2016届高考物理一轮复习习题3-2《牛顿第二定律、两类动力学问题》a
高考物理一轮总复习 第三章 第二讲 牛顿第二定律 两类动力学问题教案-高三全册物理教案
第二讲 牛顿第二定律 两类动力学问题[小题快练]1.判断题(1)物体加速度的方向一定与合外力方向相同.( √ )(2)质量越大的物体,加速度越小.( × )(3)物体的质量与加速度成反比.( × )(4)可以利用牛顿第二定律确定自由电子的运动情况.( × )(5)物体所受的合外力减小,加速度一定减小,而速度不一定减小.( √ )(6)物体处于超重或失重状态时其重力并没有发生变化.( √ )(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向.( × )(8)物体处于超重或失重状态,完全由物体加速度的方向决定,与速度方向无关.( √ )2.根据牛顿第二定律,下列叙述正确的是( D )A .物体加速度的大小跟它的质量和速度大小的乘积成反比B .物体所受合力必须达到某一定值时,才能使物体产生加速度C .物体加速度的大小跟它所受作用力中的任一个的大小成正比D .当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比3.(多选)关于速度、加速度、合外力之间的关系,正确的是( CD )A .物体的速度越大,则加速度越大,所受的合外力也越大B .物体的速度为零,则加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零考点一 牛顿第二定律的理解 (自主学习)1.牛顿第二定律的五个特性2.合力、加速度、速度间的决定关系(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度.(2)a =Δv Δt是加速度的定义式,a 与Δv 、Δt 无必然联系;a =F m 是加速度的决定式,a ∝F ,a ∝1m.(3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.1-1.[对牛顿第二定律的理解] (多选)下列对牛顿第二定律的理解,正确的是( )A .如果一个物体同时受到两个力的作用,则这两个力各自产生的加速度互不影响B.如果一个物体同时受到几个力的作用,则这个物体的加速度等于所受各力单独作用在物体上时产生加速度的矢量和C.平抛运动中竖直方向的重力不影响水平方向的匀速运动D.物体的质量与物体所受的合力成正比,与物体的加速度成反比答案:ABC1-2.[应用牛顿第二定律定性分析问题] (多选)如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后( )A.木块立即做减速运动B.木块在一段时间内速度仍可增大C.当F等于弹簧弹力时,木块速度最大D.弹簧压缩量最大时,木块加速度为零解析:木块接触弹簧后向右运动,弹力逐渐增大,开始时恒力F大于弹簧弹力,合外力方向水平向右,与木块速度方向相同,木块速度不断增大,A项错,B项正确;当弹力增大到与恒力F相等时,合力为零,速度增大到最大值,C项正确;之后木块由于惯性继续向右运动,但合力方向与速度方向相反,木块速度逐渐减小到零,此时,弹力大于恒力F,加速度大于零,D项错.答案:BC考点二牛顿第二定律的瞬时性 (自主学习)1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路2-1. [弹簧模型] (多选)(2015·海南卷)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O.整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2解析:剪断细线前,把a、b、c看成整体,细线上的拉力为T=3mg.因在剪断瞬间,弹簧弹力未发生突变,因此a、b、c之间的作用力与剪断细线之前相同,则将细线剪断瞬间,对a 隔离进行受力分析,由牛顿第二定律得3mg=ma1得a1=3g,A正确,B错误;由胡克定律知2mg =k Δl 1,mg =k Δl 2,所以Δl 1=2Δl 2,C 正确,D 错误.答案:AC2-2.[弹簧、轻杆模型] 如图所示,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间,有( )A .两图中两球加速度均为g sin θB .两图中A 球的加速度均为零C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的2倍解析:撤去挡板前,挡板对B 球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A 球所受合力为零,加速度为零,B 球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A 、B 球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D 对.答案:D2-3. [轻绳模型] “儿童蹦极”中,拴在腰间左右两侧的是悬点等高、完全相同的两根橡皮绳.质量为m 的小明如图所示静止悬挂时,两橡皮绳的夹角为60°,则( )A .每根橡皮绳的拉力为12mg B .若将悬点间距离变小,则每根橡皮绳所受拉力将变小C .若此时小明左侧橡皮绳在腰间断裂,则小明此时加速度a =gD .若拴在腰间左右两侧的是悬点等高、完全相同的两根轻绳,则小明左侧轻绳在腰间断裂时,小明的加速度a =g解析:根据平行四边形定则知,2F cos 30°=mg ,解得F =33mg .故A 错误;根据共点力平衡得,2F cos θ=mg ,当悬点间的距离变小时,θ变小,cos θ变大,可知橡皮绳的拉力变小,故B 正确;当左侧橡皮绳断裂,断裂的瞬间,右侧弹性绳的拉力不变,则重力和右侧橡皮绳拉力的合力与左侧橡皮绳初始时的拉力大小相等,方向相反,合力大小为33mg ,加速度为33g ,故C 错误;当两侧为轻绳时,左侧绳断裂瞬间,右侧绳上拉力发生突变,将重力沿绳方向和垂直于绳方向正交分解,合力为mg sin 30°,加速度为12g ,故D 错误.答案:B考点三 两类动力学问题 (师生共研)1.解决两类基本问题的思路2.两类动力学问题的解题步骤[典例1] 如图所示,在倾角θ=37°的足够长的固定斜面上,有一质量m =1 kg 的物体,物体与斜面间的动摩擦因数μ=0.2,物体受到沿平行于斜面方向向上的轻绳的拉力F =9.6 N 的作用,从静止开始运动,经2 s 绳子突然断了,求绳断后经多长时间物体速度的大小达到22 m/s.(sin 37°=0.6,取g =10 m/s 2)[审题指导](1)物体在最初2 s 内做匀加速直线运动(第一个过程).(2)绳子断了以后,物体做匀减速直线运动(第二个过程).(3)从最高点开始物体沿斜面向下做匀加速直线运动(第三个过程).解析:第一过程:在最初2 s 内,物体在F =9.6 N 的拉力作用下,从静止开始沿斜面做匀加速直线运动,受力分析如图甲所示.沿斜面方向有 F -mg sin 37°-F f =ma 1①沿垂直斜面方向有F N =mg cos 37°②且F f =μF N ③由①②③式得a 1=F -mg sin 37°-μmg cos 37°m=2 m/s 2 2 s 末绳断时,物体的瞬时速度v 1=a 1t 1=4 m/s第二过程:从撤去F 到物体继续沿斜面向上运动达到速度为零的过程,设此过程物体运动时间为t 2,加速度大小为a 2,受力分析如图乙所示.沿斜面方向有mg sin 37°+F f =ma 2④根据运动学公式得v 1=a 2t 2⑤由②③④⑤得t 2=0.53 s第三过程:物体从运动的最高点沿斜面下滑,设第三阶段物体加速度大小为a 3,所需时间为t 3,受力分析如图丙所示.沿斜面方向有mg sin 37°-F f =ma 3⑥由运动学公式得v 3=a 3t 3⑦由②③⑥⑦得t 3=5 s综上所述,从绳断到物体速度达到22 m/s 所经历的总时间t =t 2+t 3=0.53 s +5 s =5.53 s. 答案:5.53 s[反思总结]解决两类动力学问题的两个关键点3-1.[由受力判断运动] 某人以一定的初速度从P 点竖直向上抛出一个小球,1 s 后小球运动到最高点,若小球运动时受到的空气阻力大小不变(不为零),则又经过1 s 后( )A .小球恰好经过P 点B .小球的位置在P 点下方C .小球的位置在P 点上方D .阻力大小不确定,无法判断小球的位置是在P 点的上方还是下方解析:设空气阻力大小为f ,由牛顿第二定律得:上升过程有mg +f =ma 上,下落过程有mg-f =ma 下,可得a 上>a 下,即上升的加速度比下落的加速度大,根据位移公式x =12at 2可知下落1 s 的位移小于上升1 s 的位移,所以又经过1 s 后小球的位置在P 点上方,故C 正确. 答案:C3-2. [由运动判断受力] 趣味运动会上运动员手持网球拍托球沿水平面匀加速向前跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力及空气阻力不计,则( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .若加速度大于g sin θ,球一定沿球拍向上运动解析:网球受力如图甲所示,根据牛顿第二定律得F N sin θ=ma ,又F N cos θ=mg ,解得a =g tan θ,F N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象,受力如图乙所示,根据平衡条件,在竖直方向上有F ·cos θ=(M +m )g ,则运动员对球拍的作用力为F =(M +m )g cos θ,故C 错误;当a >g tan θ时,网球才向上运动,由于g sin θ<g tan θ,故球不一定沿球拍向上运动,故D 错误.答案:A3-3.[由受力判断运动] (多选)(2016·全国卷Ⅰ)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功解析:设小球在下落过程中所受阻力F 阻=kR ,k 为常数,R 为小球半径,由牛顿第二定律可知:mg -F 阻=ma ,由m =ρV =43ρπR 3知:43ρπR 3g -kR =43ρπR 3a ,即a =g -3k 4ρπ·1R 2,故知:R 越大,a 越大,即下落过程中a 甲>a 乙,C 错误;下落相同的距离,由h =12at 2知,a 越大,t 越小,A 错误;又由2ah =v 2-v 20知,v 0=0,a 越大,v 越大,B 正确;由W 阻=-F 阻h 知,甲球克服阻力做的功更大一些,D 正确.答案:BD考点四 对超重和失重的理解与应用 (师生共研)1.超重、失重和完全失重比较(1)超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).(2)只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.(3)尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.[典例2] “蹦极”是一项刺激的极限运动,运动员将一端固定的长弹性绳绑在踝关节处,从几十米高处跳下.在某次蹦极中,弹性绳弹力F的大小随时间t的变化图象如图所示,其中t2、t4时刻图线的斜率最大.将蹦极过程近似为在竖直方向的运动,弹性绳中弹力与伸长量的关系遵循胡克定律,空气阻力不计.下列说法正确的是( )A.t1~t2时间内运动员处于超重状态B.t2~t3时间内运动员处于超重状态C.t3时刻运动员的加速度为零D.t4时刻运动员具有向下的最大速度解析:在t1~t2时间内,运动员合力向下,加速下降,失重,故A项错误;在t2、t4时刻图线的斜率最大,说明弹力变化最快,由于弹力与长度成正比,说明长度变化最快,即速度最大,而速度最大时弹力与重力平衡;t2~t3时间内弹性绳向上的拉力大于重力,运动员具有向上的加速度,处于超重状态,故B项正确;t3时刻拉力最大,运动员运动到最低点,合力向上,故加速度向上,不为零,故C项错误;t4时刻运动员受到的重力和拉力平衡,加速度为零,具有最大的向上的速度,故D项错误.答案:B[反思总结]判断超重和失重现象的技巧1.从受力的角度判断:当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态.2.从加速度的角度判断:当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.3.从速度变化的角度判断:(1)物体向上加速或向下减速时,超重;(2)物体向下加速或向上减速时,失重.4-1. [超、失重现象的判断] (多选)如图所示,蹦床运动员从空中落到床面上,运动员从接触床面下降到最低点为第一过程,从最低点上升到离开床面为第二过程,运动员( )A.在第一过程中始终处于失重状态B.在第二过程中始终处于超重状态C.在第一过程中先处于失重状态,后处于超重状态D.在第二过程中先处于超重状态,后处于失重状态解析:运动员刚接触床面时重力大于弹力,运动员向下做加速运动,运动员处于失重状态;随床面形变的增大,弹力逐渐增大,弹力大于重力时,运动员做减速运动,运动员处于超重状态,故A错误,C正确;蹦床运动员在上升过程中和下落过程中是对称的,加速度方向先向上后向下,先处于超重状态,后处于失重状态,故B错误,D正确.答案:CD4-2.[超、失重现象的应用] (2018·江苏连云港高三调研)如图,台秤上放一装有水的杯子,杯底用细线系一光滑小球,若细线发生断裂,在小球加速上升的过程中,不计水的阻力,台秤的读数将( )A.变小B.变大C.不变D.无法确定解析:以容器和小球组成的整体研究对象,将细线割断,在小球加速上升过程中加速度向上,存在超重现象,而小球下降留下的空位由水来填充,所以相当于一个与小球同样大小的水球向下加速运动,存在失重现象,由于同样体积的小球质量小于水球的质量,所以整体存在失重现象,台秤的示数小于系统总重力,台秤的示数减小,A正确.答案:A1.(2018·湖北荆州质检)从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是,我们用很小的力推很重的桌子时,却推不动,这是因为( D )A.牛顿第二定律不适用于很重的物体B.桌子加速度很小,肉眼观察不到C.推力太小,速度增量也很小,眼睛观察不到D.桌子所受合力为零,没有加速度解析:静止物体,加速度为零,合力为零,牛顿第二定律同样适用于静止物体.故A、B错误.推力等于静摩擦力,加速度为零,故C错误;由于水平推力不大于桌子的最大静摩擦力,推不动桌子,桌子的合力等于零,由牛顿第二定律可知,加速度等于零,故D正确.2.(多选)(2018·郑州一模)某星级宾馆安装一高档电梯,在电梯的底板上安装了一压力传感器,在竖直墙壁上的显示盘上可显示人对传感器的作用力,某乘客乘坐电梯从1层直接到10层,之后又从10层直接回到1层,用照相机进行记录了相关的信息,如图所示,则下列说法中正确的是( AD )A.根据图(a)和图(e)可估测出电梯向下制动时的加速度B.根据图(a)和图(c)可知人的机械能在减小C.根据图(a)和图(b)可估测出电梯向上制动时的加速度D.根据图(a)和图(d)可知人的机械能在减小解析:(e)图表示电梯减速下降时这位同学超重时的示数,所以根据图(a)和图(e),能够求出电梯向下制动时的加速度.故A项正确.(c)图表示电梯减速上升时这位同学失重时的示数,此时电梯还在向上运动,电梯对人做正功,人的机械能在增加.故B项错误.(b)图表示电梯加速上升时这位同学超重时的示数,所以根据图(a)和(b)图,能够求出电梯向上起动时的加速度.故C项错误.(d)图表示电梯加速下降时这位同学失重时的示数,此时电梯在向下运动,电梯对人做负功,人的机械能在减小,故D项正确.3.如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( D )A.0 B.2.5 NC.5 N D.3.75 N4. 如图所示,一名消防队员在模拟演习训练中,沿着长为12 m的竖立在地面上的钢管下滑.