第七章 曲线、曲面

合集下载

高数第七章7-4

高数第七章7-4
2 2
2 2
( x − x 0 ) + ( y − y0 ) + ( z − z 0 )
2
=R
2
(球面方程的标准式 球面方程的标准式) 球面方程的标准式
2 2 2 2 特殊地: 特殊地:球心在原点时方程为 x + y + z = R
将方程(1)展开得 将方程(
2 2 2 x 2 + y 2 + z 2 − 2 x0 x − 2 y0 y − 2 z0 z + x0 + y0 + z0 − R = 0
例1
求与原点O 及 M 0 ( 2,3,4) 的距离之比为 1 : 2 是曲面上任一点, 设 M ( x , y , z ) 是曲面上任一点, 根据题意有
的点的全体所组成的曲面方程. 的点的全体所组成的曲面方程. 解
| MO | 1 = , | MM 0 | 2
( x − 2) + ( y − 3) + (z − 4)
yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 y 同理: 同理:
轴旋转一周的旋转曲面方程为 轴旋转一周的旋转曲面方程为 旋转曲面方程
f y, ± x2 + z2 = 0. xoy 坐标面上的已知曲线 f ( x , y ) = 0 绕 y 轴旋转
一周的旋转曲面方程为 一周的旋转曲面方程为
o
x
z
(3) 旋转曲面 定义 一条平面曲线 绕其所在平面上的一条定 直线旋转一周所成的曲面 称为旋转曲面 旋转曲面. 称为旋转曲面. 这条定直 线这条定直线叫旋转曲 ( y , z ) = 0 绕 z 轴旋转一周所得 的旋转面方程。 的旋转面方程。 设旋转面上任意一点 M ( x , y , z ) 是由 yOz 平 面的曲线 f ( y , z ) = 0 上 一点 M1 (0, y1 , z1 ) 绕 z 轴旋转而得的, 则 轴旋转而得的,

第七章 B样条曲线

第七章 B样条曲线

V2k、V3k和V4k四个点, 该四点构成u向的一个特
d1
征多边形,定义一条新 2
的曲线P(u,vk);
d11
v
d14
d13
C1 d22
d23
C2 d32
d21
d31
u
d24 d33 C3 d4
2
d41
d34
d44 d43
C4
v
C1
C2 C3
V1k
V2k V3k
u
C4
V4k
✓当参数vk在[0,1] 之间取不同值时, P(u,vk)沿箭头方向扫描,即得到由 给定特征网格dij(i=1,2,3,4 j=1,2,3,4) 定义的双三次均匀B样条曲面片 P(u,v)。
t [0,1]
1
2
3
4
5
t
四段二次(三阶)均匀B样条基函数
曲线的起点和终点值:
pi
(0)
1 2
(Pi
Pi 1 ),
pi
(1)
1 2
(Pi1
Pi2 )
均匀二次B样条曲线起点和终点处的导数:
pi(0) Pi1 Pi , pi(1) Pi2 Pi1
P1
P2
P0
P3
四个控制点的二次周期性B样条曲线
第七章 B样条曲线曲面
Bezier曲线有许多优越性,但有几点不足: 一、控制多边形的顶点个数决定了Bezier曲线的
阶次; 二、不能作局部修改; 三 、Bezier曲线的拼接比较复杂。
• 1972年,Gordon、Riesenfeld等人发展了 1946年Schoenberg提出的样条方法 , 提出 了B样条方法,在保留Bezier方法的优点, 克服了Bezier方法的弱点。

