课题:实践与探索—应用二次函数解决实际问题

合集下载

九年级下册数学二次函数实践与探索(2)导学案及练习

九年级下册数学二次函数实践与探索(2)导学案及练习

九年级下册数学二次函数实践与探索(2)导学案及练习[本课知识重点]让学生进一步体验把实际问题转化为有关二次函数知识的过程.[创新思维]二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决.[实践与探索]例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。

设销售单价为x 元,日均获利为y 元。

(1)求y 关于x 的二次函数关系式,并注明x 的取值范围;(2)将(1)中所求出的二次函数配方成ab ac a b x a y 44)2(22-++=的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少? 分析 若销售单价为x 元,则每千克降低(70-x )元,日均多售出2(70-x )千克,日均销售量为[60+2(70-x )]千克,每千克获利为(x-30)元,从而可列出函数关系式。

解 (1)根据题意,得500)]70(260)[30(--+-=x x y650026022-+-=x x (30≤x ≤70)。

(2)y 650026022-+-=x x 1950)65(22+--=x 。

顶点坐标为(65,1950)。

二次函数草图略。

经观察可知,当单价定为65元时,日均获利最多,是1950元。

例2。

某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (十它们的关系如下表:(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?解 (1)设二次函数关系式为c bx ax y ++=2。

二次函数与实际问题

二次函数与实际问题

5. 飞机着陆后滑行的距离s(单位:米)与滑 行的时间t(单位:秒) 2 之间的函数关系式 s 6 0 t 1 . 5 t 飞机着 陆后滑行 秒才能停下来.
6.一座隧道的截面由抛物线和长方形构成,长方形的长为8m, 宽为2m,隧道最高点p位于AB的中央且距地面6m,建立 如图所示的坐标系 (1)求抛物线的解析式; (2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么? (3)如果隧道内设双行道,那么这辆货车是否可以顺利通 过,为什么?
解: (1)∵ h= 2.6,球从 O点正上方 2 m的 A处发出, ∴ y= a(x- 6)2+ h过点(0, 2), 1 2 ∴ 2= a(0- 6) + 2.6,解得: a=- , 60 1 故 y与 x的关系式为: y=- (x- 6)2+ 2.6. 60 1 (2)当 x= 9时, y=- (9- 6)2+ 2.6= 2.45> 2.43, 60 所以球能过球网; 1 当 y= 0时,- (x- 6)2+ 2.6= 0, 60 解得 x1= 6+ 2 39> 18, x2= 6- 2 39(舍去). 故球会出界.
• 6. 某公司经销一种绿茶,每千克成本为50元.市 场调查发现,在一段时间内,销售量w(千克) 随销售单价x(元/千克)的变化而变化,具体关 系式为:w=-2x+240.设这种绿茶在这段时间 内的销售利润为y(元),解答下列问题: • (1)求y与x的关系式; • (2)当x取何值时,y的值最大? • (3)如果物价部门规定这种绿茶的销售单价不得 高于90元/千克,公司想要在这段时间内获得2250 元的销售利润,销售单价应定为多少元?
[解析] (1)利用h=2.6,将 (0,2)代入解析式求出即可; 1 (2)利用当 x=9时, y=- (x- 6)2+2.6=2.45,当y=0时, 60 1 - (x-6)2+ 2.6= 0,分别得出即可; 60 (3)根据当球正好过点 (18,0)时, y=a(x-6)2+h的图象还过 (0,2)点,以及当球刚能过网,此时函数的图象过点(9,2.43), y= a(x- 6)2+ h的图象还过点(0,2)分别得出h的取值范围,即可 得出答案.

