九年级数学上册第六章反比例函数1反比例函数教案2新版北师大版
北师大版数学九年级上册的第六章第一节《反比例函数》教学设计
北师大版数学九年级上册的第六章第一节《反比例函数》教学设计一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是初中学段反比例函数内容的第一课时,本节课主要让学生掌握反比例函数的定义、性质及其图象。
通过本节课的学习,学生能够理解反比例函数的概念,会判断一个函数是否为反比例函数,能够运用反比例函数的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了函数、比例、坐标系等基础知识,具备了一定的逻辑思维能力和空间想象能力。
但反比例函数的概念和性质相对抽象,学生可能难以理解和接受。
因此,在教学过程中,要注重引导学生通过实例来理解反比例函数的概念,运用已有的知识和经验来探究反比例函数的性质。
三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的性质,能够判断一个函数是否为反比例函数,会用反比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探究反比例函数的性质,提高学生的逻辑思维能力和科学研究方法。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,增强学生对数学学科的信心。
四. 教学重难点1.反比例函数的概念及其性质。
2.如何判断一个函数是否为反比例函数。
3.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生感受到数学与生活的紧密联系。
2.引导发现法:引导学生观察、分析、归纳反比例函数的性质,培养学生的自主学习能力。
3.小组合作学习:分组讨论,共同探究反比例函数的应用,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示反比例函数的定义、性质及其图象。
2.教学素材:准备一些实际问题,用于引导学生运用反比例函数解决实际问题。
3.坐标纸:用于画图,帮助学生更好地理解反比例函数的图象。
七. 教学过程1.导入(5分钟)利用生活实例,如商场打折、地图比例尺等,引导学生回顾比例的概念。
然后提出问题:“如果两个量的乘积为定值,它们之间的关系如何?”引发学生思考,引出反比例函数的概念。
九年级数学上册第六章反比例函数反比例函数的图象与性质教案新版北师大版
二、自主探究、领悟规律
议一议
考察当k=-2,-4,-6时,反比例函数 的图象,它们有哪些共同特征?
学生通过相互交流、补充和修正。
性质:反比例函数 的图象,当k>0时,在每个象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大。
想一想
五、布置作业
在一个反比例函数图象上任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为 ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为 , 和 有什么关系?为什么?
学生分四人小组进行操作。
三、随堂练习
教材随堂练习
四、课堂总结
通过归纳、概括反比例函数的性质,发展从图象中获取信息的能力。
教学难点
理解反比例函数的性质。
教学方法
自主探究法
教学后记
教学内容及过程
备注
一、观察联想、探究新知
观察反比例函数 的图象,你能发现它们的共同特征吗?
探索:(1)函数图象分别位于哪几个象限内?
(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?
(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?
二、随堂练习
教材随堂练习
[探索与交流]
对于函数 ,两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。
三、课堂总结
在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
九年级数学上册 6.1 反比例函数教案 (新版)北师大版
反比例函数【教学目标】知识与技能记住反比例函数的概念,会求比例系数,能够列出实际问题中的反比例函数关系. 过程与方法1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
情感、态度与价值观感受反比例函数是刻画世界数量关系的一种有效模型,函数与生活息息相关。
【教学重难点】教学重点:理解和领会反比例函数的概念教学难点:领悟反比例函数的概念【导学过程】【创设情景,引入新课】问题提出:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?(2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?学生小组合作讨论。
【自主探究】京沪高铁(全程约为1318km ),全程所用的时间t(h)随速度v(km/h)的变化而变化(1)完成下表:随着速度在逐渐增加,所用的时间发生怎样的变化?.(2)你能用含有v 的代数式表示t 吗?(3)速度v 是时间t 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xk y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
【课堂探究】做一做个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。
那么变量y 是变量x 的函数吗?为什么?学生先独立思考,再进行全班交流。
2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么?3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。
【当堂训练】1.xk y = (k ≠0)叫__________函数.,x 的取值范围是__________; 2.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;3.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ______;4.如果函数222-+=k k kx y 是反比例函数,那么k =________,此函数的解析式是____ ____;5、若()2311m m y m x ++=+是反比例函数,求m 的值.6、已知y 与x 成反比例,当x=3时,y=7,求当y=2时,x 的值.7、已知函数k y x=(k ≠0)过点()1,3-,求函数解析式。
1反比例函数-北师大版九年级数学上册教案
反比例函数-北师大版九年级数学上册教案一、教学目标通过本课的学习,学生应该能够:1.掌握反比例函数的概念和性质;2.理解反比例函数的图像特征;3.能运用反比例函数解决实际问题。
二、教学重点1.反比例函数的概念和性质;2.反比例函数的图像特征。
三、教学难点反比例函数实际应用问题的解决。
四、教学过程1. 导入新知本课学习的主要内容是反比例函数,回顾一下之前学过的正比例函数。
请同学们简单回答一下什么是正比例函数,它的图像特征是什么。
2. 概念认识引入反比例函数的定义和性质,讲解反比例函数的概念和性质。
并通过学生自主练习来巩固概念。
3. 图像探究通过计算几个反比例函数的图像,来观察图像的特征。
并通过课堂小组讨论,学生们分别汇报各自的观察结果。
最终得到反比例函数图像的特征是:经过点(1, a)并且与x轴垂直。
4. 例题演练通过实例演示,来帮助学生更好的掌握反比例函数的解法。
要求学生先自主思考解题思路,然后再与同桌讨论交流。
最后由教师进行总结和点评。
5. 创新实践让学生通过实际问题来运用反比例函数进行解题,如水桶漏水、利润分配、比例缩小等问题。
鼓励学生思考不同的解法,并形成小组或个人汇报解答思路和结果。
五、教学方法本课采用讲授、讨论、实践等方法。
通过学生自主练习、案例演示和小组讨论等活动,帮助学生更好地掌握反比例函数的概念和解法。
六、教学评价本课教学重心是帮助学生理解反比例函数的概念和性质,并能够运用反比例函数解决实际问题。
针对不同难度的反比例函数题目,采取引导和提示的方式,帮助每个学生充分思考并解答问题。
通过不同方式的评价,如课堂监测、作业和小组汇报等,来检验课程效果。
七、拓展延伸让学生在家通过复习反比例函数的相关知识并完成一定数量的习题,巩固课堂所学知识。
同时,鼓励学生通过网络教育资源自学更多知识内容,加深对反比例函数的认识。
最新北师大版九年级数学上册 第六章 反比例函数 优秀教案教学设计
第六章反比例函数1反比例函数 (1)2反比例函数的图象与性质 (3)3反比例函数的应用 (6)1反比例函数1.了解反比例函数的概念,会判断一个式子是否是反比例函数.2.能够列出实际问题中的反比例函数的表达式,并能确定自变量的取值范围.重点了解反比例函数的概念,会判断一个式子是否是反比例函数.难点能够列出实际问题中的反比例函数的表达式.一、情境导入课件出示:导体中的电流I,与导体的电阻R、导体两端电压U之间满足关系式U=IR.当U=220 V 时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20 40 60 80 100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?学生小组合作讨论后举手回答,教师点评,并引出本节课课题——反比例函数.二、探究新知1.反比例函数的概念问题1:小明有10元钱,购买y(个)单价是x(元)的铅笔,你能用含x的代数式表示y 吗?学生:y =10x.问题2:京沪高速公路全长约为1 318 km ,汽车沿京沪高速公路从上海开往北京,汽车行完全程所需的时间为t(h ),行驶的平均速度为v(km /h ),你能用含t 的代数式表示v 吗?学生:v =1318t.教师:从上面的两个问题得出关系式y =10x 和v =1318t .它们是函数吗?能否根据这两个问题归纳出这一类函数的表达式呢?引导学生观察,归纳总结出反比例函数的概念:一般地,如果两个变量x ,y 之间的对应关系可以表示成 y =kx (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.从y =kx 中可知自变量x 作为分母,所以x 不能为零.2.反比例函数的表达式 课件出示:下列函数表达式中,哪些式子表示y 是x 的反比例函数?如果是,请写出k 的值. (1)y =5x ; (2)y =0.4x ;(3)y =x2; (4)xy =2;(5)y =x π; (6)y =-5x ;(7)y =2x -1.学生思考后汇报答案,教师点评.教师:通过上面这道题,你能总结出反比例函数表达式的不同形式吗? 学生积极思考,归纳总结: 第一种:y =k x .第二种:xy =k. 第三种:y =kx -1. 三、举例分析 例1 若y =(5+m)x2+n是反比例函数,则m ,n 的取值是( )A .m =-5,n =-3B .m≠-5,n =-3C .m ≠-5,n =3D .m≠-5,n =-4 学生举手回答,教师点评.