已知这名消防队员的质量为60 kg,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3 s,g取10 m/s2,那么该消防队员( B )A.下滑过程中的最大速度为4 m/sB.加速与减速过程中所受摩擦力大小之比为1∶7C.加速与减速过程的位移之比为1∶4D.加速与减速过程的时间之比为2∶1[A组·基础题]1.一根轻弹簧的下端挂一重物,上端用手牵引使重物向下做匀速直线运动,从手突然停止到重物下降到最低点的过程中,重物的加速度的数值将( B )A.逐渐减小B.逐渐增大C.先减小后增大D.先增大再减小2.如图所示,质量满足m A=2m B=3m C的三个物块A、B、C,A与天花板之间、B与C之间均用轻弹簧相连,A与B之间用细绳相连,当系统静止后,突然剪断AB间的细绳,则此瞬间A、B 、C 的加速度分别为(取向下为正)( C )A .-56g 、2g 、0 B .-2g 、2g 、0 C .-56g 、53g 、0 B .-2g 、53g 、g 3.(2018·江苏东海高级中学试题)如图所示,斜面AD 和BD 与水平方向的夹角分别为60° 和30° ,两斜面的A 端和B 端在同一竖直面上,现让两个可视为质点的物块分别从两斜面的顶端同时由静止下滑,结果两物块同时滑到斜面底端D ,设两物块与AD 、BD 面间的动摩擦因数分别为μ1和μ2,则μ1μ2为( D ) A.3∶1B .1∶ 3C .1∶3D .3∶1解析:根据牛顿第二定律,物块由AD 下滑时有:mg sin 60° -μ1 mg cos 60° = ma 1,得:a 1=g sin 60° -μ1g cos 60°,由BD 下滑时有: mg sin 30° -μ2 mg cos 30° =ma 2,得:a 2=g sin 30° -μ2g cos 30° .设斜面底部长为d ,由运动学公式有:d cos60°=12a 1t 2;d cos30°=12a 2t 2.联立以上四式解得:μ1μ2=31,故选D. 4.(多选)(2018·武汉华中师大附中高三复习)如图所示为一根质量为m 、长度为L 、质量均匀分布的粗绳AB .在粗绳上与B 端距离为x 的某位置有一质量不计的力传感器,可读出该处粗绳中的张力.粗绳在水平外力F 的作用下,沿水平面做匀加速直线运动,由力传感器读数和已知条件( BD )A .能够判断粗绳运动是否受到摩擦力作用B .可知水平外力F 的大小C .可知粗绳沿水平面做匀加速直线运动的加速度大小D .若水平外力F 的大小恒定,则传感器读数与x 成正比,与是否存在摩擦力无关 解析:设粗绳与水平面间的动摩擦因数为μ,力传感器读数为F T ,对整根绳子,由牛顿第二定律有F -μmg =ma ,对粗绳左侧长度为x 的部分,由牛顿第二定律有F T -μmx L g =mx L a ,解得F T =F ·x L;由力传感器读数和已知条件,不能够判断粗绳运动是否受到摩擦力作用,可知水平外力F 的大小,不能得出粗绳沿水平面做匀加速直线运动的加速度大小,故A 、C 错误,B 正确.若水平外力F 的大小恒定,则传感器读数F T 与x 成正比,D 正确.5.(多选)如图所示,在动摩擦因数μ=0.2的水平面上,质量m=2 kg的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F作用下处于静止状态,此时水平面对物块的弹力恰好为零.g取10 m/s2,以下说法正确的是( ABD )A.此时轻弹簧的弹力大小为20 NB.当撤去拉力F的瞬间,物块的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间物块的加速度为10 m/s2,方向向右6. (多选)如图所示,小车向右运动的过程中,某段时间内车中悬挂的小球A和车水平底板上的物块B都相对车厢静止,悬挂小球A的悬线与竖直线有一定夹角θ,B与车底板之间的动摩擦因数为0.75,假设B所受最大静摩擦力等于滑动摩擦力.在这段时间内,下述判断中正确的是( BC )A.物块B不受摩擦力作用B.物块B受摩擦力作用,大小恒定,方向向左C.要使A、B和车保持相对静止,θ最大为37°D.要使A、B和车保持相对静止,θ最大为53°解析:根据小球所处的状态可知,小车正在向右做匀减速直线运动,故车厢内的物块B跟随小车一起向右做匀减速直线运动,加速度水平向左保持不变,根据牛顿第二定律可知,物块B一定受水平向左的恒定摩擦力作用,A错误,B正确;设能使A、B和车厢保持相对静止的最大加速度大小为a m,则此时B受到的摩擦力为最大静摩擦力,根据牛顿第二定律可知:μm g =ma m,得a m=μg;以小球A为研究对象进行受力分析,根据牛顿第二定律可知:mg tan θ=ma m,得a m=g tan θ,联立两个加速度表达式得:tan θ=μ=0.75,则此时的θ角为37°.故要使A、B和车保持相对静止,θ最大为37° ,C正确,D错误.7. (2019·抚州七校联考)如图所示,质量为M的小车放在光滑的水平面上,小车上有一水平支架,一质量为m的小球用轻绳悬挂于支架上.现用一水平向右的力拉小球,使小球和车一起向右做匀加速直线运动,稳定时,轻绳与竖直方向的夹角为θ.重力加速度为g.求:(1)绳上的拉力大小F T;(2)拉小球的水平力大小F.解析:(1)对绳上的拉力正交分解可得:F T cos θ=mg,解得:F T=mgcos θ.(2)小车水平方向受到的合力:F合=F T sin θ联立以上解得小车的加速度大小:a =mg tan θM对小球与小车整体分析可得拉小球的水平力大小为:F =(m +M )a =(m +M )mg tan θM .答案:(1)mgcos θ (2)(M +m )mg tan θM[B 组·能力题]8.如图所示,质量为m 2的物块B 放置在光滑水平桌面上,其上放置质量为m 1的物块A ,A 通过跨过光滑定滑轮的细线与质量为M 的物块C 连接.释放C ,A 和B 一起以加速度a 从静止开始运动,已知A 、B 间动摩擦因数为μ1,则细线中的拉力大小为( C )A .MgB .Mg +MaC .(m 1+m 2)aD .m 1a +μ1m 1g9. (2019·四川眉山中学月考)如图,质量为M 的三角形木块A 静止在水平面上.一质量为m 的物体B 正沿A 的斜面下滑,三角形木块A 仍然保持静止.则下列说法中正确的是( A )A .A 对地面的压力可能小于(M +m )gB .水平面对A 的静摩擦力一定水平向左C .水平面对A 的静摩擦力不可能为零D .B 沿A 的斜面下滑时突然受到一沿斜面向上的力F 的作用,如果力F 的大小满足一定条件时,三角形木块A 可能会立刻开始滑动解析:对物体B 受力分析,受重力G 、支持力N 、滑动摩擦力f ,如图所示:再对A 物体受力分析,受重力Mg 、地面的支持力F N 、B 对A 的压力N ′,B 对A 的摩擦力f ′,地面对A 可能有静摩擦力F 静,先假设有且向右,如图所示:当物体B 匀速下滑时,根据共点力平衡条件,可得mg sin θ-f =0,N -mg cos θ=0,当物体B 加速下滑时,有mg sin θ>f ,N -mg cos θ=0,当物体B 减速下滑时,有mg sin θ<f ,N -mg cos θ=0,由于物体A 保持静止,根据共点力平衡条件,有F N -Mg -f ′sin θ-N ′cos θ=0,f ′cos θ-N ′sin θ-F 静=0,根据牛顿第三定律:N =N ′,f =f ′,当物体加速下滑时,联立以上可得:F N <(M +m )g ,故A 正确;当物体加速下滑时,由联立可得到F 静<0,即静摩擦力与假定的方向相反,即向左,当物体匀速下降时,联立以上可得到F 静=0,故B 、C 错误;若B 沿A 的斜面下滑时突然受到一沿斜面向上的力F 的作用,物体B 的加速度立即发生了变化,但由于惯性,速度来不及变化,故摩擦力方向不变,故B 对A 的力不变,故A 依然保持静止,故D 错误.10. (2018·雄安新区高级中学模拟)浙江宁波慈溪方特欢乐世界的“跳楼机”游戏,以惊险刺激深受年轻人的欢迎,它的基本原理是将巨型娱乐器械由升降机送到离地面100 m的高处,然后让座舱自由落下.落到离地面20 m高时,制动系统开始启动,使座舱均匀减速,到达地面时刚好停下.某次游戏中,座舱中小明用手托着重5 N的苹果,(取g=10 m/s2)试求:(1)此过程中的最大速度是多少?(2)当座舱落到离地面40 m的位置时,手对苹果的支持力?(3)当座舱落到离地面15 m的位置时,苹果对手的压力?解析:(1)由题意可知先自由下降h=(100-20)m=80 m,由v2=2gh,有v=40 m/s(2)离地面40 m时,座舱自由下落,处于完全失重状态,所以手对球的支持力为零(3)a=v22s由此得:a=40 m/s2根据牛顿第二定律:F N-Mg=Ma得:F N=25 N根据牛顿第三定律,苹果对手的压力为25 N.答案:(1)40 m/s (2)0 (3)25 N11.某同学近日做了这样一个实验:将一个小铁块(可看成质点)以一定大小的初速度,沿倾角可在0 °~90 °之间任意调整的木板向上滑动,设它沿木板向上能达到的最大位移为x,若木板倾角不同时对应的最大位移x与木板倾角α的关系如图所示.g取10 m/s2.求:(结果如果是根号,可以保留)(1)小铁块初速度的大小v0以及小铁块与木板间的动摩擦因数μ是多少?(2)当α=60 °时,小铁块达到最高点后,又回到出发点,小铁球速度将变为多大?解析:(1)当α=90°时,x=1.25 m,则v0=2gx=2×10×1.25 m/s=5 m/s.当α=30°时,x=1.25 m,a=v202x=522×1.25m/s2=10 m/s2.由牛顿第二定律得a=g sin 30°+μg cos 30°,解得μ=33.(2)当α=60°时,上滑的加速度a1=g sin 60°+μg cos 60°,下滑的加速度a2=g s in 60°-μg cos 60°.v2=2ax,则有v1=a2a1v0=22v0=522m/s.。
高考物理一轮课时演练:牛顿第2定律、两类动力学问题(含答案)
课时提能演练(八)牛顿第二定律两类动力学问题(45分钟100分)一、选择题(本大题共10小题,每小题7分,共70分。
每小题只有一个选项正确)1.(2018·海南高考)一质点受多个力的作用,处于静止状态。
现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小。
在此过程中,其他力保持不变,则质点的加速度大小a和速度大小v的变化情况是( )A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大【解题指南】解答本题时应注意理解以下两点:(1)知道共点力的平衡条件。
(2)能根据牛顿第二定律分析加速度。
【解析】选C。
质点受多个力的作用,处于静止状态,则多个力的合力为零,其中任意一个力与剩余所有力的合力大小相等、方向相反,使其中一个力的大小逐渐减小到零再恢复到原来的大小,则所有力的合力先变大后变小,但合力的方向不变,根据牛顿第二定律,a先增大后减小,v始终增大,故选C。
2.如图所示,底板光滑的小车上用两个量程为20N、完全相同的弹簧测力计甲和乙系住一个质量为1kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10N,当小车做匀加速直线运动时,弹簧测力计甲的示数为8N,这时小车运动的加速度大小是( )A.2 m/s2B.4 m/s2C.6 m/s2D.8 m/s2【解析】选B。
小车做匀速直线运动时,物块随小车也做匀速直线运动,两弹簧测力计示数均为10N,形变相同,弹簧测力计甲的示数变为8N,形变减小Δx,弹簧测力计乙形变要增加Δx,故弹簧测力计乙的示数为12N,物块受到的合外力F=4N,故加速度的大小是a==m/s2=4m/s2,选项B正确。
3.汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患。
行车过程中,如果车距较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车到完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦) ( )A.450 NB.400 NC.350 ND.300 N【解析】选C。
高考物理一轮总复习第三章第2课时牛顿第二定律、两类动力学问题(基础课时)限时规范训练(含解析)新人教
牛顿第二定律、两类动力学识题[ 基础稳固题组](20 分钟, 50 分 ) 1.(2019 ·绵阳模拟 ) 如下图,在倾角为θ=30°的圆滑斜面上,物块 A、 B 质量分别为m和2m.物块 A 静止在轻弹簧上边,物块 B 用细线与斜面顶端相连,、紧挨在一同,但、之间无弹力,已知重力加快A B A B度为 g,某时辰把细线剪断,当细线剪断瞬时,以下说法正确的选项是()g A.物块A的加快度为 0 B.物块A的加快度为3g C.物块B的加快度为 0 D.物块B的加快度为2分析:选 B. 剪断细线前,弹簧的弹力:F 弹= sin30°=1,细线剪断的瞬时,弹簧mg 2mg1 3mg sin 30 °-F弹的弹力不变,仍为 F 弹=2mg;剪断细线瞬时,对 A、B 系统剖析,加快度为:a=3mg g=,即 A和 B 的加快度均为,方向沿斜面向下.3 32.质量为 1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少 2 000 N ,那么从该时辰起经过 6 s ,汽车行驶的行程是( ) A. 50 m B. 42 mC. 25 m D. 24 m分析:选 C. 汽车匀速行驶时,=①,设汽车牵引力减小后加快度大小为,牵引力f减少F=2 000 N时, F f-( F-F)=ma②,解①②得a=2 m/s2,与速度方向相反,汽车v010做匀减速直线运动,设经时间t 汽车停止运动,则 t =a=2 s = 5 s,故汽车行驶的行程x v0 10==×5 m= 25 m ,应选项 C正确.2t23.一个质量为m=1 kg的物块静止在水平面上,物块与水平面间的动摩擦因数μ=0.2. 从t=0 时辰起物块同时遇到两个水平力F1与F2的作用,若力F1、 F2随时间的变化如下图,设物块遇到的最大静摩擦力等于滑动摩擦力,重力加快度g 取10 m/s ,则物块在今后的运动过程中( )A.物块从t =0时辰开始运动B.物块运动后先做加快运动再做减速运动,最后匀速运动C.物块加快度的最大值是2 3 m/sD.物块在t= 4 s 时速度最大分析:选 C. 物块所受最大静摩擦力等于滑动摩擦力 F =μ mg=0.2×1×10 N=2 N,物fm块在第 1 s 内,知足F1=F2+F fm物块处于静止状态,选项 A 错误;第 1 s 物块静止,第 1 s 末到第7 s 末,依据牛顿第二定律有1-2- fm=, 2 先减小后增大,故加快度先增大再F F F ma F减小,方向沿 F 方向,物块向来加快,应选项B、 D 均错误,在t =4 s时加快度最大为 a1 m F-F 5-22 21 fmm/s = 3 m/s ,选项 C 正确.=m = 14.(2019 ·清远市田家炳实验中学一模 )( 多项选择 ) 一个质量为 2 kg 的物体,在 5 个共点力作用下处于均衡状态.现同时撤去大小分别为15 N 和 10 N 的两个力,其他的力保持不变,对于今后该物体的运动的说法中正确的选项是( )A.必定做匀变速直线运动,加快度大小可能是 5 m/s 2B.必定做匀变速运动,加快度大小可能等于重力加快度的大小C.可能做匀减速直线运动,加快度大小是 2.5 m/s D.可能做匀速圆周运动,向心加快度大小是 5 m/s 2 2分析:选 BC.依据均衡条件得悉,其他力的协力与撤去的两个力的协力大小相等、方向相反,则撤去大小分别为15 N和 10 N 的两个力后,物体的协力大小范围为 5 N≤F合≤25 N,依据牛顿第二定律a F 2 2若物体本来做=得:物体的加快度范围为: 2.5 m/s ≤ ≤12.5 m/s .m a匀速直线运动,撤去的两个力的协力方向与速度方向不在同向来线上,物体做匀变速曲线运动,加快度大小可能为 5 m/s 2,故 A 错误.