7气相色谱分析

合集下载

色谱分析-第七章 程序升温气相色谱法

色谱分析-第七章 程序升温气相色谱法

第七章程序升温气相色谱法第一节方法概述对于沸点范围宽的多组分混合物可以采用程序升温方法。

即在一个分析周期内,柱温随时间不断升高,在程序开始时,柱温较低,低沸点的组分得到分离,中等沸点的组分移动很慢,高沸点的组分还停留在柱口附近;随着柱温的不断升高,组分由低沸点到高沸点依次得到分离。

一、方法特点恒温时最佳柱温的选择:组分沸点范围不宽时用恒温分析。

填充柱选择组分的平均沸点左右;毛细管柱选择比组分的平均沸点低30℃左右。

如果样品是宽沸程、多组分混合物(例如香料、酒类等),常采用程序升温毛细管柱气相色谱法。

图7-1是恒温分析(IGC)和程序升温(PTGC)的色谱图比较,(a)(b)是恒温分析,(a)柱温较低,恒温45℃时低沸点的组分得到分离,高沸点组分的峰出不来。

(b)柱温较高,恒温120℃时,低沸点的组分分离不好。

(C)采用了程序升温方法(30-180)℃,所有组分得到很好分离。

图7-1恒温分析和程序升温比较二、升温方式升温方式有单阶程序升温(恒温--线性--恒温)和多阶程序升温。

如图7-2所示,单阶程序升温在低温时分离低沸点的组分,再升温,高温时分离高沸点的组分。

图7-2单阶程序升温和多阶程序升温三、程序升温与恒温气相色谱法的比较:表7-1和图7-3、图7-4是恒温分析和程序升温的比较。

参数LGC PTGC样品与沸点范围不十分复杂,沸点范围窄样品复杂,沸点范围宽进样量<1-5μl ≤10μl进样速度对第一个色谱峰,进样时间应小于0.05W h/2(半峰宽)进样方式直接进样分流进样柱上进样直接进样,分流-不分流进样,柱上进样,多维柱切换进样,顶空和裂解器进样载气纯度无严格要求需高纯载气峰容量≤10个组分>10个组分固定相选择可广泛选用固定相只能选用耐高温、低流失固定相对色谱峰的检测对保留时间长的组分检测较不灵敏随温度速率增加,可改进对保留时间长的高沸点组分的检测灵敏度载气流速控制方式恒压恒流(使用稳流阀) 分析速度慢快分析结果重现性好重现性差图7-3正构烷烃的恒温分析和程序升温的比较图7-4 醇类的恒温分析和程序升温的比较第二节基本原理一、保留温度在程序升温中,组分极大点浓度流出色谱柱时的柱温叫保留温度,其重要性相当于恒温中的t R,V R。