例2 一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和 y cm ,那么变量y 是变量x的函数吗?是反比例函数吗?为什么?例3 某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?例4 y是x的反比例函数,下表给出了x与y的一些值:x -2 -1 -12121 3y 232 -1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立完成后汇报答案,教师点评,并提出问题:上述问题中,自变量能取哪些值?四、练习巩固教材第150页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.什么是反比例函数?六、课外作业教材第150~151页习题6.1第1~4题.本节课的知识是反比例函数.课堂上,结合实例引导学生了解所讨论的函数的表达式,形成反比例函数概念的具体形象,让学生经历从感性认识到理性认识的转化过程,发展学生的思维.在探索具体问题中的数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数.通过练习题既巩固了反比例函数的定义,也让学生认识到反比例函数的表达式有不同的形式.由学生总结归纳,锻炼了学生的观察总结能力,紧接的练习又巩固了反比例函数表达式的3种形式.在教学过程中,给学生足够的时间和空间,培养学生自主分析问题、解决问题的能力,让学生得到一个良好的自主学习的环境.2反比例函数的图象与性质1.掌握画出反比例函数图象的基本步骤,会画反比例函数的图象.2.掌握反比例函数的主要性质.3.能利用反比例函数的图象及性质解决一些实际问题.重点画反比例函数的图象,理解反比例函数的性质. 难点理解反比例函数的性质,并能灵活应用.一、复习导入1.什么是反比例函数?2.画出一次函数y =4x 的图象,图象是什么形状?画一次函数图象的步骤是什么? 学生自主思考后给出答案,教师点评. 二、探究新知 1.反比例函数的图象教师:反比例函数y =4x 的图象会是什么形状呢?我们可以用什么方法画这个反比例函数的图象?学生独立画图象,指名板演.教师点评,引导学生归纳画反比例函数图象的基本步骤. 教师:你以为画反比例函数图象时应注意哪些问题? 引导学生总结:(1)反比例函数的图象是双曲线;(2)画反比例函数的图象要经过列表、描点、连线这三个步骤; (3)双曲线的两端是无限延伸的,画的时候要“出头”;(4)画双曲线时,取的点越密集,描出的图象就越准确,但计算量会越大,故一般在原点的两侧各取3~5个点即可;(5)连线时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接.注意:两个分支不连接.教师:观察上面的函数图象,如果点P(x 0,y 0)在函数y =4x 的图象上,那么与点P 关于原点成中心对称的P′的坐标应是什么?这个点在函数y =4x的图象上吗?学生思考回答后,教师进一步讲解:反比例函数的图象既是一个轴对称图形,又是一个中心对称图形.对称轴有两条,分别是直线y =x 与直线y =-x ;对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.2.反比例函数的性质 课件出示:。
九年级数学上册6.1反比例函数教案2北师大版
第六章反比例函数6.1 反比例函数(1)从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。
(2)经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
(3)体会数学从实践中来又到实际中去的研究、应用过程。
培养学生的观察能力,及数学地发现问题,解决问题的能力。
三、重点、难点、关键(1)重点:理解和领会反比例函数的概念;(2)难点:领悟反比例函数的概念;(3)关键:从现实情境和所学的知识入手,探索两个变量之间的相依关系.四、教学方法:小组合作、探究式五、教学过程(一)创设情境,引入新课1、把一张100元换成50元的人民币,可换几张?换成10元的人民币可换几张?依次换成5元,2元,1元的人民币,各可换几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:换成的元数x(元)502010521换成的张数y(张)提问:学生你会用含有x的代数式表示y吗?并提出问题:当换成的元数x变化时,换成的张数y会怎样变化呢?变量y是x的函数吗?为什么?这就是我们今天要学习的反比例函数。
我们再看课本的例子:(二)互动探究,学习新课我们知道,电流I 、电阻R 、电压U 之间满足关系式U =IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?;(2)利用你写出的关系式完成下表:R /Ω 20406080100I /A学生填表完成,提出当R 越来越大时,I 是怎样变化的?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?我们通过控制电阻的变化来实现舞台灯光的效果.在电压一定时,当R 变大时,电流I 变小,灯光就变暗,相反,当R 变小时,电流I 变大,灯光变亮。
引导学生看课本例子,京沪高速铁路全长约为1318km ,列车沿京沪高速铁路从上海驶往北京,列车行完成全程所需的时间t (h)与行驶的平均速度v (km/h )之间有怎样的关系?变量t 是v 的函数吗?为什么?(三)学生分组交流讨论提示学生:数学来源于生活,请同学在生活中找出类似的例子。
九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版
九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版课题:6.2反比例函数的图像与性质教学目标:1.经历探索反比例函数的性质的过程,体会函数的三种表示方法的相互转换,对函数进行认识上的整合.2.会作反比例函数的图象,进一步掌握画函数图象的主要步骤.3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质.教学重点与难点:重点:画反比例函数图象并认识图象的特点.难点:体会函数的三种表示方法的相互转换.课前准备:多媒体课件.教学过程:一、复习回顾,导入新课活动内容:(多媒体出示)创设问题情景.问题:1.什么叫做反比例函数?2.反比例函数的定义中需要注意什么?(此时老师板书反比例函数的表达式.)3.函数有几种表达形式?4.大家还记得一次函数图象是什么?那反比例函数的图象又会是什么样?处理方式:1.问题1,2由学生口答完成后,教师板书反比例函数的表达式.2.学生口答完函数的表达形式有列表法、图像法、关系式法之后,教师追问:如何用表格法和图像法表示反比例函数?接着教师引导学生根据反比例函数关系式可以列表格,再根据表格描点可以得到反比例函数的图像,体会函数三种表示方法可以相互转化.3. 最后老师继续追问:一次函数图象是什么?那反比例函数的图象又会是什么样?从而引出本节课课题,导入新课.设计意图:通过问题串引导学生回归复习反比例的定义,通过追问让学生回忆根据关系式可以列表格,根据表格描点可以得到反比例函数的图像,既复习了函数图像的定义,又让学生体会三种表示方法可以相互转化.二、探究学习,感悟新知活动内容1:例1.画出xy 4 的图象.处理方式:1.让学生独立思考、尝试,然后小组之间交流.学生充分交流后教师利用投影或者课件展示以下错例.2.教师逐步引导学生思考(1)他们做的对吗?为什么?同学会发现图一选取的自变量的值太少,导致图象不具代表性;图二,取自变量的值时,取值以偏带全导致只画出一支曲线.(2)教师追问怎样取值才全面?图三画成有明确端点,图像应是延伸的,连线时习惯用线段,导致出现“硬转弯”的折线图.(3)教师继续发问,为什么图像应是延伸的?适时点拨:我们根据函数图象的定义x 可取无数个值,相应函数值y 可得无数个值,所以图象不要画成如图三.(4)你认为作反比例函数图象时应注意哪些问题?设计意图:先让学生按自己的理解尝试画反比例函数xy 4=的图象,在作图过程中学生会出现各种各样的问题,通过学生的讨论、交流,和教师的点拨让学生理解错误的原因,通过问题串的形式,逐步引导学生思考探究画图象的步骤,并且对于其中出现的错误及时纠正,然后通过对比师生共同总结作反比例函数图象注意的问题.同时在这一过程中让学生积累数学活动经验.活动内容2:看老师如何画出xy 4=图象的(几何画板演示步骤)处理方式:1.教师利用几何画板本演示画图的步骤及过程.2.教师强调作图时应注意以下问题(1)列表时,选取的自变量的值,既要易于计算,又要便于描点,尽量多取一些数值(取互为相反数的一对一对的数),多描一些点,这样既可以方便连线,又可以使图象精确.(2)连线时必须用光滑的曲线连接各点,不能用折线连接.(3)图像是延伸的,注意不要画成有明确端点.(4)曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.(5)描点时一定要养成按自变量从小到大的顺序依次画线, 从中体会函数的增减性. 设计意图:教师利用几何画板本演示画图的步骤,体现步骤的严密性,规范性.三、由此及彼,应用新知活动内容1:现在我们已经知道当K 取正数时,我们画出了反比例函数的图像,当K 取负数时它的图像又是什么形状呢?请同学们继续下面的练习. 练习:大家用同样的方法作反比例函数xy 4-= 的图象. 处理方式:然后让学生试着自己作图.教师根据学生的作图情况,期间需要做出必要引导,多媒体出示正确的作图过程,让学生参考,让学生修改自己的解题过程.设计意图:让学生进一步熟悉画函数图像的主要步骤,并在巩固训练中积累素材,通过观察发现K 决定了图象所在的象限等性质做准备.活动内容2:议一议:(1)观察 x y 4=和x y 4-= 的图象,它们有什么相同点和不同点?(2)反比例函数图像是中心对称图形吗?如果是,请找出对称中心,反比例函数是轴对称图形吗?如果是请指出它的对称轴.处理方式:(1)让学生先独立思考后再与同桌交流答案,最后师生共同小结反比例函数的性质.(教师板书)反比例函数y = x k 有下列性质:反比例函数的图象y = xk 是由两支曲线组成的。
北师大版数学九年级上册的第六章第一节《反比例函数》教案
北师大版数学九年级上册的第六章第一节《反比例函数》教案一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是本章的第一节内容,也是学生继学习正比例函数后的又一函数类型。
本节课主要让学生了解反比例函数的概念、性质及其图象,培养学生运用函数观点解决实际问题的能力。
教材通过引入反比例函数的概念,让学生在已有的正比例函数知识基础上,进一步拓展对函数的理解。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数的相关知识,对函数的概念、图象和性质有一定的了解。
但九年级学生的抽象思维能力仍需培养,对于反比例函数的理解可能仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法,帮助学生更好地理解和掌握反比例函数。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够绘制反比例函数的图象,并能分析实际问题中的反比例关系。
