确;对于选项C: ,故C不正确;对于选项D: ,正确.选C.
A.2B. C. D.5
6.已知函数 的图像向右平移 个单位长度后,得到的图像关于 轴对称, ,当 取得最小值时,函数 的解析式为( )
A. B.
C. D.
7.在菱形 中, , , , 分别为 , 的中点,则 ()
A. B. C.5D.
8.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )
(1)求曲线G的方程;
(2)设直线l与曲线G交于M,N两点,点D在曲线G上, 是坐标原点 ,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
21.已知函数 .
(1)证明:函数 在 上存在唯一的零点;
(2)若函数 在区间 上的最小值为1,求 的值.
22.在直角坐标系 中,曲线 的参数方程为 ( 为参数, ),点 .以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
19.某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别
男
2
3
5
2019年高考真题和模拟题分项汇编数学(理):专题11 算法初步(含解析)
专题11 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷理数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A =+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3, 结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【答案】A【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5C .6D .7【答案】C【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2C .3D .4【答案】B【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得x = 若2x >,得到2log 1x =,无解,因此,可输入的实数x 的值可能为2个.故选B . 11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值 【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A.2-B.1 3 -C.12D.3【答案】A【分析】根据程序框图进行模拟运算得到x的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x=,∴当1i=时,13x=-;2i=时,2x=-;3i=时,3x=,4i=时,12x=,即x的值周期性出现,周期数为4,∵201850442=⨯+,则输出x的值为2-,故选A.【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出 的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<,当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。
专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)
【母题原题1】【2019年高考全国Ⅲ卷理数】已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16 B .8 C .4 D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,联立等比数列的通项公式和前n 项和公式构成方程组,可以知其三求其二,属于基础题.【母题原题2】【2018年高考全国Ⅲ卷理数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.专题05 等比数列(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】1.熟练掌握等比数列的通项公式、前n 项和公式.2.掌握与等比数列有关的数列求和的常见方法.3.了解等比数列与指数函数的关系.【命题规律】从近三年高考情况来看,本讲是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等比数列通项形如指数函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【方法总结】1.等比数列的判定与证明常用方法如下: (1)定义法.1n n a a +=q (q 为常数且q ≠0)或-1n n aa =q (q 为常数且q ≠0,n ≥2)⇔{a n }为等比数列; (2)等比中项法.21n a +=a n ·a n+2(a n ≠0,n ∈N *)⇔{a n }为等比数列;(3)通项公式法.a n =a 1q n –1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列;(4)前n 项和公式法.若S n 表示数列{a n }的前n 项和,且S n =–aq n +a (a ≠0,q ≠0,q ≠1),则数列{a n }是公比为q 的等比数列.由a n+1=qa n ,q ≠0,并不能断言{a n }为等比数列,还要验证a 1≠0.证明一个数列{a n }不是等比数列,只需要说明前三项满足22a ≠a 1·a 3,或者存在一个正整数m ,使得21m a +≠a m ·a m+2即可.2.等比数列的基本运算方法:(1)通项法:等比数列由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列的相关问题,一般给出两个条件就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题. 例如:①若已知n ,a n ,S n ,先验证q=1是否成立,若q ≠1,可以通过列方程组-111,(1-),1-n n n n a a q a q S q ⎧=⎪⎨=⎪⎩求出关键量a 1和q ,问题可迎刃而解.②若已知数列{a n }中的两项a n 和a m ,可以利用等比数列的通项公式,得到方程组-11-11,,n n m ma a q a a q ⎧=⎨=⎩两式相除可先求出q ,然后代入其中一式求得a 1,进一步求得S n .另外,还可以利用公式a n =a m ·q n –m 直接求得q ,可减少运算量.(3)对称设元法:一般地,若连续奇数个项成等比数列,则可设该数列为…,xq,x ,xq ,…;若连续偶数个项成等比数列,则可设该数列为…,3x q ,x q,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况).这样既可减少未知量的个数,也使得解方程较为方便. 3.错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求解,一般是在等式的两边同乘以等比数列{b n }的公比,然后作差求解.若{b n }的公比为参数(字母),则应对公比分等于1和不等于1两种情况讨论.1.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若23a =,524a =-,则1a =A .23 B .23- C .32-D .32【答案】C 【解析】因为3528a q a ==-,所以2q =-,从而132a =-.故选C . 【名师点睛】本题考查了等比数列的基本量运算,属于基础题.2.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若22a =,554a =-,则1a = A .23B .23-C .32-D .32【答案】B 【解析】因为35227a q a ==-,所以3q =-,从而2123a a q ==-.故选B . 【名师点睛】本题主要考查了等比数列的基本量运算,属于基础题.3.【四川省成都市外国语学校2019届高三一诊模拟考试数学】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为A .10B .11C .12D .13【答案】C【解析】∵正项等比数列{}n a 中,512a =,()26753a a a q q +=+=,∴26q q +=. ∵0q >,解得,2q =或3q =-(舍),∴1132a =,∵()1231122132 (1232)n nn a a a a --++++==-,∴()1221123232n n nn -->⨯.整理得,()1152n n n ⎛⎫>-- ⎪⎝⎭,∴112n <≤,经检验12n =满足题意,故选C .【名师点睛】本题主要考查了等比数列的通项公式及求和公式,等比数列的性质等知识的简单综合应用,属于中档试题.4.【四川省巴中市2019届高三零诊考试数学】记n S 为等比数列{a n }的前n 项和,已知S 2=2,S 3=–6.则{a n }的通项公式为A .(2)nn a =- B .2nn a =- C .(3)nn a =-D .3nn a =-【答案】A【解析】根据题意,设等比数列{}n a 的首项为1a ,公比为q ,又由22S =,36S =-,则有()()1211216a q a q q ⎧+=⎪⎨++=-⎪⎩,解得12a =-,2q =-,则()2nn a =-,故选A . 【名师点睛】本题考查等比数列中基本量的计算,属于简单题.5.【四川省南充市高三2019届第二次高考适应性考试高三数学】已知等比数列{}n a 中的各项都是正数,且1321,,22a a a 成等差数列,则101189a a a a +=+ A.1+B.1C.3+D.3-【答案】C【解析】因为等比数列{a n }中的各项都是正数,设公比为q ,得q >0, 且1321,,22a a a 成等差数列,可得3122a a a =+,即a 1q 2=a 1+2a 1q , 因为10a ≠,得q 2–2q –1=0,解得q =或q =1(舍),则101189a a a a +=+()28989q a a a a +=+q 2=C . 【名师点睛】本题考查等比数列的通项公式和等差数列的中项性质,考查方程思想和运算能力,属于基础题.6.【四川省攀枝花市2019届高三第二次统一考试数学】已知等比数列{}n a 的各项均为正数,且13a ,312a ,22a 成等差数列,则64a a = A .1 B .3 C .6 D .9【答案】D【解析】设各项都是正数的等比数列{a n }的公比为q ,(q >0) 由题意可得2312a ⨯=13a +22a ,即q 2–2q –3=0, 解得q =–1(舍去),或q =3,故64a a =q 2=9.故选D .【名师点睛】本题考查等差中项的应用和等比数列的通项公式,求出公比是解决问题的关键,属于基础题.7.【四川省成都石室中学2019届高三第二次模拟考试数学】设等比数列{}n a 的前n 项和为n S ,公比为q .