因为撤去两个力后其他力保持不变,则物体所受的协力不变,必定做匀变速运动,加快度大小可能等于重力加快度的大小,故 B正确.若物体本来做匀速直线运动,撤去的两个力的协力方向与速度方向同样时,物体做匀减速直线运动,故 C 正确.因为撤去两个力后其他力保持不变,在恒力作用下不行能做匀速圆周运动,故 D错误.5.如下图,圆滑细杆BC、DC和 AC构成矩形 ABCD的两邻边和对角线,AC∶ BC∶ DC=5∶4∶3,AC杆竖直,各杆上分别套有一质点小球a、b、d,a、b、d 三小球的质量比为1∶ 2∶ 3,现让三小球同时从各杆的极点由静止开释,不计空气阻力,则a、b、d 三小球在各杆上滑行的时间之比为()A.1∶1∶1B.5∶4∶3C.5∶8∶9D. 1∶2∶ 3分析:选 A. 因ABCD为矩形,故A、B、C、D四点必在以AC边为直径的同一个圆周上,由等时圆模型可知,由 A、B、D三点开释的小球 a、b、d 必然同时抵达圆的最低点 C点,故A 正确.6.如下图为四旋翼无人机,它是一种可以垂直起降的小型遥控飞翔器,当前获得愈来愈宽泛的应用.一架质量m = 2 kg 的无人机,其动力系统所能供给的最大升力F = 36 N ,运动过程中所受空气阻力大小恒为f = 4 N .g 取 10 m/s 2.(1) 无人机在地面上从静止开始,以最大升力竖直向上腾飞.求在t = 5 s时离地面的高度 h ;(2) 当无人机悬停在距离地面高度 H = 100 m 处,因为动力设施故障,无人机忽然失掉升力而坠落.求无人机坠落地面时的速度v .分析: (1) 设无人机上涨时加快度为a ,由牛顿第二定律,有F - mg - f = ma解得 a = 6 m/s 2由 h = 12,解得 h = 75 m.2at(2) 设无人机坠落过程中加快度为 a 1,由牛顿第二定律,有mg - f = ma 1解得 a 1=8 m/s 2由 v 2= 2a 1 H ,解得 v = 40 m/s.答案: (1)75 m(2)40 m/s[ 能力提高题组 ](25 分钟, 50 分)1.如下图, B 是水平川面上 AC 的中点,可视为质点的小物块以某一初速度从 A 点滑动到 C 点停止.小物块经过 B点时的速度等于它在A 点时速度的一半.则小物块与 AB 段间的动摩擦因数 μ 1 和 BC 段间的动摩擦因数 μ 2 的比值为 ()A . 1B . 2C . 3D . 4分析:选 C.物块从A 到B 依据牛顿第二定律,有 μ 1 =1,得 a 1= μ 1 . 从B 到C 根mg ma g 据牛顿第二定律,有 μ 2mg = ma 2,得 a 2= μ 2g . 设小物块在 A 点时速度大小为 v ,则在 B 点时vv 22速度大小为 2,因为 AB =BC = l ,由运动学公式知, 从 A 到 B : 2 - v =- 2μ 1gl ,从 B 到 C :v 20- =- 2μ 2gl ,联立解得 μ 1= 3μ 2,应选项C 正确, A 、 B 、D 错误.2.(2018 ·高考全国卷Ⅰ ) 如下图,轻弹簧的下端固定在水平桌面上,上端放有物块,系统处于静止状态.现用一竖直向上的力 F 作用在 P 上,使P其向上做匀加快直线运动,以x 表示 P 走开静止地点的位移,在弹簧恢还原长前,以下表示 F 和 x 之间关系的图象可能正确的选项是 ()分析:选 A. 设物块 P 静止时弹簧的压缩量为L ,由胡克定律和均衡条件得mg = kL . 当物块 P 位移为 x 时,弹簧弹力为 k ( L - x ) ,依据牛顿第二定律有 F + k ( L - x ) -mg = ma ,即 F =kx + ma + mg - kL = kx + ma ,可见, F 与 x 是一次函数关系, A 正确.3.如下图, 几条足够长的圆滑直轨道与水平面成不一样角度,从 P点以大小不一样的初速度沿各轨道发射小球, 若各小球恰幸亏同样的时间 内抵达各自的最高点,则各小球最高点的地点( )A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上分析:选 D.设某向来轨道与水平面成θ 角,末速度为零的匀减速直线运动可逆向当作初速度为零的匀加快直线运动,则小球在直轨道上运动的加快度a = mg sin θ = g sinθ ,m由位移公式得 l = 21at 2=21g sin θ ·t 2,即 sinl θ = 21gt 2,不一样的倾角 θ 对应不一样的位移l ,l12但 sin θ 同样,即各小球最高点的地点在直径为 2gt 的圆周上,选项D 正确.4.质量为 M 的皮带轮工件搁置在水平桌面上,一细绳绕过皮带轮的皮带槽, 一端系一质量为 m 的重物,另一端固定在桌面上. 如图所示,工件与桌面、绳之间以及绳与桌子边沿之间的摩擦都忽略不计,则重物着落过程中,工件的加快度为( )mgmgA. 2MB .M + m2mg2mgC. +4mD . +2mMM分析:选 C.相等时间内重物着落的距离是工件运动距离的2倍,所以,重物的加快度mg - F 2F也是工件加快度的 2 倍,设绳索上的拉力为 F ,依据牛顿第二定律m =2· M ,解得 F =Mmg2 F 2mg,工件加快度a = = ,所以 C 正确.M + 4mM M +4m5. ( 多项选择 ) 如下图,总质量为460 kg 的热气球,从地面刚开始竖直上涨时的加快度为 0.5 m/s 2,当热气球上涨到180 m 时,以 5 m/s 的速度向上匀速运动,若走开地面后热气球所受浮力保持不变,上涨过程中热气球总质量不变,重力加快度 g =10 m/s 2. 对于热气球,以下说法正确的选项是 ()A .所受浮力大小为 4 830 NB .加快上涨过程中所受空气阻力保持不变C .从地面开始上涨 10 s 后的速度大小为5 m/sD .以 5 m/s 匀速上涨时所受空气阻力大小为 230 N分析:选 AD.刚开始上涨时, 空气阻力为零, F 浮 - mg = ma ,解得 F 浮= m ( g + a ) = 4 830 N , A 正确;加快上涨过程, 若保持加快度不变, 则热气球上涨到 180 m 时,速度 v = 2 = 65ahm/s > 5 m/s ,所以热气球做加快度减小的加快直线运动, 上涨 10 s 后的速度 v ′< at = 5 m/s ,C 错误;再由 F 浮- F 阻- mg = ma 可知空气阻力F 阻 增大, B 错误;匀速上涨时, F 浮 =F 阻 + mg ,所以F 阻= F 浮 - mg = 230 N ,D 正确.6.(2019 ·南宁模拟 ) 如下图,航空母舰上的腾飞跑道由长度为l 1=1.6 ×10 2 m 的水平跑道和长度为 l 2= 20 m 的倾斜跑道两部分构成. 水平跑道与倾斜跑道尾端的高度差 h = 4.045m .一架质量为 m =2.0 ×10 kg 的飞机,其喷气发动机的推力大小恒为F =1.2 ×10 N ,方向与速度方向同样, 在运动过程中飞机遇到的均匀阻力大小为飞机重力的 2处于静止状态,飞机质量视为不变并可当作质点,取g = 10 m/s .0.1 倍.假定航母(1) 求飞机在水平跑道运动的时间及抵达倾斜跑道尾端时的速度大小;(2) 为了使飞机在倾斜跑道的尾端达到腾飞快度100 m/s ,外界还需要在整个水平跑道对飞机施加助推力,求援推力F 推 的大小.分析: (1) 飞机在水平跑道上运动时,水平方向遇到推力与阻力作用,设加快度大小为a 1、末速度大小为 v 1,运动时间为 t 1,有F 合 = F - F f = ma 122v 1- v 0= 2a 1l 1v 1= a 1t 1注意到 v 0= 0, F f = 0.1 mg ,代入已知数据可得a 1= 5.0 m/s 2, v 1= 40 m/s , t 1=8.0 s飞机在倾斜跑道上运动时, 沿倾斜跑道遇到推力、 阻力与重力沿斜面分力作用, 设沿斜面方向的加快度大小为a2、末速度大小为v2,沿斜面方向有F 合′= F-F f- mg sinα =ma2hmg sinα =mgl 22 2v - v = 2a l2 1 22代入已知数据可得a2=3.0 m/s 2,v2= 1 720 m/s = 41.5 m/s(2)飞机在水平跑道上运动时,水平方向遇到推力、助推力与阻力作用,设加快度大小为 a1′、末速度大小为 v1′,有F 合″= F 推+ F- F f= ma1′2 2v1′ - v0=2a1′ l 1飞机在倾斜跑道上运动时,沿倾斜跑道遇到推力、阻力与重力沿斜面分力作用没有变化,加快度大小仍有a2′=3.0 m/s 2v2′2- v1′2=2a2′ l 2依据题意, v2′=100 m/s,代入数据解得F 推=5.175×105N.答案: (1)8.0 s41.5 m/s(2)5.175 ×10 5 N。
高考物理一轮复习 第三章 牛顿运动律 第2讲 牛顿第二律 两类动力学问题作业
权掇市安稳阳光实验学校第2讲 牛顿第二定律 两类动力学问题[课时作业] 单独成册 方便使用 [基础题组] 一、单项选择题1.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为( ) A .m 2·kg·s -4·A -1B .m 2·kg·s -3·A -1C .m 2·kg·s -2·A -1D .m 2·kg·s -1·A-1解析:根据P =UI 、P =Fv 、F =ma 可导出U =mavI, 即V =kg·m·s -2·m·s -1A =m 2·kg·s -3·A -1,B 项正确.答案:B2.由牛顿第二定律可知( )A .物体运动的方向发生改变,可断定物体所受合外力的方向也发生改变B .只要物体受到力的作用,物体就有加速度C .当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比D .物体的质量对加速度的产生起反抗作用,所以质量是一种阻力解析:物体运动的方向发生改变,其合外力方向可能不变,如平抛运动,A 错;若物体所受到的力的合力为零,则物体没有加速度,B 错;根据牛顿第二定律的性可知,C 对;质量是物体的属性,不是力,D 错. 答案:C3.如图所示,两根长度分别为L 1和L 2的光滑杆AB 和BC 在B 点垂直焊接,当按图示方式固定在竖直平面内时,将一滑环从B 点由静止释放,分别沿BA 和BC 滑到杆的底端经历的时间相同,则这段时间为( )A.2L 1L 2gB.2L 1L 2gC.2L 21+L 22gD.2L 21+L 22g L 1+L 2解析:设BA 和BC 倾角分别为α和β,根据牛顿第二定律得: 滑环沿BA 下滑的加速度为a 1=mg sin αm=g sin α①沿BC 下滑的加速度为a 2=mg sin βm=g sin β②设下滑时间为t ,由题有: L 1=12a 1t 2③L 2=12a 2t 2④由几何知识有:sin α=cos β⑤联立以上各式解得t =2L 21+L 22g,故选C.答案:C4.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a 上行,如图所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m 的小物块,小物块相对斜面静止(设缆车保持竖直状态运行),则( )A .小物块受到的摩擦力方向平行斜面向上B .小物块受到的摩擦力方向平行斜面向下C .小物块受到的滑动摩擦力为12mg +maD .小物块受到的静摩擦力为ma解析:小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力.缆车以加速度a 上行,小物块的加速度也为a ,以物块为研究对象,则有f -mg sin 30°=ma ,f =12mg +ma ,f 为静摩擦,方向平行斜面向上,故A 正确,B 、C 、D均错误. 答案:A5.(2018·湖南衡阳联考)质量不等的两木块A 、B ,用跨过一轻质定滑轮的轻绳相连,在图示情况下,木块A 、B 一起做匀速运动.若木块A 、B 的位置互相交换,则木块A 运动的加速度为(木块A 、B 与桌面间的动摩擦因数均为μ,且μ<1,重力加速度为g ,空气阻力、滑轮摩擦均不计)( ) A .(1-μ)g B .(1-μ2)gC.1-μ2μgD .与木块A 、B 的质量有关解析:A 、B 匀速运动过程,有m A g =μm B gA 、B 互相交换后,有 m B g -μm A g =(m A +m B )a解得a =(1-μ)g 故选A. 答案:A二、多项选择题6.如图是汽车运送圆柱形工件的示意图.图中P 、Q 、N 是固定在车体上的压力传感器,假设圆柱形工件表面光滑,汽车静止不动时Q 传感器示数为零,P 、N 传感器示数不为零.当汽车向左匀加速启动过程中,P 传感器示数为零而Q 、N 传感器示数不为零.已知sin 15°=0.26,cos 15°=0.97,tan 15°=0.27,g 取10 m/s 2,则汽车向左匀加速启动的加速度可能为( ) A .4 m/s 2B .3 m/s 2C .2 m/s 2D .1 m/s 2解析:设圆柱形工件的质量为m ,对圆柱形工件受力分析如图所示,根据题意,有F Q +mg =N cos 15°,F 合=N sin 15°=ma ,联立解得a =F Q +mg m ·tan 15°=F Q m×0.27+2.7m/s 2>2.7 m/s 2.故选项A 、B 正确. 答案:AB7.(2018·四川绵阳高三月考)如图所示,质量分别为m A 、m B 的A 、B 两物块用轻绳连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F 拉A ,使它们沿斜面匀加速上升,A 、B 与斜面的动摩擦因数均为μ.为了增加轻绳上的张力,可行的办法是( ) A .减小A 物块的质量B .增大B 物块的质量C .增大倾角θD .增大动摩擦因数μ解析:对整体:F -(m A +m B )g sin θ-μ(m A +m B )g cos θ=(m A +m B )a 得a =Fm A +m B-g sin θ-μg cos θ对B :T -m B g sin θ-μm B g cos θ=m B a则轻线上的张力T =m B g sin θ+μm B g cos θ+m B a =m B Fm A +m B则要增加T ,可减小A 物块的质量,或增大B 物块的质量,选项A 、B 正确.答案:AB8.(2018·湖北黄石高三质检)如图所示,轻弹簧两端拴接质量均为m 的小球a 、b ,拴接小球的细线固定在天花板上,两小球静止,两细线与水平方向的夹角α=30°,弹簧水平,重力加速度为g ,则以下说法中正确的是( ) A .细线拉力的大小为mgB .弹簧弹力的大小为32mgC .剪断左侧细线的瞬间,小球a 的加速度为2gD .剪断左侧细线的瞬间,小球b 的加速度为零解析:对小球a 分析,由共点力平衡条件得,弹簧的弹力F =3mg ,细线的拉力为2mg ,故A 、B 错误;剪断左侧细线的瞬间,弹簧的弹力不变,小球a 所受的合力F合=2mg,根据牛顿第二定律得,a=2g,小球b受力不变,合力仍然为零,所以加速度为零,故C、D正确.答案:CD[能力题组]一、选择题9.如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为g sin θB.两图中A球的加速度均为零C.图乙中轻杆的作用力一定不为零D.图甲中B球的加速度是图乙中B球加速度的2倍解析:撤去挡板前,挡板对B球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A球所受合力为零,加速度为零,B球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A、B球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D正确.答案:D10.(2018·贵州六盘水模拟)在很多旅游景点都建有山坡滑道,如图甲是某景点的山坡滑道图片,为了研究滑行者在滑道斜坡AE部分的滑行情况,技术人员通过测量绘制出如图乙所示的示意图.AC是滑道的竖直高度,D点是AC竖直线上的一点,且有AD=DE=10 m,滑道AE可视为光滑,∠A=30°.滑行者从坡顶A点由静止开始沿滑道AE向下做直线滑动,g取10 m/s2,则( )A.