3.培养学生的抽象思维能力,提高学生运用函数观点解决问题的能力。
四. 教学重难点1.反比例函数的概念及其性质。
2.反比例函数图象的特点。
3.运用反比例函数解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,培养学生运用函数观点解决问题的能力。
2.启发式教学法:教师引导学生思考,通过提问、讨论等方式,帮助学生自主探索反比例函数的知识。
3.直观教学法:利用多媒体课件、板书等手段,展示反比例函数的图象和性质,增强学生的直观感受。
六. 教学准备1.多媒体课件:制作反比例函数的图象、性质等相关内容的多媒体课件。
2.教学板书:准备反比例函数的定义、性质等相关内容的板书。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体课件展示反比例函数在实际生活中的应用,如商场打折、比例尺等,引导学生关注反比例关系。
提问:这些实际问题中是否存在某种数学规律?2.呈现(10分钟)教师引导学生回顾正比例函数的知识,然后给出反比例函数的定义。
九年级数学上册 第六章 反比例函数 2 反比例函数的图象与性质(1)教案 (新版)北师大版
节一
一、设疑激思复习引入
教师幻灯片展示下列问题:
1.当初我们从哪些方面研究了一次函数?
2.画一次函数图象的步骤是什么?
3.借助图象我们研究了一次函数的哪些性质?
二、合作探究发现问题
教师引导学生类比着画一次函数图象的过程来尝试画出反比例函数 的图象.
小组内交流:教师在巡视过程中,当发现大部分学生完成时,让同学们先在小组内进行互查、互批,让小组长汇总各小组出现的问题或不足;
A第一象限B第二象限C第三象限D第四象限
课后作业设计:
《全品学练考》作业手册习题6 .2
(修改人:)
板书设计:
反比例函数的图像与性质
一、反比例函数的定义
形如
2、 反比例函数的图像和性质:
k>0
k<0
图像形状
两支双曲线
两支双曲线
图像位置
一、三象限(内)
二、四象限(内)
对称性
关于直线 成轴对称
关于原点成中心对称
由于学生认知水平,学习能力以及学好函数的信心等方面存在差异,所以探讨活动的效果也会因人而异。这一点我们应该尊重学生的个体差异,尽可能让每个学生都学有所获。
2.通过观察图象,概括反比例函数的有关性质,逐步提高从函数图象中获取信息的能力.
3.能利用反比例函数的性质进行简单的应用.
教学重点
目标1,2
教学难点
目标2.3
教学方法
引导发现法、讨论法.
教学准备
PPT,几何画板
课前作业
复习反比例函数的定义,会准确判断反比例函数。
教学过程
教学环节
课堂合作交流
二次备课
(修改人:)
关于直线 成轴对称
2019秋九年级数学上册第六章反比例函数1反比例函数教案2(新版)北师大版
第六章 反比例函数 6.1 反比例函数函数是在探索具体问题中数量关系和变化规律基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.在前画已学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后继学习产生积极影响.本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念.通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.由于本节课比较抽象,理解起来比较困难,因此,在学习反比例函数概念的过程中,应充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向. 教学目标:(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式. (三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念. 教学难点:领会反比例函数的意义,理解反比例函数的概念. 教学方法:教师引导学生进行归纳. 教具准备:多媒体课件 教学过程:Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为b kx y +=其中k ,b 为常数且0≠k ,正比例函数的表达式为kx y =,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200 km ,某人开车要从A 地到月地,汽车的速度v(km /h)和时间t(h)之间的关系式为vt =1200,则t =v1200中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘. Ⅱ.新课讲解[师]引我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数? 1.复习函数的定义[师]大家还记得函数的定义吗? [生]记得.在某变化过程中有两个变量x ,y.若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y =0.4n ,这是一个正比例函数. 等腰三角形的顶角的度数y 与底角的度数x 的关系为y=180-2x ,y 是x 的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式. 2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. [师]请看下面的问题.电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220 V 时. (1)你能用含有R 的代数式表示I 吗?(3)变量I 是R 的函数吗?为什么? 请大家交流后回答.[生](1)能用含有R 的代数式表示I. 由IR=220,得I=R220.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大. (3)变量I 是R 的函数.由IR =220得I =R220.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数.[师]这位同学回答,的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I =R220,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼. 投影片:(§ 6.1 A)京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km /h)之间有怎样的关系?变量t 是v 的函数吗?为什么? [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt ,则有t =v1262.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数. [师]从上面的两个例题得出关系式 I=R220和t=v1262.它们是函数吗?它们是正比例函数吗?是一次函数吗? [生]因为给定一个R 的值,相应地就确定了一个I 的值,所以I 是R 的函数;同理可知t 是v 的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k ≠0),一次函数的关系式为y =kx+b(k ,b 为常数且k ≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I =R220与t=v1262可知关系式为y=xk (k 为常数且k ≠0).[师]很好.一般地,如果两个变量x 、y 之间的关系可以表示成y =xk (k 为常数,k ≠0)的形式,那么称y 是x的反比例函数.从y =xk 中可知x 作为分母,所以x 不能为零.3.做一做投影片(§ 6.1 B)1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy =20.则有y =x20.变量y 是变量x 的函数.因为给定一个x 的值,相应地就确定了一个y 的值,根据函数的定义可知变量y 是变量x 的函数.再根据反比例函数的表达式可知y 是x 的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=n 2.346.给定一个n 的值,就相应地确定了一个m 的值,因此m 是n 的函数,又m =n2.346符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k 的值,因此需要一个条件即可;在一次函数y =kx+b 中,要确定关系式实际上是要求得b 和k 的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k 的值.因此只需要—个条件即可,也就是要有一组x 与y 的值确定k 的值.所以要从表格中进行观察.由x =-1,y =2确定k 的值,然后再根据求出的表达式分别计算.x 或y 的值. [生]设反比例函数的表达式为y=xk(1)当x =-1时,y =2; ∴k =-2.∴表达式为y =-x2(2)当x =-2时,y =1. 当x=-21时,y =4;当x=21时.y=-4;当x =1时,y=-2. 当x =3时,y =-32; 当y =32时,x=-3;当y =-1时,x=2.因此表格中从左到右应填 -3,1,4,-4,-2,2,-32 Ⅲ.课堂练习课本P150随堂练习 Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =xk (k 为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数. Ⅴ.课后作业课本P150习题6.1 Ⅵ.活动与探究已知y-1与成反比例21+x ,且当x =1时,y=4,求y 与x 的函数表达式,并判断是哪类函数?分析:由y 与x 成反比例可知y =xk ,得y-1与21+x 成反比例的关系式为y-1=21+x k =k(x+2),由x =1、y=4确定k 的值. 从而求出表达式.解:由题意可知y-1=k=21+x k k(x+2). 当x =1时.y =4. 所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y 是x 的一次函数.备课资料 参考例题1.k 为何值时,y=(k+2)x k2-5是反比例函数分析:根据反比例函数表达式的一般形式y =xk (k ≠0)也可以写成y=kx -1≠0),后一种写法中的x 的次数为-1,可知此函数为反比例函数,必须具备两个条件:k+2≠0 k 2-5=-1 二者缺一不可.k+2≠0, k≠-2,解:由得k2-5=-1, k=±2∴k=2.∴当k=2时,y=(k+2)x k2-5是反比例函数.k写成y=kx-1的形式;常见错误:(1)不会把反比例函数的一般式y=x(2)忽略了k+2≠0这个条件.。
北师大版数学九年级上册6.1反比例函数(教案)
(1)对于k≠0的条件,可以通过举例(如k=0时,函数变为y=0,不再是反比例函数)来帮助学生理解。
(2)在图像绘制方面,可以采用分步骤教学,先让学生绘制坐标轴,然后根据k值确定点,最后连线成双曲线。
(3)对于实际问题抽象,教师可以引导学生寻找变量之间的关系,并给出提示,如“两个变量的乘积是否为常数?”