若639S S =,562S =,则1a =A .3 BC D .2【答案】D【解析】等比数列{a n }中,若S 6=9S 3,则q ≠±1, 若S 6=9S 3,则()()631111911a q a q qq--=⨯--,解可得q 3=8,则q =2,又由S 5=62,则有S 5=()5111a q q--=31a 1=62,解得a 1=2,故选D .【名师点睛】本题考查等比数列的前n 项和公式的应用,属于基础题.8.【四川省宜宾市2019届高三第二次诊断性考试数学】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+【答案】C【解析】()45,a a =a ,()76,a a =b ,且4⋅=a b ,∴47a a +56a a =4, 由等比数列的性质可得:110a a =…=47a a =56a a =2, 则2122210log log log a a a +++=log 2(12a a •10a )=()5521102log log 25a a ==.故选C .【名师点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.9.【贵州省贵阳市2019届高三2月适应性考试(一)数学】等比数列{a n }的前n 项和S n =a •2n +1(n ∈N *),其中a 是常数,则a =A .2-B .1-C .1D .2【答案】B【解析】n =1时,a 1=S 1=2a +1.n ≥2时,a n =S n –S n –1=a •2n +1–(a •2n –1+1),化为a n =a •2n –1, 对于上式n =1时也成立, ∴2a +1=a ,解得a =–1.故选B .【名师点睛】本题考查了等比数列的通项公式、方程的解法,考查了推理能力与计算能力,属于中档题. 10.【河南省新乡市2019届高三第三次模拟测试数学】已知等比数列{}n a 的前n 项和为n S ,且55S =,1030S =,则15S =A .90B .125C .155D .180【答案】C【解析】因为等比数列{}n a 的前n 项和为n S , 所以51051510,,S S S S S --成等比数列,因为5105,30S S ==,所以105151025,255125S S S S -=-=⨯=, 故1512530155.S =+=故选C .【名师点睛】本题考查了等比数列的性质,若等比数列{}n a 的前n 项和为n S ,则232,,n n n n nS S S S S --也成等比数列,这是解题的关键,属于较为基础题.11.【甘肃、青海、宁夏2019届高三上学期期末联考数学】设等比数列{}n a 的前n 项和为n S ,若122a a -=,236a a -=,则4S =A .–60B .–40C .20D .40【答案】B【解析】设等比数列的公比为q ,由12232,6a a a a -=-=,可得1121126a a q a q a q -=⎧⎨-=⎩,解得131q a =⎧⎨=-⎩, 故()441134013S -⨯-==--,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 12.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】在等比数列{}n a 中,131a a +=,5791120a a a a +++=,则1a =A .16B .13C .2D .4【答案】B【解析】因为()45713a a a a q +=+=q 4,()891113a a a a q +=+,所以q 8+q 4=20,所以q 4=4或q 4=–5(舍),所以q 2=2,13a a +211a a q =+=13a =1,所以1a 13=. 故选B .【点睛】本题考查了等比数列的通项公式,考查等比数列的性质,要求熟练掌握等比数列的性质的应用,比较基础.13.【湖南省益阳市桃江县第一中学2019届高三5月模拟考试数学】已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S = A .10 B .7 C .8 D .4【答案】C【解析】由题意得13123321231322111124a a a a a S a a a a a a a +++++=+===,38S ∴=,故选C . 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.14.【江西省临川一中2019届高三年级考前模拟考试数学】已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为A .1B .1或12CD.±【答案】C【解析】因为2474S S =,所以()()()124234344a a S S a a +=-=+, 故234q =,因为{}n a 为正项等比数列,故0q >,所以q =C . 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q m n p q ∈+=+N ,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --为等比数列(0n S ≠)且公比为nq .15.【山东省临沂市2019年普通高考模拟考试(三模)数学】已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为A .1B .12-C .1或12-D .112-或【答案】C【解析】等比数列{}n a 中,37a =,前三项之和321S =, 若1q =,37a =,33721S =⨯=,符合题意;若1q ≠,则()213171211a q a q q⎧=⎪-⎨=⎪-⎩,解得12q =-,即公比q 的值为1或12-,故选C .【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题.等比数列基本量的运算是等比11数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知三求二”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.16.【安徽省江淮十校2019届高三年级5月考前最后一卷数学】已知等比数列{}n a 的公比12q =-,该数列前9项的乘积为1,则1a = A .8 B .16C .32D .64【答案】B 【解析】由已知1291a a a =,又2192837465a a a a a a a a a ====,所以951a =,即51a =,所以41112a ⎛⎫-= ⎪⎝⎭,116a =,故选B . 【点睛】本题主要考查等比数列的性质以及等比数列的基本量计算,熟记等比数列的性质与通项公式即可,属于常考题型.17.【山西省2019届高三高考考前适应性训练(三)数学】已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则8T = A .1024 B .2048 C .4096 D .8192【答案】C【解析】设等比数列{}n a 的公比为q ,由29T T =得761a =,故61a =,即511a q =.又2121512a a a q ==,所以91512q =,故12q =,所以36312832424096a T T a q ⎛⎫===== ⎪⎝⎭.故选C .【点睛】本题考查等比数列的性质、等比数列的通项公式,考查计算化简的能力,属中档题.。
2019届四川省成都石室中学高三适应性考试数学理科试题
成都石室中学高2021届高考适应性测试〔、选择题1 .集合 A= x|0 x2 ,B={ 1,0,1,2},那么 A B=〔〕 A. 0,2 B. 0,1,2C. -1,2【答案】B 【解析】 【分析】根据交集的定义,即可求解.【详解】由于 A {x|0 x 2}, B 1,0,1,2 ,那么 AI B 0,1,2 , 应选:B . 【点睛】此题考查集合间的运算,属于根底题.. .. ...... ....... . (2)2.设i 为虚数单位,那么复数 z ——在复平面内对应的点位于 〔〕1 iA.第一象限B.第二象限C.第三象限【答案】A 【解析】 【分析】利用复数的除法运算化简 z,求得z 对应的坐标,由此判断对应点所在象限2 2 1 i【详解】Q z —— ------------------- 1 i, 对应的点的坐标为 1,1 ,1 i 1 i 1 i应选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于根底题、一,,5 …3 .计算log 2 sin —cos ——等于〔〕4 3利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值A.3 B.— 2C.2 D.—3〕数学试卷〔文科〕D. —1,0,1D.第四象限位于第一象限【详解】原式 log 2 -- cos 2— log 2 cos - 23 23应选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于根底题4 .党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能 社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活泼度的影响,在四个不同的企业各取两个部门进行共享经济比照试验,根据四个企业得到的试验数据画出如下四个等高条形图,最【答案】D 【解析】根据四个列联表中的等高条形图可知,图中D 中共享与不共享的企业经济活泼度的差异最大, 它最能表达共享经济对该部门的开展有显著效果,应选5 .在长方体 ABCD A 1B 1C 1D 1 中,AB 1, AD亚,AA J 3,那么直线DD 1与平面ABC 1所成角的余弦值为〔〕能表达共享经济对该部门的开展有显著效果的图形是〔1O KK QiUa ¥«*布事声串D.3血2 2.共享经济是公众将闲置资源通过D.D.【解在长方体中AB / /C 1D 1,得DD i 与平面ABC i 交于D 1,过D 做DO A 〕于O ,可证DO 平面ABCR , 可得 DD i A 为所求解的角,解 Rt ADD/即可求出结论.【详解】在长方体中 AB//C 1D 1,平面ABC 1即为平面ABC 1D 1, 过 D 做 DO AD i 于 O , Q AB 平面 AA i D i D ,DO 平面 AAD i D, AB DO, AB I AD i D,DO 平面ABC i D i , DD i A 为DD i 与平面ABC i 所成角,在 Rt ADD i ,DD i AA V 3, AD V 2, AD i 展,DD i 「3 .i5cos DD i A ---------- -=. ------------AD i .5 5【点睛】此题考查直线与平面所成的角,定义法求空间角要表达“做〞 “证〞 “算〞,三步骤缺一不可, 属于根底题6 .