气相色谱质谱分析样品制备方法和技术

气相色谱质谱分析样品制备方法和技术

气相色谱质谱分析样品制备方法和技术气相色谱-质谱(GC-MS)是一种常用的分析技术,广泛应用于化学、生物学、环境科学等领域。

它通过将样品中的化合物分离,然后对这些化合物进行质谱分析,以确定它们的化学结构。

以下将详细介绍气相色谱-质谱分析样品的制备方法和技术。

一、样品制备在进行气相色谱-质谱分析之前,需要对样品进行适当的制备。

通常包括以下步骤:1.样品收集:根据分析的需要,选择合适的容器和收集方法,确保样品的代表性和无污染。

2.样品处理:根据样品的性质和目标化合物,选择适当的处理方法,如萃取、浓缩、净化等,以提取和分析目标化合物。

3.样品衍生化:对于一些不易挥发或不易电离的化合物,需要进行衍生化处理,以提高其挥发性和电离能力。

4.样品注入:将处理后的样品注入到气相色谱-质谱系统中进行分析。

二、色谱条件优化气相色谱是GC-MS分析中的关键部分,需要通过优化色谱条件以提高分析的分离效果和灵敏度。

以下是一些常用的优化方法:1.选择合适的色谱柱:根据目标化合物的性质和类型,选择适合的色谱柱,以提高分离效果。

2.调整柱温:通过调整柱温,可以改善样品的分离效果和色谱峰的形状。

3.调整载气流速:通过调整载气流速,可以控制样品的分离速度和灵敏度。

4.调整分流比:通过调整分流比,可以控制样品的进样量,从而影响色谱峰的形状和灵敏度。

三、质谱条件优化质谱是GC-MS分析中的另一个关键部分,需要通过优化质谱条件以提高分析的准确性和灵敏度。

以下是一些常用的优化方法:1.选择合适的离子源:根据目标化合物的性质和类型,选择适合的离子源,以提高电离效率和灵敏度。

2.调整离子源温度:通过调整离子源温度,可以控制样品的电离效率和质谱峰的形状。

3.调整传输线温度:通过调整传输线温度,可以改善样品的离解效果和质谱峰的形状。

4.调整碰撞能量:通过调整碰撞能量,可以控制样品的离解方式和灵敏度。

5.调整扫描方式:通过调整扫描方式,可以控制质谱图的分辨率和质量范围。

气相色谱实验报告(一)2024

气相色谱实验报告(一)2024

气相色谱实验报告(一)引言概述:本实验旨在通过气相色谱技术对样品中的化合物进行分离和定量分析。

气相色谱是一种重要的分离技术,基于化合物在气相和固定相之间的相互作用,通过样品成分的不同挥发性和化学性质来实现分离和定量分析。

本报告将从样品制备、色谱柱选取、进样方式、色谱条件的选择以及结果分析五个方面进行详细讨论。

正文:1. 样品制备1.1 确定样品种类和分析目的1.2 提取样品中的化合物1.3 样品的预处理:如溶解、稀释等1.4 确保样品的稳定性和一致性2. 色谱柱选取2.1 确定需要分离的化合物性质2.2 选择合适的固定相2.3 确定色谱柱的尺寸和长度2.4 检查色谱柱的状态和性能3. 进样方式3.1 确定进样方式:如气相进样、液相进样等3.2 确定进样量和进样方式3.3 优化进样条件以提高分离效果3.4 考虑进样的精确性和重复性4. 色谱条件的选择4.1 确定色谱柱的温度范围4.2 选择适当的载气和流速4.3 确定检测器的类型和工作条件4.4 优化色谱条件以达到最佳分离效果5. 结果分析5.1 通过色谱图进行定性分析5.2 通过峰面积计算化合物的含量5.3 进行峰识别和峰数据库的比对5.4 分析化合物的峰形和保留时间的变化5.5 根据结果得出结论并提出进一步的改进措施总结:通过本次实验,我们成功地利用气相色谱技术对样品进行了分离和定量分析。

本文从样品制备、色谱柱选取、进样方式、色谱条件的选择以及结果分析五个方面探讨了气相色谱实验的关键要点。

在今后的实验中,我们将进一步改进实验条件和方法,提高分离效果和分析的准确性。

色谱课讲义(7)-气相色谱定性与定量

色谱课讲义(7)-气相色谱定性与定量
(l)对称形峰面积的测量——峰高乘半峰宽 法 理论上可以证明,对称峰的面积 A=1.065×h×W1/2
气相色谱定量
(2)不对称峰面积的测量一峰高乘平均峰 宽法 对于不对称峰的测量如仍用峰高乘 半峰宽,误差就较大,因此采用峰高乘 平均峰宽法。 A=1/2h(W0.15+W0.85) 式中W0.15和 W0.85分别为峰高0.15倍和 0.85倍处的峰宽。
气相色谱定性
lg tr' A1n C1
式中A1和C1是常数,n为分子中的碳原子数 (n≥3)。该式说明,如果知道某一同系 物中两个或更多组分的调整保留值,则 可根据上式推知同系物中其它组分的调 整保留值。
气相色谱定性
沸点规律 同族具有相同碳数碳链的异构体 化合物,其调整保留时间的对数和它们
气相色谱定量
相对定量校正因子 由于物质量wi不易准确测量,要准确
测定定量校正因子fi′不易达到。在实际工 作中,以相对定量校正因子fi代替定量校 正因子fi′。
相对定量校正因子fi定义为:样品中各 组分的定量校正因子与标准物的定量校 正因子之比。用下式表示
气相色谱定量
fi (m)
fi' (m)
气相色谱定量
气相色谱定量
气相色谱定量分析的基础是根据检测器 对溶质产生的响应信号与溶质的量成正 比的原理,通过色谱图上的面积或峰高, 计算样品中溶质的含量。
气相色谱定量
峰面积测量方法 峰面积是色谱图提供的基本定量数据, 峰面积测量的准确与否直接影响定量结 果。对于不同峰形的
100[n
lg tr' (x) lg tr' (Cn ) ]
lg
t
' r
(Cn1
)

气相色谱法 第六、七章(94)

气相色谱法 第六、七章(94)