高等数学上册第七章第五节 曲面及其方程

高等数学上册第七章第五节  曲面及其方程

0z 3

yOz面上的投影
z
3y2 ,
xOy面上的圆 x 2 y 2 R2
叫做它的准线,平行于 z 轴的直线 l 叫做它的母线。 其实在 yOz 面内的一条直线: y R, 绕z轴旋转而成的旋转
曲面就是该圆柱面,则圆柱面方程为: x 2 y 2 R. 即
x2 y2 R2.
9
P11
定义: 平行于定直线并沿定曲线C平行移动的直线 l形成的轨迹
方程 Fx, y 0, 在空间 z
Fx, y 0,
直角坐标系中表示:
o 母线平行于 z 轴的柱面,
其准线是 xOy 面上的曲线
y
C : Fx, y 0.
x
C
方程 Gx,z 0, 在空间
直角坐标系中表示:
方程中缺哪个字母,母线 平行于相应的轴。
母线平行于 y轴的柱面, 其准线是 xOz 面上的曲线
1
在空间解析几何中关于曲面的研究,有下列两个基本问题: (1) 已知曲面点的几何轨迹,求曲面的方程; (2) 已知曲面的方程,求这方程所表示的曲面的形状。
1、球面方程
例1 建立球心在 M 0 x0 , y0 , z0 ,
半径为 R 的球面 S 的方程.
解:Mx, y, z S M0M R
M0 M x x0 2 y y0 2 z z0 2 ,
xz 0
o
x
y
12
小 结:
1.曲面的概念
2.球面方程 x x0 2 y y0 2 z z0 2 R2
3.平面方程 Ax By Cz D 0 作业:习题7-5
4.旋转曲面
作业纸P50
设 C : f y, z 0 yoz面
下次交P49-50

高等数学第七章:曲面及其方程

高等数学第七章:曲面及其方程
这条定直线叫旋 转曲面的轴.
4/21
旋转过程中的特征:
如图 设 M (x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 6; 7 ;
(1)双曲线
x2 a2

z2 c2

1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2

y2 c2
z2
1
旋 转

绕z 轴旋转
x2 a2
y2

z2 c2

1
曲 面
x
y z
y2
(2)椭圆

a
2

z2 c2

1绕 y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2

x2 c2
z2

1

0



2

叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为z 轴,
半顶角为 的圆锥面方程. z
解 yoz面上直线方程为 z y cot
圆锥面方程
z x2 y2 cot x
M1(0, y1, z1 )

o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程.
4/21
二、旋转曲面
定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
4/21

空间曲面及其方程

空间曲面及其方程

116 .
3
3 9
例4 方程z ( x 1)2 ( y 2)2 1
的解图形根是据怎题样意的有?z 1
z
用平面z c去截图形得圆:
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时,
c
得到一系列圆
o
y
圆心在(1,2,c),半径为 1 c x
半径随c 的增大而增大. 图形上不封顶,下封底.
o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周,
求生成的旋转曲面的方程.
(1)双曲线
x2 a2
z2 c2
1分别绕
x
轴和
z 轴;
绕x轴旋转 x2 a2
2
y2 z2
c2
1,
x2 a2
y2 z2 c2
旋 1转


绕z 轴旋转
x2 a2
y2
2
z2 c2
1,
x2 y2 a2
设柱面其准线为xoy面上 C : F ( x, y) 0,母线平行z轴,
求柱面方程. 如图 x x0 , y y0
又F ( x0 , y0 ) 0
故柱面方程: F( x, y) 0 x
z
柱面举例
z
F(x, y) 0

o
y

C M 0( x0 , y0 ,0)
M(x, y, z)
z
y2 2x
2 2 2 4
当 A2 B2 C 2 4D 0 时,是球面方程.
例:方程
4x2 4 y2 4z2 8x 16 y 24z 16 0表示什么曲面?
解 : 方 程化 为