执行下面的程序框图,假设输出的 S 的值为63,那么判断框中可以填入的关于 i 的判断条件是〔直线DD i 与平面ABC i 所成角的余弦值为应选:C.B. iC. i 7D. i 8【解析】【分析】根据程序框图,逐步执行,直到S的值为63,结束循环,即可得出判断条件【详解】执行框图如下:初始值: 0,i 1,第一步: 1,i 2 ,此时不能输出,继续循环;第二步: 3,i 3,此时不能输出,继续循环;第三步: 7,i 4 ,此时不能输出,继续循环;第四步: 15,i 5,此时不能输出,继续循环;第五步: 15 16 31, i 1 6 ,此时不能输出,继续循环;第六步: 31 32 63, i 1 7 ,此时要输出, 结束循环;故,判断条件为i6.应选B【点睛】此题主要考查完善程序框图,只需逐步执行框图,结合输出结果, 即可确定判断条件,属于常考题型.7. r r 一一…’•平面向量a,b满足a=2,b=1,a与b 夹角为2 「,r一,且(a+3b) (2a— b),那么实数的值为()A. 7B. 3C. 2D. 3【解析】【分析】由可得r2a 0 ,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得2 cos一r2a 0,r2得2a3r2b 3.应选:D .【点睛】此题考查向量数量积运算,向量垂直的应用, 考查计算求解水平,属于根底题8.三棱柱ABC AB1c l的6个顶点都在球O的球面上.假设AB3, AC 4, AB AC,A. X 一24 B.37x —24 C. x1724D. X1324【分析】定正确选项【详解】由题可知2sin 2 -0,12人 5令 2x - - k ,k Z , 12 2 /口 k 倚 x — —, k Z24 237令k 3,得x 3— 24应选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴 的求法,属于中档题.10.F 为抛物线C : y 2 8x 的焦点,点A 1,m 在C 上,假设直线 AF 与C 的另一个交点为 B ,那么AB ()【答案】C 【解析】 【分析】求得A 点坐标,由此求得直线 AF 的方程,联立直线 AF 的方程和抛物线的方程,求得 B 点坐标,进而求 得AB【详解】抛物线焦点为 F 2,0,令x 1 , y 28 ,解得y2%/2 ,不妨设A 1,2行,那么直线AF 的方程为 y 2 x 22V2 x 2,由,2 2石*x 2 ,解得 A 1,2^2 , B 4, 4 V 2 ,所以1 2y 28xAB J 4 1 24& 2& 29.应选:C【点睛】本小题主要考查抛物线的弦长的求法,属于根底题^由点—,0求得12的值,化简f x 解析式,根据三角函数对称轴的求法,求得f x 的对称轴,由此确所以 f x sin 2x cos 2x 一6 672 sin 2x 一 —6 4\ 2 sin 2x12A. 12B. 10C. 9D. 811.过点P〔2强276〕的直线l与曲线y 713 x2交于A,B两点,假设uur uuu2PA 5AB ,那么直线l的斜率为A. 2 3B. 2 .3C. 2 .,3或2 .3D. 2【解析】【分析】利用切割线定理求得PA , AB,利用勾股定理求得圆心到弦AB的距离,从而求得APO 30 ,结合POx 45°,求得直线l的倾斜角为15°,进而求得l的斜率.【详解】曲线y .,桁口为圆X213的上半局部,圆心为0,0 ,半径为而.设PQ与曲线y J13~X2相切于点Q,_ 2那么PQ PA PB PA PA 所以|PA 5, AB| 2, AB7一PA5PO OQ 35.到弦AB的距离为.3 1 2.3, sin APO 2、3 2,3OP广厂一,所以APO 30 ,由于2.6 2 2POx 45°,所以直线l的倾斜角为45°30°15°,斜率为tan15°tan 45°30°tan 45°tan30°1 tan 45°tan30°2 3.应选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题 12.假设函数f x mx 2 e x 〔e 2.71828…为自然对数的底数〕在区间1,2上不是单调函数,那么实数m 的取值范围是 A. 一,2 5 10B. 5 10 2, 3C.2130c 10 D. 2,一3求得f x 的导函数f ,由此构造函数 2 m x 2 m,根据题意可知g x 在〔1,2〕上有变号零点.由此令g 0 ,利用别离常数法结合换元法, 求得 m 的取值范围.2 m, x 在区间1,2上不是单调函数, 在〔1,2〕上有变号零点,令 0, 那么 x 22x2,3 ,那么问题即m1 _在t1t 2,3上有零点,由于t -在2,3上递增,所以m 的取值t范围是52应选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题 .二、填空题6 4 2 313.在1 x 1 y 的展开式中,x2y3的系数为 .【答案】60【解析】【分析】根据二项展开式定理,求出(1 x)6含x2的系数和(1 y)4含y3的系数,相乘即可.6 4【详解】1 x 1 y的展开式中,所求项为:c2x2C:y3.4x2y360x2y3,2x2y3的系数为60.故答案为:60.【点睛】此题考查二项展开式定理的应用,属于根底题^14.矩形ABCD , AB= 4 , BC =3 ,以A, B为焦点,且过C, D两点的双曲线的离心率为【答案】2【解析】【分析】根据A,B为焦点,得c 2;又AC| |BC 2a求得a ,从而得到离心率.【详解】A, B为焦点2c 4 c 2C在双曲线上,那么AC BC 2a又AC J AB2 BC25 2a 2 a 1e c 2a此题正确结果:2【点睛】此题考查利用双曲线的定义求解双曲线的离心率问题,属于根底题^15 .函数f(x) e x e x1,那么关于x的不等式f (2x) f (x 1) 2的解集为…1【答案】(,) 3【解析】 【分析】判断g x f x 1的奇偶性和单调性, 原不等式转化为g 2x > 0 x 1 g x 1 ,运用单调性, 可得到所求解集. 【详解】令g x f x 1 ,易知函数g x 为奇函数,在 R 上单调递增,f 2x f x 12 f 2x 1 f x 1 1 >0,即 g 2x g x 1 >0,. . g 2x > g x 1 g x 112x> x 1 ,即 x> 一3,1故答案为一,3【点睛】 此题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算水平,属于中档题. __ ____ ,一 1 .16 .数列 a n 满足a 1 1,a 2—对任意n 2,n N * ,假设a na n1 2a n13a nd 〔,那么数列 a n 的3通项公式a n .【解析】 【分析】 ,八八1 1〜11、 …生——一由a n a n 1 2a n 13a n 1a n 1可得 ------ ---- 2( ------------- ),利用等比数列的通项公式可得a n 1 a n a n a n 11 1 1 1——2,数列{—— —}是等比数列,首项为 2,公比为2, a 2 a 1 a n 1 a na n 11 a n2n ,再利用累加法求和与等比数列的求和公式, 即可得出结论【详解】由1a n a n 1 2a n 13a n 1a n 1 ,得一 a n 1a n2(i—)a n 1【点睛】此题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属 于中档题.三、解做题17.在国家“群众创业,万众创新〞战略下,某企业决定加大对某种产品的研发投入 .为了对新研发的产品进变量x,y 且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲y 4X 53 ;乙$ 4x 105;丙§ 4.6X 104,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)假设由线性回归方程得到的估计数据与检测数据的误差不超过 1,那么称该检测数据是“理想数据〞,现从检测数据中随机抽取 3个,求“理想数据〞的个数 X 的分布列和数学期望. 【答案】(1)乙同学正确3(2)分布列见解析, E X -2a no n2, n 2,— a na n 1n n 12,1 a n 1) a n 11 1 ( ------------- )a n 1 a n 2 a 2 a 12n 12n 21 2n2nn 1,— 1 ,满足上式, a 11 2n 1故答案为1 2n 1【分析】〔1〕由可得甲不正确,求出样本中央点 〔X,]〕代入验证,即可得出结论;〔2〕根据〔1〕中得到的回归方程,求出估值,得到“理想数据〞的个数,确定“理想数据〞的个数X 的可能值,并求出概率,得到分布列,即可求解 ^【详解】〔1〕变量x,y 具有线性负相关关系,故甲不正确,Q X 6.5,y 79,代入两个回归方程,验证乙同学正确,故回归方程为:$ 4x 105〔2〕由〔1〕得到的回归方程,计算估计数据如下表:“理想数据〞有3个,故“理想数据〞的个数X 的取值为:0,1,2,3 .c °C 31C 2斗工P X 1CC 3旦C 6320 'C 3 2021 3 0P X 2 外—P X 1 瞪C 3 20 'C 3于是“理想数据〞的个数 X 的分布列,以及离散型随机变量的分布列和期望,意在 考查逻辑推理、数学计算水平,属于中档题1 202092020 20.................................... . ― 3 — — — ____ 1 18 .在平面四边形 ABCD 中, ABC ——,AB AD, AB 1,VABC 的面积为一.42(1)求AC 的长;(2)CD 画, ADC 为锐角,求tan ADC . 2【答案】(1)有;(2) 4. 【解析】 【分析】tan ADC 4(1)利用三角形的面积公式求得BC ,利用余弦定理求得 AC .(2)利用余弦定理求得 cos CAB,由此求得sin DAC ,进而求得sinADC,利用同角三角函数的基本关系式求得tan ADC .(1)在V ABC 中,由面积公式:S V ABCAB BC sin ABC BCBC在V ABC 中,由余弦定理可得:AC AB BC22 AB BC cos ABC 5AC 75(2)在VABC 中,由余弦定理可得:cos CABABAC |2 |BC2|AB | |BC |2.5 5sin DAC sin( DAB CAB)sinCAB2sin DAC〜r 2 -5 cos CAB----------------------5在VADC 中, 由正弦定理可得:ACCDsin ADC sin DAC 'sin ADC4<17 17Q ADC 为锐角cos ADC .1 sin 2ADC.17 17【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的根本关系式,属于中档题.19 .如图,在四面体DABC中,AB BC, DA DC DB.〔1〕求证:平面ABC 平面ACD ;〔2〕假设CAD 30 ,二面角C AB D为60°,求异面直线AD与BC所成角的余弦值.