5) 数据处理系统
化学
将检测器输出的模拟信号随时间的变化曲线, 即色谱图绘制。 记录仪 自动积分仪 色谱工作站
6) 数据处理系统
柱箱
汽化室
检测器
分离效能
灵敏度
稳定性
(二) 微量注射器的使用
化学
1.进样量
进样量过大
峰形不对称 峰形变宽 分离度变小 保留值发生变化 峰高和峰面积与进样量 不呈线性关系
Title 检测限
响应时间
响应时间越小,检测性能越好。
(4)影响氢火焰检测器灵敏度的因素
化学
①各种气体流速和配比:载气流速影响检测限,
一般载气流速以低些为妥。 痕量分析:氮氢比在1:1响应值最大 常量分析:增大氢气流速,氮氢比降至 0.43~0.72范围内。
空气作为助燃气,流速过小,供氧量不足,响应值低。流 速过大,火焰不稳,易出现噪声峰。300-500ml /min
第七章 气相色谱法
化学
第七章
气相色谱法
化学
7.1 色谱法及其分类、特点 7.2 气相色谱分析流程 7.3 色谱图及相关术语 7.4 气固色谱及分离原理 7.5 氢火焰离子化检测器 7.6 气相色谱仪的结构与使用 7.7 气液色谱及分离原理 7.8 踏板理论及柱效能指标 7.9 速率理论 7.10 热导池检测器 7.11 色谱操作条件的选择
3) 分离系统
化学
分离系统
柱箱 精密恒温箱 参数:柱箱尺寸 和柱箱控温参数 色谱柱(核心) 组成:柱管和固定相 分类:填充柱和毛细 管柱
4) 检测系统
化学
作用:将分离后样品组分的信息转变为易于测量的电信号, 然后对被分离物质的组成和含量进行鉴定和测量。
热导池检测器

气相色谱

气相色谱

在一定温度下,组分在两相之间分配达到平衡时 的浓度(g· mL-1)比称为分配系数,以K表示。 待测组分在固定相和流动相之间发生的吸附,脱附 或溶解,挥发的过程叫做分配过程。
组分在固定相中的浓度 组分在流动相中浓度 Cs K Cm K
(分配系数是色谱分析的依据)
分配系数K是由组分及固定液的热力学性质决定的, 随柱温,柱压变化,与柱中气相、液相的体积无关。 当K=1时,组分在固定相和流动相中浓度相等; 当K>1时,组分在固定相中的浓度大于在流动相中的浓 度; 当K<1时,组分在固定相中的浓度小于在流动相中的浓 度。
(2-11)
1 1 m 1 k 1 S mM
组分和流动相通过长度为L的色谱柱所需时间分别
L tR us
(2 13)
tM
L u
(2 14 )
推导:t R t M (1 k )
' tR tM tR k tM tM
(2 15) (2 16 )
k可由实验测得。
死时间(dead time) tm 指不被固定相吸附或溶解的气体(如空气、甲烷)从 进样开始到柱后出现浓度最大值时所需时间。 保留时间(retention time)tR 指被测样品从进样开始到柱后出现浓度最大值时所需的时 间O’B。 调整保留时间(adjusted retention time)tR’ tR’=tR-tm 某组分由于溶解或吸附与固定相,比不溶解或不被吸 附的组分在色谱柱中多滞留的时间。
图12.2 色谱流出曲线
(1)基线(base line)
当色谱柱中没有组分进入检测器时,在实验操 作条件下,反应检测器系统噪声随时间变化的线称 为基线。 (2)保留值(retention value)

实验七 毛细管气相色谱法测定苯系物

实验七 毛细管气相色谱法测定苯系物

实验七 毛细管气相色谱法测定苯系物一、目的1、学习气相色谱法的基本知识。

2、了解气相色谱仪的基本结构、分析流程,初步掌握气相色谱仪的使用。

3、练习用微量注射器手动进样技术,掌握气相色谱保留值定性及归一化法定量的方法。

二、原理苯系物系指苯、甲苯、乙苯、二甲苯(包括对位、间位和邻位异构体)乃至异丙苯、三甲苯等,可用气相色谱法进行分离分析。

本实验苯系物组成为苯、甲苯、乙苯、间二甲苯。

气相色谱法是以气体(载气)为流动相的色谱分析法,当载气携带气化后的组分进入色谱柱,混合物中不同组分与柱中固定相作用力不同,在柱中移动速度不同而分离,分离后的组分先后流出色谱柱进入检测器,产生的信号记录即为色谱图。

根据色谱图中各峰的位置可定性,根据峰面积或峰高可定量。

毛细管气相色谱法是用毛细管柱作为气相色谱柱的一种高效、高速、高灵敏度的分离分析方法,毛细管柱的应用大大提高了气相色谱法对复杂物质的分离能力。

由于毛细管柱的柱容量很小,常采用分流方式将极少量的试样引入色谱柱;同时为了减小组分的柱后扩散及提高氢火焰离子化检测器的灵敏度,柱后还增加了尾吹气。

各种物质在一定的色谱条件下有各自确定的保留值,因此保留值(通常用保留时间)可作为一种定性指标。

对于较简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的纯物质在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质。