大学数学_7_4 曲面与曲线

大学数学_7_4 曲面与曲线
z
O
x 图7-34
y
例 6 一动点 M 在圆柱面 x 2 y 2 a 2 上以角速度 绕 z 轴旋转时,同时又以线速度 v 沿平行于 z 轴的正方 向上升,( , v都是常数) , 则点 M 的几何轨迹叫做螺旋线 (7-35) ,试建立其参数方程. z 解 取时间 t 为参数,设t 0 时动 点在点 A( a,0,0) 处,在 t 时刻,动点在 点 M ( x, y , z ) 处.过点 M 作 xOy 面的 ' 垂线,则垂足为 M ( x, y,0) .由于 O My AOM ' t , MM ' vt , M’ x 故 x a cos AOM ' a cos t , 图7-35 y a sin AOM ' a sin t , z MM ' vt , x a cos t , 所以螺旋线的参数方程为: y a sin t , z vt.
求曲线: 2 2 z x y 2 2 z x y 在 xOy 面上的投影方程. 例7
从曲线 的方程中消去 z,得 x2 y 2 x2 y 2 , 化简后,得 ( x 2 y 2 )( x 2 y 2 1) 0, 因为 x 2 y 2 0 ,所在曲线 关于 xOy 面的投影柱面方程为 x2 y2 1 (是圆柱面) ,在 xOy 面的投影方程为 1 2 2 x y 2 z 0 (是 xOy 面上的圆). 解
Hale Waihona Puke y2 z2 例 2 将 yOz 面上的椭圆 2 2 1分别绕 z 轴和 y 轴 a b 旋转,求所形成的旋转曲面方程. 解 绕 z 轴旋转而形成的旋转曲面(图 7-28)方程 为 x2 y 2 z 2 z 1 , a2 b2 b x2 y 2 z 2 2 2 1. 即 2 a a b a 绕 y 轴旋转而形成的旋转曲面方程为 y y 2 x2 z 2 a 1, 2 2 x a b 图7-28 x2 y 2 z 2 2 2 1. 即 2 b a b