【答案】〔1〕证实见解析⑵31 6 【解析】【分析】〔1〕取AC 中点F,连接FD,FB ,得DF AC, AB BC ,可得FA FB FC, 可证VDFA^VDFB ,可得DF FB ,进而DF 平面ABC ,即可证实结论;〔2〕设E,G,H 分别为边AB,CD,BD 的中点,连DE,EF ,GF , FH ,HG ,可得GF//AD ,GH //BC,EF//BC ,可得FGH 〔或补角〕是异面直线AD与BC所成的角,BC AB ,可得EF AB, DEF为二面角C AB D的平面角,即DEF 60°,设AD a,求解FGH ,即可得出结论.【详解】〔1〕证实:取AC中点F,连接FD,FB ,由DA DC,那么DF AC,Q AB BC,那么FA FB FC ,故VDFA^VDFB, DFB DFA 一,2Q DF AC, DF FB, AC FB F 二• DF 平面ABC ,又DF 平面ACD ,故平面ABC 平面ACD(2)解法一:设G,H 分别为边CD, BD 的中点,那么 FG //AD,GH //BC ,FGH (或补角)是异面直线 AD 与BC 所成的角.设E 为边AB 的中点,那么EF//BC, 由 AB BC,知 EF AB . 又由〔1〕有DF 平面ABC, DF AB,EFI DF F,AB 平面 DEF, DE AB.,所以 DEF 为二面角C AB D 的平面角, DEF设 DA DC DB a,那么 DF AD CAD -2在RtADEF 中,EF a 旦旦a2 36从而 GH -BC EF —a 26「 1又 FG -AD2从而在VFGH 中,因FG FH ,12GH 近 FG 6在 RtVBDF 中,FH -BD60°,cos FGH因此,异面直线AD 与BC 所成角的余弦值为解法二:过点F 作FM AC 交AB 于点M ,8A,C,D 的坐标分别为A(0, 73,0),C(0,73,0), D 0,0,1二面角C AB设B m, n,0 ,那么muur3,AB (m,n 、.3,0) r设平面ABD的法向量为n x,y,z , uuiv v 皿AD n 那么uuiv vAB n mx n二1一3r r cosk,n uur r ik nl -r-r-k n由上式整理得9n22、3n 解之得n 囱〔舍〕或n4.6 7.3 八----- , ------ ,09 9cos juuruurrAD,CBHJLTAD41321 0 ,uuuCBJJJCBjuir uurAD CB4.692,30----- ,0 ,92—3-c 2 32 -------由〔1〕易知FC,FD,FM两两垂直,以F为原点,射线FM , FC,FD分别为x轴,y轴, z轴的正半轴,建立空间直角坐标系 F xyz. 不妨设AD 2,由CD AD, CAD易知点juur那么AD(0, ,3,1)r显然向量k 0,0,1 是平面ABC的法向量因此,异面直线 AD 与BC 所成角的余弦值为 31.【点睛】此题考查空间点、线、面位置关系,证实平面与平面垂直,考查空间角,涉及到二面角、异面直 线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推 理、数学计算水平,属于中档题2 - 、1(a> b>0)的左,右焦点,点P( 1,—)在椭圆E 上,且抛物线b 222y 4x 的焦点是椭圆E 的一个焦点.(1)求a , b 的值:uuuv uuuvD 两点,当F 1A F 1B 1时,求^ F i CD 的面积.【解析】 【分析】(1)由根据抛物线和椭圆的定义和性质,可求出(2)设直线i 方程为x ty 1,联立直线与圆的方程可以求出t 2,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1) y 2= 4x 焦点为 F (1, 0),那么 F 1 (1 , 0), F 2 (1, 0),2a= PF 1 + PF 2 =2五,解得 a 衣,c=1, b = 1,(n)由,可设直线l 方程为x ty 1, A(x 1,y 1),B(x 2,y 2)2X20.F i, F 2分别是椭圆E : -2 a (2)过点F 2作不与x 轴重合的直线l ,设l 与圆x 222_ 2 .y a b 相交于A, B 两点,且与椭圆 E 相交于C,【答案】(1) a夜,b 1 ; (2)迤 7x= ty 1 联立 x 22 ,得(t 2+2) y 2+2ty-1 =0 , △= 8(t 2+1) >0—y =1 21,8 3 _ 4 . 6 ----------- ------- 77 3【点睛】此题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆, 直线与椭圆的位置关系问题.意在考查学生的数学运算水平.a 2 _ ____21.函数f x xlnx - x x, a R, e 2.71828 是自然对数的底数2(1)假设a e,讨论f x 的单调性;(2)假设f x 有两个极值点x,x 2,求a 的取值范围,并证实:x 1x 2 x 1 x 2. 公一 ,、口 c 1 2 、口 1 -1…【答案】(1)减区间是 0,-,增区间是 一,;(2)0,-,证实见解析.eee【解析】 【分析】'''(1)当a e 时,求得函数f x 的导函数f x 以及二阶导函数 f x ,由此求得f x 的单调区间2t x ty 122联立 22 得(t 1)y 2ty 2 0 ,易知△> 0,那么x y 3 y i y 2 t 2+iy 〔y 22 p+1uuuz uuv F i A F i B=(x i1)(x 21) y 1y 2= (ty i +2)(ty 2+2)+y 1y 2=(t 2 +1)/ 、 2-2t 2y 1y 2 + 2t (y i +y 2)+4=- t +1uuu uuu 由于F 1A F 1B1,所以孕_ = 1,t 2+ 1解得t 2= 13设C9芈),B(x 4, y 4),那么丫3+丫42t t 2+2 y 3 y 4=i t 22S F 1CDIn xIn x ……,,,---,构造函数g x -利用导数求得 g x 的单调区间、极值和最值,结合f x 有两个极值点,求得 a 的取值范围.将x,x 2代入f x lnx ax 列方程组,由0,一 一 1又f" x - e 0 ,所以f x 在〔0,〕单增, x 一, 「一从而当x 0,-时,f ' x 0, f x 递减,e,1 , .............当x -, 时,f x 递增.e1 ln x2x故g x 在0,e 递增,在〔e,〕递减,1所以g x m g e —.注意到当x 1时g x 0 , e 所以当a 0时,f x 有一个极值点,1 .当0 a -时,f x 有两个极值点,.. 1 , • ............ 当a —时,f x 没有极值点, C 1综上a 0,- e由于x,x 2是f x 的两个极值点,不妨设x x 2,得1x 1e x 2,(2)令 f (x )= 0求得 a ln x i x 2 lnx 2 ------------- --------- a ln x 1x 2 x x 2 x 2x 1 x 2证彳x x 1 x 2 x 1 x 2.【详解】〔1〕 Q f' xlnx ax lnx ex,(2) f x lnx ax .令 f ' x 0ln xln x 所以ln 斗 ln x 2 a% 0 ax 2 0ln % a4 ln x 2 ax 2由于g x 在(e,)递减,且X i X 2 X 2,m 、Jn x i X 2lnx 2 In X i X 2所以 ---------- ------ 2------------------------aX 1 X 2X 2X 1 X 2In x 1 x 2 In x 1x 2 所以 ---------- ----------- X 1X 2X 1 x 2X i X 2X iX 2【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数 证实不等式,考查化归与转化的数学思想方法,属于难题^22.在平面直角坐标系 xOy 中,直线I i 的倾斜角为30°,且经过点A 2,1 .以坐标原点.为极点,x 轴正半 轴为极轴建立极坐标系,直线I 2: cos 3,从原点.作射线交I 2于点M 点N 为射线OMk 的点,满足OM ON i2,记点N 的轨迹为曲线C.(I)求出直线Ii 参数方程和曲线 C的直角坐标方程;又 In % In X 2a X 1 X 2In x 1x 2 x 1 x 2(n)设直线I i与曲线C交于P, Q两点,求AP AQ值.21t24x(I)直接由写出直线即p= 4cos 0,然后化为普通方(n)将Ii的参数方程代入|AP|?|AQ| 的值.【详解】(I )直线Ii的参数数方程,直角坐标万程得到关于t的o30°, (t为参数)工可得0 x 0 . ; ( n) 3.,小(P1, 91),P1>0)t的几2y为y 1(t为参数),X2,t i t 2=-3 , |AP|?|AQ|=|t i t 2|=|-3|=3 .【点睛】此题考查简单曲线的极坐标方程,考查直角坐标方程与直角坐标方程的互化,练习了直线参数方 程中参数t 的几何意义的应用,是中档题.的范围.当2 x 4时,原不等式等价于 x 2 x 4 3x,解得x 2,所以2 x 4综上所述,不等式解集为 2,Jt21 t2 (t 为参数).设 N (p, 9) , M (p 1,.1), (p > 0, p 1>0),P1P 12那么9 01,即P 3 一 一 ------ 12 ,即 p =4cos 0 , cos 0,曲线C 的直角坐标方程为 x 2-4x+y 2=0 (xw 0).(D) 将l i 的参数方程代入 C 的直角坐标方程中,得(2 餐 2 4 2 “1 卡..即t 2 —t 3 0, t 1, t 2为方程的两个根, 223.函数 f(x) |X 2| |x 4|.(1)求不等式 f(x) 3x 的解集;(2)假设 f(x) 1|对任意x R 恒成立, k 的取值范围.【答案】(1) 2, ;(2) ,2(1)通过讨论x 的范围,分为x 4, 2, x 4三种情形,分别求出不等式的解集即可;(2)通过别离参数思想问题转化为 ,根据绝对值不等式的性质求出最值即可得到 k【详解】(1)当x 4时,原不等式等价于 4 3x, 解得x 2 ,所以x 4,当x 2时,原不等式等价于 x 2 x 4 3x, 解得x 2 ,所以此时不等式无解, 5(2)由f X由于1时, 1时, 1x31当且仅当1所以k 2 ;0恒成立,所以4或XW 2时,等号成立,综上k的取值范围是,2 .【点睛】此题考查了解绝对值不等式问题,考查绝对值不等式性质以及分类讨论思想,转化思想,属于中档题.。
2019届山西省高三考前适应性训练二(二模)数学(理)试题(解析版)