九年级数学下册二次函数的应用教案

九年级数学下册二次函数的应用教案

课题:2.4二次函数的应用教学目标:1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值问题.3.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.进一步体会数学与人类社会的密切联系.教学重点与难点:重点:经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.课前准备:导学案,多媒体课件.教学过程:一、创设情境,导入新课活动内容:(利用导学案)探究活动:以小组为单位,用长1米的绳子围成不同的图形,看哪个小组围成的图形最多,并估算出所围成的这些图形中,哪个图形的面积最大?处理方式:学生先把答案写在导学案上,然后小组内交流,班级内比较的到当场合款相等时面积最大.设计意图:增加学生的动手能力和小组合作探究能力,同时也为了复习图形的面积公式,会用估算的方法比较这些图形的面积大小,探究其中的规律,为本节课学习最大面积问题做好铺垫.二、探究学习,感悟新知活动内容:(多媒体展示)问题一:探究两边在直角三角形直角边上内接矩形的最大面积 如图,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和AD 分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.处理方式:学生讨论交流,在导学案上完成后,学生之间互相展示结果讨论补充,教师适时点评,并在多媒体上展示正确结果.设计意图:从矩形的面积公式入手,利用相似三角形的性质表示出另外一条边,才能列出函数表达式,这一过程先由学生独立思考后,分组合作探究、交流,帮助个别存在困难的同学解决.此题的思路也是解决矩形最大面积问题最常用的方法.问题二:探究一边在直角三角形斜边上内接矩形的最大面积(多媒体展示)如图,在一个直角三角形的内部作一个矩形ABCD ,其中BC 在斜边上,,A D 在直角边上.如果设矩形的一边m AD x =,那么AB 边的长度如何表示?当x 取何值时,矩形面积y 的值最大?最大值是多少?解:设矩形的一边m AD x =,由GAD ∆GFD ∆,得AD GMEF GN=, 即5024x GM=, ∴1225GM x =.∴122425AB MN GN GM x ==-=-. 21212(24)242525ABCDS AD AB x x x x ==-=-+矩形.当24251222()25b x a =-=-=⨯-时,y 有最大值,最大值为224300124()25y -==⨯-最大值 处理方式:在有了前面解答问题的经验之后,让学生自主探究,寻求变量与不变量之间的关系,仿照第一种情况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题1的巩固练习,学生在认真听讲的前提下完成应该没有问题,提醒学生计算要认真. 设计意图:在上一道题的基础上,利用相似三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但此题上了难度,难度在于利用的是相似三角形对应高的比等于相似比这一性质,而且还要用到等积法求直角三角形斜边上的高.充分发挥学生的主动探究能力,并由个别程度较好的学生讲解,最后再板书进行反思总结.三、例题解析,新知应用 活动内容:(多媒体出示例题)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x=-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多. 答案:.02.407.12m S m x =≈最大时,处理方式:本题含有两个图形的面积计算,主要是想进一步提高学生分析问题和解决问题的能力,巩固训练列二次函数表达式和求最值的方法.让学生理解通过窗户光线多少与窗户面积大小有关.此题处理起来比较繁琐,教师要给予学生及时的指导和帮助,同时也告诉学生数学基本运算也是培养大家做事严谨、有耐心的一个很好的途径.设计意图:在学生已有的探究“面积最大值”经验获取的体会中,让学生继续沿着这条探究路线走下去,既能巩固前面的探究方法,又能让学生再次感受“数学来源于生活”.方法提炼:我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.(学生讨论,教师多媒体展示)(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等.设计意图:趁热打铁,及时进行小结,总结做题的方法及思路,抓住这种题目的本质,达到举一反三的目的和效果.四、拓展提升,学以致用一养鸡专业户计划用116m 长的竹篱笆靠墙围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB 长为x m ,则BC 长为(116-2x )m ,长方形面积为S m 2. 根据题意得S =x (116-2x )=-2x 2+116x=-2(x 2-58x +292-292)=-2(x -29)2+1682.当x =29时,S 有最大值1682,这时116-2x =58.即设计成长为58m ,宽为29m 的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m 2.处理方式:学生通过思考并交流讨论,探索出需要利用本节课学的知识解决题目,教师利用多媒体展示答案. 活动的设计意在通过问题的变式促使学生灵活运用知识,在解决实际问题中,重视知识的发展,有利于后续学习兴趣的培养.设计意图:让同学们通过刚才的学习和体验后进行练习,深入浅出地对题目进行分析和理解并解决问题,虽然并不要求他们在以后都用这样的方法解题,但对于培养他们形成良好的心理素质和培养他们分析问题、解决问题的能力是很有帮助的.五、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?那些疑惑?有何感想?学会了哪些方法?先想一想,再分享给大家.(1)通过本节课掌握了利用相似三角形的性质表示矩形的另一边,是列矩形面积函数关系式的关键.(2)图形最大面积问题,实质上是二次函数的最值问题.(3)解决此类问题,首先要理解问题,分析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是关键,化归为二次函数运用公式求解是易错点,要做对做全需要我们一定基本功扎实,养成良好的数学素养!处理方式:学生畅谈自己的收获,教师补充.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,进一步培养学生总结归纳的能力与合作互助的意识.六、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?2.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向BQCAF E BG D C A点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参考答案1.过A 作AM⊥BC 于M,交DG 于N,则AM=222012-=16cm. 设DE=x cm,S 矩形=y cm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x ). ∴y =DG ·DE=32(16-x )x =-32(x 2-16x)=-32(x -8)2+96,从而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.则∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =12PB ·BQ=12(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,当t =3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本47页,习题2.8第1、2、3题. 选做题:课本48页,习题2.8第4题. 结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!就让我把这份感动与惊喜埋在心底“一生一世”,相信你们的明天会更美好!祝愿同学们:象雄鹰一样飞的更高,飞的更远!(多媒体播放歌曲“飞的更高”结束本课)2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.yx x ++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积302,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为()2S3002002m.=-最大3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,整理得x2-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得y=80(x-22.5)2+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,∴BF BECE CD=, ∴8y xx m-=即28x x ym-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习练习册相关练习八、教学反思课题:2.4.2二次函数的应用教学目标:知识与技能1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.情感态度与价值观1.体会数学与人类社会的密切联系,了解数学的价值。

二次函数实践与探索实践与探索课件

二次函数实践与探索实践与探索课件

二次函数实践与探索课件xx年xx月xx日contents •引言•二次函数基础概念•二次函数的应用•深入探索二次函数•实际案例分析•总结与展望目录01引言二次函数是一种常见的函数类型,通常用于描述物体的运动轨迹和变化等。