滑道AE的长度为10 mB.滑行者在滑道AE上滑行的加速度a=5 m/s2C.滑行者在滑道AE上滑行的时间为2 sD.滑行者滑到E点时的速度为10 m/s解析:由图中几何关系可知,AE=2AD cos 30°=2×10×32m=10 3 m,A错误;由几何知识知滑道AE与水平面的夹角为60°,由mg sin 60°=ma可得滑行者在滑道AE上滑行的加速度a=g sin 60°=5 3 m/s2,B错误;由AE=12at2,解得t=2 s,C正确;由v2=2a·AE,解得v=10 3 m/s,D错误.答案:C11.(多选)如图所示,一倾角θ=37°的足够长斜面固定在水平地面上.当t=0时,滑块以初速度v0=10 m/s沿斜面向上运动.已知滑块与斜面间的动摩擦因数μ=0.5,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,下列说法正确的是( )A .滑块一直做匀变速直线运动B .t =1 s 时,滑块速度减为零,然后在斜面上向下运动C .t =2 s 时,滑块恰好又回到出发点D .t =3 s 时,滑块的速度大小为4 m/s解析:设滑块上滑时的加速度大小为a 1,由牛顿第二定律可得mg sin θ+μmg cos θ=ma 1,解得a 1=10 m/s 2,上滑时间t 1=v 0a 1=1 s ,上滑的距离x 1=12v 0t 1=5 m ,因tan θ>μ,mg sin θ>μmg cos θ,滑块上滑到速度为零后,向下运动,选项B 正确;设滑块下滑时的加速度大小为a 2,由牛顿第二定律可得mg sin θ-μmg cos θ=ma 2,解得a 2=2 m/s 2,经1 s ,滑块下滑的距离x 2=12a 2t 22=1 m <5 m ,滑块未回到出发点,选项C 错误;因上滑和下滑过程中的加速度不同,故滑块全程不是匀变速直线运动,选项A 错误;t =3 s 时,滑块沿斜面向下运动的位移x 3=12a 2t 23=12×2×22m =4 m <5 m ,滑块未回到出发点,此时的速度v =a 2·(3 s-1 s)=4 m/s ,选项D 正确. 答案:BD 二、非选择题12.(2018·浙江金华十校调研)在游乐场中,有一种大型游戏装置叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40 m 高处,然后由静止释放.为研究方便,可以认为座椅沿轨道做自由落体运动1.2 s 后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4 m 高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(g 取10 m/s 2)求:(1)座椅在自由下落结束时刻的速度为多大? (2)座椅在匀减速运动阶段的时间为多少?(3)在匀减速运动阶段,座椅对游客的作用力大小是游客体重的多少倍?解析:(1)设座椅在自由下落结束时刻的速度为v ,下落时间t 1=1.2 s ,由v=gt 1得v =12 m/s.(2)设座椅自由下落和匀减速运动的总高度为h ,总时间为t ,h =(40-4)m =36 m ,由h =v 2t 得t =6 s ,设座椅匀减速运动的时间为t 2,则t 2=t -t 1=4.8 s.(3)设座椅在匀减速阶段的加速度大小为a ,座椅对游客的作用力大小为F ,根据v =at 2可得a =2.5 m/s 2,由牛顿第二定律F -mg =ma 可得Fmg=1.25.答案:(1)12 m/s (2)4.8 s (3)1.2513.如图所示,一物体以v 0=2 m/s 的初速度从粗糙斜面顶端下滑到底端用时t =1 s .已知斜面长度L =1.5 m ,斜面的倾角θ=30°,重力加速度取g =10 m/s 2.求:(1)物体滑到斜面底端时的速度大小; (2)物体沿斜面下滑的加速度大小和方向; (3)物体与斜面间的动摩擦因数.解析:(1)设物体滑到斜面底端时速度为v t ,则有L =v 0+v t 2t ,代入数据解得v t =1 m/s.(2)因v t <v 0,物体做匀减速运动,加速度方向沿斜面向上,加速度的大小为a =v 0-v t t=1 m/s 2.(3)物体沿斜面下滑时,受力分析如图所示. 由牛顿第二定律得f -mg sin θ=ma又N =mg cos θf =μN联立解得μ=a +g sin θg cos θ,代入数据解得μ=235.答案:(1)1 m/s (2)1 m/s 2方向沿斜面向上 (3)235。
2023新考案一轮复习 第三章第2讲 牛顿第二定律 两类动力学问题
2023新考案一轮复习第三章第2讲牛顿第二定律两类动力学问题一、多选题1.关于牛顿第二定律,下列说法正确的是()A.加速度与合力的关系是瞬时对应关系,即〃与尸同时产生、同时变化、同时消失B.加速度的方向总是与合外力的方向相同C.同一物体的运动速度变化越大,受到的合外力也越大D.物体的质量与它所受的合外力成正比与它的加速度成反比二、单选题2.在国际单位制(简称SI)中,力学的基本单位有:m (米)、kg (千克)、 s (秒)。
导出单位J (焦耳)用上述基本单位可表示为()A. kg ∙ m ∙ s 1B. kg ∙ m' ∙ s 1C. kg ∙ m ∙ s 2D. kg ∙ m2∙s ’3.如图所示,在里约奥运会男子跳高决赛中,加拿大运动员德劳因突出重围, 以2米38的成绩夺冠,则()A.德劳因在最高点处于平衡状态B.德劳因起跳以后在上升过程中处于失重状态C.德劳因起跳时地面对他的支持力等于他所受的重力D.德劳因在下降过程中处于超重状态4.某同学自主设计了墙壁清洁机器人的模型,利用4个吸盘吸附在接触面上,通过吸盘的交替伸缩吸附,在竖直表面上行走并完成清洁任务,如图所示。
假设这个机器人在竖直玻璃墙面上由A点沿直线“爬行”到右上方B点,设墙面对吸盘摩擦力的合力为E 下列分析正确的是( )则F 的方向可能沿A3方向 则尸的方向一定竖直向上则尸的方向可能沿AB 方向 则尸的方向一定竖直向上5 .图1所示的长江索道被誉为“万里长江第一条空中走廊”。
索道简化示意图如图2所示,索道倾角为30° ,质量为机的车厢通过悬臂固定悬挂在承载索 上,在牵引索的牵引下一起斜向上运动。
若测试运行过程中悬臂和车厢始终处 于竖直方向,缆车开始以加速度〃尸IOm/s,向上加速,最后以加速度@=10m/s2 向上减速,重力加速度大小g=10m∕T,则向上加速阶段和向上减速阶段悬臂对 车厢的作用力之比为( )三、多选题6 .京张高铁是北京冬奥会的重要配套工程,其开通运营标志着冬奥会配套建设 取得了新进展。
高考物理一轮总复习第三章第2讲牛顿第二定律两类动力学问题讲义含解析新人教版06
高考物理一轮总复习第三章第2讲牛顿第二定律两类动力学问题讲义含解析新人教版06牛顿第二定律两类动力学问题[基础知识·填一填][知识点1] 牛顿第二定律单位制1.牛顿第二定律(1)内容:物体的加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向与作用力的方向相同.(2)表达式:F=Kma,当单位采用国际单位制时K=1,F=ma.(3)适用范围①牛顿第二定律只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.2.单位制、基本单位、导出单位(1)单位制:基本单位和导出单位一起组成了单位制.①基本物理量:只要选定几个物理量的单位,就能够利用物理公式推导出其他物理量的单位,这些被选定的物理量叫做基本物理量.②基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是质量、时间、长度,它们的单位是基本单位.③导出单位:由基本单位根据物理关系推导出来的其他物理量的单位.(2)国际单位制中的基本单位判断正误,正确的划“√”,错误的划“×”.(1)物体所受合外力越大,加速度越大.(√)(2)物体所受合外力越大,速度越大.(×)(3)物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速度逐渐减小.(×)(4)物体的加速度大小不变一定受恒力作用.(×)[知识点2] 两类动力学问题1.动力学的两类基本问题(1)已知受力情况求物体的运动情况.(2)已知物体的运动情况求物体的受力情况.2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体的逻辑关系如图:[教材挖掘·做一做]1.(人教版必修1 P78第1题改编)由牛顿第二定律F=ma可知,无论怎样小的力都可能使物体产生加速度,可是当用很小的力去推很重的桌子时,却推不动,这是因为( ) A.牛顿第二定律不适用于静止的物体B.桌子加速度很小,速度增量也很小,眼睛观察不到C.推力小于桌子所受到的静摩擦力,加速度为负值D.桌子所受的合力为零,加速度为零答案:D2.(人教必修1 P77科学漫步改编)质量分别为m1和m2的木块,并列放置于光滑水平地面,如图所示,当木块1受到水平力F的作用时,两木块同时向右做匀加速运动,求:(1)匀加速运动的加速度的大小?(2)木块1对2的弹力.解析:(1)将木块1和2看做一个整体,其合外力为F,由牛顿第二定律知F=(m1+m2)a,a=Fm1+m2.(2)再以木块2为研究对象,受力分析如图所示,由牛顿第二定律可得F12=m2a,联立以上两式可得F12=m2Fm1+m2.答案:(1)Fm1+m2(2)m2Fm1+m23.(人教版必修1 P78第5题)水平路面上质量是30 kg的手推车,在受到60 N的水平推力时做加速度为 1.5 m/s2的匀加速运动.如果撤去推力,车的加速度的大小是多少?(g取10 m/s2)解析:设阻力为F f,则F-F f=ma,解得F f=15 N.如果撤去推力,车的加速度由阻力提供,则F f=ma′,解得a′=0.5 m/s2.答案:0.5 m/s24.(人教版必修1 P87第4题改编)交通警察在处理交通事故时,有时会根据汽车在路面上留下的刹车痕迹来判断发生事故前汽车是否超速.在限速为40 km/h的大桥路面上,有一辆汽车紧急刹车后仍发生交通事故,交通警察在现场测得该车在路面的刹车痕迹为12 m.已知汽车轮胎与地面间的动摩擦因数为0.6,请判断这辆汽车是否超速.(g取10 m/s2) 解析:选取初速度方向为正方向,则F N-mg=0①故F f=μF N=μmg②由牛顿第二定律得-F f=ma③根据匀变速直线运动的规律有v2-v20=2ax④联立②③④式可得v0=2μgx代入数据得v0=12 m/s汽车刹车前速度为12 m/s,即43.2 km/h,此汽车属超速行驶.答案:超速5.(人教版必修1 P87第3题改编)民航客机都有紧急出口,发生意外情况时打开紧急出口,狭长的气囊会自动充气生成一条通向地面的斜面,乘客可沿斜面滑行到地面上.如图所示,某客机紧急出口离地面高度AB=3.0 m,斜面气囊长度AC=5.0 m,要求紧急疏散时乘客从气囊上由静止下滑到地面的时间不超过2 s,g取10 m/s2,求:(1)乘客在气囊上滑下的加速度至少为多大?(2)乘客和气囊间的动摩擦因数不得超过多大?(忽略空气阻力)解析:(1)根据运动学公式x =12at 2得a =2x t 2=2×522 m/s 2=2.5 m/s 2故乘客在气囊上滑下的加速度至少为2.5 m/s 2. (2)乘客在气囊上受力情况如图所示.F f =μF N F N =mg cos θ根据牛顿第二定律:mg sin θ-F f =ma由几何关系可知sin θ=0.6,cos θ=0.8 联立解得μ=g sin θ-a g cos θ=716≈0.44故乘客和气囊间的动摩擦因数不得超过0.44. 答案:(1)2.5 m/s 2(2)0.44考点一 对牛顿第二定律的理解[考点解读]1.牛顿第二定律的五个特性2.合力、加速度、速度之间的决定关系(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度.(2)a =Δv Δt 是加速度的定义式,a 与Δv 、Δt 无必然联系;a =Fm是加速度的决定式,a∝F ,a ∝1m.(3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.[典例赏析][典例1] (多选)如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( )A .物体从A 到B 速度越来越大 B .物体从A 到B 速度先增加后减小C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加 [审题指导](1)由A 到C 的过程中,物体受地面的摩擦力和弹簧弹力大小相等的位置出现在B 点的左侧.(2)加速度a =0的位置在A 、B 之间,速度最大.[解析] BD [物体从A 到B 的过程中,水平方向一直受到向左的滑动摩擦力作用,大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为0.开始时,弹力大于摩擦力,合力向右,物体向右加速,随着弹力的减小,合力越来越小;到A 、B 间的某一位置时,弹力和摩擦力大小相等、方向相反,合力为0,速度达到最大;随后,摩擦力大于弹力,合力增大但方向向左,合力方向与速度方向相反,物体开始做减速运动.所以,小物体由A 到B 的过程中,先做加速度减小的加速运动,后做加速度增加的减速运动,正确选项为B 、D.]弹簧弹力作用下的动态运动问题的基本处理方法宜采用“逐段分析法”与“临界分析法”相结合,将运动过程划分为几个不同的子过程,而找中间的转折点是划分子过程的关键.(1)合外力为零的点即加速度为零的点,是加速度方向发生改变的点,在该点物体的速度具有极值.(2)速度为零的点,是物体运动方向(速度方向)发生改变的转折点.[题组巩固]1.(2019·商丘模拟)(多选)关于速度、加速度、合力的关系,下列说法正确的是( )A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小解析:ABC [加速度与力同时产生、同时消失、同时变化,选项A正确;加速度的方向由合力方向决定,但与速度方向无关,选项B正确;在初速度为零的匀加速直线运动中,合力方向决定加速度方向,加速度方向决定末速度方向,选项C正确;合力变小,物体的加速度一定变小,但速度不一定变小,选项D错误.]2.(多选)如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后( )A.木块立即做减速运动B.木块在一段时间内速度仍可增大C.当F等于弹簧弹力大小时,木块速度最大D.弹簧压缩量最大时,木块加速度为0解析:BC [当木块接触弹簧后,水平方向受到向右的恒力F和弹簧水平向左的弹力.弹簧的弹力先小于恒力F,后大于恒力F,木块所受的合力方向先向右后向左,则木块先做加速运动,后做减速运动,当弹力大小等于恒力F时,木块的速度最大,加速度为0.当弹簧压缩量最大时,弹力大于恒力F,合力向左,加速度大于0,故B、C正确,A、D错误.]3.(2019·内蒙古包头模拟)(多选)如图所示,一个质量为m的刚性圆环套在粗糙的竖直固定细杆上,圆环的直径略大于细杆的直径,圆环的两边与两个完全相同的轻质弹簧相连,轻质弹簧的另一端分别相连在和圆环同一高度的墙壁上的P、Q两点处,弹簧的劲度系数为k,起初圆环处于O点,弹簧处于原长状态且原长为l,细杆上面的A、B两点到O点的距离都为l.将圆环拉至A点由静止释放,对于圆环从A点运动到B点的过程中,下列说法正确的是( )A.圆环通过O点的加速度小于gB .圆环在O 点的速度最大C .圆环在A 点的加速度大小为g +(2-2)klmD .圆环在B 点的速度为2gl解析:CD [圆环在O 点的合力大小等于重力,则此时加速度a =g ,A 错误;圆环在O 点时加速度向下,速度向下,有向下的加速度,速度不是最大,B 错误;圆环在A 点的加速度大小为a A =mg +2×k (l 2+l 2-l )×cos 45°m =g +(2-2)kl m,C 正确;A 、B 两点到O点的距离都为l ,弹力在此过程中做功为0,根据动能定理得mg ·2l =12mv 2,即v =2gl ,D 正确.]考点二 瞬时加速度的求解[考点解读]1.