3.培养学生的空间想象力和直观想象力,通过观察反比例函数图像,理解双曲线的特点及其在实际问题中的应用。
4.培养学生的团队协作意识,通过小组讨论、合作探究反比例函数的性质和图像,提高学生的沟通与协作能力。
5.培养学生的数据分析观念,使学生能够运用反比例函数分析数据,发现数据背后的规律,为解决实际问题提供依据。
举例解释:
(1)在讲解定义时,通过具体实例(如物品单价与购买数量的关系)让学生理解反比例函数的概念。
(2)在讲解性质时,通过图像和具体数值变化,强调反比例函数在第一、三象限内y值随x值的变化规律。
(3)在介绍图像时,通过绘制不同k值的反比例函数图像,让学生观察并理解双曲线的特点。
(4)在应用方面,选取实际案例(如速度与时间的,我在教学中也注意到,对于反比例函数图像的绘制这一难点,同学们掌握程度不一。在今后的教学过程中,我需要更加细致地讲解绘制方法,并加强个别辅导,确保同学们能够熟练掌握。
总之,在本次教学过程中,我深刻认识到关注学生个体差异、因材施教的重要性。在今后的教学中,我将不断调整和优化教学方法,努力提高同学们对反比例函数这一知识点的掌握程度,使他们在数学学习过程中取得更好的成绩。同时,我也将加强课后辅导,关注同学们的学习需求,为他们提供有针对性的帮助。
北师大版数学九年级上册6.1反比例函数(教案)
一、教学内容
北师大版九年级上数学《第6章 反比例函数》教案教案
北师大版九年级上数学《第6章反比例函数》教案教案一. 教材分析《第6章反比例函数》是北师大版九年级上数学的重要内容,本章主要让学生了解反比例函数的定义、性质及图象,掌握反比例函数的计算方法,并能解决一些实际问题。
通过本章的学习,学生能更好地理解函数的概念,培养其数学思维能力。
二. 学情分析九年级的学生已经学习了函数、方程等基础知识,具备一定的逻辑思维能力和数学解题技巧。
但部分学生对抽象的函数概念理解不够深入,对反比例函数的图象和性质认识不足。
因此,在教学过程中,需要关注学生的认知差异,引导学生从实际问题中发现反比例函数的规律,提高其数学应用能力。
三. 教学目标1.理解反比例函数的定义,掌握反比例函数的计算方法。
2.了解反比例函数的性质和图象,能运用反比例函数解决实际问题。
3.培养学生的数学思维能力,提高其数学素养。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
3.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。
2.引导发现法:引导学生发现反比例函数的规律,培养学生独立思考的能力。
3.合作学习法:分组讨论,共同探究反比例函数的应用,提高学生的团队协作能力。
4.实践操作法:让学生动手绘制反比例函数的图象,加深对反比例函数的理解。
六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节。
2.准备反比例函数的图象和性质的PPT,用于呈现和讲解。
3.准备一些实际问题,用于拓展环节。
4.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,如:在一定时间内,行驶的路程与速度成反比。
引导学生从实际问题中发现反比例函数的规律,激发学生的学习兴趣。
2.呈现(15分钟)利用PPT展示反比例函数的图象和性质,讲解反比例函数的定义和计算方法。
让学生直观地感受反比例函数的特点,理解反比例函数的概念。
北师大版九年级上册数学 第6章 反比例函数 全章教案
北师大版九年级上册数学 第6章 反比例函数教案第1讲 反比例函数的定义【知识要点】反比例函数的定义:一般地,如果两个变量x 、y 之间的关系式可以表示成 的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为 。
*说明:(1)反比例函数)0(≠=k xky 有时也写成)0(≠=k y 或)0(≠=k 的形式。
(2)反比例函数中,三个量x 、y 、k 均不能为0.知识点一、反比例函数的定义例1、下列函数表达式中,x 均表示自变量,那么哪些是反比例函数,如果是请在括号内填上k 的值,如果不是请填上“不是”①x y 5=;( ) ②x y 4.0=;( ) ③2x y =; ( ) ④2=xy ;( ) ⑤πx y =;( )⑥xy 5-=( )⑦12-=x y ( )举一反三:1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? ①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x =- 解:上述关系式中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。
例2、已知函数22(1)m y m x -=+当m 为何值时,y 是x 的反比例函数?并求出函数的表达式。
举一反三:2、若nx m y ++=2)5(是反比例函数,则m 、n 的取值是( )(A )3,5-=-=n m (B )3,5-=-≠n m (C ) 3,5=-≠n m (D )4,5-=-≠n m知识点二、用待定系数法求反比例函数的解析式例3、已知y 是x 的反比例函数,且当x =2时,y =9. (1)求y 关于x 的函数表达式;(2)当27=x 时,求y 的值;(3)当y =3时,求x 的值。
举一反三:3、已知y 是关于x 的反比例函数,当x=43-时,y=2,求这个函数的解析式和自变量的取值范围。
例4、已知变量y 与x-5成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式.举一反三:4、已知变量y-1与x 成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式.知识点三、反比例的实际应用例5、一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则6小时可到达乙地.(1)写出时间t (时)关于速度v(千米/时)的函数关系式,说明比例系数的实际意义.(2)若这辆汽车需在5小时内从甲地到乙地,则此时汽车的平均速度至少应是多少?举一反三:m时,p=1.98kg/m35、当质量一定时,二氧化碳的体积V与密度p成反比例。
北师大版九年级数学上册第六章《反比例函数》教案
第六章反比例函数1 反比例函数1.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.3.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣.【教学重点】理解和领会反比例函数的概念.【教学难点】领悟反比例函数的概念.一、情境导入,初步认识我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b (其中k,b为常数且k≠0),正比例函数的表达式为y=kx(k为常数且k≠0),在现实生活中,并不是只有这两种类型的表达式,如从A地到B地的路程为1200km,某人开车从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=1200v中,t和v之间肯定不是正比例函数和一次函数关系,那么它们之间究竟是什么关系呢?这就是本节课我们要揭开的奥秘.【教学说明】通过对一次函数和正比例函数的概念、解析式的复习,引出本节课的内容.二、思考探究,获取新知问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1318km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.解:(1)t=1318v;(2)y=1000x;(3)S=41.6810n,其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,S是n的函数.上面的函数关系式,都具有y=kx的形式,其中k是常数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.三、运用新知,深化理解1.下列问题中,变量间的对应关系可用怎样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度v的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压强p随物体与地面的接触面积S的变化而变化.解答:(1)t=2000v;(2)h=1000S;(3)p=100S.2.下列哪个等式中的y是x的反比例函数:y=4x,yx=3,y=6x+1,xy=123解答:只有xy=123是反比例函数.3.已知函数y=k x ,当x =1时,y =-3,那么这个函数的解析式是(B). A.y=3x B.y=-3x C.y=13x D.y=-13x4.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于(A).A.4B.-4C.3D.-35.若函数y=11m x -(m 是常数)是反比例函数,则m =2,解析式为y=1x. 6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为__________,__________是函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________,__________是函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为__________,__________是函数;当S =18时,a 与h 的关系式为__________,__________是函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为,是函数.解答:(1)y=8000x ,反比例; (2)y=1000x,反比例; (3)S =5h ,正比例,a=36h ,反比例; (4)y=w x,反比例.7.已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x的函数关系式;(2)求当x=4时,y的值.