当相邻两组分的保留值接近,且操作条件不易控制稳定时,可以将纯物质加到试样中,如果某一组分的峰高增加,则表示该组分可能与加入的纯物质相同。

由于同一种检测器对不同物质具有不同的响应值,这样就不能用峰面积来直接计算物质的含量,需要对响应值(峰面积A 或峰高h )进行校正。

为了消除色谱条件对响应值的影响,在色谱定量分析中通常采用相对质量校正因子f i ,即被测物质i 与标准物质s 的绝对质量校正因子之比值: //i i i s i i s s s i sf m A A m f f m A A m '==='g g测定f i 时,先准确称量被测物i 和标准物s 的质量m i 和m s ,混合后在一定条件下进行色谱测定,然后根据相应的峰面积A i 和A s ,按上式计算f i 值。

气相色谱分析的常规步骤

气相色谱分析的常规步骤

气相色谱分析的常规步骤气相色谱(Gas Chromatography,GC)是一种分离和定性分析挥发性有机物的常用技术。

下面是气相色谱分析的常规步骤:1.样品的准备:首先,需要选择适宜的样品进行分析。

样品可以是固体、液体或气体。

必要时,需要进行样品前处理,如样品的溶解、提取、浓缩等步骤。

2.样品的注入:将样品注入气相色谱仪中。

常用的样品注入方式包括进样器注射、固相微萃取等。

在进样器注射过程中,要保证样品量准确、进样均匀。

3.柱的选择:根据需要分离的物质性质选择合适的色谱柱。

气相色谱常用的柱材有硅胶、聚酯、聚醚、聚酰胺等。

柱的内径和长度也需要根据实验要求选择。

4.柱的条件设置:设置适宜的柱温、载气流速和柱头压力等条件。

柱温主要影响样品的分离效果和分析时间,载气流速和柱头压力则会影响分离效果和峰形。

5.柱温程序:通过设置温度程序来控制样品在柱中的保留时间。

常见的温度程序包括等温、线性升温、程序升温等。

6.检测器的选择与设置:根据分析要求选择适宜的检测器。

常见的气相色谱检测器有火焰离子化检测器(FID)、热导检测器(TCD)、质谱检测器(MS)等。

根据检测器的不同,需要进行相应的参数设置。

7. 数据采集和处理:通过连接计算机或数据采集仪器,记录样品的峰面积或峰高等数据。

常见的数据处理软件有Chromeleon、ChemStation 等,可以进行峰面积计算、色谱图解析、峰识别和峰定性等操作。

8.结果的分析和报告:根据实验目的,对分析结果进行解释和分析。

可以使用标准品比对或质谱库查询来进行物质的鉴定。

根据需要,可以撰写实验报告或生成分析结果的报告。

9.仪器的维护与清洁:使用完毕后,及时清洁色谱柱和进样器,保持仪器的干净和良好的性能。

同时,定期进行仪器的校验和维护,确保仪器的准确性和精度。

总结:气相色谱分析常规步骤包括样品准备、样品注入、柱的选择和条件设置、柱温程序设置、检测器选择与设置、数据采集和处理、结果分析和报告、仪器维护与清洁等方面。

气相色谱法

气相色谱法
2)分子筛——合成的硅铝酸的钠盐和钙盐: 吸附 + 分子筛机制
3)高分子多孔微球(GDX,苯乙烯、二乙烯基苯聚合交联而成: 常用于药物分析(乙醇量、水分、残留有机溶剂)定性、定量
有机合成高分子聚合物 吸附 + 分配 + 分子筛机制 4)化学键合相(化学键合多孔微球固定相) 稳定性好,分析极性和非极性组分 吸附 + 分配机制
一、 气相色谱速率理论
Van Deemter 等人在研究气液色谱时提出了速率理论,他在 塔板理论的基础上引入了影响板高的动力学因素,将色谱 过程与柱内组分的分子运动联系起来,认为影响板高的因 素有三,并建立了速率方程(范第姆特方程)。
RC
质量型检测器:测量组分质量的变化
响应值与单位时间进入检测器的组分质量成正比
[FID、FPD、NPD(TID)]
2、按对组分的选择性分
R dw dt
通用型检测器:TCD
专属型检测器:FID(含C、H)、FPD(含S、P )、NPD
(含N、P )、ECD(含电负性基团)
三、检测器的性能指标 噪音(noise;N)
适用范围:溶剂、一般气体和惰性气体,工业流程中气体, 药物中微量水分
3)使用注意事项 A、热导检测器为浓度型检测器,当进样量一定时,峰面积 与载气流速成反比,而峰高受流速影响较小。因此,用A定 量时,需严格保持流速稳定。 B、为避免热丝烧断,没有通载气时不能加桥电流,关仪器 时应先切断桥电流再关载气。 C、在热导池体温度与载气流速等实验条件恒定时,检测器 的灵敏度取决于载气与组分的热导率之差。在用TCD 检测 器时,用氮气为载气,灵敏度低、易出倒峰 一般选氢气为载气。 见 p255 表12-1 D、检测器温度不得低于柱温,通常检测器温度高于柱温 2050C。