两种模型:加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度[典例赏析][典例2] (多选)如图所示,弹簧p 和细绳q 的上端固定在天花板上,下端用小钩钩住质量为m 的小球C ,弹簧、细绳和小钩的质量均忽略不计.静止时p 、q 与竖直方向的夹角均为60°.下列判断正确的有( )A .若p 和球突然脱钩,则脱钩后瞬间q 对球的拉力大小为mgB .若p 和球突然脱钩,则脱钩后瞬间球的加速度大小为32g C .若q 和球突然脱钩,则脱钩后瞬间p 对球的拉力大小为12mgD .若q 和球突然脱钩,则脱钩后瞬间球的加速度大小为g解析:BD [原来p 、q 对球的拉力大小均为mg .p 和球突然脱钩后,细绳q 对球的拉力发生突变,球将开始沿圆弧运动,将球的重力沿绳和垂直绳正交分解(见图1),得F -mg cos 60°=mv 2r =0,即F =12mg ,合力为mg sin 60°=ma ,A 错误,B 正确;q和球突然脱钩后瞬间,p 的拉力未来得及改变,仍为mg ,因此合力为mg (见图2),球的加速度大小为g ,故C 错误,D 正确.]在求解瞬时加速度时应注意的问题1.物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.2.加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.[题组巩固]1.(轻绳模型)两个质量均为m 的小球,用两条轻绳连接,处于平衡状态,如图所示.现突然迅速剪断轻绳OA ,让小球下落,在剪断轻绳的瞬间,设小球A 、B 的加速度分别用a 1和a 2表示,则( )A .a 1=g ,a 2=gB .a 1=0,a 2=2gC .a 1=g ,a 2=0D .a 1=2g ,a 2=0解析:A [由于绳子张力可以突变,故剪断OA 后小球A 、B 只受重力,其加速度a 1=a 2=g .故选项A 正确.]2.(轻杆、轻弹簧模型)如图所示,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为g sin θB.两图中A球的加速度均为零C.图乙中轻杆的作用力一定不为零D.图甲中B球的加速度是图乙中B球加速度的2倍解析:D [撤去挡板前,挡板对B球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A球所受合力为零,加速度为零,B球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A、B球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D对.]3.(轻弹簧模型)(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O.整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2解析:AC [剪断细线前,把a、b、c看成整体,细线上的拉力为T=3mg.因在剪断瞬间,弹簧未发生突变,因此a、b、c之间的作用力与剪断细线之前相同.则将细线剪断瞬间,对a隔离进行受力分析,由牛顿第二定律得:3mg=ma1得a1=3g,A正确,B错误;由胡克定律知:2mg=kΔl1.mg=kΔl2,所以Δl1=2Δl2,C正确,D错误.]考点三动力学的两类基本问题[考点解读]1.动力学的两类基本问题的解题步骤2.解决两类动力学问题的两个关键点(1)把握“两个分析”“一个桥梁”(2)不同过程中的联系.如第一个过程的末速度就是下一个过程的初速度,若过程较为复杂,可画位置示意图确定位移之间的联系.[典例赏析][典例3] (2019·东北四校协作体联考)如图所示,质量为10 kg的环(图中未画出)在F=200 N的拉力作用下,沿固定在地面上的粗糙长直杆由静止开始运动,杆与水平地面的夹角θ=37°,拉力F与杆的夹角也为θ.力F作用0.5 s后撤去,环在杆上继续上滑了0.4 s后速度减为零.(已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2)求:(1)环与杆之间的动摩擦因数μ;(2)环沿杆向上运动的总距离x.[审题指导][解析] (1)在力F 作用0.5 s 内根据牛顿第二定律有F cos θ-mg sin θ-F f =ma 1 F sin θ=F N +mg cos θ F f =μF N设0.5 s 末速度为v 根据运动学公式有v =a 1t 1 撤去F 后0.4 s 内mg sin θ+μmg cos θ=ma 2 v =a 2t 2联立以上各式得μ=0.5a 1=8 m/s 2,a 2=10 m/s 2 v =a 2t 2=4 m/s.(2)x =12a 1t 21+vt 2-12a 2t 22=1.8 m.[答案] (1)0.5 (2)1.8 m多过程问题的分析方法1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接. 2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图. 3.根据“子过程”和“衔接点”的模型特点选择合理的物理规律列方程.4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.5.联立方程组,分析求解,对结果进行必要的验证或讨论.[题组巩固]1.(已知物体的受力情况求运动情况)如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =84 N 而从静止向前滑行,其作用时间为t 1=1.0 s ,撤除水平推力F 后经过t 2=2.0 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相同.已知该运动员连同装备的总质量为m =60 kg ,在整个运动过程中受到的滑动摩擦力大小恒为F f =12 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小. (2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离. 解析:(1)运动员利用滑雪杖获得的加速度为a 1=F -F f m =84-1260m/s 2=1.2 m/s 2第一次利用滑雪杖对雪面作用获得的速度大小v 1=a 1t 1=1.2×1.0 m/s=1.2 m/s位移x 1=12a 1t 21=0.6 m.(2)运动员停止使用滑雪杖后,加速度大小为a 2=F f m =1260m/s 2=0.2 m/s 2经时间t 2速度变为v ′t =v 1-a 2t 2=1.2 m/s -0.2×2.0 m/s=0.8 m/s第二次利用滑雪杖获得的速度大小为v 2, 则v 22-v ′2t =2a 1x 1第二次撤除水平推力后滑行的最大距离x 2=v 222a 2联立解得x 2=5.2 m.答案:(1)1.2 m/s 0.6 m (2)5.2 m2.(已知物体的运动情况求受力情况)随着科技的发展,未来的航空母舰上将安装电磁弹射器以缩短飞机的起飞距离.如图所示,航空母舰的水平跑道总长l=180 m,其中电磁弹射区的长度为l1=120 m,在该区域安装有直流电机,该电机可从头至尾提供一个恒定的牵引力F牵.一架质量为m=2.0×104 kg的飞机,其喷气式发动机可以提供恒定的推力F推=1.2×105 N.假设在电磁弹射阶段的平均阻力为飞机重力的0.05倍,在后一阶段的平均阻力为飞机重力的0.2倍.已知飞机可看做质量恒定的质点,离舰起飞速度v=120 m/s,航空母舰处于静止状态,求:(结果保留两位有效数字,g取10 m/s2)(1)飞机在后一阶段的加速度大小;(2)飞机在电磁弹射区的加速度大小和电磁弹射器的牵引力F牵的大小.解析:(1)飞机在后一阶段受到阻力和发动机提供的推力作用,做匀加速直线运动,设加速度为a2,此过程中的平均阻力F f2=0.2mg根据牛顿第二定律有F推-F f2=ma2代入数据解得a2=4.0 m/s2(2)飞机在电磁弹射阶段受恒定的牵引力、阻力和发动机提供的推力作用,做匀加速直线运动,设加速度为a1,末速度为v1.此过程中飞机受到的阻力F f1=0.05mg 根据匀加速运动规律有v21=2a1l1v2-v21=2a2(l-l1)根据牛顿第二定律有F牵+F推-F f1=ma1代入数据解得a1=58 m/s2,F牵=1.05×106 N.答案:(1)4.0 m/s2(2)58 m/s2 1.05×106 N物理模型(二) “等时圆”模型[模型特点]1.物体沿着位于同一竖直圆上的所有过圆周最低点的光滑弦由静止下滑,到达圆周最低点的时间均相等,且t=2Rg(如图甲所示).2.物体沿着位于同一竖直圆上的所有过顶点的光滑弦由静止下滑,到达圆周低端时间相等为t =2Rg(如图乙所示). [答题模板][典例赏析][典例] 如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( )A .2∶1B .1∶1 C.3∶1 D .1∶ 3[审题指导](1)物体在AB 、CD 上各做匀加速直线运动. (2)斜槽的长度:s AB =2R sin 60°+2r ·sin 60°s CD =2R sin 30°+2r sin 30°.[解析] B [设光滑斜槽轨道与水平面的夹角为θ,则物体下滑时的加速度为a =g sin θ,由几何关系,斜槽轨道的长度s =2(R +r )sin θ,由运动学公式s =12at 2,得t=2s a=2×2(R +r )sin θg sin θ=2R +rg,即所用的时间t 与倾角θ无关,所以t 1=t 2,B 项正确.][题组巩固]1.如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为 ( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:B [如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于B 点.由等时圆知识可知,由A 沿斜面滑到B 所用时间比由A 到达斜面上其他各点所用时间都短.而∠COB =θ,则α=θ2.]2.(2019·东北三省三校第一次联考)如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A 点,竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心.已知在同一时刻a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点;c 球由C 点自由下落到M 点.则( )A .a 球最先到达M 点B .b 球最先到达M 点C .c 球最先到达M 点D .b 球和c 球都可能最先到达M 点解析:C [如图所示,令圆环半径为R ,则c 球由C 点自由下落到M 点用时满足R =12gt 2c ,所以t c =2Rg;对于a 球,令AM 与水平面成θ角,则a 球下滑到M 用时满足AM=2R sin θ=12 g sin θt 2a ,即t a =2Rg;同理b 球从B 点下滑到M 点用时也满足t b =2rg(r 为过B 、M 且与水平面相切于M 点的竖直圆的半径,r >R ).综上所述可得t b >t a >t c .]。
高三物理一轮复习 牛顿第二定律两类动力学问题-人教版高三全册物理试题
牛顿第二定律 两类动力学问题班级姓名1.鱼在水中沿直线水平向左加速游动过程中,水对鱼的作用力方向合理的是A B C D2.质量之比2:1的球A 、B ,由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀速运动的电梯内,细线承受的拉力为F ;某时刻突然剪断细线,如此在细线断的瞬间A 、B 球的加速度分别为〔〕A .a A =g ,aB =g B .a A =0,a B =0.5gC .a A =1.5g ,a B =0D .a A =0.5g ,a B =1.5g3.如下列图,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静向向右做匀减速直线运动,运动过程中B 受到的摩擦力A 、方向向左,大小不变B 、方向向左,逐渐减小C 、方向向右,大小不变D 、方向向右,逐渐减小4.在哈尔滨冰雕节上,工作人员将如下列图的小车和冰球推进箱式吊车并运至高处安装,先后经历了水平向右匀速、水平向右匀减速、竖直向上匀加速、竖直向上匀减速运动四个过程。
冰球与水平底板和右侧斜挡板始终保持接触但摩擦不计。
冰球与右侧斜挡板间存在弹力的过程是( )A.向右匀速过程B.向右匀减速过程C.向上匀加速过程D.向上匀减速过程5.如下列图,带支架的平板小车沿水平面向左做直线运动,小球A 用细线悬挂于支架前端,质量为m 的物块B 始终相对于小车静止地摆放在右端。
B 与小车平板间的动摩擦因数为μ。
假设某时刻观察到细线偏离竖直方向θ角,如此此刻小车对物块B 产生的作用力的大小和A B v方向为〔 〕 A .mg ,竖直向上 B .mg 21μ+,斜向左上方C .mgtan θ,水平向右D .mg 21tanθ+,斜向右上方6.如下列图,长为L 的轻杆,一端固定一个质量为m 的小球,另一端固定在水平转轴O 上,杆随转轴O 在竖直平面内匀速转动,角速度为ω,某时刻杆对球的作用力恰好与杆垂直,如此此时杆与水平面的夹角θ是 〔 〕A .sinθ=2Lg ω B .tanθ=2Lg ωB .C .sinθ=2gL ω D .tanθ=2gL ω7.〔多项选择〕如下列图,置于水平地面上的一样材料的质量分别为m 和m 0的两物体用细绳连接,在m 0上施加一水平恒力F ,使两物体做匀加速直线运动,对两物体间细绳上的拉力,如下说法正确的答案是:A .地面光滑时,绳子拉力大小等于m m mF+0B .地面不光滑时,绳子拉力大小等于mm mF+0 C .地面不光滑时,绳子拉力大于m m mF+0D .地面不光滑时,绳子拉力小于mm mF+0 8.如下列图,有A 、B 两物体,B A m m 2=, 用细绳连接后放在光滑的斜面上, 在它们下滑的过程中A.它们的加速度θsin g a =B.它们的加速度a 小于θsin gC.细绳的张力0=TD.细绳的张力θsin 31g m T B = 9.如下列图,A 、B 两物体的质量分别为M 和m ,用跨过光滑定滑轮的轻绳相连,A 物体与桌面间的动摩擦因数为μ,重力加速度为g ,在A 物体加速向右运动过程中〔B 物体落地前〕,A 的加速度大小为〔 〕A .gB .M mg C .M Mg mg μ- D .m M Mg mg +-μ10.一小球从空中由静止下落,下落过程中小球所受阻力与速度的平方成正比,设小球离地足够高,如此 ( )A.小球先加速后匀速B.小球一直在做加速运动C.小球在做减速运动D.小球先加速后减速11.如如下图所示,传送带的水平局部长为L ,传动速率为v ,在其左端无初速度释放一小木块,假设木块与传送带间的动摩擦因数为μ,如此木块从左端运动到右端的时间不可能是A.L v B.L v +2v ug C. 2L ugD.2L v12.如图,从竖直面上大圆〔直径d 〕的最高点A,引出两条不同的光滑轨道,端点都在大圆上,同一物体由静止开始,从A 点分别沿两条轨道滑到底端,如此〔 〕A.所用的时间一样B.重力做功都一样C.机械能不一样D.到达底端的动能相等13.如下列图,铁板AB 与水平地面间的夹角为θ,一块磁铁吸附在铁板下方。
(浙江选考)版高考物理一轮复习 第三章 牛顿运动定律 第2节 牛顿第二定律 两类动力学问题达标检测(