二次函数的定义通过分析实际问题和数学问题中涉及到二次函数的例子,引出本课程所要探讨的内容。

课程背景课程简介学习目标掌握二次函数的图像和表达式的特点;理解二次函数的基本概念和性质;培养学生的数学思维和探究能力。

能够利用二次函数解决实际问题;课程大纲二次函数的基本概念和性质;第一部分二次函数的图像和表达式;第二部分二次函数的应用举例;第三部分二次函数的扩展知识。

第四部分02二次函数基础概念函数表达式形如$y = ax^2 + bx + c(a \neq 0)$的函数为二次函数。

二次函数定义定义域和值域对于任意$x \in \mathbf{R}$,都有唯一确定的$y$与之对应,因此二次函数的定义域和值域均为$\mathbf{R}$。

二次函数图像图像为抛物线,其形状由系数$a$决定,当$a > 0$时,图像开口向上,当$a < 0$时,图像开口向下。

图像特征:二次函数的图像是一个关于$x = - \frac{b}{2a}$对称的抛物线当$a > 0$时。

抛物线开口向上。

有最小值$\frac{4ac - b^2}{4a}$。

当$x < - \frac{b}{2a}$时。

$y$随$x$增大而减小当$a < 0$时。

抛物线开口向下。

有最大值$\frac{4ac - b^2}{4a}$。

当$x < - \frac{b}{2a}$时。

$y$随$x$增大而增大性质二次函数图像和性质二次函数的分类按照开口方向分为开口向上和开口向下两种。

按照对称轴位置分为在对称轴左侧、对称轴处和对称轴右侧三种情况。

按照图像与坐标轴交点位置分为与坐标轴有两个交点、一个交点或无交点三种情况。

初中数学华东师大九年级下册二次函数二次函数实践与探索(华师版)PPT

初中数学华东师大九年级下册二次函数二次函数实践与探索(华师版)PPT
y=- x²+2.4
4
B(0.8,0)
x
离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?
根据已知条件,要求涵洞ED的宽度,只要求出FD的长度即可,即 在如下所示的平面直角坐标系中,求出点D的横坐标.
15
y=- x²+2.4
4

y
(0,2.4)
F D (?,1.5)
点题 分析
(-0.8,0)A
O

x
最小半径
线段OB的长度 (B点的横坐标)
令y = 0,即-(x-1)²+2.25 =0
则x的值为 x1=2.5 x2=-0.5 (不合题意,舍去)
∴最小半径为2.5m.
注意自变量的
实际意义
问题2 E AA
D BB
涵洞的截面边缘是抛物线,如图,现 测得当水面宽一个AB=1.6m时,涵洞 顶点与水面的距离为2.4m,这时,离 开水面1.5m处,涵洞宽ED是多少?是 否会超过1m?
当x=3时,S 取最大值9m2
此时最大费用是9000 元。
• ③8000元
建立直角找坐点标坐系标找(找点坐标)
求解析式 解决问题
把实际问题转化为点坐标
布置作业
习题26.3 1题、2题
∴最大高度为2.25m.
实际问题与函 数知识的对应
(2)如果不计其他因素,水池的半径至少为多少时,才能使喷出
的水流都落在水池内?
y
A
B
O
x
析题分意:
水池为圆形,O点在中央, 喷水的落点到圆心的距离相等。
水池的半径至少为多少时,才能使喷出的水流都落在水池内?
y y=-x²+2x+1.25

函数的应用教案二

函数的应用教案二

函数的应用教案二《函数的应用》教案12教学目标:利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:(一)引入:分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?可引导学生从几个方面进行讨论:(1)如何画图(2)顶点、图象与坐标轴的交点(3)所形成的三角形以及四边形的面积(4)对称轴从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。

例如:抛物线y=x2+4x+3的顶点为点a,且与x轴交于点b、c;在抛物线上求一点e使sbce= sabc。

再探索:在抛物线y=x2+4x+3上找一点f,使bce与bcd 全等。

再探索:在抛物线y=x2+4x+3上找一点m,使bom与abc 相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是c(2,1)且与x轴交于点a、点b,已知sabc=3,求抛物线的解析式。

(三)提高练习根据我们学校人人皆知的`船模特色项目设计了这样一个情境:让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。

求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)(五)作业布置1、在直角坐标平面内,点o为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点a(x1,0)、b (x2,0)且(x1+1)(x2+1)=—8。