曲面与曲线知识点总结

曲面与曲线知识点总结

曲面与曲线知识点总结一、曲线与曲面的基本概念曲线是在平面上的点按照特定的规则所组成的图形,而曲面则是在三维空间内的点按照特定的规则所组成的图形。

在数学上,我们可以用函数来描述曲线和曲面,从而研究它们的性质和特点。

1.1 曲线的性质曲线可以是直线、圆、椭圆、抛物线、双曲线等不同类型的图形。

我们可以通过曲线的方程以及参数方程来描述它的形状和位置。

曲线的长短、曲率、切线、法线等性质对于描述曲线的形态和特点至关重要。

1.2 曲面的性质曲面可以是球面、圆柱面、圆锥面、双曲面、抛物面等不同类型的图形。

我们可以用二元函数或者参数方程来描述曲面的形状和位置。

曲面的曲率、切线、法线等性质是研究曲面形态的重要工具。

1.3 直角坐标系和参数方程在研究曲线和曲面的性质时,我们可以使用直角坐标系、参数方程和极坐标系等不同的数学工具来描述它们的形态和位置关系。

不同的描述方法可以帮助我们更好地理解曲线和曲面的性质。

二、曲线的方程与性质曲线方程是研究曲线性质的重要工具,通过曲线方程我们可以得到曲线的形状、位置、长度、曲率等重要信息。

2.1 一元曲线的方程一元曲线的方程可以用直角坐标系的方程或者参数方程来表示。

常见的一元曲线包括直线、圆和椭圆、抛物线、双曲线等。

这些曲线都有各自的特点和性质,通过曲线方程我们可以了解它们的形状和位置关系。

2.2 二元曲线的方程二元曲线的方程可以用参数方程或者隐式方程来表示。

常见的二元曲线包括螺线、双曲线、阿基米德螺线等。

通过曲线方程我们可以了解二元曲线的性质和特点。

2.3 曲线的性质曲线的性质包括长度、曲率、切线、法线等重要内容。

通过曲线方程和导数的求解,我们可以求得曲线的长度、曲率和切线、法线等相关信息,从而了解曲线的形态和特点。

三、曲面的方程与性质曲面方程是研究曲面性质的重要工具,通过曲面方程我们可以得到曲面的形状、位置、曲率等重要信息。

3.1 一元曲面的方程一元曲面的方程可以用隐式方程或者参数方程来表示。

计算机图形学第7章(3)PPT课件

计算机图形学第7章(3)PPT课件

1
0 0
R Rk
k
1
M
h
Gh
▪ Mh是Hermite矩阵。Gh是Hermite几何矢量。
*
曲线和曲面
三次Hermite样条
▪ 三次Hermite样条曲线的方程为:
p(t)TM hG h
t[0,1]
2 2 1 1
TMh t3
t2
t 13 0
3 0
2 1 1 0
1
0
0
0
*
曲线和曲面
2阶几何连续性,记作G2连续性,指相邻曲线段 在交点处的一阶和二阶导数的比值都是常量。
*
曲线和曲面
7.1.4 样条描述
n次样条参数多项式曲线的方程:
xy((tt))abnnttnn
a2t2a1t1a0 b2t2b1t1b0
z(t)cntn c2t2c1t1c0
t[0,1]
*
曲线和曲面
x(t)
p(t) y(t) tn
*
曲线和曲面
三次Hermite样条
H(t) 1 0.8 0.6 0.4 0.2
-0.2
H0(t)
H1(t)
*
曲线和曲面
7.1.2 插值和逼近样条
▪ 采用模线样板法表示和传递自由曲线曲 面的形状称为样条。
▪ 样条曲线是指由多项式曲线段连接而成 的曲线,在每段的边界处满足特定的连 续条件。
▪ 样条曲面则可以用两组正交样条曲线来 描述。
*
曲线和曲面
▪ 曲线曲面的拟合:当用一组型值点来指定曲
线曲面的形状时,形状完全通过给定的型值点列。P(1)Pk1 Nhomakorabea1
1
1
1C
P'(0)

高等数学第七版教材目录

高等数学第七版教材目录

高等数学第七版教材目录第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限运算法则1.4 无穷小与无穷大1.5 极限存在准则1.6 函数的连续性第二章:导数与微分2.1 导数的概念与性质2.2 导数的计算2.3 高阶导数与导数的应用2.4 微分的概念与性质2.5 微分中值定理2.6 隐函数与参数方程的求导第三章:微分中值定理与导数的应用3.1 罗尔定理与拉格朗日中值定理3.2 函数的单调性与曲线的凸凹性3.3 泰勒公式与函数的近似计算3.4 误差估计与导数的应用3.5 函数的图形与曲线的切线与法线第四章:积分与微分方程4.1 不定积分与定积分4.2 定积分的应用4.3 定积分的计算4.4 定积分中值定理与变限积分4.5 微积分基本定理4.6 微分方程的基本概念第五章:多元函数微分学5.1 二元函数的极限与连续性5.2 偏导数与全微分5.3 多元复合函数的求导法则5.4 隐函数与参数方程的求导5.5 多元函数的极值问题5.6 条件极值与拉格朗日乘数法第六章:重积分6.1 二重积分的概念与性质6.2 二重积分的计算6.3 二重积分的应用6.4 三重积分的概念与性质6.5 三重积分的计算6.6 三重积分的应用第七章:曲线与曲面积分7.1 曲线积分的概念与性质7.2 曲线积分的计算7.3 曲线积分的应用7.4 曲面积分的概念与性质7.5 曲面积分的计算7.6 曲面积分的应用第八章:无穷级数8.1 数项级数的收敛性与敛散性8.2 正项级数的审敛法8.3 一般级数的审敛法8.4 幂级数与幂函数8.5 傅里叶级数的概念与性质8.6 傅里叶级数的计算第九章:常微分方程9.1 微分方程的基本概念9.2 一阶微分方程的解法9.3 高阶微分方程的解法9.4 变量可分离方程与齐次方程9.5 常系数线性微分方程9.6 非齐次线性微分方程的特解第十章:数值计算方法10.1 插值多项式与拉格朗日插值10.2 牛顿插值与分段插值10.3 数值积分与复化公式10.4 数值微分与数值解微分方程10.5 常微分方程的数值解法10.6 线性方程组的数值解法通过以上目录,我们可以清楚地了解到高等数学第七版教材涵盖的知识内容。