2019届山西省高三考前适应性训练二(二模)数学(理)试题一、单选题1.已知集合[A -txlo 2!B ={X I X--X-2O},则A.B —A . Ill v x v 2 } B. W 2 二 I:门C. GlO v x v 1 丨D . txl 「12}【答案】C【解析】解一元二次不等式求得集合B,然后求两个集合的交集•【详解】由疋4-X-2 (x + 2)(x-l) < €,解得-2-x<},所以 A n B = to,l)|,故选 C.【点睛】本小题主要考查两个集合交集的概念及运算,考查一元二次不等式的解法,属于基础题.2 .设命题P:m血「0. C B1-KO J,则片为A . 上0尼= 1 B. V x< < 1C . m别M W 1 D. 3xo< ①严-No < 1【答案】B【解析】根据特称命题的否定是全称命题的知识,判断出正确选项【详解】原命题是特称命题,否定是全称命题,注意要否定结论,故本小题选 B.【点睛】本小题主要考查全称命题与特称命题,考查特称命题的否定是全称命题,属于基础题•3 •已知向量卜环满足I- I '■•:卜:,则与的夹角为'JL川 2 DiA . 7 B.舌 C .码 D ..;【答案】A【解析】对两边平方,利用数量积的运算公式,求得两个向量的夹角【详解】对肚El = 两边平方得' 5 + b2- 3 ,即I +4 = 3,解得沁紅於=宙6> = J故选A.【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,考查向量夹角的计算,属于基刍▼台=1 G > b > 0)的右焦点为F ,过F 作弋轴的垂线交椭圆 C 于A , B 两点,若△ OAB 是直角三角形(0为坐标原点),贝U C 的离心率为B .【答案】C【解析】根据题意得出两点的坐标,利用 M 页 •列方程,化简后求得椭圆的离【详解】础题•过作 轴的垂线交椭圆匕于卜/两点,故 ■B ,由于三角形加吋是直角三b 1角形,故西,即oXW = o ,也即(£?) ft ,化简得 c 4-3a 2c" 4 J = (J ,『一晁'+ l 二 0,解得 e 2 =— ,故选C. 【点睛】本小题主要考查直线与椭圆的交点, 考查椭圆离心率的计算,考查化归与转化的数学思 想方法,属于基础题• 5•下列函数中,既是奇函数,又在区间 (0, i )内是增函数的是A • - - - I'- D • y = e s -c? x 【答案】D 【解析】根据函数的奇偶性和在 内的单调性,对选项逐一分析排除, 由此得出正确 选项• 【详解】 对于A 选项,由于函数的定义域为 ,不关于原点对称,故为非奇非偶函数,排 除A 选项.对于B 选项,由于iW-泣/ f (xJ ,所以函数不是奇函数,排除 B 选项. 对于C 选项,眼熟y - sinZx 在G 刖上递增,在 选项不正确,故本小题选 D. 【点睛】上递减,排除C 选项.由于A,B,C 三个 本小题主要考查函数的奇偶性,考查函数的单调性,考查函数的定义域,属于基础题 6•如图1 ,已知正方体 ABCD-A i B i C i D i 的棱长为 2, M , N , Q 分别是线段 AD i , B i C , C i D i 上的动点,当三棱锥Q — BMN 的正视图如图 2所示时,此三棱锥俯视图的面积为4 •椭圆C :S2【解析】根据三棱锥的正视图确定QUMN的位置,由此画出俯视图并计算出俯视图的面积•【详解】由正视图可知,拥为一丄的中点,Ki":.两点重合,匕|是的中点.画出图像如下图所示, 三角形Q L BM I即是几何体)BMM的俯视图H = 2況2-片 K—* 1 K I-7、I x2 = ; .故£△』4选D.【点睛】本小题主要考查由三视图还原原图,考查俯视图面积的计算,考查空间想象能力,属于基础题.7 •执行如图所示的程序框图,则输出的:M直为1 JA 2 B.扌 C . 3 D . - J【答案】A【解析】运行程序,计算[寸的值,当.[J"时,输出的值•【详解】运行程序,i = = £, x =三】=2,判断否,崔==3,判断否,x • 3.i 4 ,判断否,x = ^.i = 5,判断否,周期为乩以此类推,兀=三1 =过17,判断否,兀=三1 = 2018,判断否,k=-2.] 2019,判断是,输出X = -2.故选A.【点睛】本小题主要考查计算循环结构程序框图输出结果,属于基础题&以正方体各面中心为顶点构成一个几何体, 从正方体内任取一点P,则P落在该几何体内的概率为【答案】C【解析】计算出题目所给几何体的体积,除以正方体的体积,由此求得相应的概率【详解】E GHIJ F,为正四棱锥•设正方体的边长为2,故画出图像如下图所示,几何体为GH 2,故 j 2「2& 1 4-,所以概率为3VE GHIJ FVABCD A, B1C1D11,故选C. 6【点睛】 本小题主要考查几何概型概率计算,考查椎体的体积计算,属于基础题9 .函数丫电〕一忧旅十切朋在 上的值域为【答案】B【解析】 利用特殊角的三角函数值,对选项进行排除,由此得出正确选项 【详解】由于孔0)= cosO--p?inC> -【,故排除 A,C 选项.由于K 兀)=c 俳丁申朝口兀=- 1,故排除 D 选 项•故本小题选B.【点睛】 本小题主要考查特殊角的三角函数值,考查三角函数的值域,属于基础题 £『 J I 10.双曲线>0左、右焦点为Fi , F2,直线y-y^b 与C 的右支相交于P , 若-:- I …「,则双曲线C 渐近线方程为A .CB .【答案】C【解析】求得p点的坐标,利用双曲线的定义求得I PF J,并由此列方程,解方程求得扌的值,进而求得的值,由此求得双曲线的渐近线方程.【详解】由,解得,根据双曲线的定有,双曲线的焦点慎如,故I PF J忑irF亠(¥?b)"-為,两边平方化简得kc I-4r(c-3 a" - 0,即4e2-4e -3 = 0,解得匚=£故- e2-l -:,所以:-牛,即双曲线的渐近线方程为丫 =土*, 故选C.【点睛】本小题主要考查双曲线的定义,考查双曲线和直线交点坐标的求法,考查双曲线的渐近线方程的求法,属于中档题•11 •电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一•计算机利用二进制存储信息,其中最基本单位是位(bit) : 1位只能存放2种不同的信息:0或I,分别通过电路的断或通实现. 字节(Byte) 是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为A. 254B. 381C. 510 D . 765【答案】B【解析】将符合题意的二进制数列出,转化为十进制,然后相加得出结果【详解】恰有相邻两位数是1其余各位数均是0的二进制数为1IOWOW ,110000 , HKX), 1100, 110, 11,共7个•转化为十进制并相加得(27 +沪)+ (严+刃+(23+刃+ G斗车卫1 +(2仃辺+(22+ ^0 + @ + 2°) ⑻,故选B.【点睛】本小题主要考查二进制转化为十进制,阅读与理解能力,属于基础题12 .函数代乂)二孑+訂長2x 2的零点个数是A . 0 B. 1 C. 2 D .与a 有关【答案】A【解析】禾U用导数求得函数的最小值,这个最小值为正数,由此判断函数没有零点・【详解】1256, 1346, 1356, 2346, 2356, 1456, 2456, 3456,共9种.令你 丸,解得* = In;,故函数rfx )在(-皿;)上递减,在(听- *上递增,函数在x =吠 处取得极小值也即是最小值,t (ln :) = I 十-21听-2 = -2访,由于}>2,故-诟、0 ,也 即是函数杠总|的最小值为正数,故函数卜扮|没有零点•故选A. 【点睛】本小题主要考查利用导数研究函数的零点问题, 考查利用导数研究函数的单调区间、极值和最值,综合性较强,属于中档题•二、填空题13 .如图所示,在复平面内,网格中的每个小正方形的边长都为 数分别是卜..5\,则 -V ■■-【解析】 根据图像求得点 A,B 对应的复数,然后求|旧'%的值. 【点睛】本小题主要考查复数的减法运算,考查复数模的运算,考查复数与复平面内点的对应, 属于基础题.14 .某校高三(1)班,高三(2)班,高三(3)班分别有3人,2人,1人被评为该校 三好学 生”现需从中选出4人入选市级 三好学生”,并要求每班至少有 1人入选,则不同的 人选方案共有 ____ 种(用数字作答). 【答案】9【解析】利用列举法列举出所有可能的方法数 •【详解】给学生编号,(1)班为】23〔,(2)班为丄5,(3)班为(3,则符合题意的选法为:1246,第7页共15页,侬)二宀,1,点A , B 对应的复【点睛】本小题主要考查利用列举法求解简单的排列组合问题111 1 115 -—------ 十 --------- + ------------- 十…十----------------------- =2 2.^4 2 十4 十& 21-4 + 6-18 2 + 4 + 6+301S ----------- ・【答案】誥【解析】先求得Z斗斗亠召斗…斗观的和,然后利用裂项求和法求得表达式的值•【详解】由于?十4十白十…十2n =匚\r""= n(Ti十]),而詁:D -》占,所以所求表达式I 11 11^1 10(H)]亍十亍彳十十11H0= 1 —1010 =【点睛】本小题主要考查等差数列前项和,考查裂项求和法,属于基础题•16 .已知四面体ABCD的四个顶点均在球O的表面上,AB为球O的直径,AB=4 ,AD=2 , BC=2逸,则四面体ABCD体积的最大值为___________ 。
2019年高考数学(理)精品资料:3.3 待定系数法(测)含解析
2019年高考数学(理)精品资料:3.3 待定系数法(测)总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______(一)选择题(12*5=60分)1. 【山东省恒台第一中学2019届高三上学期诊断】幂函数的图像过点( )A .B .C .D .【答案】B 【解析】 由题意,设幂函数,又由幂函数的图像过点,代入得,解得,即,所以,故选B.2.【2019年一轮复习讲练测】若存在非零的实数,使得对定义域上任意的恒成立,则函数可能是( )A .B .C .D .【答案】A 【解析】存在非零的实数,使得对定义域上任意的恒成立,可得函数的对称轴为,显然,满足题意,不满足题意,故选A.3.【2018届山东省济宁市高三上学期期末】已知函数的图象经过定点M ,若幂函数()f x x α=的图象过点M ,则α的值等于( )( ) A. 1- B. 12C. 2D. 3 【答案】B【解析】令31x -=,得4x =.此时()42g =,所以函数.由题意得24α=,解得12α=.选B. 4. 已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为( ) A .99100 B .99101 C. 100101 D .101100【答案】C5.【2018届湖北省天门、仙桃、潜江高三上学期期末】函数的图像如图所示,则的值等于A.22 D. 1 【答案】B【解析】由图知,所以,选B.6.【河南省周口市2019届高三上期末】 过椭圆的上顶点与右顶点的直线方程为,则椭圆的标准方程为( )。
【高三上数学】浙江省温州市普通高中2024届高三上学期第一次适应性考试数学试题(解析版)