第2节 牛顿第二定律 两类动力学问题1.(2019·4月浙江选考)如下物理量属于根本量且单位属于国际单位制中根本单位的是( )A .功/焦耳B .质量/千克C .电荷量/库仑D .力/牛顿解析:选B.质量是根本物理量,其国际单位制根本单位是千克,故B 正确;功、电荷量和力都是导出物理量,焦耳、库仑和牛顿均是导出单位.2.(多项选择)关于速度、加速度、合外力之间的关系,正确的答案是( )A .物体的速度越大,如此加速度越大,所受的合外力也越大B .物体的速度为零,如此加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零解析:选CD.物体的速度大小与加速度大小与所受合外力大小无关,故C 、D 正确,A 、B 错误.3.趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力与空气阻力不计,如此( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .假设加速度大于g sin θ,球一定沿球拍向上运动解析:选A.网球受力如图甲所示,根据牛顿第二定律得F N sinθ=ma ,又F N cos θ=mg ,解得a =g tan θ,F N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象,受力如图乙所示,根据平衡,运动员对球拍的作用力为F =〔M +m 〕g cos θ,故C 错误;当a >g tan θ时,网球才向上运动,由于g sin θ<g tan θ,故球不一定沿球拍向上运动,故D 错误.4.(2020·嘉兴检测)如下列图,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =84 N ,而从静止向前滑行,其作用时间为t 1=1.0 s ,撤除水平推力F 后经过t 2=2.0 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次一样.该运动员连同装备的总质量为m =60 kg ,在整个运动过程中受到的滑动摩擦力大小恒为F f =12 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小与这段时间内的位移;(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.解析:(1)运动员利用滑雪杖获得的加速度为a 1=F -F f m =84-1260m/s 2=1.2 m/s 2 第一次利用滑雪杖对雪面作用获得的速度大小v 1=a 1t 1=1.2×1.0 m/s =1.2 m/s位移x 1=12a 1t 21=0.6 m. (2)运动员停止使用滑雪杖后,加速度大小为a 2=F f m经时间t 2速度变为v ′1=v 1-a 2t 2第二次利用滑雪杖获得的速度大小v 2,如此v 22-v ′21=2a 1x 1第二次撤除水平推力后滑行的最大距离 x 2=v 222a 2解得:x 2=5.2 m.答案:(1)1.2 m/s 0.6 m (2)5.2 m[课后达标]一、选择题1.(2018·4月浙江选考)用国际单位制的根本单位表示能量的单位,以下正确的答案是( )A .kg ·m 2/s 2B .kg ·m/s 2C .N/mD .N ·m 答案:A2.如下关于单位制的说法中,不正确的答案是( )A .根本单位和导出单位一起组成了单位制B .在国际单位制中,长度、质量、时间三个物理量被选作力学的根本物理量C .在国际单位制中,力学的三个根本单位分别是m 、kg 、sD .力的单位牛顿是国际单位制中的一个根本单位答案:D3.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变.从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m答案:C4.(2020·浙江十校联考)如下列图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2,重力加速度大小为g .如此有( )A .a 1=g ,a 2=gB .a 1=0,a 2=gC .a 1=0,a 2=m +M M g D .a 1=g ,a 2=m +M Mg 答案:C5.(2020·浙江猜题卷)有种台阶式自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,正好经历了这两个过程,用G 、N 、f 表示乘客受到的重力、支持力和摩擦力,如此能正确反映该乘客在这两个过程中的受力示意图的是( )解析:选D.人和扶梯匀速运动时,人受到重力和支持力的作用,且二力平衡,不受摩擦力.人随台阶式自动扶梯加速运动时,加速度沿运动方向斜向上,台阶水平,摩擦力与接触面平行,故摩擦力是水平的.D 正确.6.(多项选择)如下列图,质量为m 的小球与弹簧Ⅰ和水平细绳Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P 、Q 两点.小球静止时,Ⅰ中拉力的大小为F 1,Ⅱ中拉力的大小为F 2,当仅剪断Ⅰ、Ⅱ其中一根的瞬间,球的加速度a 应是( )A .假设剪断Ⅰ,如此a =g ,方向竖直向下B .假设剪断Ⅱ,如此a =F 2m ,方向水平向左C .假设剪断Ⅰ,如此a =F 1m,方向沿Ⅰ的延长线方向D .假设剪断Ⅱ,如此a =g ,方向竖直向上解析:选AB.没有剪断Ⅰ、Ⅱ时小球受力情况如下列图.在剪断Ⅰ的瞬间,由于小球的速度为0,绳Ⅱ上的力突变为0,如此小球只受重力作用,加速度为g ,选项A 正确、C 错误;假设剪断Ⅱ,由于弹簧的弹力不能突变,F 1与重力的合力大小仍等于F 2,所以此时加速度为a =F 2m,方向水平向左,选项B 正确、D 错误. 7.(2020·湖州质检)如图甲所示,一物体沿倾角为θ=37°的固定粗糙斜面由静止开始运动,同时受到水平向右的风力作用,水平风力的大小与风速成正比.物体在斜面上运动的加速度a 与风速v 的关系如图乙所示,如此(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)( )A .当风速为3 m/s 时,物体沿斜面向下运动B .当风速为5 m/s 时,物体与斜面间无摩擦力作用C .当风速为5 m/s 时,物体开始沿斜面向上运动D .物体与斜面间的动摩擦因数为0.025解析:选A.由题图乙得物体做加速度逐渐减小的加速运动,物体的加速度方向不变,当风的初速度为零时,加速度为a 0=4 m/s 2,沿斜面方向有a =g sin θ-μg cos θ,解得μ=0.25,D 错误;物体沿斜面方向开始加速下滑,随着速度的增大,水平风力逐渐增大,摩擦力逐渐增大,如此加速度逐渐减小,但加速度的方向不变,物体仍然加速运动,直到速度为5 m/s 时,物体的加速度减为零,此后物体将做匀速运动,A 正确,B 、C 错误.8.(2020·东阳中学期中)如下列图,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面之间无摩擦力.现用一水平恒力向右拉木块3,当三木块一起匀速运动时,1和3两木块间的距离为(木块大小不计)( )A .L +μm 2g kB .L +μ〔m 1+m 2〕g kC .2L +μ〔2m 1+m 2〕g k D .2L +2μ〔m 1+m 2〕g k 解析:选C.对木块1受力分析,受重力、支持力、拉力和摩擦力,根据共点力平衡条件,有:kx 1-μm 1g =0对木块1和木块2整体受力分析,受总重力、总支持力、右侧弹簧的拉力和总摩擦力,有:kx 2-μ(m 1+m 2)g =0木块1与木块3之间的总长度为x =2L +x 1+x 2,由以上各式解得x =2L +μ〔2m 1+m 2〕g k,故C 正确. 9.一条足够长的浅色水平传送带自左向右匀速运行.现将一个木炭包无初速度地放在传送带的最左端,木炭包将会在传送带上留下一段黑色的径迹.如下说法中正确的答案是( )A .黑色的径迹将出现在木炭包的左侧B .木炭包的质量越大,径迹的长度越短C .传送带运动的速度越大,径迹的长度越短D .木炭包与传送带间动摩擦因数越大,径迹的长度越短解析:选D.放上木炭包后木炭包在摩擦力的作用下向右加速,而传送带仍匀速,虽然两者都向右运动,但在木炭包的速度达到与传送带速度相等之前木炭包相对于传送带向左运动,故黑色径迹出现在木炭包的右侧,A 错误.由于木炭包在摩擦力作用下加速运动时加速度a =μg 与其质量无关,故径迹长度与其质量也无关,B 错误.径迹长度等于木炭包相对传送带通过的位移大小,即二者对地的位移差:Δx =vt -0+v 2t =12vt =v 22μg,可见传送带速度越小、动摩擦因数越大,相对位移越小,黑色径迹越短,C 错误,D 正确.10.(2020·湖州质检)如下列图,质量为m 1的足够长的木板静止在光滑水平面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是( )解析:选A.t=0时刻起,给木块施加一水平恒力F,两者可能一起加速运动,选项A 正确,B错误;可能木块的加速度大于木板的加速度,选项C、D错误.二、非选择题11.(2020·宁波选考适应考试)小物块以一定的初速度v0沿斜面(足够长)向上运动,由实验测得物块沿斜面运动的最大位移x与斜面倾角θ的关系如下列图.取g=10 m/s2,空气阻力不计.可能用到的函数值:sin 30°=0.5,sin 37°=0.6.(1)求物块的初速度v0;(2)求物块与斜面之间的动摩擦因数μ;(3)计算说明图线中P点对应的斜面倾角为多大?在此倾角条件下,小物块能滑回斜面底端吗?说明理由(设最大静摩擦力与滑动摩擦力相等).解析:(1)当θ=90°时,物块做竖直上抛运动,末速度为0由题图得上升最大位移为x m=3.2 m由v20=2gx m,得v0=8 m/s.(2)当θ=0°时,物块相当于在水平面上做匀减速直线运动,末速度为0由题图得水平最大位移为x=6.4 m由运动学公式有:v20=2ax由牛顿第二定律得:μmg=ma,得μ=0.5.(3)设题图中P点对应的斜面倾角值为θ,物块在斜面上做匀减速运动,末速度为0由题图得物块沿斜面运动的最大位移为x′=3.2 m由运动学公式有:v20=2a′x′由牛顿第二定律有:mg sinθ+μmg cos θ=ma′得10sin θ+5cos θ=10,得θ=37°.因为mg sin θ=6m>μmg cos θ=4m,所以能滑回斜面底端.答案:(1)8 m/s (2)0.5(3)37°能滑回底端,理由见解析12.(2020·杭州质检)如下列图,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,取g=10 m/s2)求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大,设为v max,设滑块在斜面上运动的加速度大小为a1,如此mg sin 30°=ma1v2max=2a1hsin 30°解得:v max=4 m/s.(2)设滑块在水平面上运动的加速度大小为a2如此μmg=ma2v2max=2a2L解得:μ=0.4.(3)设滑块在斜面上运动的时间为t1,v max=a1t1,得t1=0.8 s,由于t>t1,故滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s,设t=1.0 s时速度大小为v,如此v=v max-a2(t-t1)解得:v=3.2 m/s.答案:(1)4 m/s (2)0.4 (3)3.2 m/s13.(2018·4月浙江选考)可爱的企鹅喜欢在冰面上玩游戏.如下列图,有一企鹅在倾角为37°的倾斜冰面上,先以加速度a=0.5 m/s2从冰面底部由静止开始沿直线向上“奔跑〞,t=8 s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变).假设企鹅肚皮与冰面间的动摩擦因数μ=0.25,sin 37°=0.6,cos 37°=0.8.求:(1)企鹅向上“奔跑〞的位移大小;(2)企鹅在冰面滑动的加速度大小;(3)企鹅退滑到出发点时的速度大小.(计算结果可用根式表示)解析:(1)在企鹅向上奔跑过程中:x =12at 2,解得:x =16 m. (2)在企鹅卧倒以后将进展两个过程的运动,第一个过程是从卧倒到最高点,第二个过程是从最高点滑到最低点,两次过程由牛顿第二定律分别有:mg sin 37°+μmg cos 37°=ma 1,mg sin 37°-μmg cos 37°=ma 2,解得:a 1=8 m/s 2,a 2=4 m/s 2.(3)企鹅卧倒滑到最高点的过程中,做匀减速直线运动,设时间为t ′,位移为x ′;t ′=at a 1,x ′=12a 1t ′2,解得:x ′=1 m .企鹅从最高点滑到出发点的过程中,设末速度为v t ,初速度为0,如此有:v 2t -02=2a 2(x +x ′),解得:v t =234 m/s.答案:(1)16 m (2)8 m/s 2 4 m/s 2 (3)234 m/s。
高考物理一轮复习:3-2《牛顿第二定律、两类动力学问题》ppt课件
高基三础自物测理一轮复习
教材梳理
第三章
牛顿运动定基础律自测
教材梳理
第2节 牛顿第二定律 两类动力学问题
内容
考点一 对牛顿第二定律的理解
考
点
考点二 牛顿第二定律瞬时性的分析
考点三 动力学两类基本问题
在本模块中,学生将学习算法初步、统计、概率的基础知识。 1.算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。中学数学中的算法内容和其他内容是密切联系在一 起的, 比如线性方程组的求解、数列的求和等。具体来说,需要通过模仿、操作、探索,学习设计程序框图表达解决问题的过程,体会算法的基本思想和含义,理解算法的基本结构和基本算法语句,并了解中国古代数学中的算法。在本教科书中,首先通过实例明确了算法的含义,然后结合具 体算法介绍了算法的三种基本结构:顺序、条件和循环,以及基本的 算法语句,最后集中介绍了辗转相除法与更相减损术、秦九韶算法、排序、进位制等典型的几个算法问题,力求表现算法的思想,培养学生的算法意识。2.现代社会是信息化的社会,人们面临形形色色的问题,把问题用数量化的形式表示,是利用数学工具解决问题的基础。对于数量化表示的问题,需要收集数据、分析数据、解答问题。统计学是研究 如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。本教科书主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布及数字特征和线性回归等内容。本教科书介绍的统计内容是在义务教育阶段有关抽样 调查知识的基础上展开的,侧重点放在了介绍获得高质量样本的方法、 方便样本的缺点以及随机样本的简单性质上。教科书首先通过大量的日常生活中的统计数据,通过边框的问题和探究栏目引导学生思考用样本估计总体的必要性,以及样本的代表性问题。为强化样本代表性的重要性,教科书通过一个著名的预测结果出错的案例,使学生体会抽样不是简 单的从总体中取出几个个体的问题,它关系到最后的统计分析结果是 否可靠。然后,通过生动有趣的实例引进了随机样本的概念。通过实际问题情景引入系统抽样、分层抽样方法,介绍了简单随机抽样方法。最后,通过探究的方式,引导学生总结三种随机抽样方法的优缺点。3.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的模型,同时为 统计学的发展提供了理论基础。因此,统计与概率的基础知识已经成为一个未来公民的必备常识。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器(机)模拟估计 简单随机事件发生的概率。教科书首先通过具体实例给出了随机事件 的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义 。概率的意义是本章的重点内容。教科书从几方面解释概率的意义,
高三物理一轮复习第三章第2讲牛顿第二定律两类动力学问题课时作业含解析