二次函数时间与探索教学设计

二次函数时间与探索教学设计

《二次函数实践与探索》教学设计教学目标:1.基础知识目标:①让学生对二次函数的相关内容作系统回顾,把握知识要点.②让学生掌握二次函数的图象与性质的关系,并能解决二次函数与直线型图形相结合的问题.2.能力训练目标:①培养学生整理知识的能力.②培养学生的观察、比较、分析、概括的能力.3.德育培养目标:①激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯.②通过学生体验、猜想并验证,让学生体会数学充满着探索和创造,培养学生创新的精神.③通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想.重点、难点:重点:通过二次函数的综合应用加深对其图象及性质的认识.难点:文字语言和函数图象、性质的相互转化,用运动的观点分析图形.教法与学法:教法:通过几何画板动态演示二次函数的图象性质,探究利用图像性质解决综合问题的方法.学法:针对所带学生具体情况及课堂教学的教师主导,学生主体思想,贯彻启发性教学原则,以多媒体课件为依托,采用学生观察、分析、探索、发现结论为主的方法.教学过程:回顾知识根据结构图回顾关于二次函数的相关知识点引入二次函数y = -12x2 +3x -52,分别回答:1.化顶点式;2.开口方向;3.对称轴;4.顶点;5.与x轴交点坐标;6.与y轴交点坐标;7.画出图像;8.增减性;9.最大(小)值.分析:首先要用配方法将函数写成y=a(x-h)2+k的形式;然后,确定函数图象的开口方向、对称轴与顶点坐标以及与x轴交点坐标、与y轴交点坐标;接下来,利用函数的对称性列表、描点、连线.这里的关键步骤是用配方法把函数改写成y=a(x-h)2+k的形式.1.化顶点式:y = -12(x-3)2+2,2.开口方向:开口向下,3.对 称 轴: 直线x =3,4.顶 点: P (3,2),5.与x 轴交点坐标:A(1,0)、B(5,0),6.与y 轴交点坐标:C(0, - 52 ),7.画出图像: (右 图)8.增 减 性: ∵抛物线开口向下,∴当x <3时,y 随x 增大而增大;当x >3时,y 随x 增大而减小. 9.最 值: ∵抛物线开口向下,∴当x =3时,y 最大=2 .(设计目的:通过复习加深学生对二次函数相关内容的理解,有利于学生熟练解题的基本方法,从而有利降低本节课的难度.)图形探索1.引入一般的二次函数y=ax 2+bx+c 以及y=a (x - h )2+k ,探究其中各个系数与二次函数图象之间的关系,用几何画板课件演示变化,让学生从变化中发现关系,并让大家来归纳总结.2.围绕二次函数的图像,构造丰富的直线型图形,用几何画板从运动变化的角度去分析图形,主要研究三角形的变化情况.实践应用1.已知抛物线y =ax 2+ x+2(1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x 2+ x+2的值是正整数,求x 的值.(3) 当a =a 1时,抛物线y =ax 2+ x+2与x 轴的正半轴相交于点M (m,0)当a =a 2时,抛物线y =ax 2+ x+2与x 轴的正半轴相交于点N (n,0),若点M 在点N 的左边,试比较a 1与 a 2的大小.分析:① y =-x 2+ x+2=,所以顶点坐标是 ,对称轴是x = . 提问:② 中正整数能确定吗?根据最大值是 ,所以只能是1和2,即可求出x 的值.③ 指出过定点(0,2),由韦达定理可得a 1<0,a 2<0,让大家尝试画草图分析a 1、a 2的大小,发现比较困难,能否直接求a 1、a 2,再作差解决,用几何画板演示,体现出形数结合.小结:本题前两问比较常规,通过二次函数的基本知识能够自己解决,而第3小题难度较大,可以尝试性的画草图,再考虑解题的具体方法,要敢想、敢做,敢解决实际问题.(设计目的:点燃学生思维的火花,让学生不能满足于一个现成图形的结论,而要有一种自己去探索、去发现的精神,要注意问题的一般性,学生在这一过程中投入到了获取知识的过程中去,较49)21(2+--x ⎪⎭⎫ ⎝⎛49,212149好地体现了学生学习方式的变革,这也较好地体现了教师组织者的作用.最后用几何画板演示图象变化的情况,使学生能够有更直观的理解.)2.已知抛物线y =x 2+(2-m )x -2m (m ≠2)与y轴的交点为A ,与x 轴的交点为B 、C (B 点在C 点左边).(1)写出A 、B 、C 三点的坐标;(2)设m =a 2-2a +4,试问是否存在实数a ,使△ABC 为Rt △?若存在,求出a 的值,若不存在,请说明理由;(3)设m =a 2-2a +4,当∠BAC 最大时,求实数a 的值.分析:给学生几分钟读题并解答第一问,得到A 、B 、C 三点的坐标A (0,-2m ),B (-2,0),C (m ,0),或A (0,-2m ),B (m ,0),C (-2,0),说明点B 是一个定点,m 的不同使函数图象也不同,让学生画出△ABC 为Rt △的图,从几何性质着手,又能找到什么条件呢?相似可得 从而求出m ,再解关于a 的方程.可以看出∠BAC 是由两部分∠BAO 、∠OAC ,其中∠OAC 不随着 m 的变化而变化,所以这里要∠BAC 最大,只需考虑∠BAO 最大,B 点是定点,所以A 点(0,-2m )的位置最靠近原点时最大(用几何画板画图并讨论),整个问题就转化为求-2m 的最大值,根据m =a 2-2a +4求m 的最小值即可.小结:二次函数和二次方程相结合的题目很多,这题既有根据方程的解来求图象与坐标轴的交点坐标,又可通过解方程来讨论存在性问题.最后一问是一个动态问题,在A 点的变化中可以先找出不变关系,再考虑变的规律,变的关键点,具体落实到一个点的位置的变化.(设计目的:先由学生自主探索,大胆让学生做一做,试一试,培养学生应用性技能和创新精神,在讲解时注意思路和方法,及时对解题方法进行归纳,并用几何画板课件,在动静结合中展现图象,使学生对图象性质有较深刻的认识,化解教学难点,有利于发展学生的思维能力.)总结归纳本节课首先关于二次函数的性质作了系统整理,并在直线型综合题中灵活地和几何性质相结合,并提高对二次函数图象中动态问题的认识.BO CO AO ∙=2。