分析:因为y是x的反比例函数,所以可设y=kx,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设y=k/x,因为x=2时,y=6,所以有6=k/2,解得k=12,因此y=12/x.(2)把x=4代入y=12/x,得y=12/4=3.【教学说明】学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并及时给予引导.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题6.1”中第2 、3题.2.完成练习册中相应练习.反比例函数概念形成的过程中,大家要充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,逐步建立从概念的感性认识到理性认识.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)1.会用描点法画反比例函数图象;2.理解反比例函数的性质.3.通过观察反比例函数图象,分析和探究反比例函数的性质.4.在动手画图的过程中体会乐趣,养成勤于动手,乐于探索的习惯.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.一、情境导入,初步认识1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么形状?其性质有哪些?2.反比例函数y =6x的图象会是什么形状呢?请大家猜猜看,我们可以采用什么方法画?【教学说明】学生思考、交流并回答问题,教师根据学生活动情况进行补充和完善.由此引入新课.二、思考探究,获取新知1.教师先引导学生思考,示范画出反比例函数y=6x的图象,再让学生尝试画出反比例函数y=-6x的图象.2.在作图过程中,启发学生类比画一次函数的图象的过程;探索反比例函数的图象作图步骤:①列表;②描点;③连线.【教学说明】教师在活动中应重点关注:(1)启发学生反比例函数与一次函数的作图基本步骤是一致的.但是在具体的作图过程中又有它自己的特点,和学生一起体会其中的共性和特性.(2)①列表时,关注学生是否注意到自变量的取值应使函数有意义(即x ≠0),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;②描点时,一般情况下所选的点越多则图象越精细;③连线时,让学生根据已经描好的点先思考:图象有没有可能是直线.学生自主探究发现图象特点后,引导学生用平滑的曲线按照自变量从小到大的顺序连接各点,得到反比例函数的图象.3.比较y=6x与y=-6x的图象,它们有什么共同特征?它们之间有什么关系?【教学说明】引导学生观察思考,回答问题,让学生了解反比例函数的图象是一种双曲线,并且让学生切实认识和理解:反比例函数曲线的两个分支是断开的,延伸部分逐渐靠近坐标轴,但永远不与坐标轴相交.在同一坐标系内两个反比例函数图象的对称关系.4.观察函数y=6x和y=-6x以及y=3x和y=-3x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化如何变化?【教学说明】学生小组讨论,观察思考后进行分析、归纳,得到反比例函数的性质.【归纳结论】反比例函数y=kx(k为常数,k不为零)的图象是一种双曲线;当k >0时,双曲线的两支分别位于第一、三象限,当k <0时,双曲线的两支分别位于第二、四象限.三、运用新知,深化理解1.如果函数y=2x k+1的图象是双曲线,那么k=-2.2.如果点(1,-2)在双曲线y=kx上,那么该双曲线在第二、四象限.3.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是1,2.4.反比例函数y=-1/x的图象大致是图中的(D)5.下列反比例函数图象一定在第一、三象限的是(C)A.y=mxB.y=1mx+C.y=21mx+D.y=-mx6.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第二、四象限.7.已知一次函数y=kx+b与反比例函数y=3b kx-的图象交于点(-1,-1),则此一次函数的解析式为y=2x+1,反比例函数的解析式为1yx =.8.作出反比例函数y=12x的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<6.9.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的运用反比例函数的性质解决问题,在研究题目时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结本节课学习了哪些知识?在知识应用过程中要注意什么?你有什么收获?1.布置作业:教材“习题6.2”中第2、3题.2.完成练习册中相应练习.通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法,同时也为后面的学习奠定了基础.第2课时反比例函数的图象与性质(2)1.探索反比例函数的主要性质.2.经历观察、归纳、交流的过程,提高学生的观察、分析能力和对图形的感知水平.3.让学生进一步体会用反比例函数刻画现实生活问题的作用.【教学重点】准确掌握并能运用反比例函数图象的性质.【教学难点】准确掌握并能运用反比例函数图象的性质.一、情境导入,初步认识上一节课我们已经学习了反比例函数的定义和图象的画法,及图象所在的象限.今天我们继续来探究反比例函数的图象和它的性质.【教学说明】通过类比正比例函数的学习,提出本节课所要研究的问题及其研究方法,并引导学生的研究思路.二、思考探究,获取新知1.画一画反比例函数y=6x和y=-6x的图象.思考:随着x的增大,y值是怎样变化的?【教学说明】加深学生对作反比例函数图象的认识,并在列表、画图过程中进一步感知反比例函数的性质.【归纳结论】反比例函数y=kx(k≠0)的图象:当k>0时,在每一象限内,y的值随着x值的增大而减小;当k<0时,在每一象限内,y的值随着x值的增大而增大.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1=______;过点Q分别作x 轴、y轴的平行线,与坐标轴围成的矩形面积为S2=______;S1与S2有什么关系?为什么?【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过反比例函数y=kx(k≠0)图象上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值. 三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是y2.2.若反比例函数y=kx,当x>0时,y随x的增大而增大,则k的取值范围是(A)A.k<0B.k>0C.k≤0D.k≥03.下列函数中,当x>0时,y随x的增大而减小的是(B)A.y=xB.y=1 xC.y=-1xD.y=2x4.反比例函数y=22()21mm x--,当x>0时,y随x的增大而增大,则m的值是(C)A.±1B.小于1/2的实数C.-1D.15.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有(A)A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<06.一次函数y=kx+b与反比例函数y=kx的图象如图所示,则下列说法正确的是(C)A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.k<0D.它们的自变量x的取值为全体实数第6题图第8题图7.当k<0时,反比例函数y=kx和一次函数y=kx+2的图象大致是(B)8.如图,A、B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)A.S=2B.S=4C.2<S<4D.S>49.已知点A(m,2)、B(2,n)都在反比例函数y=3mx的图象上.(1)求m、n的值;(2)若直线y=mx-n与x轴交于点C,求C关于y轴对称点C′的坐标. 解:(1)m=n=3;(2)C′(-1,0).10.已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.解:(1)y=x,y=9x;(2)m=32;y=x-92;(3)S四边形OABC=1 108.11.如图,反比例函数y=kx的图象与直线y=x-2交于点A,且A点纵坐标为1,求该反比例函数的解析式.解:将y A=1代入y=x-2得x A=3,故A的坐标为(3,1).将A(3,1)代入y=kx得k=3,所以反比例函数的解析式为y=3 x .【教学说明】检测题采取多种形式呈现,增加了灵活性,以基本题为主,也有少量综合问题,可使不同水平的学生均有机会获得成功的体验.四、师生互动、课堂小结通过本节课的学习你有哪些收获,还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题6.3”中第1、2题.2.完成练习册中相应练习.本节课是在学生已学完一次函数,并初步认识、感知反比例函数概念之后,对反比例函数的图象和性质的进一步掌握.在教学过程中通过自主探究、小组研讨、学生设计问题等环节充分激发学生的学习兴趣.3反比例函数的应用1.使学生对反比例函数和反比例函数的图象意义理解加深.2.经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程.3.调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.一、情境导入,初步认识复习回顾:1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么人和木板对地面的压强p (Pa)将如何变化?(见书P142)(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流.解:(1)p=600S(S>0),p 是S 的反比例函数. (2)p=3000Pa (3)至少0.1m2【教学说明】在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外,还要注意单位长度所表示的数值.