牛顿第二定律 两类动力学问题一、单项选择题1.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为( )A .m 2·kg·s -4,A -1B .m 2·kg·s -3·A -1C .m 2·kg·s -2·A -1D .m 2·kg·s -1·A -1解析:根据P =UI 、P =Fv 、F =ma 可导出U =mav I ,即V =kg·m·s -2·m·s -1A =m 2·kg·s-3·A -1,B 项正确. 答案:B2.(2019·山东临沂检测)如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 挨在一起但A 、B 之间无弹力.已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g3C .物块B 的加速度为0D .物块B 的加速度为g2解析:剪断细线前,弹簧的弹力:F弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统,加速度为:a =3mg sin 30°-F 弹3m=g3,即A 和B 的加速度均为g3,故选B.答案:B3.(2019·湖北襄阳模拟)在欢庆节日的时候,人们会在夜晚燃放美丽的焰火.按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4 s 末到达离地面100 m 的最高点时炸开,构成各种美丽的图案.假设礼花弹从炮筒中竖直射出时的初速度是v 0,上升过程中所受的平均阻力大小始终是自身重力的k 倍,那么v 0和k 分别等于(重力加速度g 取10 m/s 2)( )A .25 m/s 1.25B .40 m/s 0.25C .50 m/s 0.25D .80 m/s 1.25解析:根据h =12at 2,解得a =12.5 m/s 2,所以v 0=at =50 m/s ;上升过程礼花弹所受的平均阻力F f =kmg ,根据牛顿第二定律得a =mg +F f m=(k +1)g =12.5 m/s 2,解得k =0.25,故选项C 正确.答案:C4.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a 上行,如图所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m 的小物块,小物块相对斜面静止(设缆车保持竖直状态运行),则( )A .小物块受到的摩擦力方向平行斜面向上B .小物块受到的摩擦力方向平行斜面向下C .小物块受到的滑动摩擦力为12mg +maD .小物块受到的静摩擦力为ma解析:小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力.缆车以加速度a 上行,小物块的加速度也为a ,以物块为研究对象,则有F f -mg sin 30°=ma ,F f =12mg +ma ,F f 为静摩擦,方向平行斜面向上,故A 正确,B 、C 、D 均错误.答案:A5.(2019·湖北重点中学联考)据国外媒体报道,欧洲最大的直升机公司计划研制一款X3型高速直升机.该公司已完成X3型直升机原型机的首次试飞.设X3型直升机原型机的质量为m ,某次试飞时,主旋翼提供大小为2mg 向上的升力,每个向前螺旋推进器提供大小为mg 、方向向前的推力.不考虑空气的阻力影响,下列说法正确的是( )A .该直升机原型机可能处于平衡状态B .该直升机原型机以加速度g 做匀加速直线运动C .空气对直升机原型机的作用力为22mgD .空气对直升机原型机的作用力为4mg解析:直升机原型机的受力如图所示,所受合外力大小为5mg ,方向斜向右上方,加速度大小为5g ,故选项A 、B 均错误;空气对直升机原型机的作用力为2mg2+2mg2=22mg ,故选项C 正确,D 错误.本题也可以由水平方向的加速度a x =2g 和竖直方向的加速度a y =g 合成得到原型机的加速度a =a x 2+a y 2=5g .答案:C 二、多项选择题6.(2019·安徽马鞍山三校联考)氢气球下系一小重物G ,重物只在重力和绳的拉力作用下做直线运动,重物运动的方向如图中箭头所示虚线方向,图中气球和重物G 在运动中所处的位置可能是( )解析:重物只在重力和绳的拉力作用下做直线运动,故合力为零或者与速度共线,可能做匀速直线运动,故A 正确;可能做匀减速直线运动,故B 正确;可能做匀加速直线运动,故C 正确;重力和绳的拉力的合力与速度必须共线,故D 错误.答案:ABC7.一放在粗糙的水平面上的物体在一斜向上的拉力F 的作用下沿水平面向右以加速度a 做匀加速直线运动,力F 在水平和竖直方向的分量分别为F 1、F 2,如图所示.现将力F 突然改为大小为F 1、方向水平向右的恒力,则此后( )A .物体将仍以加速度a 向右做匀加速直线运动B .物体将可能向右做匀速直线运动C .物体将可能以大于a 的加速度向右做匀加速直线运动D .物体将可能以小于a 的加速度向右做匀加速直线运动解析:设地面与物体间的动摩擦因数为μ,当在斜向上的拉力F 的作用下运动时,加速度a =F 1-μmg -F 2m,将力F 突然改为大小为F 1、方向水平向右的恒力,则加速度a ′=F 1-μmgm<a ,所以物体可能以小于a 的加速度向右做匀加速直线运动,故A 、C 错误,D 正确;若μmg =F 1,则加速度为零,所以物体将可能向右做匀速直线运动,故B 正确.答案:BD8.(2019·湖北黄石高三质检)如图所示,轻弹簧两端拴接质量均为m 的小球a 、b ,拴接小球的细线固定在天花板上,两小球静止,两细线与水平方向的夹角α=30°,弹簧水平,重力加速度为g ,则以下说法中正确的是( )A .细线拉力的大小为mgB .弹簧弹力的大小为32mg C .剪断左侧细线的瞬间,小球a 的加速度为2g D .剪断左侧细线的瞬间,小球b 的加速度为零解析:对小球a 分析,由共点力平衡条件得,弹簧的弹力F =3mg ,细线的拉力为2mg ,故A 、B 错误;剪断左侧细线的瞬间,弹簧的弹力不变,小球a 所受的合力F 合=2mg ,根据牛顿第二定律得,a =2g ,小球b 受力不变,合力仍然为零,所以加速度为零,故C 、D 正确.答案:CD[能力题组]一、选择题9.(多选)如图所示,总质量为460 kg 的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s 2,当热气球上升到180 m 时,以5 m/s 的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g 取10 m/s 2.关于热气球,下列说法正确的是( )A .所受浮力大小为4 830 NB .加速上升过程中所受空气阻力保持不变C .从地面开始上升10 s 后的速度大小为5 m/sD .以5 m/s 匀速上升时所受空气阻力大小为230 N解析:热气球从地面刚开始上升时,由牛顿第二定律有F 合=F 浮-mg =ma ,得热气球所受的浮力F 浮=m (g +a )=460×(10+0.5)N =4 830 N ,则A 项正确;气球受重力、浮力和空气阻力,若空气阻力不变,合力不变,气球应匀加速上升,与题矛盾,可知阻力是变化的,则B 项错误;热气球以5 m/s 的速度匀速上升时,由平衡条件知,所受的空气阻力F f =F 浮-mg =4 830 N -460×10 N=230 N ,则D 项正确;热气球从地面上升10 s 内,它做变加速运动,故10 s 时其速度大小不是5 m/s ,则C 项错误.答案:AD10.(2019·河南开封质检)某实验小组设计了一个模型火箭,由测力计测得其重力为G .通过测量计算此火箭发射时刻提供大小为F =2G 的恒定推力,且持续时间为t .随后小明又对设计方案进行了改进(火箭的推力大小仍为2G ),采用二级推进的方式,即当火箭飞行经过t 2时,火箭丢弃一半的质量,剩余t2时间,火箭推动剩余的一半继续飞行.若采用原来的方法火箭可上升的高度为H ,则采用改进后方案火箭最高可上升的高度为(重力加速度取g ,不考虑燃料消耗引起的质量变化及空气阻力的影响)( )A .1.5HB .2HC .2.75HD .3.25H解析:原方案,加速上升过程,由牛顿运动定律,有F -G =ma ,解得a =g ;加速上升高度h 1=12at 2=12gt 2,t 时刻向上的速度v =at =gt ,失去推力后,做竖直上抛运动,上升高度h 2=v 22g =gt22g=12gt 2,H =h 1+h 2=gt 2.改为二级推进后,开始加速上升过程,由牛顿运动定律,有F -G =ma 1,解得a 1=g ;t 2时间加速上升高度H 1=12a 1(t 2)2=18gt 2,t2时刻向上的速度v 1=a 1t 2=gt2,丢弃一半质量后,由牛顿运动定律,有F -12G =12ma 2,解得a 2=3g ,t2时间加速上升高度H 2=v 1 t 2+12a 2(t 2)2=58gt 2,t 时刻向上的速度v 2=v 1+a 2t2=2gt ,失去推力后,做竖直上抛运动,上升高度H 3=v 222g =2gt22g=2gt 2,H ′=H 1+H 2+H 3=18gt 2+58gt 2+2gt 2=114gt 2=114H =2.75H ,选项C 正确. 答案:C11.某同学探究小球沿光滑斜面顶端下滑至底端的运动规律,现将两质量相同的小球同时从斜面的顶端释放,在甲、乙图的两种斜面中,通过一定的判断分析,你可以得到的正确结论是( )A .甲图中小球在两个斜面上运动的时间相同B .甲图中小球下滑至底端的速度大小与方向均相同C .乙图中小球在两个斜面上运动的时间相同D .乙图中小球下滑至底端的速度大小相同解析:小球在斜面上运动的过程中只受重力mg 和斜面的支持力F N 作用,做匀加速直线运动,设斜面倾角为θ,斜面高为h ,底边长为x ,根据牛顿第二定律可知,小球在斜面上运动的加速度为a =g sin θ,根据匀变速直线运动规律和图中几何关系有s =12at 2,s =hsin θ=x cos θ,解得小球在斜面上的运动时间为t =1sin θ2hg=2xg sin θcos θ,根据机械能守恒定律有mgh =12mv 2,解得小球下滑至底端的速度大小为v =2gh ,显然,在甲图中,两斜面的高度h 相同,但倾角θ不同,因此小球在两个斜面上运动的时间不同,故选项A 错误;在甲图中,小球下滑至底端的速度大小相等,但沿斜面向下的方向不同,故选项B 错误;在乙图中,两斜面的底边长x 相同,但高度h 和倾角θ不同,因此小球下滑至底端的速度大小不等,故选项D 错误;又由于在乙图中两斜面倾角θ的正弦与余弦的积相等,因此小球在两个斜面上运动的时间相等,故选项C 正确.答案:C 二、非选择题12.(2019·广西桂林高三月考)放在水平地面上一质量为m =2 kg 的质点,在水平恒定外力作用下由静止开始沿直线运动,4 s 内通过8 m 的距离,此后撤去外力,质点又运动了2 s 停止,质点运动过程中所受阻力大小不变,求:(1)撤去水平恒定外力时质点的速度大小; (2)质点运动过程中所受到的阻力大小; (3)质点所受水平恒定外力的大小.解析:(1)质点开始做匀加速直线运动x 0=0+v 02t 1,解得v 0=2x 0t 1=4 m/s.(2)质点减速过程加速度a 2=0-v 0t 2=-2 m/s 2由牛顿第二定律有-F f =ma 2 解得F f =4 N(3)设开始加速过程中加速度为a 1,由运动学公式可得x 0=12a 1t 2,由牛顿第二定律有F-F f =ma 1解得F =F f +ma 1=6 N.答案:(1)4 m/s (2)4 N (3)6 N13.(2019·河南重点中学联考)北京已获得2022年冬奥会举办权!如图所示,俯式冰橇是冬奥会的比赛项目之一,其赛道可简化为起点和终点高度差为120 m 、长度为1 200 m 的斜坡.假设某运动员从起点开始,以平行赛道的恒力F =40 N 推动质量m =40 kg 的冰橇开始沿斜坡向下运动,出发4 s 内冰橇发生的位移为12 m,8 s 末迅速登上冰橇与冰橇一起沿直线运动直到终点.设运动员登上冰橇前后冰橇速度不变,不计空气阻力,求:(g 取10 m/s 2,取赛道倾角的余弦值为1,正弦值按照题目要求计算)(1)出发4 s 内冰橇的加速度大小; (2)冰橇与赛道间的动摩擦因数; (3)比赛中运动员到达终点时的速度大小.解析:(1)设出发4 s 内冰橇的加速度为a 1,出发4 s 内冰橇发生的位移为x 1=12a 1t 12解得a 1=1.5 m/s 2.(2)由牛顿第二定律有F +mg sin θ-μmg cos θ=ma 1 解得μ=0.05.(3)8 s 后冰橇的加速度为a 2,由牛顿第二定律有 (m +M )g sin θ-μ(m +M )g cos θ=(m +M )a 2 8 s 末冰橇的速度为v 1=a 1t 2出发8 s 内冰橇发生的位移为x 2=12a 1t 22=48 m到达终点时速度最大,设最大速度为v 2,则v 22-v 12=2a 2(x -x 2)解得v 2=36 m/s.答案:(1)1.5 m/s 2(2)0.05 (3)36 m/s。
《创新设计》高考物理一轮复习32顿第二定律-两类动力学问题(61张ppt含详解)省公开课获奖课件市赛
随 活堂 页基 限础 时演 训练
实验结论一:a∝F;实验结论二:a∝m1 . 综合两个结论,得 a∝mF或 F∝ma. 上式写成等式为 F=kma,其中 k 为比例常数.如果选用合适 的单位,可使 k=1.为此,对力的单位“N”做了定义:使质量是 1 kg 的物体产生 1 m/s2 的加速度的力,叫做 1 N,即 1 N=1 kg·m/s2. 据此,公式 F=kma 中,如果各物理量都用国际单位(即 F 用 N 作单位、m 用 kg 作单位、a 用 m/s2 作单位),则 k=1.
( ).
考纲自主研读
考点互动探究
高考高分技巧
随 活堂 页基 限础 时演 训练
A.a1=a2=a3=a4=0 B.a1=a2=a3=a4=g C.a1=a2=g,a3=0,a4=m+MMg D.a1=g,a2=m+MMg,a3=0,a4=m+MMg
考纲自主研读
考点互动探究
高考高分技巧
随 活堂 页基 限础 时演 训练
第2讲 牛顿第二定律 两类动力学问题
考纲自主研读
考点互动探究
高考高分技巧
随 活堂 页基 限础 时演 训练
牛顿第二定律 Ⅱ(考纲要求)
【思维驱动】有关力和运动旳关系,下列说法正确旳是 ( ).
A.物体旳速度不断增大,表达物体必受力旳作用 B.物体旳位移不断增大,表达物体必受力旳作用 C.若物体旳位移与时间旳平方成正比,表达物体必受 力旳作用 D.物体旳速率不变,则其所受合力必为0
力和水的阻力.已知“鱼”在水中所受浮力是其重力的190 倍,重力加速度为 g,“鱼”运动的位移值远大于“鱼” 的长度.假设“鱼”运动时所受水的阻力恒定,空气阻力
考纲自主研读
考点互动探究
高考高分技巧
【世纪金榜】高考物理第一轮复习 第三章 第2讲 牛顿第二定律 两类动力学问题课件 新人教版必修1
考点 2 牛顿第二定律的瞬时性(三年2考) 拓展延伸
【考点解读】牛顿第二定律瞬时性的“两种”模型 牛顿第二定律的表达式为F=ma,其核心是加速度与合外力的瞬 时对应关系,二者总是同时产生、同时消失、同时变化,具体可 简化为以下两种模型: (1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物 体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间。
【解题探究】(1)物体的加速度与合力是否存在累积过程? 提示:力是产生加速度的原因,只要合力不为零,物体就有加速度, 它们之间具有瞬时对应关系,不存在累积过程。 (2)物体的每一个分力是不是可以独立产生加速度? 提示:牛顿第二定律具有独立性,每一个分力都可以独立产生各 自的加速度。
【解析】选D。物体加速度的大小与物体受到的合力成正比,与 物体的质量成反比,选项A错误;力是产生加速度的原因,只要有合 力,物体就有加速度,它们之间有瞬时对应关系,不存在累积效应, 选项B错误;物体加速度的大小与它受到的合力的大小成正比,选 项C错误;根据矢量的合成和分解得Fx=max,选项D正确。
第2讲 牛顿第二定律 两类动力学问题
知识点 1 牛顿第二定律 Ⅱ 单位制 Ⅰ 1.内容 物体加速度的大小跟__受__到__的__作__用__力___成正比,跟_物__体__的__质__量__ 成反比,加速度的方向跟_作__用__力__的__方__向__相同。 2.表达式 _F_=_m_a_。
3.