华师大版七下数学7.4《实践与探索(2)》说课稿

华师大版七下数学7.4《实践与探索(2)》说课稿

华师大版七下数学7.4《实践与探索(2)》说课稿一. 教材分析华师大版七下数学7.4《实践与探索(2)》这一节的内容主要围绕着实践与探索的主题,通过一系列的案例和问题,让学生理解和掌握数学知识在实际问题中的应用。

教材中包含了丰富的案例和问题,旨在激发学生的学习兴趣,提高学生的动手能力和解决问题的能力。

在教材分析中,我们需要深入了解教材的结构和内容,以及每个问题的设计意图,为接下来的教学做好准备。

二. 学情分析在七年级下学期的数学学习中,学生已经掌握了一定的数学知识,对于一些基本的数学概念和运算规则有了初步的了解。

但是,学生在解决实际问题时,往往还存在一定的困难,对于如何将数学知识应用到实际问题中,还需要进一步的引导和培养。

因此,在教学过程中,我们需要关注学生的学习情况,针对不同学生的特点和需求,进行有针对性的教学。

三. 说教学目标根据教材内容和学情分析,本节课的教学目标如下:1.让学生理解和掌握数学知识在实际问题中的应用。

2.培养学生的动手能力和解决问题的能力。

3.提高学生的学习兴趣和积极性。

四. 说教学重难点本节课的重难点是如何引导学生将数学知识应用到实际问题中,以及如何培养学生的动手能力和解决问题的能力。

五. 说教学方法与手段为了达到本节课的教学目标,我采用了以下教学方法和手段:1.案例教学法:通过分析教材中的案例,让学生理解和掌握数学知识在实际问题中的应用。

2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的动手能力和解决问题的能力。

3.小组合作学习:通过小组合作,让学生互相交流和讨论,提高学生的学习兴趣和积极性。

六. 说教学过程1.导入:通过引入一些实际问题,激发学生的学习兴趣,引发学生的思考。

2.案例分析:分析教材中的案例,让学生理解和掌握数学知识在实际问题中的应用。

3.问题解决:提出问题,引导学生思考和探索,培养学生的动手能力和解决问题的能力。

4.小组合作:让学生进行小组合作,互相交流和讨论,提高学生的学习兴趣和积极性。

2022年华师大版《 实践与探索2》公开课教案

2022年华师大版《 实践与探索2》公开课教案

26.3 实践与探索〔2〕教学目标【知识与能力】图象与x轴交点的个数与一元二次方程的根的个数之间的关系.2.理解二次函数与一元二次方程、一元二次不等式之间的联系,会利用二次函数的图象求一元二次方程的近似解、一元二次不等式的解集。