在(5)中,要留有充分时间让学生交流,领会实际问题的数学意义,体会数与形的统一.2.蓄电池的电压为定值,使用此电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示.(见书P 142)(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?3.如图,正比例函数y =k 1x 的图象与反比例函数y=2k x的图象相交于A ,B 两点,其中点A 的坐标为(3,23).(1)分别写出这两个函数的表达式; (2)你能求出点B 的坐标吗?你是怎样求的?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用. 三、运用新知,深化理解1.一个水池装水12m3,如果从水管中每小时流出x(m3)的水,经过y(h)可以把水放完,那么y与x的函数关系式是12yx=,自变量x的取值范围是x>0.2.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是90yx=(不考虑x的取值范围).3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长ycm 与宽xcm之间的函数关系的图象大致是(A)4.下列各问题中两个变量之间的关系,不是反比例函数的是(D)A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是(D)A.y=3000xB.y=6000xC.y=3000/xD.y=6000/x6.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是(A)7.一个长方体的体积是100cm3,它的长是ycm,宽是5cm,高是xcm.(1)写出长ycm关于高xcm的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.解:(1)y=20/x(x>0);(2)图象略;(3)长为20/3cm.【教学说明】用函数观点来处理实际问题的应用,加深对函数的认识. 四、师生互动、课堂小结今天这节课学习了什么?你掌握了什么?1.布置作业:教材“习题6.4”中第2题.2.完成练习册中相应练习.本节课我们学习了反比例函数的应用,具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.本章复习1.理解反比例函数及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题.2.经历探索反比例函数的概念、性质、图象的过程,了解数学与实际问题相结合.3.初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性.【教学重点】能根据所给信息确定反比例函数的表达式,画出反比例函数的图象,并利用它们解决简单的实际问题.【教学难点】反比例函数的应用.一、知识结构【教学说明】通过回顾知识点,使学生掌握各知识点之间的联系.二、释疑解惑,加深理解1.反比例函数的概念一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的性质反比例函数y=kx(k为常数,k不为零)的图象是一种双曲线;当k >0时,双曲线的两支分别位于第一、三象限,在每一象限内,y的值随着x值的增大而减小;当k <0时,双曲线的两支分别位于第二、四象限,在每一象限内,y的值随着x 值的增大而增大.过双曲线上任一点作x 轴,y 轴的垂线,所得矩形的面积为|k|.3.画反比例函数图象时要注意以下几点:a.列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于描点;b.列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;c.在连线时要用光滑的曲线,不能用折线. 4.反比例函数的应用【教学说明】让学生通过知识性内容的小结,尽快掌握课堂所学的知识. 三、典例精析,复习新知1.下列函数中,哪些是反比例函数?(1)y=-x/3;(2)y=-8/x ;(3)y=4x -5;(4)y=5x -1;(5)xy=1/8. 分析:判断函数是反比例函数,依据反比例函数定义y=kx(k ≠0),它也可变形为y=kx -1及xy=k 的形式,(4)、(5)就是这两种形式.解:其中反比例函数有(2),(4),(5).2.已知反比例函数y=26(2)a a x --,y 随x 的增大而减小,求a 的值及解析式. 分析:根据反比例函数的定义及性质来解此题.解:因为y=26(2)a a x --是反比例函数,且y 随x 的增大而减小,所以261,20.a a ⎨⎩=>⎧---解得 2.a a ⎧=>⎪⎨⎪⎩所以y=2x. 3.已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,当x=1时,y=4;当x=3时,y=5,求x=-1时,y 的值.分析:先求出y 与x 之间的关系式,再求x=-1时,y 的值.不可草率地将k 1、k 2都写成k 而导致错误,题中给出了两对数值,决定了k 1、k 2的值.4.已知函数y=24213m m x ⎛⎫+ ⎪⎝⎭-是反比例函数,且其函数图象在每一个象限内,y 随x 的增大而减小,求反比例函数的解析式.分析:此题根据反比例函数的定义与性质来解反比例函数y=kx(k ≠0),当k>0时,y 随x 增大而减小,当k<0时,y 随x 增大而增大.解:因为y 是x 的反比例函数,所以4m 2-2=-1,所以m=12或m=-12.因为此函数图象在每一象限内,y 随x 的增大而减小,所以m+13>0,所以m>-13,所以m=12,所以反比例函数的解析式为y=56x. 5.一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米.(1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当x=3厘米时,求y 的值.分析:本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式.解:(1)因为长方体的长为y厘米,宽为5厘米,高为x厘米,所以5xy=100,所以y=20x.(2)因为x是长方体的高,所以x>0,即自变量x的取值范围是x>0.(3)当x=3时,y=203=263(厘米).【教学说明】通过例题讲解可以提高学生的观察、分析、综合应用及推理能力.四、复习训练,巩固提高1.一次函数y=-x+1与反比例函数y=3x在同一坐标系中的图象大致是下图中的(A)解:∵y=-x+1的图象经过第一、二、四象限,故排除B、C;又y=3x的图象两支在第一、三象限,故排除D.∴答案应选A.2.如图,P是反比例函数y=kx上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析:求反比例函数的解析式,就是求k的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.过反比例函数图象上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于y=kx中的|k|.解:设P 点坐标为(x,y).因为P 点在第二象限,所以x<0,y>0. 所以图中阴影部分矩形的长、宽分别为-x,y . 又-xy=2,所以xy=-2.因为k=xy ,所以k=-2.所以这个反比例函数的解析式为y=2x -.3. 当n 取什么值时,y=()2212nn n n x ++-是反比例函数?它的图象在第几象限内?在每个象限内,y 随x 增大而增大还是减小?分析:根据反比例函数的定义y=kx(k ≠0)可知,要使y=()2212n n n n x ++-是反比例函数,必须n 2+2n ≠0且n 2+n -1=-1.解:y=()2212n n n n x++-是反比例函数,则2220,11,n n n n +⎧≠+⎪⎩=⎪⎨-- ∴02,0 1.n n n n ≠≠=⎨=⎧⎩且-或- 即n=-1.故当n=-1时,y=()2212n n n n x ++-表示反比例函数:y=1x-.∵k=-1<0,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大4.一个圆台形物体的上底面积是下底面积的23.如果放在桌上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?解:设下底面是S 0,则由上底面积是23S 0,由p=FS,且S=S 0时,p=200,有F=pS=200×S 0=200S 0.因为是同一物体,所以F=200S 0是定值.所以当S=23S0时,p=FS=020023SS=300(Pa).五、师生互动,课堂小结通过本节课的学习,你有哪些收获?布置作业:教材“复习题”中第1~6题.本节课的学习是学生对函数的概念、图象与性质一个整合的过程,可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力,培养学生的创新精神.。
河南省九年级数学上册 第六章 反比例函数 1 反比例函数教案 (新版)北师大版
课题
反比例函数
课时安排
共1)课时
①求出这个反比例函数的表达式;
②根据函数表达式完成上表。
教师巡视,个别辅导,学生完毕教师给予评估。
指出:用待定系数法确定反比例函数表达式,只需代入一个已知点,可确定未知系数k的值。(由解析式可得,k=xy)
环
节
三
三、拓展应用,学科互联
例1:电流I、电阻R、电压U之间满足关系式 U=IR。在照明电路中,正常电压U=220V。
设,只需代入一个已知点坐标即可
教学反思:
教师应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
例3:若是关于x的反比例函数,确定m的值,并求其函数关系式。
四、感悟收获,师生小结
通过本节课的学习,你有哪些收获?你还存在什么疑问?
课中作业
习题6.1 1-4题
课后作业设计:
《全品学练考》作业手册习题6.1
(修改人:)
板书设计:
反比例函数
反比例函数的定义
形如
其他形式:
自变量
用待定系数法确定反比例函数的表达式:
(1)求I与R之间的函数关系式?
(2)变量I是R的反比例函数吗?