气相色谱流程图及一般分析步骤

气相色谱流程图及一般分析步骤

气相色谱
流程图:
气相色谱分析典型步骤:
1.不是经常使用的仪器使用前检查,柱子是否合适,安装?进样隔膜是否老化?载气?恒温箱性能?合适检测器?
2.开始通气,调整。

高压气瓶开(减压阀)→~15psi(流速:填充柱2-5mL/min,毛细管柱0.5mL/min现在一般仪器可自行控制),检漏;
3.柱温设定,初始温度恒温;
4.注射器及检测器温度设定,一般比柱温高10~25℃, 100℃以下使用时注意水分;
5.增加通过柱的载气流量,3mm i.d.填充柱25~30 mL/min,检测器之出口处用皂膜流量计测流速;
6. 打开检测器,调整相关参数
TCD 电流100~200mA,稳定后开记录仪
FID 注意H2,空气量10倍H2 ,点火,稳定;
7. 进样分析,注意进样量,挥发性溶剂使用
TCO 10µ L
FID 1~5µ L
毛细管GC加分流器<1µ L
8. 峰记录与处理,微机化后自动获得积分面积、高、保留时间等数据。

7.仪器分析 气相色谱法

7.仪器分析 气相色谱法

2013-8-12
气固色谱固定相
(3)分子筛
碱及碱土金属的硅铝酸盐(沸石),多孔性。如3A、4A、
5A分子筛等(孔径:埃)。常用5A(常温下分离O2与N2)。
(4)高分子多孔微球(GDX系列) 新型的有机合成固定相(苯乙烯与二乙烯苯共聚)。 型号:GDX-01、-02、-03等。适用于水、气体及低级醇的 分析。
2013-8-12
三、电子捕获检测器
electron capture detector,ECD 高选择性检测器, 仅对含有卤素、磷、硫、氧 等电负性元素的化合物有很高的灵敏度,对大多数 烃类没有响应,检测下限10-14 g /mL。
较多应用于农副产品、食品及环境中农药残留量的测定。
2013-8-12
对含氮、磷化合物有高的选择性和灵敏度。
2013-8-12
六、检测器分类 classification of detector
浓度型检测器:测量的是载气中通过检测器组分
浓度瞬间的变化,检测信号值与组分的浓度成正
比。比如热导检测器,电子捕获检测器;
质量型检测器:测量的是载气中某组分进入检测 器的速度变化,即检测信号值与单位时间内进入 检测器组分的质量成正比。比如氢火焰离子化检 测器,火焰光度检测器。
2013-8-12
第八章 气相色谱法
gas chromatography (GC)
一、热导检测器
thermal conductivity detector,TCD
二、氢火焰离子化检测器 flame ionization detector, FID 三、电子捕获检测器 electron capture detector, ECD 四、火焰光度检测器 flame photometric dector,FPD 五、氮磷检测器 Nitrogen-Phosphorus dector,NPD 六、检测器分类 Classification of detector

仪器分析-气相色谱分析

仪器分析-气相色谱分析

• 3、保留值:是试样各组分在
色谱柱中保留行为的量度,它 反映组分与固定相间作用力大 小,通常用保留时间和保留体 积表示。 死时间tM:不被固定相吸附或 溶解的组分(如空气、甲烷) 从进样到出现其色谱蜂最大值 所需的时间,图中O'A'所示。 保留时间tR :指某组分通过 色谱柱所需时间,即试样从进 样到出现峰极大值时的时间, 图中O‘B所示。 调整保留时间tR’ 死时间后的 保留时间,它是组分在固定相 中的滞留时间。图中A’B所示, 即 tR’ = tR - tM
通常以有效塔板数neff 和有效塔板高度Heff 表示:
neff H eff
t t 2 5.5 4( ) 1 6( )2 W1 / 2 Wb L neff
' R
' R
2-2-3 速率理论
• 塔板理论存在的假定有缺陷,不能解释塔板高度H
受那些因素影响. 1956年,荷兰化学工程师van Deemter提出了色谱过程动力学速率理论。 • van Deemter方程:H=A+B/u+C*u u 为流动相线速度; A,B,C 为常数. 其中: A — 涡流扩散系数; B — 分子扩散系数; C — 传质阻力系数(包括液相和固相传质阻力系 数)
• 1、气路系统
• 载气:H2,N2,He,Ar等 • 净化器:提高载气纯度 • 稳压恒流装置,气体流速控制和测量。
• 2、进样系统
• 进样器: 微量注射器、六通阀 • 气化室:瞬间气化,死体积尽可能小
• 3、分离系统
• 色谱柱有填充柱和毛细管柱两大类
2-1-3 组成
• • • • •
4、温控系统 色谱柱、气化室、检测室三处温度控制 气化室温度应使试样瞬间气化但又不分解; 检测器除氢火焰外都对温度敏感; 柱温的变化影响柱的选择性和柱效,因此柱室的 温度控制要求精确,温控反复根据需要可以恒温, 也可以程序升温。