【过程与方法】能够从函数表达式的角度分析二次函数与一元二次方程和一元二次不等式之间的关系,同时也能够从函数图象的角度分析函数与方程、不等式之间的关系。

【情感态度价值观】通过观察二次函数的图象与x轴的交点个数,讨论一元二次方程根的情况,进一步体会数形结合思想。

教学重难点【教学重点】利用二次函数图象求一元二次方程的近似解及一元二次不等式的解集。

【教学难点】理解二次函数的图象与x轴的交点个数与一元二次方程的根的个数之间的关系,渗透数形结合思想是教学的难点。

课前准备多媒体教学过程图26-3-55-3-55所示,以40 m/s的速度将小球沿与∴抛物线的函数表达式为y=x2-4x+3.【拓展提升】例3 如图26-3-60,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.图26-3-60(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.解:(1)将点A(1,0)的坐标代入y=(x-2)2+m得(1-2)2+m=0,解得m=-1,所以二次函数的表达式为y=(x-2)2-1=x2-4xx=0时,y=4-1=3,所以点C的坐标为(0,3),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=2,所以点B的坐标为(4,3),将A(1,0),B(4,3)的坐标代入y=kx+b,所以一次函数表达式为y=x-1.(2)当kx+b≥(x-2)2+m时,1≤x≤4.师生活动:学生自主解答后,教师进行讲解,学生再次审题,完成对题目的重新整理.【达标测评】1.4 解直角三角形教学重点归纳直角三角形的边、角之间的关系,利用这些关系式解直角三角形,并利用解直角三角形的有关知识解决实际问题.教学难点利用解直角三角形的有关知识解决实际问题.教学用具执教者教学内容共案个案一、新课引入:1、什么是解直角三角形?2、在Rt△ABC中,除直角C外的五个元素间具有什么关系?请学生答复以上二小题,因为本节课主要是运用以上关系解直角三角形,从而解决一些实际问题.学生答复后,板书:(1)三边关系:a2+b2=c2;(2)锐角之间关系:∠A+∠B=90°;(3)边角之间关系第二大节“解直角三角形〞,安排在锐角三角函数之后,通过计算题、证明题、应用题和实习作业等多种形式,对概念进行加深认识,起到稳固作用.同时,解直角三角形的知识可以广泛地应用于测量、工程技术和物理之中,主要是用来计算距离、高度和角度.其中的应用题,内容比较广泛,具有综合技术教育价值.解决这类问题需要进行运算,但三角的运算与逻辑思维是密不可分的;为了便于运算,常常先选择公式并进行变换.同时,解直角三角形的应用题和实习作业也有利于培养学生空间想象能力,要求学生通过观察,或结合文字画出图形,总之,解直角三角形的应用题和实习作业可以培养学生的三大数学能力和分析问题、解决问题的能力.解直角三角形还有利于数形结合.通过这一章学习,学生才能对直角三角形概念有较完整认识,才能把直角三角形的判定、性质、作图与直角三角形中边、角之间的数量关系统一起来.另外,有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章知识加以处理.基于以上分析,本节课复习解直角三角形知识主要通过几个典型例题的教学,到达教学目标.二、新课讲解:1、首先出示,通过一道简单的解直角三角形问题,为以下实际应用奠定根底.根据以下条件,解直角三角形.教师分别请两名同学上黑板板演,同时巡视检查其余同学解题过程,对有问题的同学可单独指导.待全体学生完成之后,大家共同检查黑板上两题的解题过程,通过学生互评,到达查漏补缺的目的,使全体学生掌握解直角三角形.如果班级学生对解直角三角形掌握较好,这两个题还可以这样处理:请二名同学板演的同时,把下面同学分为两局部,一局部做①,另一局部做②,然后学生互评.这样可以节约时间.2、出例如题2.在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB.此题一方面可引导学生复习仰角、俯角的概念,同时,可引导学生加以分析:如图6-39,根据题意可得AB⊥BC,得∠ABC=90°,△ABD和△ABC都是直角三角形,且C、D、B在同一直线上,由∠ADB=45°,AB=BD,CD=20米,可得BC=20+AB,在Rt△ABC中,∠C=30°,可得AB与BC之间的关系,因此山高AB可求.学生在分析此题时遇到的困难是:在Rt△ABC中和Rt△ABD中,都找不出一条边,而题目中的条件CD=20米又不会用.教学时,在这里教师应着重引②,通过①,②两式,可得AB长.解:根据题意,得AB⊥BC,∴∠ABC=Rt△.∵∠ADB=45°,∴AB=BD,∴BC=CD+BD=20+AB.在Rt△ABC中,∠C=30°,通过此题可引导学生总结:有些直角三角形的条件中没有一条边,但二边的关系,结合另一条件,运用方程思想,也可以解决.3.例题3(出示投影片)如图6-40,水库的横截面是梯形,坝顶宽6m,坝高23m,斜坡AB坝底宽AD(精确到0.1m).坡度问题是解直角三角形的一个重要应用,学生在解坡度问题时常遇到以下问题:1.对坡度概念不理解导致不会运用题目中的坡度条件;2.坡度问题计算量较大,学生易出错;3.常需添加辅助线将图形分割成直角三角形和矩形.因此,设计此题要求教师在教学中着重针对以上三点来考查学生的掌握情况.首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,那么BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

新版华东师大版八年级数学下册《17.5实践与探索第1课时》教学设计

新版华东师大版八年级数学下册《17.5实践与探索第1课时》教学设计

新版华东师大版八年级数学下册《17.5实践与探索第1课时》教学设计一. 教材分析华东师大版八年级数学下册《17.5实践与探索第1课时》主要介绍了二次函数的应用。

这部分内容是在学生已经掌握了二次函数的性质和图象的基础上进行学习的,旨在让学生能够运用二次函数解决实际问题。

本节课的内容对于学生来说较为抽象,需要通过实例来帮助学生理解和掌握。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于二次函数的概念和性质有一定的了解。

但是,对于如何将二次函数应用到实际问题中,可能还存在一定的困难。

因此,在教学过程中,需要通过实例来引导学生进行思考,从而更好地理解和掌握二次函数的应用。

三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的应用,学会如何建立二次函数的模型,并能够求解。

2.过程与方法:通过实例分析,培养学生解决实际问题的能力,提高学生的数学素养。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。

四. 教学重难点1.重点:二次函数在实际问题中的应用,建立二次函数模型。

2.难点:如何将实际问题转化为二次函数模型,求解二次函数模型。

五. 教学方法采用实例教学法,引导学生通过观察、分析、归纳、推理等方法,自主探索二次函数在实际问题中的应用。

同时,注重师生互动,鼓励学生提出问题,培养学生的思考能力和解决问题的能力。

六. 教学准备1.教师准备:准备相关的实例,制作PPT。

2.学生准备:预习相关知识点,准备好笔记本。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的应用。

例如,一个长方形的长和宽分别为3米和2米,求长方形的面积。

让学生尝试用数学方法来解决这个问题。

2.呈现(10分钟)呈现这个实际问题,引导学生思考如何用数学方法来解决这个问题。

通过引导学生思考,引出二次函数的概念和性质。

3.操练(10分钟)让学生通过独立思考或者小组讨论的方式,尝试解决这个实际问题。

二次函数的探究的教案

二次函数的探究的教案

二次函数的探究的教案【篇一:二次函数教案 (第一课时)】二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。

2.教学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。

3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。

4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。

三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。

2.教学难点根据函数解析式的结构特征,归纳出二次函数的概念。

四、教学流程安排五、教学过程设计课题:27.3二次函数实践与探索(3)陈常碧一、概述本节是九年级下册第27章第3节,二次函数与一元二次方程及一元二次不等式的联系,需引起同学们的关注和重视。