计算机图形学第七章自由曲线与曲面

计算机图形学第七章自由曲线与曲面
参数方程表示:
x(t)
y(t)
axt3 ayt3
bxt 2 byt 2
cxt cyt
dx dy
,t∈〔0,1〕;
z(t)
azt3
bzt
2
czt
dz
矢量表示:
p(t) at 3 bt 2 ct d
t∈〔0,1〕;
矩阵表示:
a
p(t) t 3
t2
t
1
b
c
t∈〔0,1d 〕;
7.1.3 拟合和逼近
曲线曲面的拟合:当用一组型值点(插值点) 来指定曲线曲面的形状时,形状完全通过给定 的型值点序列确定,称为曲线曲面的拟合,如 图7-2所示。
曲线曲面的逼近:当用一组控制点来指定曲线 曲面的形状时,求出的形状不必通过控制点, 称为曲线曲面的逼近,如图所示。
图7-2 拟合曲线
1
p(t) Pi Bi,1 (t) (1 t) P0 t P1 i0
可以看出,一次Bezier曲线是一段直线。
2.二次Bezier曲线
当n=2时,Bezier曲线的控制多边形有 三个控制点P0、P1和P2,Bezier曲线 是二次多项式。
2
p(t) Pi Bi,2 (t) (1 t) 2 P0 2t(1 t) P1 t 2 P2 i0 (t 2 - 2t 1) P0 (2t 2 2t) P1 t 2 P2
可以证明,二次Bezier曲线是一段抛物 线。
3.三次Bezier曲线
当n=3时,Bezier曲线的控制多边形 有四个控制点P0、P1、P2和P3, Bezier曲线是三次多项式。
3
p(t) Pi Bi,3 (t) (1 t)3 P0 3t(1 t)2 P1 3t 2 (1- t) P2 t3 P3 i0

齿轮啮合原理-第七章

齿轮啮合原理-第七章
主要是在 中考察导矢(d/ds) ,即 ,并建立矩阵方程
式中

Frenet-Serret方程
t s K0 m 0 m b K t s 0 K0 b s m 0
K0 0
0 t c mc 0 b c
1.1密切面和基本三棱形
以曲线的流动点为起点标出三个相互正交的矢量:如图所示,切线矢量 、 主法线矢量 和副法线矢量 。这些矢量在固定坐标系中的方向随M点的 位置不同而变化。由曲线的三个基本矢量 、 、 中的任意两个基本矢 量所确定的平面分别叫做密切平面、法平面、从切平面。而由三个基本矢 量和上面三个平面所构成的空间图形叫做曲线的基本三棱形
6 Gauss曲率和曲面上点的三种型式
3.抛物点——当两个曲率之一为零时(下图上的方向Ⅰ)
7.Dupin标线、短程线和曲面挠率
Dupin标线是平面曲线,它用图形说明曲线上点M领域内的法曲率变化。 这样的曲线上点的位置矢量用标记。Dupin标线在坐标系(η ,ζ )表 示如下
7.Dupin标线、短程线和曲面挠率
6 Gauss曲率和曲面上点的三种型式
曲面上一点处的Gauss曲率K可由下式表示
6 Gauss曲率和曲面上点的三种型式
曲面上的点有三种型式 1.椭圆点——当主曲率具有相同的符号,而Gauss曲率K>0时。 如下图所示。
6 Gauss曲率和曲面上点的三种型式
2.双曲点——当主曲率具有不同的符号,而Gauss曲率K<0 时。曲面在所考察处的点M附近呈现马鞍状。
2.4 短程曲率
位于密切面内的曲线曲率可以用两个分量 和 表示,它们与曲率 的关 系如下
式中矢量 称为曲线的短程曲率