气相色谱分析实验报告

气相色谱分析实验报告

气相色谱分析实验报告一、实验目的本实验旨在通过气相色谱分析的方法,对样品中的化合物进行定性和定量分析,以了解样品的组成和含量。

二、实验原理气相色谱分析是利用气相色谱仪对样品进行分离和检测的一种方法。

其基本原理是将待分析的气体或挥发性液体样品注入气相色谱仪中,经过色谱柱的分离后,再通过检测器检测出分离出的各个组分,并根据峰面积或峰高进行定性和定量分析。

三、实验步骤 1. 样品制备:将待分析的样品按照实验要求进行制备。

通常需要将固体样品粉碎、溶解或提取成液体样品。

2. 色谱柱装填:选择合适的色谱柱,并按照仪器要求进行装填,确保色谱柱的稳定性和分离效果。

3. 仪器条件设置:根据实验要求,设置适当的仪器条件,如进样方式、进样量、柱温、载气流速等。

4. 样品进样:将样品通过进样器引入气相色谱仪中,控制进样量和进样速度,保证分析的准确性。

5. 色谱条件优化:根据实验需要,不断优化色谱条件,如改变柱温、流速或程序升温等,以获得更好的分离效果。

6. 检测器设置:根据待分析的化合物特性,选择合适的检测器,并根据仪器要求进行设置和校准。

7. 数据分析:通过检测器输出的信号,得到不同化合物的峰面积或峰高数据,利用相关的标准曲线或计算方法进行定性和定量分析。

8. 结果记录:将实验得到的数据和结果进行记录和整理,包括样品信息、色谱条件、分析结果等。

四、实验注意事项 1. 在实验过程中,注意安全操作,避免有毒、易燃或腐蚀性物质的接触和泄漏。

2. 样品制备时,避免污染和杂质的引入,确保样品的纯度和一致性。

3. 在设置仪器条件时,注意根据实验要求进行调整,避免条件不合适导致分离不良或检测不准确。

4. 对于不同化合物的分离和检测,需要根据其特性选择合适的色谱柱和检测器,并进行适当的优化。

5. 在记录和整理结果时,要注意准确和完整,确保实验数据的可靠性和可重复性。

五、实验结果与讨论根据实验所得数据,可以得出不同样品中的化合物组成和含量。

郑州大学仪器分析考研辅导7(色谱)

郑州大学仪器分析考研辅导7(色谱)

6.试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?
答: 速率方程中 H =A+B/U+CU A 称为涡流扩散项 , B 为分子扩散项, C 为传质阻力项。
H-u曲线即范弟姆特方程式对于分离条件的选择具有指导意义。它可以 说明 ,填充均匀程度、担体粒度、载气种类、载气流速、柱温、固定相 液膜厚度等对柱效、峰扩张的影响。
该法的主要优点是:简便、准确;操作条件(如进样量,流速等)变化 时,对分析结果影响较小.这种方法常用于常量分析,尤其适合于进样 量很少而其体积不易准确测量的液体样品.
3.当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动 相流速增加,(4)相比减少,是否会引起分配系数的改变?为 什么? 答:(1)柱长缩短不会引起分配系数改变
(2)固定相改变会引起分配系数改变
(3)流动相流速增加不会引起分配系数改变 (4)相比减少不会引起分配系数改变 因为分配系数是热力学函数,只与组分的性质、固定相与流 动相的性质以及温度等有关.
对固定液的要求: (1)挥发性小,在操作条件下有较低的蒸气压,以避免流失 (2)热稳定性好,在操作条件下不发生分解,同时在操作温度下为液体.
(3)对试样各组分有适当的溶解能力,否则,样品容易被载气带走而起不到分 配作用.
(4)具有较高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离 能力. (5)化学稳定性好,不与被测物质起化学反应. 担体的表面积越大,固定液的含量可以越高.
t'R(n-C11)=11.8 (min) 即n-C11烷烃的调整保留时间为11.8 min。
5 有一根气-液色谱柱, 长2m, 当载气流速为15mL/min时, 理论塔 板数n=2450, 而在载气流速为40mL/min时, 理论塔板数n=2200, 若 忽略涡流扩散, 试计算: (1) 最佳流速为多少? (2) 在最佳流速时色谱柱的理论塔板数为多少?