(3)利用写出的关系式完成下表:
R(Ώ)
20
60
I(A)
2.2
例2:在某一电路中,保持电压U(伏)不变,电流I(安)是电阻R(欧)的反比例函数,当电阻R=5欧时,电流I=2安。
(1)求I与R之间的函数关系式。
(2)当电流I=0.5安时,求电阻R的值。
九年级数学上册第六章反比例函数1反比例函数教案新版北师大版
第六章 反比例函数 1 反比例函数1.了解反比例函数的概念,会判断一个式子是否是反比例函数.2.能够列出实际问题中的反比例函数的表达式,并能确定自变量的取值范围.重点了解反比例函数的概念,会判断一个式子是否是反比例函数. 难点能够列出实际问题中的反比例函数的表达式.一、情境导入 课件出示:导体中的电流I ,与导体的电阻R 、导体两端电压U 之间满足关系式U =IR.当U =220 V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:R/Ω 20 40 60 80 100 I/A当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?学生小组合作讨论后举手回答,教师点评,并引出本节课课题——反比例函数. 二、探究新知1.反比例函数的概念问题1:小明有10元钱,购买y(个)单价是x(元)的铅笔,你能用含x 的代数式表示y 吗?学生:y =10x.问题2:京沪高速公路全长约为1 318 km ,汽车沿京沪高速公路从上海开往北京,汽车行完全程所需的时间为t(h ),行驶的平均速度为v(km /h ),你能用含t 的代数式表示v 吗?学生:v =1318t.教师:从上面的两个问题得出关系式y =10x 和v =1318t .它们是函数吗?能否根据这两个问题归纳出这一类函数的表达式呢?引导学生观察,归纳总结出反比例函数的概念:一般地,如果两个变量x ,y 之间的对应关系可以表示成 y =kx (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.从y =kx中可知自变量x 作为分母,所以x 不能为零.2.反比例函数的表达式 课件出示:下列函数表达式中,哪些式子表示y 是x 的反比例函数?如果是,请写出k 的值. (1)y =5x ; (2)y =0.4x ;(3)y =x2; (4)xy =2;(5)y =x π; (6)y =-5x;(7)y =2x -1.学生思考后汇报答案,教师点评.教师:通过上面这道题,你能总结出反比例函数表达式的不同形式吗? 学生积极思考,归纳总结: 第一种:y =kx.第二种:xy =k.第三种:y =kx -1. 三、举例分析例1 若y =(5+m)x 2+n是反比例函数,则m ,n 的取值是( ) A .m =-5,n =-3 B .m≠-5,n =-3 C .m ≠-5,n =3 D .m≠-5,n =-4 学生举手回答,教师点评.例2 一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和 y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?例3 某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?例4 y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 -12 12 1 3 y232-1(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.学生独立完成后汇报答案,教师点评,并提出问题:上述问题中,自变量能取哪些值? 四、练习巩固教材第150页“随堂练习”第1,2题. 五、小结1.通过本节课的学习,你有什么收获? 2.什么是反比例函数? 六、课外作业教材第150~151页习题6.1第1~4题.本节课的知识是反比例函数.课堂上,结合实例引导学生了解所讨论的函数的表达式,形成反比例函数概念的具体形象,让学生经历从感性认识到理性认识的转化过程,发展学生的思维.在探索具体问题中的数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数.通过练习题既巩固了反比例函数的定义,也让学生认识到反比例函数的表达式有不同的形式.由学生总结归纳,锻炼了学生的观察总结能力,紧接的练习又巩固了反比例函数表达式的3种形式.在教学过程中,给学生足够的时间和空间,培养学生自主分析问题、解决问题的能力,让学生得到一个良好的自主学习的环境.。
2019九年级数学上册 第六章 反比例函数 1 反比例函数教案 (新版)北师大版
Байду номын сангаас其他形式:
xy k (k 0) y kx1 (k 0)
自变量 x 0 用待定系数法确定反比例函数的表达式: 设y
k (k 0) ,只需代入一个已知点坐标即可 x
教学反思: 教师应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考, 掩盖了其他学生的疑问。
《反比例函数》
课
题
反比例函数
课时安排
共(1 )课时
① 求出这个反比例函数的表达式; ② 根据函数表达式完成上表。 教师巡视,个别辅导,学生完毕教师给予评估。 指出:用待定系数法确定反比例函数表达式,只需代入一个已知点, 可确定未知系数 k 的值。(由解析式可得,k=xy) 三、拓展应用,学科互联 例 1:电流 I、电阻 R、电压 U 之间满足关系式 U=IR。在照明电路中, 正常电压 U=220V。 (1)求 I 与 R 之间的函数关系式 ? (2)变量 I 是 R 的反比例函数吗? (3)利用写出的关系式完成下表: R(Ώ) 20 60
I(A) 环 节 三
2.2
例 2:在某一电路中,保持电压 U(伏)不变,电流 I(安)是电阻 R(欧)的 反比例函数,当电阻 R=5 欧时,电流 I=2 安。 (1) 求 I 与 R 之间的函数关系式。 (2) 当电流 I=0.5 安时,求电阻 R 的值。
例 3: 若y (m 1) x m 其函数关系式。
成 形 终 最 的 场 市 界 世 和 命 革 业 工 次 两 17讲 第 练 标 达 下 课 8) 满 钟 45分 : 间 (时 8)一 4分 小 每 12, 共 大 (本 题 择 选 、 () 了 映 反 这 术 技 新 用 雇 少 耗 消 本 入 投 多 能 可 发 开 来 汁 脑 尽 绞 都 业 行 各 是 于 。 宜 便 为 极 却 格 价 的 炭 煤 而 惊 得 高 平 水 资 人 工 象 现 种 一 成 形 渐 逐 国 英 , 期 8中 到 纪 6世 1. 成 形 始 初 的 断 垄 业 行 A. 赖 依 的 炭 煤 对 动 启 化 代 近 B. 锐 尖 渐 日 的 盾 矛 资 劳 C. 件 条 特 独 的 启 命 革 力 动 D. 误 B错 化 近 映 反 未 并 除 排 体 无 在 AC两 ; 确 正 项 故 件 条 特 独 其 有 启 命 革 力 见 可 生 而 运 应 明 汽 蒸 动 劳 替 代 器 机 源 能 以 后 此 术 技 新 佣 雇 少 耗 消 多 出 发 开 投 法 设 方 想 业 行 各 是 于 , 象 现 的 宜 便 为 极 却 格 价 炭 煤 、 惊 得 高 资 人 工 了 成 形 渐 逐 国 英 8期 到 纪 16世 中 料 材 D。 选 : 析 解 () 期 初 命 革 业 出 映 反 这 。 恩 尼 奥 · 得 彼 头 他 和 特 科 主 厂 法 拌 搅 铁 熟 产 生 兼 个 顿 普 伦 克 骡 , 工 织 是 原 斯 夫 里 格 哈 者 明 发 的 机 纱 纺 妮 珍 2. 合 结 正 真 未 尚 术 技 和 学 科 A. 现 新 的 学 科 于 赖 依 明 发 术 技 B. 术 技 新 了 断 垄 主 场 工 手 C. 衡 平 不 而 慢 缓 程 进 播 传 术 技 新 D. 。 误 错 项 D“ 故 , 关 无 程 进 播 传 术 技 新 与 料 材 ; C解 符 不 息 信 等 ” 工 织 是 原 斯 夫 里 格 哈 者 明 发 的 机 纱 纺 妮 珍 B 系 联 接 直 太 有 没 并 确 合 结 正 真 未 尚 学 了 映 反 人 熟 娴 都 大 命 革 业 次 一 第 知 可 头 他 和 特 科 主 厂 兼 A据 选 : 析 () 这 力 持 保 能 又 时 同 闲 休 何 任 让 不 换 更 流 里 大 卜 萝 麦 小 、 菁 芜 植 种 上 土 块 的 场 在 别 分 即 ” 制 作 轮 四 “ 做 叫 新 项 一 中 其 。 命 革 术 技 业 农 了 生 发 区 地 部 东 国 英 7, 至 代 160年 3. 程 进 市 城 和 化 业 工 国 英 动 推 A. 给 自 食 粮 现 实 国 英 成 促 B. 大 扩 距 差 济 经 部 西 东 国 英 致 导 C. 幕 序 动 运 地 圈 国 英 开 揭 D. ” 人 吃 羊 “ 是 动 运 地 圈 的 国 英 ; 误 错 项 C。 故 , 较 比 展 发 济 经 西 不 并 命 革 术 技 业 农 行 进 部 东 明 说 仅 料 材 B它 给 自 食 粮 未 确 正 础 基 定 奠 化 率 用 利 土 高 法 做 一 这 前 映 A反 选 : 析 D解 关 无 产 生 中 目 题 与 力 劳 由 量 大 了 供 提 工 为 () 确 准 最 解 理 点 观 者 作 对 ” 。 卒 为 成 则 钟 时 而 , 狱 监 的 新 种 一 是 厂 工 “ : 说 曾 斯 德 兰 · 卫 大 人 国 英 4. 方 地 的 发 频 罪 犯 了 成 厂 工 A. 段 手 理 管 的 狱 监 仿 模 厂 工 B. 削 剥 的 人 个 对 织 组 断 垄 判 批 C. 活 人 工 了 化 异 产 生 器 机 D. 。 确 正 项 活 了 化 异 产 生 器 机 下 度 制 知 可 C据 织 组 断 垄 出 已 明 说 能 B还 段 手 理 管 仿 模 迫 压 削 剥 人 对 现 体 要 主 卒 为 成 则 钟 时 而 ; 误 错 故 , 符 不 思 意 ” 狱 监 的 新 种 一 是 厂 工 “ 料 材 DA与 选 : 析 解 () ” 身 脱 中 其 能 人 无 界 卷 席 已 日 今 纪 世 个 过 广 推 欧 西 由 , 态 形 济 经 代 现 新 全 这 。 面 两 的 体 一 于 当 相 产 生 业 工 与 义 主 本 资 “ 5. 国 各 美 欧 的 期 晚 纪 19世 于 始 开 A. 路 道 义 主 本 资 了 上 走 国 各 界 世 使 B. 体 整 一 统 向 走 展 发 散 分 由 类 人 使 C. 段 阶 明 文 业 工 到 入 进 史 历 类 人 使 D. 。 