第七章 曲线与曲面

第七章  曲线与曲面

4.2.3 双曲抛物
一直母线沿着两条相错的直导线运动, 一直母线沿着两条相错的直导线运动,并 始终与一导平面平行,即形成了双曲抛物面 始终与一导平面平行,即形成了双曲抛物面 。 双曲抛物面的相邻两素线为相错直线, 双曲抛物面的相邻两素线为相错直线, 所以是不可展曲面 所以是不可展曲面 。 双曲抛物面上有两个直素线族, 双曲抛物面上有两个直素线族,而且相应 地有两个导平面 这两个导平面的交线( 轴 两个导平面。 地有两个导平面。这两个导平面的交线(OZ轴) 轴线。 即为该曲面的轴线 若两个导平面相互垂直, 即为该曲面的轴线。若两个导平面相互垂直, 则称为正双曲抛物面 否则称为斜双曲抛物面 正双曲抛物面, 斜双曲抛物面。 则称为正双曲抛物面,否则称为斜双曲抛物面。
§4 直线面
4.1 可展直线面 4.1.1 柱 面 一直母线沿曲导线运动且始终平行 于另一直导线而形成的曲面称为柱面 柱面。 于另一直导线而形成的曲面称为柱面。 柱面的相邻两素线为平行直线, 柱面的相邻两素线为平行直线,位 可展曲面。 于同一平面内,所以是可展曲面 于同一平面内,所以是可展曲面。
作图时,一般应画出导线和曲面的轮廓线, 作图时,一般应画出导线和曲面的轮廓线, 导线 必要时还要画出若干素线及其曲面的 面迹线。 若干素线及其曲面的H面迹线 必要时还要画出若干素线及其曲面的 面迹线
方法一: 方法一:利用平面上投影面平行线及最大 斜度线,确定长、 斜度线,确定长、短轴的方向与大小 。
方法二:利用投影变换法求椭圆长、 方法二:利用投影变换法求椭圆长、短轴
§3 曲面概述
3.1 曲面的形成
曲面可以看作是一条线 直线或曲线) 可以看作是一条线( 曲面可以看作是一条线(直线或曲线)在空 连续运动所形成的轨迹, 间作有规律或无规律的连续运动所形成的轨迹 间作有规律或无规律的连续运动所形成的轨迹, 或者说曲面是运动线所有位置的集合 。 如图所示曲面, 如图所示曲面, 是由AA 沿着曲线 是由 1沿着曲线 运动且在运动 ABC运动且在运动 中始终平行于直线 中始终平行于直线 MN所形成的。 所形成的。 所形成的 AA1称为母线。 称为母线。

高等数学第七章:二次曲面

高等数学第七章:二次曲面

实际上,只要把方程以z轴为基准轴,绕z轴按逆时针
旋转 4 ,即做变换
x 2 ( X Y ), y 2 ( X Y ), z Z
2
2
原方程可化为 Z= 1(X2 -Y2) 2
可知,曲面是一个双曲抛物面。
坐标旋转公式
规定:坐标旋转是以坐标原点为中心进
行的。原右手系法则,规定将坐标系xoy
1. 椭球面
x2

y2
z2
1
( a, b, c均大于0).
a2 b2 c2
易知,|x|≤a, |y|≤b, |z|≤c. 为了了解曲面形状,先
以平行于 xy 面的平面z=z0(|z0|≤c)截曲面,得到 截线方程为
x2 a2

y2 b2
1
z02 c2
,
z z0.
因1 z02 0,
y y0.
5. 双叶双曲面
x2 y2 z2 1 a2 b2 c2
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
z
x2 y 2 1 z02 ,
a2 b2
c2
z z0. 双曲线 Nhomakorabeay x0
以平行于xz面的平面 y=y0截曲面, 所得截线方程为
x2 z 2 1 y02 ,
a2 c2
b2
双曲线
y y0.
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y2 b2

z2 c2

x02 a2
1, 椭圆
y y0.
6、方程 7、方程 8、方程 9、方程
x 2 y 2 z 2 0 ——(椭圆)锥面 a2 b2 c2

第七章-3.-曲面方程

第七章-3.-曲面方程

z
C
M1 (0, y1, z1 )
f ( y1, z1) = 0
当绕 z 轴旋转时, 该点转到 M(x, y, z) , 则有
M(x, y, z)
z = z1,
x + y = y1
2 2
o
y
故旋转曲面方程为
x
f ( ± x2 + y2 , z) = 0
当曲线 C 绕 y 轴旋转时,方程如何?
z
C : f ( y, z) = 0
=1
z = z1
同样 y = y1 ( y1 ≤ b ) 及 的截痕 也为椭圆. 椭圆截面的大小随平面位置的变化而变化.
椭球面与平面 z = z1 的交线为椭圆
x y + 2 =1 a2 b 2 2 2 2 (c z1 ) 2 (c z1 ) 2 c c z = z1 | z1 |< c
f (± x + y , z) = 0
2 2
柱面 如,曲面F(x, y) = 0表示母线平行 z 轴的柱面. 又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
2. 二次曲面 椭球面 抛物面:
三元二次方程
椭圆抛物面
双曲抛物面
x2 y2 + =z 2 p 2q 双曲面: 单叶双曲面 双叶双曲面 x2 y2 x2 y2 + 2 + 2 =1 = 1 2 2 a b a b 2 2 x y 椭圆锥面: + 2 = z2 a2 b
当 z1 变动时,这种圆 的中心都在 z 轴上.
x y + = z ( p 与 q 同号) 2 p 2q
双曲抛物面(马鞍面) 用截痕法讨论: 设 p > 0, q > 0 图形如下:

第7章4对面积的曲面积分与对坐标的曲面积分

第7章4对面积的曲面积分与对坐标的曲面积分

z (x,y,z(x,y)) dS
f x, y, z dS
f x, y, z x, y
1
z
2
x
zy2
dxdy

(1)
Dxy
定理的证明从略.
O x Dx(yx ,y)
▲▲▲
图 7-59
y
dxdy
10
2、对面积曲面积分的计算方法
第七章 多元函数积分学
公式(1)表明,
在计算对面积的曲面积分 f x, y, zdS 时,只要把变量 z 换成 z( x, y) ,积分
第七章 多元函数积分学
26
*3、对面积曲面积分的物理应用
第七章 多元函数积分学
27
*3、对面积曲面积分的物理应用
第七章 多元函数积分学
28
*3、对面积曲面积分的物理应用
第七章 多元函数积分学
29
*3、对面积曲面积分的物理应用
第七章 多元函数积分学
30
二、对坐标的曲面积分(第二类的曲面积分)
O
y
x
x=x ( y ,z )
37
▲▲▲ ▲▲▲
1、曲面的侧
第七章 多元函数积分学
38
2、对坐标的曲面积分的概念和性质
第七章 多元函数积分学
▲▲▲
v n
A
39
2、对坐标的曲面积分的概念和性质
第七章 多元函数积分学
▲▲▲
A
40
2、对坐标的曲面积分的概念和性质
第七章 多元函数积分学
41
2、对坐标的曲面积分的概念和性质
第七章 多元函数积分学
31
1、曲面的侧
第七章 多元函数积分学
32

高等数学a1教材目录

高等数学a1教材目录

高等数学a1教材目录导言1. 高等数学的定义和意义2. 高等数学的学习方法和技巧第一章:函数与极限1. 函数的概念和性质2. 初等函数及其性质3. 极限的概念与性质4. 极限的运算法则第二章:导数与微分1. 导数的定义与计算2. 切线与切线方程3. 导数的应用:极值与最优化问题4. 微分的概念与计算第三章:积分与不定积分1. 积分的概念和性质2. 不定积分的计算方法3. 定积分的计算方法4. 积分中值定理与应用第四章:常微分方程1. 常微分方程的基本概念2. 一阶常微分方程的解法3. 高阶常微分方程的解法4. 常微分方程的应用第五章:多元函数微分学1. 多元函数的概念与性质2. 偏导数与全微分3. 隐函数与参数方程的微分4. 多元函数的极值与最优化问题第六章:多重积分1. 二重积分的概念与计算2. 二重积分的应用3. 三重积分的概念与计算4. 三重积分的应用第七章:曲线与曲面积分1. 第一类曲线积分2. 第二类曲线积分3. 曲面积分的概念与计算4. 曲面积分的应用第八章:无穷级数1. 数项级数的收敛性2. 一致收敛性与绝对收敛性3. 幂级数与泰勒级数4. 无穷级数的应用第九章:向量代数与空间解析几何1. 向量的基本运算和性质2. 空间平面与直线的相关性质3. 平面与直线的方程表示4. 空间解析几何的应用附录1. 常用数学符号与公式总结2. 高等数学A1教材参考文献总结通过学习本教材的内容,读者将深入了解高等数学的基本概念、原理和应用。