分析化学 气相色谱法

分析化学 气相色谱法

仪器分析
●按化学结构分类: 烷烃, 聚硅氧烷, 聚二醇, 酯和聚酯 烷烃类: 异三十烷(squalane ), 阿皮松(Apiezon)
聚硅氧烷类:
CH3
CH3
CH3
H3C Si O Si O n Si CH3
CH3
R
CH3
R=-CH3, methylsilicone, OV-1, OV-101, SE-30, non-polar R=94% methyl, 5% phenyl, 1% vinyl, SE-54, weakly polar R= 50% methyl, 50% phenyl, OV-17, middle polar R= 50% methyl, 25% cyanopropyl, 25% phenyl, OV-225, polar
仪器分析
◆毛细管柱
第十七章 气相色谱法
仪器分析
●石英材质, 外涂聚酰亚胺保护层.
● 内径 0.10~0.53mm,常用规格0.10、0.25、0.32、 0.53mm.
● 常用类型:涂壁毛细管 (WCOT)
载体涂层毛细管 (SCOT)
交联毛细管(用于GC-MS)
● 载气流速: 1~2 mL/min
红色载体(Chromosorb P,6201等)
非硅藻土类 (玻璃微球,特氟龙)
酸洗(AW)
碱洗 (BW)
减弱载体表面吸附 活性
硅烷化 (DMCS, HMDS)
二、气-固色谱固定第相十七章 气相色谱法
仪器分析
吸附剂: 石墨化炭黑,硅胶,氧化铝,用于分析低分子量醇、烷烃和 醛酮
分子筛: 用于分析 H2,O2, CO, N2, CO2, CH4等
qlgt, Rt环 , R苯己烷或qlgtt, ,R R正 丁己 二烷 烯

气相色谱原理与方法

气相色谱原理与方法

气相色谱原理与方法气相色谱(Gas Chromatography,简称GC)是一种高效、高分辨率的色谱分离技术,广泛应用于各个领域,如化学分析、环境监测、食品安全等。

其原理是将待分析样品的组分在高温下蒸发为气体态,然后通过色谱柱进行分离和定性定量分析。

1.揮发性:气相色谱只适用于揮发性物质的分离,因为需要将样品蒸发成气体态。

样品中较揮发性物质越多,分离效果越好。

2.分隔:样品气体态进入色谱柱后将与固定相发生相互作用,根据样品分子与固定相的相互作用大小不同,使各组分在色谱柱中停留时间不同,从而实现分离。

3.检测:分离后的组分将进入检测器进行检测,常用检测器有火焰离子化检测器(FID)、热导检测器(TCD)、电子捕获检测器(ECD)等。

气相色谱方法:1.样品制备:将待分析的样品加入适当的溶剂中,通过溶解或提取的方式制备成气态样品。

常用的样品制备方法包括固相微萃取(SPME)、液-液萃取、固-液萃取等。

2.色谱柱选择:选择合适的色谱柱是气相色谱分析的关键,常用的色谱柱有非极性柱、极性柱、手性柱等。

根据待分析样品的性质和目标分析物的特点选择合适的色谱柱。

3.色谱条件设置:色谱条件的设置对于气相色谱分析的结果具有重要影响,主要包括载气选择、流速设定、进样方式、柱温设定等。

需要根据实际分析要求进行优化和调整。

4.检测器选择和设置:根据需要测定的目标物质的特点选择合适的检测器。

常用的检测器有FID、TCD、ECD等。

并根据待测样品的性质进行检测器的参数设置。

5.数据分析:将分离和检测得到的色谱峰进行峰面积或峰高的计算,并与标准曲线进行比对,确定目标物质的浓度或定性分析。

气相色谱的优点:1.分离效果好:气相色谱技术可以将复杂的混合物分离成单一组分,提高分析的灵敏度和准确度。

2.分析速度快:气相色谱分析时间较短,可以在数分钟内完成一次分析,适用于高通量的分析需求。

3.灵敏度高:气相色谱联用高灵敏度的检测器,对待测物质有较低的检出限。

气相色谱分析的分离原理

气相色谱分析的分离原理

气相色谱分析的分离原理气相色谱法 (Gas Chromatography,简称GC) 是一种常用的分析技术,它是利用气相载气流动的分离作用,将复杂的混合物分离成各个成分的方法,进而进行定性和定量分析。