浙江省温州市普通高中2024届高三上学期第一次适应性考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合20023x M x x ⎧⎫−=∈≤⎨⎬−⎩⎭R,则M ⋂=Z ( ) A .{}21,22 B .{}20,21,22 C .{}20,21,22,23D .{}R 2023x x ∈≤<2.设复数z 对应的点在第四象限,则复数()1001i z ⋅+对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【分析】由i 的周期性化简100(1i)+,计算后判断所求复数对应点的象限. 【详解】由复数()1001i z ⋅+对应的点在第四象限, 则设i(0,0)z a b a b =+><,由()50501002(1i)(1i)2i ⎡⎤+=+=⎣⎦5050502502i 2i 2===−得()0105505002(i)2i 2i 1z a b a b =−+=⋅+−−,由505020,20a b −<−>,得复数()1001i z ⋅+对应的点在第二象限. 故选:B.3.动点(),M x y 到定点()4,0F −的距离与M 到定直线l :254x =−的距离的比等于45,则动点M 的轨迹方程是( )A .221259x y +=B .2212516x y +=C .221259y x +=D .2212516y x +=4.已知向量()0,4a =,()3,3b =−−,则a 在b 上的投影向量的坐标是( ) A .()2,2−− B .()2,2 C .()0,3− D .()0,3根据投影向量的定义,结合坐标运算即可求解. 【分析】a 在b 上的投影向量为()()()22122cos ,2,2333b a b b a a b b b b b b⋅−===−=−+−, 5.已知离散型随机变量X 的分布列如下表所示.1a +2a +则()D X =( ) A .0.4a + B .0.8a + C .0.4 D .0.8【答案】D【分析】根据随机变量的方差公式可得. 【详解】由分布列可得()()()0.40.210.421E X a a a a =++++=+,()()()()2220.410.2110.4210.8D X a a a a a a =−−++−−++−−=,故选:D6.若函数()()π2sin ,03f x x ωω⎛⎫=− ⎪⎝⎭>,π0,2x ⎡⎤∈⎢⎥⎣⎦的值域为⎡⎤⎣⎦,则ω的取值范围是( ) A .5,43⎡⎤⎢⎥⎣⎦ B .510,63⎡⎤⎢⎥⎣⎦C .55,63⎡⎤⎢⎥⎣⎦ D .510,33⎡⎤⎢⎥⎣⎦7.已知{}n a 为等比数列,则“20241a =”是“12124047n n a a a a a a −⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,n 是任意正整数”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件【答案】C【分析】根据等比数列的性质,由递推公式()22m n p a a a m n p ⋅=+=可得出结论.8.如图,所有棱长都为1的正三棱柱111ABC A B C −,2BE EC =,点F 是侧棱1AA 上的动点,且2AF CG =,H 为线段FB 上的动点,直线CH ⋂平面AEG M =,则点M 的轨迹为( )A .三角形(含内部)B .矩形(含内部)C .圆柱面的一部分D .球面的一部分【答案】A【分析】根据题意首先保持H 在线段FB 上不动(与F 重合),研究当点F 运动时M 的轨迹为线段MN ,再根据H 点在线段FB 上运动的轨迹即可得出点M 的轨迹为MNE 及其内部的所有点的集合. 【详解】如下图所示:首先保持H 在线段FB 上不动,假设H 与F 重合根据题意可知当F 点在侧棱1AA 上运动时,若F 点在1A 点处时,G 为1CC 的中点, 此时由2AF CG =可得满足2FM MC =,当F 点运动到图中1F 位置时,易知112AF CG =,取11AG CF P ⋂=,可得12F P PC =, 取棱AC 上的点N ,满足2AN NC =,根据三角形相似可得,,M N P 三点共线, 当点F 在侧棱1AA 上从1A 点运动到A 点时,M 点轨迹即为线段MN ; 再研究当点H 在线段FB 上运动,当点H 在线段FB 上从点F 运动到点B 时,M 点的轨迹是线段ME , 当点H 在线段1F B 上从点1F 运动到点B 时,M 点的轨迹是线段PE ,因此可得,当点F 是侧棱1AA 上运动时,H 在线段FB 上运动时,点M 的轨迹为MNE 及其内部的所有点的集合;即可得M 的轨迹为三角形(含内部). 故选:A二、多选题9.在一次数学考试中,某班成绩的频率分布直方图如图所示,则下列说法正确的是( )A .图中所有小长方形的面积之和等于1B .中位数的估计值介于100和105之间C .该班成绩众数的估计值为97.5D .该班成绩的极差一定等于40【答案】ABC【分析】由频率分布直方图的性质可知A 正确;由中位数定义以及图中频率计算可知B 正确;由众数定义可得图中最高的区间即代表众数即可估计为97.5,即C 正确;由于成绩高分和最低分不一定分别为130,90,因此极差不一定为40,即D 错误.【详解】对于A ,由频率分布直方图的性质可知,图中所有小长方形的面积之和等于1,即A 正确;对于B ,易知组距为5,前两组成绩所占的频率为()0.010.0650.350.5+⨯=<,前三组成绩所占的频率为()0.010.060.0550.60.5++⨯=>,由中位数定义可得其估计值介于100和105之间,即B 正确;对于C ,由图可知频率最高的成绩区间[)95,100,取中间值为代表可知班成绩众数的估计值为97.5,即C 正确;对于D ,由图可知成绩最高区间为[]125,130,最低区间为[)90,95,但最高分和最低分不一定分别为130,90,所以其成绩极差不一定为40,即D 错误; 故选:ABC 10.已知平面α平面m β=,则下列结论一定正确的是( )A .存在直线a ⊂平面α,使得直线a ⊥平面βB .存在直线a ⊂平面α,使得直线//a 平面βC .存在直线a ⊂平面α,直线b ⊂平面β,使得直线a ⊥直线bD .存在直线a ⊂平面α,直线b ⊂平面β,使得直线//a 直线b 【答案】BCD【分析】A.由面面垂直的判定定理判断;B.由//a m 时,利用线面平行的判定定理判断;C.由,,//a m b b m β⊥⊂判断;D. 由//,,//a m b b m β⊂判断.【详解】A. 若存在直线a ⊂平面α,使得直线a ⊥平面β,则αβ⊥,故错误; B.当//a m 时,又 ,a m ββ⊄⊂,所以 //a β,故正确; C.当,,//a m b b m β⊥⊂时,a b ⊥,故正确; D. 当//,,//a m b b m β⊂时,//a b ,故正确; 故选:BCD11.若圆C 与直线34120x y −−=相切,且与圆2220x x y −+=相切于点()2,0A ,则圆C 的半径为( )A .5B .3C .53D .3412.定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有()()2e 0xf x f x −+=,且满足()()22f x f x +=',则( )A .函数()()e xF x f x =为奇函数B .不等式()3e 0e x xf x −<的解集为()0,ln2 C .若方程()()20f x x a −−=有两个根1x ,2x ,则122x x a +> D .()f x 在()()0,0f 处的切线方程为4y x = 【答案】AC三、填空题︒=,则sin333︒=(用a表示).13.已知sin63a)2263cos631sin 631a =−=−−=−−,14.((5511+= .15.与圆台的上、下底面及侧面都相切的球,称为圆台的内切球,若圆台的上下底面半径为1r ,2r ,且121r r ⋅=,则它的内切球的体积为 .16.斜率为1的直线与双曲线2222:1x y E a b−=(0,0a b >>)交于两点,A B ,点C 是曲线E 上的一点,满足AC BC ⊥,OAC 和OBC △的重心分别为,P Q ,ABC 的外心为R ,记直线OP ,OQ ,OR 的斜率为1k ,2k ,3k ,若1238k k k =−,则双曲线E 的离心率为 .因为OAC 的重心1OP k k ==2AC k k ⋅=AC BC ⊥,且ABC 的外心为点,因为AB k =8=−,所以2)3=.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程或不等式,然后转化为关于e 的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.四、解答题17.已知四棱锥P ABCD −的底面ABCD 为等腰梯形,//AD BC ,π4BAD ∠=,24AD BC ==,PB ⊥平面ABCD .(1)求证:AP CD ⊥;(2)若四棱锥P ABCD −的体积为2,求平面PCD 与平面PCB 夹角的余弦值., PB AB B PB=CD⊥平面PABAP CD⊥.(2)方法一:13P ABCD ABCD V S−=梯形∵2,AH AD BC AB=−=∴=()0,0,0B,()2,2,0C−,D()()(2,2,2,2,0,0,2, PC DC BC=−−=−=−法向量为(,,m x y =则2PC m x ⋅=,2DC m x ⋅=−1z =−,得(0,2,m =同理,设面PBC 法向量为(),,n a b c =,则222PC m a b c ⋅=−−,2BC n a ⋅=−取1a =,得()1,1,0n =,由题意,23cos ,332m n m n m n⋅===⋅. 设平面PCD 与平面PCB 的夹角为θ,则cos ,3m n =13ABCD ABCD S PB =⋅梯形AB BH ∴=,则DEH ∠为所求二面角夹角的平面角2,2PB BC AB CD ====,所以18.设ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且3C π=.(1)若1a b +=,求c 的最小值; (2)求cos cos cos2A BA B −+−的值. 时取等,此时ABC 为正三角形()1a a −−19.等差数列{}n a 的前n 项和为n S ,23a =,543S S S =+. (1)求n S ;(2)记n T 为数列{}n b 的前n 项和,若213b =,且是以2为公差的等差数列,求数列{}n b 的通项公式.【答案】(1)2n S n =(2)8,161,2n n b n n =⎧=⎨+≥⎩【分析】(1)根据等差数列基本量的计算即可得公差,进而可求解,()()2123413141161n n n b n n T n n n T −⎡⎤++−−+−+⎣===−+⎦,故8,161,2n n b n n =⎧=⎨+≥⎩. 20.已知()11exf x −=(0x >).(1)求导函数()f x '的最值;(2)试讨论关于x 的方程()f x kx =(0k >)的根的个数,并说明理由.21.已知抛物线24x y =的焦点为F ,抛物线上的点()00,A x y 处的切线为l . (1)求l 的方程(用0x ,0y 表示);(2)若直线l 与y 轴交于点B ,直线AF 与抛物线交于点C ,若ACB ∠为钝角,求0y 的取值范围.)由相切利用导数或判别式求斜率,再由点斜式写出方程;为钝角,所以0CF CB ⋅<,将向量坐标化得关于坐标的不等式,再利用韦达定理消元代入不等关系化简求解范围 即24x y =,为钝角,所以0CF CB ⋅<,)2110y x y −=−) 321113y y y ++−22.某电子器件由若干个相同的电子模块构成,每个电子模块由4个电子元件按如图所示方式联接,其中每个电子元件导通的概率均为0.9.