惯性 匀速直线
静止
宏观
低速
4.单位制 (1)单位制:由_基__本__单__位__和_导__出__单__位__一起组成了单位制。 (2)基本单位:_选__定__的__物__理__量__的单位。力学中选定的物理量有 三个, 它们分别是_质__量__、_时__间__和_长__度__,它们的国际单位分 别是千__克__(_k_g_)__、_秒__(_s_)_和_米__(_m_)_。 (3)导出单位:由_选__定__的__物__理__量__根据物理关系推导出来的其他 物理量的单位。
高考物理 牛顿第二定律 两类动力学问题(含答案)
基础课时7牛顿第二定律两类动力学问题一、单项选择题1.关于力与运动的关系,下列说法正确的是()A.物体的速度不断增大,表示物体必受力的作用B.物体的位移不断增大,表示物体必受力的作用C.若物体的位移与时间的平方成正比,表示物体一定不受力的作用D.物体的速率不变,则其所受合力必为零解析物体的速度不断增大,表明物体有加速度,所以A正确;物体匀速运动也会导致位移增大,故B错误;位移与时间的平方成正比表明物体在做加速运动,所以C错误;若物体的速率不变,但速度方向改变,则物体仍然有加速度,合力不为零,故D错误。
答案 A2.(2016·广东珠海模拟)质量为1 t的汽车在平直公路上以10 m/s的速度匀速行驶,阻力大小不变。
从某时刻开始,汽车牵引力减少2 000 N,那么从该时刻起经过6 s,汽车行驶的路程是()A.50 m B.42 m C.25 m D.24 m解析汽车匀速运动时F牵=F f,当牵引力减小2 000 N时,即汽车所受合力的大小为F=2 000 N,由牛顿第二定律得F=ma,解得a=2 m/s2,汽车减速到停止所需时间t=va=5 s,汽车行驶的路程x=12v t=25 m,C正确。
答案 C3.一皮带传送装置如图1所示,皮带的速度v足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放到皮带上的瞬间,滑块的速度为零,且弹簧正好处于自然长度,则当弹簧从自然长度到第一次达到最长这一过程中,滑块的速度和加速度的变化情况是()图1A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先增大后减小D.速度先增大后减小,加速度先减小后增大解析滑块在水平方向受向左的滑动摩擦力F f和弹簧向右的拉力F拉=kx,合力F合=F f-F拉=ma,当弹簧从自然长度到第一次达最长这一过程中,x 逐渐增大,拉力F拉逐渐增大,因为皮带的速度v足够大,所以合力F合先减小后反向增大,从而加速度a先减小后反向增大;滑动摩擦力与弹簧弹力相等之前,加速度与速度同向,滑动摩擦力与弹簧拉力相等之后,加速度便与速度方向相反,故滑块的速度先增大,后减小。
高考物理一轮复习第三章第2节牛顿第二定律两类动力学问题学案
第2节牛顿第二定律两类动力学问题一、牛顿第二定律单位制1.牛顿第二定律(1)内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
[注1](2)表达式:F=ma。
[注2]2.单位制(1)单位制由基本单位和导出单位一起组成了单位制。
(2)基本单位 [注3]在力学范围内,国际单位制规定质量、长度和时间为三个基本量,它们的单位千克、米和秒为基本单位。
(3)导出单位由基本量根据物理关系推导出来的其他物理量的单位。
二、两类动力学问题1.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。
第二类:已知运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:[注4]【注解释疑】[注1] 加速度的大小是由力和物体的质量共同决定的。
[注2] 应用F=ma进行计算时,各量必须使用国际单位制中的单位。
[注3] “基本量”既可以采用国际单位制中的单位,也可以采用其他单位制中的单位,如厘米、英寸、斤等常用单位,并且不同的单位制规定的基本量不尽相同。
[注4] 既可以根据受力求加速度,也可以根据运动规律求加速度。
[深化理解]1.牛顿第二定律的适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系)。
(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
2.牛顿第二定律是力的瞬时作用规律,加速度跟力同时产生、同时变化、同时消失。
3.物体受力的瞬间,立即获得加速度,而由于惯性,速度不会立即产生变化。
[基础自测]一、判断题(1)物体加速度的方向一定与合外力方向相同。
(√)(2)质量越大的物体,加速度越小。
(×)(3)物体的质量与加速度成反比。
(×)(4)物体受到外力作用不为零时,立即产生加速度。
(√)(5)可以利用牛顿第二定律确定自由电子的运动情况。
(×)(6)物体所受的合外力减小,加速度一定减小,而速度不一定减小。
高三物理一轮复习 3_2牛顿第二定律 两类动力学问题 新人教版
牛顿第二定律两类动力学问题时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.某同学骑自行车在公路上行驶,突然发现前方有危险,他立刻停止蹬脚踏板,自行车在地面阻力f1的作用下减速。
3 s后,他估计如果自行车只在地面阻力作用下减速行进,还可能出现危险,于是他握住两边的车闸,自行车在地面阻力f1和制动力f2作用下,又经过1 s后静止。
自行车运动的vt图象如图所示,由图可知f1∶f2等于( )A.1∶1 B.1∶2C.1∶4 D.1∶52.如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A,B和C分别是小圆和大圆上的两个点,其中AB长为2R,AC长为22R。
现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为( )A.1∶ 2 B.1∶2C.1∶ 3 D.1∶33.如图所示,小车沿水平面做直线运动,小车内光滑底面上有一物块被压缩的弹簧压向左壁,小车向右加速运动。
若小车向右加速度增大,则车左壁受物块的压力F1和车右壁受弹簧的压力F2的大小变化是( )A.F1不变,F2变大B.F1变大,F2不变C.F1、F2都变大D.F1变大,F2减小4.如图甲所示,一个质量为3 kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动,在0~3 s时间内物体的加速度a随时间t的变化规律如图乙所示。
则( )A.F的最大值为12 NB.0~1 s和2~3 s内物体加速度的方向相同C.1 s末物体的速度最大,最大速度为4 m/sD.在0~1 s内物体做匀加速运动,2~3 s内物体做匀减速运动5.如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球左侧连接一水平轻弹簧,弹簧左端固定在墙上,右侧连接一与竖直方向成θ=45°角的不可伸长的轻绳,轻绳另一端固定在天花板上,此时小球处于静止状态,且水平面对小球的弹力恰好为零。
高考物理 一轮复习 第2讲 牛顿第二定律 两类动力学问题 随堂巩固 精选练习习题(附答案解析)
高考物理一轮复习第2讲牛顿第二定律两类动力学问题随堂巩固精选练习习题(附答案解析)(时间:40分钟满分:100分)一、选择题(本题共10小题,每小题6分,共60分)1.(2012·江苏高考)将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比,下列描绘皮球在上升过程中加速度大小a与时间t关系图象,可能正确的是()图1解析:选C加速度a=g+k vm,随着v的减小,a减小,但最后不等于0。
加速度越小,速度减小得越慢,所以选C。
2.(2012·佛山质检)“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳。
质量为m的小明如图2所示静止悬挂时,两橡皮绳的拉力大小均恰为mg,若此时小明左侧橡皮绳在腰间断裂,则小明此时()图2A.速度为零B.加速度a=g,沿原断裂橡皮绳的方向斜向下C.加速度a=g,沿未断裂橡皮绳的方向斜向上D.加速度a=g,方向竖直向下解析:选AB橡皮绳断裂时速度不能发生突变,A正确;两橡皮绳的拉力大小均恰为mg,可知两橡皮绳夹角为120°,小明左侧橡皮绳在腰间断裂时,弹性极好的橡皮绳的弹力不能发生突变,对小明进行受力分析可知B正确,C、D错误。
3.如图3所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态。
当木板AB突然向下撤离的瞬间,小球的加速度大小为()图3A .0 B.233gC .gD.33g解析:选B 平衡时,小球受到三个力:重力mg 、斜面支持力F 1和弹簧拉力F 2,如图所示。
突然撤离木板时,F 1突然消失而其他力不变,因此F 2与重力mg 的合力F ′=mg cos 30°=233mg ,产生的加速度a=F ′m =233g 。
故正确答案为B 。
4.A 、B 两物体以相同的初速度在一水平面上滑动,两个物体与水平面间的动摩擦因数相同,且m A=3m B ,则它们能滑动的最大距离x A 和x B 的关系为( )A .x A =xB B .x A =3x BC .x A =13x BD .x A =9x B解析:选A 由μmg =ma 知a =μg ,再由x =v 22a 得x =v 22μg ,x 与μ、v 有关,与m 无关,A 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟·随堂集训
【高考题组——明考向】
渐减小到零,再沿原方向逐渐恢复到原来的大小。
在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v 的变化情况是( )
A. a 和v 都始终增大
B. a 和v 都先增大后减小
C. a 先增大后减小,v 始终增大
D. a 和v 都先减小后增大
解析:质点在多个力作用下处于静止状态时,其中一个力必与其余各力的合力等值反向。
当该力大小逐渐减小到零的过程中,质点所受合力从零开始逐渐增大,做加速度逐渐增大的加速运动;当该力再沿原方向逐渐恢复到原来大小的过程中,质点所受合力方向仍不变,大小逐渐减小到零,质点沿原方向做加速度逐渐减小的加速运动,故C 正确。
答案:C
2. [2012·安徽高考]如图所示,放在固定斜面上的物块以加速度a 沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F ,则( )
A. 物块可能匀速下滑
B. 物块仍以加速度a 匀加速下滑
C. 物块将以大于a 的加速度匀加速下滑
D. 物块将以小于a 的加速度匀加速下滑
解析:本题考查了牛顿第二定律的应用,解题关键是受力分析。
设物块与斜面间动摩擦因数为μ。
由牛顿第二定律有:
加恒力F 前:mgsin θ-μmgcos θ=ma ,① 加恒力F 后,设加速度为a′,则: (F +mg)sin θ-μ(F +mg)cos θ=ma′。
② 由①②得:a′=a +Fsin θ-μFcos θ
m 。
③
又由①式可知:sin θ-μcos θ>0,则θ-μcos θm
>0。
④
由③④得a′>a。
因此选项C 正确。
答案:C
3. [2014·大纲全国卷]一物块沿倾角为θ的斜坡向上滑动。
当物块的初速度为v 时,上升的最大高度为H ,如图所示;当物块的初速度为v
2时,上升的最大高度记为h 。
重力加速
度大小为g 。
物块与斜坡间的动摩擦因数和h 分别为( )
A. tan θ和H
2
B. (v 2
2gH -1)tan θ和H 2
C. tan θ和H
4
D. (v 22gH -1)tan θ和H 4
解析:对物块上滑过程由牛顿第二定律得mgsin θ+μmgcos θ=ma ,根据运动规律可得v 2
=2a·H sin θ, (v 2)2=2a·h sin θ,联立可得μ=(v 2
2gH -1)tan θ,h =H
4。
故D 项正确。
答案:D
4.[2013·山东高考]如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m 。
已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=
33。
重力加速度g 取10 m/s 2。
(1)求物块加速度的大小及到达B 点时速度的大小;
(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 解析:(1)设物块加速度的大小为a ,到达B 点时速度的大小为v , 由运动学公式得 L =v 0t +12at 2
①
v =v 0+at ②
联立①②式,代入数据得 a =3 m/s 2
③ v =8 m/s ④
(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得
Fcos α-mgsin θ-F f =ma ⑤ Fsin α+F N -mgcos θ=0⑥
又F f =μF N ⑦ 联立⑤⑥⑦式得 F =
θ+μcos θ+ma
cos α+μsin α
⑧
由数学知识得 cos α+
33sin α=233
sin(60°+α)⑨ 由⑧⑨式可知对应F 最小时与斜面间的夹角 α=30°⑩
联立③⑧⑩式,代入数据得F 的最小值为 F min =133
5
N 。
⑪
答案:(1)3 m/s 2
'8 m/s'(2)30°'1335 N
克)、s(秒)、A(安培)。
导出单位V(伏特)用上述基本单位可表示为( )
A. m 2
·kg·s -4
·A -1
B. m 2·kg·s -3·A -1
C. m 2
·kg·s -2
·A -1
D. m 2
·kg·s -1
·A -1
解析:物理公式与方程的意义是:等式两边单位统一,数值相等。
由电势差定义式U =W q =
F·s I·t 可知电压的单位:V =N·m A·s =kg·m·s -2
·m A·s
=kg·m 2·s -3·A -1
,所以B 正确。
答案:B
【模拟题组——提考能】
1. [2014·洛阳市统考]三个相同的轻弹簧a 、b 、c 连接成如图所示的形式,其中a 、b 两弹簧间的夹角为120°,且a 、b 对结点处质量为m 的小球的拉力均为F(F≠0)。
在P 点剪断弹簧c 的瞬间,小球的加速度可能是( )
A. 大小为g ,方向竖直向下
B. 大小为F/m ,方向竖直向上
C. 大小为(F -mg)/m ,方向竖直向下
D. 大小为(mg -F)/m ,方向竖直向下
解析:在P 点剪断弹簧c 的瞬间,小球所受合力为2Fcos60°-mg =F -mg ,方向竖直向
上或mg-2Fcos60°=mg-F,方向竖直向下,由牛顿第二定律,其加速度为(F-mg)/m,方向竖直向上或(mg-F)/m,方向竖直向下,选项D正确。
答案:D
2. [2015·宁波模拟](多选)如图所示,一小车上有一个固定的水平横杆,横杆左边固定有一轻杆与竖直方向成θ角,轻杆下端连接一小球,横杆右边用一根细线吊一小球,当小车向右做加速运动时,细线保持与竖直方向成α角,若θ<α,则下列说法正确的是( )
A. 轻杆对小球的弹力方向沿着轻杆方向向上
B. 轻杆对小球的弹力方向与细线平行
C. 轻杆对小球的弹力方向既不与细线平行,也不沿着轻杆方向
D. 此时小车的加速度为gtanα
解析:由于两小球加速度相同,轻杆对小球的弹力方向与细线平行,小球受力如图所示,由牛顿第二定律得mgtanα=ma,解得a=gtanα,故小车的加速度为gtanα,选项B、D正确。
答案:BD。