本文将详细介绍气相色谱分析的分离原理。

气相色谱法的基本原理气相色谱法的基本原理就是在一个密闭的柱子中,将带有带分离物的载气推入管柱,因为带分离物的气体在管柱中的传输速率不同,所以它们在管柱中的停留时间也不同,会产生一个分离效应,最终被检测器探测到。

气相色谱法是通过控制管柱的温度、气体的流速等参数来控制分离效应的,因此,不同分子在管道中运动速率的差异就成为了分离不同化合物的关键。

通过它,我们可以对包括有机化合物在内的多种物质进行分析,不同的载气具有不同的选择性,因此可根据不同的分离目标选择不同的载气。

分离原理气相色谱法的分离原理主要是通过控制气相运动和进样物质在固定相中的分配,来实现组分间的分离。

固定相是用于分离组分的载体,可涂在管柱壁上或在芯片上充填,是气相色谱分析的核心和难点。

层析作用气相色谱是利用相互作用力的不同使组分分离。

分离组分的原理可归纳为“亲水性”与“疏水性”的相互作用和“吸附作用”。

“亲水性”组分在固定相表面上的亲水作用力使其在固定相表面上的停留时间较长,因此迁移到检测器前的时间较短;相反,“疏水性”物质在固定相表面上的停留时间较短,迁移时间较长。

气相扩散作用气相色谱法的固定相相当于一些微小的颗粒。

流过这些颗粒的气体分子不断地进行扩散和重新沉积,分离出来的化合物也在固定相中进行扩散和沉积,这样就能使碳链较长的有机化合物分离出来。

当量分离原理不同物质定量分离的情况与它们的性质有关。

在气相点上,与固体内作用的物质量成正比;气相降解的渐近速率则与物质粒子大小成反比。

气相色谱法的分辨能力主要由固定相决定,在某个温度下,固定相的稳态相态也随之确定。

这种稳态相态与不同物质之间的一个当量分离原理有关,即物质之间交换的最小单位应当是相等的。

[未执行]实验七气相色谱定性定量测定混合烃含量(归一化法)

[未执行]实验七气相色谱定性定量测定混合烃含量(归一化法)

[未执行]实验七气相色谱定性定量测定混合烃含量(归一化法)一、实验要求1、握气相色谱分析的基本操作和混合烃的分析方法。

2、学习定量校正因子及归一化法定量分析的基本原理和测定方法。

二、基本原理气相色谱的定性鉴定依据是纯净化合物在相同的色谱条件下的保留时间相同。

用气相色谱进行定性鉴定时,必须要有相应的标准样品。

归一化法的优点是计算简便,定量结果与进样量无关,且操作条件不需严格控制,是常用的一种色谱定量方法,当各组分色谱峰宽窄比较悬殊情况下,采用此法较为准确。

该法的缺点是试样中所有组分都必须分离流出,并且得到可测量的信号,其校正因子也均为已知。

为了消除色谱条件对响应值勤的影响,在色谱定量分析中通常采用相对校正因子f’i即被测物质i与标准物质的绝对质量校正因子之比值:f’i=fi/f=(mi/Ai)/(m/A)=miA/mAi把所有出峰组分的含量之和按100%计的定量方法称为归一化法。

使用归一化法定量,要求试样中的所有组分都能得到完全分离,并且在色谱图上都能出峰,计算式为:mi%=fiAi/∑fiAi某100本实验通过测量混合烃试样中各组分的峰面积,利用相对校正因子,用归一化法计算出各组分百分含量。

三、实验仪器1.气相色谱仪日本岛津公司产GC-14B全套2.色谱柱2m某φ3mm不锈钢柱(双柱体系、SE-30作固定液)3.氮气钢瓶(氮气作载气)4.微量进样器(10μL或1μL)四、试剂和样品1.试剂:分析纯苯、甲苯、正己烷2.样品:分析纯苯、甲苯、正己烷混合液五、实验步骤1.实验条件(1)钢瓶输出压强8kg/cm2(2)机前总压300MPa(3)柱前压力100Mpa(4)柱温100℃(5)进样口温度150℃(6)检测器(TCD)温度150℃(7)桥电流50mA(8)进样量1μL2.测定步骤(1)根据测定条件按操作规程将色谱仪调至待测状态。

(2)以苯为标准物质测定甲苯、正己烷、环己烷的相对校正因子。

分别注入体积比为1︰1︰1的苯、甲苯和正己烷1μL,测算相应的峰面积,计算各物质的相对校正因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档