(1)求每个电子模块导通的概率p (保留两位有效数字);(2)已知某电子器件由20个相同的电子模块构成,系统内不同电子模块彼此独立,是否导通互不影响,当且仅当电子器件中不低于50%的电子模块处于导通状态时,电子器件才能正常工作.若在该电子器件中再添加两个相同的电子模块,试判断新电子器件较原电子器件正常工作的概率是增加还是减小?请说明理由. 【答案】(1)0.8 (2)增大,理由见解析 【分析】(1)电子模块导通,根据各电子元件导通情况列算式计算;(2)分别计算新电子器件和原电子器件正常工作的概率,作差比较大小. 【详解】(1)该电子模块导通即电子1、4必须导通且电子2、3至少要有一个导通,所以()220.910.10.80190.8p =⋅−=≈.(2)设X 为原电子器件中导通的子模块的个数,()20,XB p ,则新电子器件正常工作即原电子器件中至少有11个电子模块导通;或者原电子器件中恰有10个电子模块导通,且新加入的两个模块至少有一个导通; 或者原电子器件中恰有9个模块导通,且新加入的两个模块导通. 设事件A =“原电子器件中至少有10个电子模块导通”, 则()()()()111010P A P X P X P X =≥=≥−=,事件B =“原电子器件中恰有10个模块导通,且新加入的模块至少有一个模块导通”, 则()()()()21011P B P X P ==⋅−−;事件C =“原电子器件恰有9个模块导通,且新加入的模块两个都导通”,试卷第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省黄冈中学2019届高三适应性考试数学试题(理科)试卷类型:A注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考号填写在试题卷封线内,将考号最后两位填在答题卷右上方座位号内,同时机读卡上的项目填涂清楚,并认真阅读答题卷和机读卡上的注意事项。
2.选择题每小题选出答案后,用2B 铅笔把机读卡对应题目的答案标号涂黑;如需改动,用像皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.将填空题和解答题用0.5毫米黑色墨水签字笔或黑色墨水钢笔直接答在答题卷上每题对应的答题区域内,答在试卷上无效。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若2{|0,}x x x m m ⊂∅++≤∈≠R ,则m 的取值范围是( )A .1(,]4-∞B .1(,)4-∞C .1[,)4+∞D .1(,)4+∞2.平面向量a 与b 的夹角为60︒,(2,0),||1==a b ,则|2|+a b 等于( )AB. C .4 D .123.已知直线m 、n 和平面α、β满足m n ⊥,m α⊥,αβ⊥,则( ) A .n β⊥ B .n β,或n β⊂ C .n α⊥ D .n α,或n α⊂4.函数22,0,,0x x y x x ≥⎧=⎨-<⎩的反函数是( ) A.,0,20x x y x ⎧≥⎪=< B.2,0,0x x y x ≥⎧⎪=< C.,0,20xx y x ⎧≥⎪=⎨⎪<⎩ D.2,0,0x x y x ≥⎧⎪=⎨<⎪⎩5.已知3(,),sin 25παπα∈=,则tan()4πα+的值为( )A .17-B .7C .17D .7-6.若圆222(0)x y r r +=>上恰有相异两点到直线43250x y -+=的距离等于1,则r 的取值范围是( )A .[4,6]B .(4,6)C .(4,6]D .[4,6)7.已知命题“a b c d ≥⇒>”、“/c d >⇒a b ≥”和“a b e f <⇔≤”都是真命题,那么“c d ≤”是“e f ≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( ) A .19 B .112 C .115 D .1189.某厂的某种产品的产量去年相对于前年的增长率为1p ,今年相对于去年的增长率为2p ,且12120,0,p p p p p >>+=.如果这种产品的产量在这两年中的平均增长率为x ,则( )A .2p x ≥ B .2p x =C .2p x <D .2p x ≤10.在等差数列{}n a 中,前n 项和n n S m =,前m 项和m mS n=,其中m n ≠,则m n S +的值( )A .大于4B .等于4C .小于4D .大于2且小于4二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.在ABC ∆中,角A 、B 、C 的对边边长分别是a 、b 、c ,若3A π=,a =1b =,则c 的值为 .12.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为 .13.一次单元测验由50道选择题组成,每题选择正确得3分,不选或选错得0分,满分150分.若小明选对任一题的概率均为0.8,则小明在这次测验中成绩的标准差是 分.14.计算12323nnn n n C C C nC ++++,可以采用以下方法:构造恒等式0122(1)n nn n n n n C C x C x C x x ++++=+,两边对x 求导,得12321123(1)n n n n n n n C C x C x nC x n x --++++=+,在上式中令1x =,得1231232nn n n n n C C C nC n -++++=⋅.类比上述计算方法,计算12223223nn n n n C C C n C ++++= .15.给出下列四个命题:①“向量,a b 的夹角为锐角”的充要条件是“0⋅>a b ”;②如果()lg f x x =,则对任意的1x 、2(0,)x ∈+∞,且12x x ≠,都有1212()()()22x x f x f x f ++>; ③将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有72种不同的放法;④记函数()y f x =的反函数为1()y f x -=,要得到1(1)y f x -=-的图象,可以先将()y f x =的图象关于直线y x =做对称变换,再将所得的图象关于y 轴做对称变换,再将所得的图象沿x 轴向左平移1个单位,即得到1(1)y f x -=-的图象.其中真命题的序号是 .(请写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在ABC ∆中,2,1BC AC AB ==. (1)求AB AC ⋅的值;(2)若(1)(0)BP BA BC λλλ=-+>,且ABP ∆,求实数λ的值. 17.(本小题满分12分)如图,在边长为a 的正方体1111ABCD A B C D -中,M 、N 、P 、Q 分别为AD 、CD 、1BB 、11C D 的中点.(1)求点P 到平面MNQ 的距离;(2)求直线PN 与平面MPQ 所成角的正弦值.18.(本小题满分12分) 设函数()(1)ln(1)f x x x =++. (1)求()f x 的单调区间;(2)若对所有的0x ≥,均有()f x ax ≥成立,求实数a 的取值范围.19.(本小题满分12分)已知10件不同的产品中共有3件次品,现对它们进行一一测试,直到找出所有3件次品为止.(1)求恰好在第5次测试时3件次品全部被测出的概率;(2)记恰好在第k 次测试时3件次品全部被测出的概率为()f k ,求()f k 的最大值和最小值.20.(本小题满分13分)已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,右顶点为A ,左、右焦点分别为1F 、2F ,点E 为右准线上的动点,2AEF ∠的最大值为θ.(1)若双曲线的左焦点为1(4,0)F -,一条渐近线的方程为320x y -=,求双曲线的方程; (2)求sin θ(用e 表示);(3)如图,如果直线l 与双曲线的交点为P 、Q ,与两条渐近线的交点为P '、Q ',O 为坐标原点,求证:OP OQ OP OQ ''+=+.21.(本小题满分14分)已知函数()f x 在其定义域上满足()2()1(0)xf x af x x a a +=+->.(1)函数()y f x =的图象是否是中心对称图形?若是,请指出其对称中心(不证明); (2)当14()[,]25f x ∈时,求x 的取值范围;(3)若(0)0f =,数列{}n a 满足11a =,那么:①若10()n n a f a +<≤,正整数N 满足n N >时,对所有适合上述条件的数列{}n a ,110n a <恒成立,求最小的N ;②若1()n n a f a +=,求证:122334137n n a a a a a a a a +++++<.理科数学参考答案(A 卷)1.A ∵2{|0,}x x x m m ++≤∈≠∅R ,∴140m ∆=-≥,得14m ≤. 2.B 3.D 4.C 5.C 6.B∵圆心(0,0)O 到直线43250x y -+=的距离5d =,∴(4,6)r ∈.7.A c d a b e f ≤⇒<⇒≤.若e f c d ≤⇒≤,则a b e f c d <⇒≤⇒≤,与a b </⇒c d≤矛盾,故e f ≤/⇒c d ≤.故“c d ≤”是“e f ≤”的充分不必要条件.或:∵e f a b ≤⇔</⇒c d ≤,∴e f ≤/⇒c d ≤.8.B 设掷3次骰子所得的点数分别为123,,a a a ,则1322a a a +=.分两类:①1a 与3a 同为奇数;②1a 与3a 同为偶数.所求得的概率3333166612P ⨯+⨯==⨯⨯.9.D 设这种产品前年的产量为a ,则今年的产量为212(1)(1)(1)a p p a x ++=+,得2222121212(1)(1)(1)(1)(1)[](1)(1)222p p p p p x p p +++++=++≤=+=+,∴112p x +≤+,∴2px ≤. 10.A 设2n S pn qn =+,则22,n mpn qn pm qm m n+=+=, ∴两式相减得22()()()n m P m n n m q n m mn-+-+-=.∵m n ≠,∴()m n P m n q mn +++=.22()()()()[()]4m n m n S p m n q m n m n p m n q mn ++=+++=+⋅++=≥=.又∵m n ≠,∴4m n S +>.11.2 12.4p =13. 记ξ为选对的题数,则(50,0.8)B ξ,500.80.28,(3)972,(3)D npq D D ξξξσξ==⨯⨯====14.2(1)2n n n -+⋅∵12233123(1)n nn nn n n C x C x C x nC x n x x -++++=+⋅,∴两边对x 求导,再令1x =,即可.15.②16.解:(1)∵c os A =,∴4A π=,||||cos 1AB AC AB AC A ⋅=⋅⋅.(2)∵(1)BP BA BC λλ=-+,∴()BP BA BC BA λ-=-,即(0)AP AC λλ=>,∴A 、P 、C 三点共线.∵11sin 1)22ABP S AB AP A AP ∆=⋅⋅=⋅,∴AP ,∴12λ=.17.解:方法1(几何法):∵1BB 平面MNQ ,∴点P 到平面MNQ 的距离等于点B到平面MNQ 的距离.设BD MN E =.