通过有关二次函数的图像与x轴的交点探索和研究,让学生体验一般到特殊的数学思想。

并学会观察、猜想、归纳,重在培养学生探索精神和自主学习的意识。

二、教学目标1、知识与能力目标:体会二次函数与方程之间的联系,会通过二次函数的图像求得一元二次方程的解。

初步理解二次函数与一元二次不等式之间的联系2、过程与方法目标:经历和体验用二次函数图像与一元二次方程解的关系,进一步体会二次函数与一元二次方程的关系。

培养学生的数形结合的能力。

3、情感态度与价值观了解数学理论的实用价值,提高学生对数学的好奇心与求知欲;增强学数学的自信心,体现发展性教学评价。

三、学习者基本特征分析学生已经学习过了二次函数的图像及其性质并会用待定系数法求二次函数的关系式。

华师版九年级数学下册《26 . 3 实践与探索(3)》教学设计

华师版九年级数学下册《26 . 3  实践与探索(3)》教学设计

26 . 3 实践与探索(3)教学目标:1、会利用二次函数的图象求一元二次方程(组)的近似解.2、会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.教学重点:确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题. 教学难点:确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题. 本节知识点(1)会求出二次函数c bx ax y ++=2与坐标轴的交点坐标;(2)了解二次函数c bx ax y ++=2与一元二次方程、一元二次不等式之间的关系. 教学过程给出三个二次函数:(1)232+-=x x y ;(2)12+-=x x y ;(3)122+-=x x y . 它们的图象分别为观察图象与x 轴的交点个数,分别是个、个、个.你知道图象与x 轴的交点个数与什么有关吗? 另外,能否利用二次函数c bx ax y ++=2的图象寻找方程)0(02≠=++a c bx ax ,不等式)0(02≠>++a c bx ax 或)0(02≠<++a c bx ax 的解?实践与探索例1.画出函数322--=x x y 的图象,根据图象回答下列问题.(1)图象与x 轴、y 轴的交点坐标分别是什么?(2)当x 取何值时,y=0?这里x 的取值与方程0322=--x x 有什么关系?(3)x 取什么值时,函数值y 大于0?x 取什么值时,函数值y 小于0?解 图象如图26.3.4,(1)图象与x 轴的交点坐标为(-1,0)、(3,0),与y 轴的交点坐标为(0,-3).(2)当x= -1或x=3时,y=0,x 的取值与方程0322=--x x 的解相同.(3)当x <-1或x >3时,y >0;当 -1<x <3时,y <0.回顾与反思 (1)二次函数图象与x 轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决.(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x 轴的交点,再根据交点的坐标写出不等式的解集.例2.(1)已知抛物线324)1(22-+++=k kx x k y ,当k=时,抛物线与x 轴相交于两点.(2)已知二次函数232)1(2-++-=a ax x a y 的图象的最低点在x 轴上,则a=.(3)已知抛物线23)1(2----=k x k x y 与x 轴交于两点A (α,0),B (β,0),且1722=+βα,则k 的值是.分析 (1)抛物线324)1(22-+++=k kx x k y 与x 轴相交于两点,相当于方程0324)1(22=-+++k kx x k 有两个不相等的实数根,即根的判别式⊿>0.(2)二次函数232)1(2-++-=a ax x a y 的图象的最低点在x 轴上,也就是说,方程0232)1(2=-++-a ax x a 的两个实数根相等,即⊿=0.(3)已知抛物线23)1(2----=k x k x y 与x 轴交于两点A (α,0),B (β,0),即α、β是方程023)1(2=----k x k x 的两个根,又由于1722=+βα,以及αββαβα2)(222-+=+,利用根与系数的关系即可得到结果.请同学们完成填空.回顾与反思 二次函数的图象与x 轴有无交点的问题,可以转化为一元二次方程有无实数根的问题,这可从计算根的判别式入手.例3.已知二次函数1)2(2++-+-=m x m x y ,(1)试说明:不论m 取任何实数,这个二次函数的图象必与x 轴有两个交点;(2)m 为何值时,这两个交点都在原点的左侧?(3)m 为何值时,这个二次函数的图象的对称轴是y 轴?分析 (1)要说明不论m 取任何实数,二次函数1)2(2++-+-=m x m x y 的图象必与x 轴有两个交点,只要说明方程01)2(2=++-+-m x m x 有两个不相等的实数根,即⊿>0.(2)两个交点都在原点的左侧,也就是方程01)2(2=++-+-m x m x 有两个负实数根,因而必须符合条件①⊿>0,②021<+x x ,③021>⋅x x .综合以上条件,可解得所求m 的值的范围.(3)二次函数的图象的对称轴是y 轴,说明方程01)2(2=++-+-m x m x 有一正一负两个实数根,且两根互为相反数,因而必须符合条件①⊿>0,②021=+x x .解 (1)⊿=8)1()1(4)2(22+=+⨯-⨯--m m m ,由02≥m ,得082>+m ,所以⊿>0,即不论m 取任何实数,这个二次函数的图象必与x 轴有两个交点.(2)由0221<-=+m x x ,得2<m ;由0121>--=⋅m x x ,得1-<m ;又由(1),⊿>0,因此,当1-<m 时,两个交点都在原点的左侧.(3)由0221=-=+m x x ,得m=2,因此,当m=2时,二次函数的图象的对称轴是y 轴. 探索 第(3)题中二次函数的图象的对称轴是y 轴,即二次函数1)2(2++-+-=m x m x y 是由函数2x y -=上下平移所得,那么,对一次项系数有何要求呢?请你根据它入手解本题.课堂练习1.已知二次函数432--=x x y 的图象如图,则方程0432=--x x 的解是,不等式0432>--x x 的解集是,不等式0432<--x x 的解集是.2.抛物线5232--=x x y 与y 轴的交点坐标为,与x 轴的交点坐标为.3.已知方程05322=--x x 的两根是25,-1,则二次函数5322--=x x y 与x 轴的两个交点间的距离为.4.函数132++-=x ax ax y 的图象与x 轴有且只有一个交点,求a 的值及交点坐标. 课外作业A 组1.已知二次函数62-+=x x y ,画出此抛物线的图象,根据图象回答下列问题.(1)方程062=-+x x 的解是什么?(2)x 取什么值时,函数值大于0?x 取什么值时,函数值小于0?2.如果二次函数c x x y +-=62的顶点在x 轴上,求c 的值.3.不论自变量x 取什么数,二次函数m x x y +-=622的函数值总是正值,求m 的取值范围.4.已知二次函数6422--=x x y ,求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图;(2)以此函数图象与x 轴、y 轴的交点为顶点的三角形面积;(3)x 为何值时,y >0.5.你能否画出适当的函数图象,求方程22+-=x x 的解?B 组6.函数m x mx y 22-+=(m 是常数)的图象与x 轴的交点有 ( )A .0个B .1个C .2个D .1个或2个7.已知二次函数22-++=a ax x y .(1)说明抛物线22-++=a ax x y 与x 轴有两个不同交点;(2)求这两个交点间的距离(关于a 的表达式);(3)a 取何值时,两点间的距离最小?课堂小结:教学反思:。