确 正 项 期 时 明 文 入 进 会 社 动 展 发 义 主 本 资 指 ” 身 脱 其 能 无 界 卷 席 已 日 今 个 两 过 广 推 欧 西 态 形 济 经 代 现 全 一 这 “ 中 据 C根 辟 路 航 新 体 整 向 走 散 分 由 类 人 实 史 合 符 不 对 绝 太 法 B说 ; 误 A错 故 国 英 纪 19世 于 始 开 , 产 生 化 业 工 是 的 映 反 料 D材 选 : 析 解 () 是 式 形 织 组 符 相 这 与 此 据 , ” 变 转 矿 向 物 植 从 了 现 实 先 率 源 来 力 的 中 动 活 产 生 在 家 国 欧 西 “ 期 时 史 历 一 某 6. 坊 作 庭 家 A. 度 制 厂 工 C. 。 误 错 项 D 二 织 组 断 垄 确 正 次 第 于 出 度 制 B厂 一 这 体 有 没 场 手 A; 故 面 方 是 要 主 坊 作 庭 代 时 汽 蒸 入 进 命 革 业 工 始 开 英 知 可 , ” 变 转 矿 向 物 植 从 了 现 实 先 率 源 来 力 的 中 动 活 产 生 在 家 国 欧 西 “ 住 C抓 选 : 析 解 () 是 确 准 解 理 料 材 该 对 列 下 ” 供 提 品 成 制 余 剩 为 场 市 国 然 当 行 银 厂 电 山 矿 、 设 建 以 外 了 向 投 也 样 同 本 资 洲 欧 „ 。 界 正 真 种 一 植 培 命 革 通 交 路 铁 和 输 运 洋 海 上 加 再 , 展 发 济 经 的 末 纪 19世 “ : 出 指 中 》 史 简 明 文 方 西 《 在 尔 格 瓦 皮 斯 7. 力 动 本 根 的 展 发 场 市 界 世 是 命 革 业 工 A. 程 进 的 累 积 始 原 本 资 了 快 加 场 市 界 世 B. 场 市 占 抢 外 海 到 始 开 家 国 义 主 本 资 C. 善 改 到 得 活 生 类 人 中 化 体 整 向 走 在 界 世 D. 9世 “ 中 据 根 选 : 析 解 ” 真 种 一 出 植 培 通 交 铁 和 输 运 洋 上 加 1再 确 A正 动 推 命 革 业 工 为 因 其 展 发 济 D。 现 体 未 并 善 改 活 生 民 人 于 至 起 崛 西 及 以 形 界 调 所 料 C材 辟 开 路 航 新 随 伴 是 场 市 占 强 外 海 在 家 国 义 主 ; 误 错 B项 故 累 积 始 原 的 本 资 了 成 完 经 已 早 洲 欧 , 末 纪
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第六章反比例函数1反比例函数教案2新版北师大版6.1 反比例函数函数是在探索具体问题中数量关系和变化规律基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.在前画已学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后继学习产生积极影响.本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念.通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.由于本节课比较抽象,理解起来比较困难,因此,在学习反比例函数概念的过程中,应充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向. 教学目标:(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式. (三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念. 教学难点:领会反比例函数的意义,理解反比例函数的概念. 教学方法:教师引导学生进行归纳. 教具准备:多媒体课件 教学过程:Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为b kx y +=其中k ,b 为常数且0≠k ,正比例函数的表达式为kx y =,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200 km ,某人开车要从A 地到月地,汽车的速度v(km /h)和时间t(h)之间的关系式为vt =1200,则t =v1200中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘. Ⅱ.新课讲解[师]引我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数? 1.复习函数的定义[师]大家还记得函数的定义吗? [生]记得.在某变化过程中有两个变量x ,y.若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y是x 的函数.[师]大家能举出实例吗? [生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y =0.4n ,这是一个正比例函数. 等腰三角形的顶角的度数y 与底角的度数x 的关系为y=180-2x ,y 是x 的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式. 2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. [师]请看下面的问题.电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220 V 时. (1)你能用含有R 的代数式表示I 吗?当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么? 请大家交流后回答.[生](1)能用含有R 的代数式表示I. 由IR=220,得I=R220.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大. (3)变量I 是R 的函数.由IR =220得I =R220.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数.[师]这位同学回答,的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I =R220,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼. 投影片:(§ 6.1 A)京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km /h)之间有怎样的关系?变量t 是v 的函数吗?为什么? [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt ,则有t =v1262.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数. [师]从上面的两个例题得出关系式 I=R220和t=v1262.它们是函数吗?它们是正比例函数吗?是一次函数吗? [生]因为给定一个R 的值,相应地就确定了一个I 的值,所以I 是R 的函数;同理可知t 是v 的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k ≠0),一次函数的关系式为y =kx+b(k ,b 为常数且k ≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I =R220与t=v1262可知关系式为y=xk (k 为常数且k ≠0).[师]很好.一般地,如果两个变量x 、y 之间的关系可以表示成y =xk (k 为常数,k ≠0)的形式,那么称y 是x的反比例函数.从y =xk 中可知x 作为分母,所以x 不能为零.3.做一做投影片(§ 6.1 B)1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?3. y 是x 的反比例函数,下表给出了x 与y 的一些值:(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy =20.则有y =x20.变量y 是变量x 的函数.因为给定一个x 的值,相应地就确定了一个y 的值,根据函数的定义可知变量y 是变量x 的函数.再根据反比例函数的表达式可知y 是x 的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=n 2.346.给定一个n 的值,就相应地确定了一个m 的值,因此m 是n 的函数,又m =n2.346符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k 的值,因此需要一个条件即可;在一次函数y =kx+b 中,要确定关系式实际上是要求得b 和k 的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k 的值.因此只需要—个条件即可,也就是要有一组x 与y 的值确定k 的值.所以要从表格中进行观察.由x =-1,y =2确定k 的值,然后再根据求出的表达式分别计算.x 或y 的值. [生]设反比例函数的表达式为y=xk(1)当x =-1时,y =2; ∴k =-2.∴表达式为y =-x2(2)当x =-2时,y =1. 当x=-21时,y =4;当x=21时.y=-4;当x =1时,y=-2.当x =3时,y =-32;当y =32时,x=-3; 当y =-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,-32Ⅲ.课堂练习课本P150随堂练习 Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =xk (k 为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数. Ⅴ.课后作业课本P150习题6.1 Ⅵ.活动与探究已知y-1与成反比例21+x ,且当x =1时,y=4,求y 与x 的函数表达式,并判断是哪类函数?分析:由y 与x 成反比例可知y =xk ,得y-1与21+x 成反比例的关系式为y-1=21+x k =k(x+2),由x =1、y=4确定k 的值. 从而求出表达式.解:由题意可知y-1=k=21+x k k(x+2). 当x =1时.y =4. 所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y 是x 的一次函数.备课资料 参考例题1.k 为何值时,y=(k+2)x k2-5是反比例函数分析:根据反比例函数表达式的一般形式y =xk (k ≠0)也可以写成y=kx -1≠0),后一种写法中的x 的次数为-1,可知此函数为反比例函数,必须具备两个条件:k+2≠0 k2-5=-1二者缺一不可.k+2≠0, k≠-2,解:由得k2-5=-1, k=±2∴k=2.∴当k=2时,y=(k+2)x k2-5是反比例函数.k写成y=kx-1的形式;常见错误:(1)不会把反比例函数的一般式y=x(2)忽略了k+2≠0这个条件.。