∵平面MNQ ⊥平面ABCD ,∴由BE MN ⊥得BE ⊥平面MNQ ,∴点P 到平面MNQ的距离为34BE BD =.(2)设点N 到平面MNQ 的距离为d.可以求得MP PQ QM ===,∴22)MPQ S ∆==.212MNQ S MN NQ ∆=⋅.由N MPQ P MNQ V V --=得1133MPQ MNQ S d S ∆∆⋅=,∴d =.设直线PN 与平面MPQ 所成的角为θ,则sin d PN θ==.故直线PN 与平面MPQ方法2(空间向量方法) 建立如图所示的空间直角坐标系. (1)(,,)(0,0,)(,,0)DB a a a a a a =-=是平面MNQ 的一个法向量.∵(,,)(0,,0)(,,)2222a a a aQP a a a =-=,∴点P 到平面MNQ 的距离||4||QP DB d DB ⋅==. (2)设平面MPQ 的一个法向量为(,,1)x y =n .(,0,)(,,)(,,)2222a a a aPM a a a a =-=--.由0,0PM QP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0,220,22aa x ay a a ax y ⎧--+=⎪⎪⎨⎪++=⎪⎩得1,1,x y =-⎧⎨=⎩∴(1,1,1)=-n .(0,,)(,,)(,,)2222a a a aPN a a a a =-=--.cos ,PN <>=n .设直线PN 与平面MPQ 所成的角为θ,则 sin cos()|cos ,|2PN πθθ=-=<>=n .18.解:(1)由()ln(1)10f x x '=++≥得11e x ≥-,∴()f x 的增区间为1[1,)e -+∞,减区间为1(1,1]e--.(2)令()(1)l n (1)g x x x a x =++-.“不等式()f x ax ≥在0x ≥时恒成立”⇔“()(0)g x g ≥在0x ≥时恒成立.”1()ln(1)101a g x x a x e -'=++-=⇒=-.当1(1,1)a x e -∈--时,()0,()g x g x '<为减函数. 当1(1,)a x e -∈-+∞时,()0,()g x g x '>为增函数.“()(0)g x g ≥在0x ≥时恒成立”⇔“110a e --≤”,即10a e e -≤,即10a -≤,即1a ≤.故a 的取值范围是(],1-∞.19.解:(1)124374510120A C A P A ==,或1273471010120A A A P A ==. (2)当36k ≤≤时,1312371101()(32)240k k k kA C A f k k k A ---==-+, ∴111(3),(4),(5)1204020f f f ===,1(6)12f =.当7k =时,146737677102(7)15A C A A f A +==. 当8k =时,1571173777378107(8)30A C A A C A f A +==.当9k =时,1681283787389107(9)15A C A A C A f A +==. 【或:当79k ≤≤时,13117137173110()k k k k k k kA C A A C A f k A ------+=,再令7,8,9k =,分别求出(7)f 、(8)f 、(9)f 的值.】故min 1()(3)120f k f ==,max 7()(9)15f k f ==. 20.解:(1)方法 1 设双曲线的方程为2222116x y a a-=-,则其渐近线的方程为2222016x y a a-=-,即y =.又∵一条渐近线的方程是32y x =32=,得26413a =,21441613a -=.故双曲线的方程为221313164144x y -=.方法 2 ∵双曲线的一条渐近线是320x y -=,即023x y-=,∴可设双曲线的方程为2249x y λ-=.∵焦点是(4,0)-,∴由22149x y λλ-=得4916λλ+=,∴1613λ=,∴双曲线的方程为221313164144x y -=.(2)设经过点A 、2F 的圆C 与准线相切于点M ,交2EF 于点N .∵222AMF ANF AEF ∠=∠≥∠(当E 与M 重合时取“=”),∴2AMF θ∠=.∵2(,0),(,0)A a F c ,∴0(,)2a c C y +,又∵M ∴圆C 的半径2||2a c a R CM c+==-.由正弦定理得2||sin AF θ=∴22||()sin 2(2)()222c AF c a c a c c ac Ra c a c a c aa c a cθ--=====+-+++-(3)证明:方法1 当直线l 的斜率存在时,设直线l 的方程为y mx n =+,代入22221x y a b-=中得22222222()2()0b a m x a mnx a n b ---+=.设1122(,),(,)Px y Qx y ,线段PQ 的中点为(,)G αβ,则2122222x x a mn b a m α+==-.同理,将y mx n =+代入渐近线方程22220x y a b-=中得2222()b a m x -22220a mnx a n --=.设1122(,),(,)P x y Q x y '''''',线段P Q ''的中点为(,)G αβ''',则122x x α''+'= 2222a mnb a m=-,∴αα'=,即线段PQ 与线段P Q ''有共同的中点.当直线l 的斜率不存在时,即直线l 垂直于x 轴时,由对称性可知线段PQ 与线段P Q ''有共同的中点.∴22OP OQ OP OQ ''++=,即OP OQ OP OQ ''+=+. 方法2 当直线l 的斜率不存在或为零时,即直线l 垂直于x 轴或垂直于y 轴时,由对称性可知线段PQ 与线段P Q ''有共同的中点,∴||||PP QQ ''=.当直线l 的斜率存在且不为零时,可设l :(0)y kx m k =+≠.设PQ 的中点为00(,)G x y ,P Q ''的中点为00(,)G x y ''',则由点差法可得0022x y k a b =,且0022x y k a b ''=,∴点G 、G '在直线l ':22x y k a b =,即22b y x a k=上.又∵点G 、G '在直线l :y kx m =+上,∴点G 、G '同为直线l 与l '的交点.故点G 、G '重合,∴22OP OQ OP OQ ''++=,即OP OQ OP OQ ''+=+. 21.解:(1)依题意有(2)()1x a f x x a +=+-.若2x a =-,则110x a a +-=--=,得1a =-,这与0a >矛盾,∴2x a ≠-,∴11()1(2)22x a a f x x a x a x a+-+==-≠-++,故()y f x =的图象是中心对称图形,其对称中心为点(2,1)a -.(2)∵14()[,]25f x ∈,∴11,2214,25x a x ax a x a +-⎧≥⎪⎪+⎨+-⎪≤⎪+⎩即20,2350,2x x a x a x a -⎧≥⎪⎪+⎨--⎪≤⎪+⎩又∵0a >,∴2,2,235,x a x a x a <-≥⎧⎨-<≤+⎩或 得[2,35]x a ∈+.(3)① 由(0)0f =得1a =,∴()2xf x x =+.由102n n n a a a +<≤+得11121n n a a +≥⨯+, 即11112(1)n n a a ++≥+.令11n n b a =+,则12n n b b +≥,又∵0n a >,∴0n b >,∴12n nb b +≥. ∵11a =,∴12b =,∴当2n ≥时,32112122222n nn n n b b b b b b b b -=⨯⨯⨯⨯≥⨯⨯⨯⨯=个.【或∵12n n b b -≥,∴231123122222n n n n n n b b b b b ----≥≥≥≥≥=】又∵12b =也符合2n n b ≥,∴*2()n n b n ≥∈N ,即112n n a +≥,得*1()21n n a n ≤∈-N .要使110n a <恒成立,只需111021n <-,即211n >,∴3n >.故满足题设要求的最小正整数3N =. ② 由①知121n n a =-,∴111(21)(21)n n n n a a ++=-⋅-,1213,37a a =<1223111632142a a a a +=+= 37<,∴当1,2n =时,不等式成立. 证法1:∵1111111()(21)(21)22121n n n n n n n a a +++==--⋅---,∴当3n ≥时,122334a a a a a a +++1n n a a ++33444511111111111111()()()321321221212212122121n n n +=++-+-++-≤++------ 33445131111111111111[()()()]()32172212121212121221n n n ++-+-++-=++--------11111117183321563214242427<++<++=<=. 证法2:∵1111111()(21)(21)22121n n nn n n n a a +++==--⋅---,∴当2n ≥时,122334a a a a a a +++12233341221111111111111()()()[(33221212212122121221n n n n n a a +++=+-+-++-≤+--------3341211111111111153)()()]()333121272121212121221nn n +++-++-=+-<+=<------.证法3:∵111112(21)(21)2121n n nn n n a a +++==--⋅---,∴当2n ≥时,122334a a a a a a +++112231123111111111()2()()(212121212121212121n n n n a a +++=+++-+++=--+--------- 41341111122111252253)()()31212721212122221221nn n n n n ++++++-<-+++-=+-<<-----. 证法4:当2n ≥时,∵11111211211222221n n n n n n n n a a a a --++---==⋅<--,∴2112111()22n n n n n n a a a a a a +---<⋅<⋅ 2223111()()2212n n a a --<<⋅=⋅,∴1223341022111111()3212222n n n a a a a a a a a +-++++≤+++++112112183(1)3213214272n -=+-<+==. 证法5:∵11111211111(21)(21)[2(21)][2(21)]222n n n n n n n n n n n a a ++----==<=-⋅-+-⋅+-⋅,∴当3n ≥时,12231572111111161161183()32142244221427222n n n a a a a a a +-+++<+++++=+<+==. 综上,对任意的*n ∈N ,都有122334137n n a a a a a a a a +++++<.。