《二次函数》教学反思

《二次函数》教学反思

前天,教学了《二次函数》的第一课时。

课堂上学生活跃的思维、积极的发言、大家争抢着回答问题说明学生的学习是有效的。

从中,我感到了教学的魅力,更感到这样的魅力是需要教师尽心准备、创造的。

设计意图:这节课是在学生学习了一次函数、一元二次方程之后的二次函数的第一节课。

从课本的体系来看,这节课的知识目标,学生在原有知识的储备基础上是很容易迁移和接受的。

那么这节课还有什么好设计的呢?……重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我意识到这节课的教学重点是“让学生经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”,有了这个认识,一切就变得简单了!设计流程:整节课的教学流程概括如下:学生感兴趣的简单实际问题一一引出学过的一次函数一一复习学过的所有函数形式一一设问:有没有新的函数形式呢?一一探索新的问题――形成关系式――是函数吗?――是学过的函数吗?――探索出新的函数形式――概括新函数形式的特点――将特点公式化――形成二次函数定义――练习巩固定义特点一一返回实际问题讨论实际问题对自变量的限制一一提出新的问题,深入讨论――课堂的小结。

这样一气呵成的设计,感觉上无拖沓生硬之处,最关键的是我认为这符合学生的基本认知规律,让学生亲自经历探索和概括的过程,从而形成新知识。

设计说明:1、对于实际问题的选择,我将4个问题整合于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得很有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

2、对于练习的设计,尽量做到每题针对一个问题,并进行及时小结,也遵循了从开放到封闭的原则,达到了良好的效果。

3、最后讨论题的设计和提出,我设计了一个探索性的问题:假如你是果园的主人,你准备多种几棵?这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。

这个问题是整节课的一个高潮和精华,对学生的解答不论对错,不论全面还是有所偏颇,我都给予肯定。

22.3二次函数与实际问题

22.3二次函数与实际问题
3.通过对”矩形面积”、“销售利润”等实际问题的探究,让学生经历数学建模的基本过程,体会建立数学模型的思想。
4.体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识。
课时重难点
教学重点;
用二次函数做最值来解决实际应用问题。
教学难点:
将实际问题转化为实际问题,并用二次函数性质进行决策。
设计思路
本节课的难点在于学生不能用数学思维去理解生活问题,不能很快根据生活问题找出相关关系式,因此教师在教学过程中,应该很好引导学生去探究实际问题的等量关系,解决问题,并归纳建立数学模型的方法步骤。
在此过程中运用合作探究的方法,生生合作、师生合作以及讲练结合的方法及时运用新知、巩固新知,从而能够较为熟练地掌握待定系数法。
教学方法:
合作探究法、讲练结合法
教学过程
教学环节
教师活动
学生活动
设计意图
温故知新
运用PPT展示图表,学生通过填表进一步熟悉
图像及其性质(开口方向、对称轴、顶点坐标、最值)
2.二次函数 ,y=2x2-8x+5分别有最大值还是最小值?当x为何值时,y的值最小(大)?
学生通过PPT展示的表格分别回顾以上函数的基本性质和特征。(本题较为简单,可让中等生口答。)
通过练习使学生熟练掌握二次函数的图像性质,为新课的学习扫清障碍。
提出问题,导入新课
引入:用总长为60m的篱笆围成矩形场地,矩形的面积S随矩形一边长 的变化而变化,当 是多少时,场地的面积S 最大?
通过情境问题直接导入新课,引发学生思考,同时提示学生本节课的主要内容。
直接提问能激发学生学习兴趣,同பைடு நூலகம்也点明了本节课的主旨,方便学生抓住重点。
新课探究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档