掌握这些知识将为进一步的数学学习和应用提供坚实的基础。

希望本教材能够对大家的学习有所帮助,带来更多的数学启发和思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.双曲抛物面的截交线
1.双曲抛物面的形成
直母线
直导线
直导线 导平面
2.双曲抛物面的画法
3.双曲抛物面的截交线
本章结束
3.正螺旋柱状面的应用的例子
1.正螺旋柱状面的形成
2.正螺旋柱状面的 画法
3.正螺旋柱状面应用的例子
螺旋扶手
螺旋楼梯
§7-3 单叶双曲回转面
1.单叶双曲回转面的形成 单叶双曲回转面是由直母线绕与它交叉的轴线旋转而形成。 2.单叶双曲回转面的画法 (1) 画出回转轴及直导线的两面投影; (2) 作出轮廓线顶圆和底圆的两面投影: (3) 作出若干素线的投影及素线的包络线。
第七章
常见曲线曲面的画法
一、曲线
二、曲面
一、 曲线的形成及分类
1、 形成:曲线可被看为动点在运动过程中连 续改变方向所形成的轨迹。
2 、按点运动有无规律,将曲线分为:
1) 规则曲线:圆、椭圆、螺旋线等〈高数上 册附录中〉 2) 不规则曲线
按曲线上各点的相对位置将曲线分为:
1) 平面曲线:所有点∈同一平面
1.锥状面的形成
直导线
导平面
曲导线
2.锥状面的画法
§7-6
双曲抛物面
1.双曲抛物面的形成 一直母线沿两交叉直导线连续运动,同时始终平行于一导 平面,其运动轨迹称为双曲抛物面。 2.双曲抛物面的画法 (1) 画出两条直导线的两面投影; (2) 作出直母线的两面投影: (3) 作出该曲面上各素线的投影及素线的包络线。
2 ) 空间曲线:任意连续四点不属于同一平 面
二、曲线的投影
1.投影的形成:所有点的投影光滑连接。 2 .投影特性:
1) 曲线的投影一般仍是曲线
2) 点∈曲线----- 点投影∈曲线投影(反之)
3) 直线与曲线相切,投影后保持不变
4) 平面曲线的实形性、积聚性
三、圆的投影
机械工程中圆的普遍性、规则运动。 1、圆的投影特性: 1) 一般情况下:圆的投影为椭圆 2) 圆平面平行于投影面时,反映实形
1.单叶双曲回转面的形成
2.单叶双 曲回转面 的画法
9' 7'
5' 11'
1' 3'
3' 5'
1' 7' 7
97
3
5 11
3
1
§7-4 柱状面
1.柱状面的形成 一直母线沿两条曲导线连续运动,同时始终平行于一导平 面,这样形成的曲面称为柱状面 2.柱状面的画法 (1) 画出两条曲导线的两面投影; (2) 作出直母线的两面投影: (3) 作出该曲面上各素线的投影及素线的包络线。
3) 圆平面垂直于投影面时,积聚为一直线(直径)
2、圆的投影的画法:椭圆的画法(找长、短轴) 1)描点法(换面法) 2)四心圆法
例1、给定正垂圆圆心及正面投影,补画其水平投影
§7-1 螺旋线 §7-2 螺旋面 §7-3 单叶双曲回转面 §7-4 柱状面 §7-5 锥状面
§7-6 双曲抛物面
1.柱状面的形成
曲导线
导平面
曲导线
2.柱状面的画法
§7-5 锥状面
1.锥状面的形成 一直母线沿一直导线和曲导线连续运动,同时始终平行于 一导平面,这样形成的曲面称为锥状面。 2.锥状面的画法 (1) 画出一直导线和曲导线的两面投影; (2) 作出直母线的两面投影: (3) 作出该曲面上各素线的投影及素线的包络线。
§7-1 螺旋线
1.圆柱螺旋线的形成 当一个动点沿着一直线等速移动,而该直线同时绕与它平 行的一轴线等速旋转时,动点的轨迹就是一根圆柱螺旋线。 2.圆柱螺旋线的画法
1.螺旋线的形成
2. 螺旋线的画法
§7-2 正螺旋柱状面
1.正螺旋柱状面的形成 正螺旋柱状面的两条曲导线皆为圆柱螺旋线,连续运动的 直母线始终垂直于圆柱轴线。 2.正螺旋柱状面的画法 (1)画出两条曲导线(圆柱螺旋线); (2)作出直母线的两面投影; (3)作出该曲面上各素线的投影。
相关文档
最新文档