北师大版初三数学圆练习三

合集下载

北师大版九年级下册数学第三章 圆 含答案

北师大版九年级下册数学第三章 圆 含答案

北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、图1是一张圆形纸片,直径AB=4,现将点A折叠至圆心O形成折痕CD,再把点C,D都折叠至圆心O处,最后将图形打开铺平(如图2所示),则弧EF的长为( )A. πB. πC. πD. π2、如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是( )A.1B.C.D.23、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于()A. B. C.4 D.34、如图,点,,在圆上,,则的度数是()A. B. C. D.5、如图.AB是⊙O的直径,E是弧BC的中点,OE交BC于点D,OD=3,DE=2,则AD的长为().A. B.3 C.8 D.26、如图,直线l是⊙O的切线,点A为切点,B为直线l上一点,连接OB交⊙O于点C,D是优弧AC上一点,连接AD,CD.若∠ABO=40°.则∠D的大小是()A.50°B.40°C.35°D.25°7、如图,如果直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长是()A.2B.8C.2D.28、下列说法,正确的是()A.等弦所对的圆周角相等B.弦所对的两条弧的中点的连线垂直平分弦,且过圆心C.切线垂直于圆的半径D.平分弦的直径垂直于弦9、如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为()A.2 cmB.3 cmC.4D.4 cm10、如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是()A. πB.C. πD. π11、如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°12、如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr 2B.C. r 2D. r 213、如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.56°B.28°C.42°D.14°14、如图,若以平行四边形一边AB为直径的圆恰好与边CD相切于点D,则∠C 的度数是()A.40°B.45°C.50°D.60°15、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.10二、填空题(共10题,共计30分)16、如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为________.17、如图,已知过A、C、D三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=57°,那么∠ABC= ________°.18、已知的半径为,圆心到直线/的距离是,则直线/与的位置关系________19、如图,△ABC内接于⊙O,∠OAC=25°,则∠ABC=________.20、如图,四边形ABCD内接于⊙O,若∠B=130°,OA=1,则的长为________.21、如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O 于D,E两点,过点D作直径DF,连结AF,则∠DFA=________.22、如图,AB为⊙O的直径,半径OA的垂直平分线交⊙O于点C,D,P为优弧AC上一点,则∠APC=________°.</p>23、如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=________度.24、如图,四边形内接于⊙,为的延长线上一点.若°,则的大小为________.25、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是________.(把你认为正确结论的序号都填上).三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).28、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,求AP的最小值.29、如图,弦BC经过圆心D,AD⊥BC,AC交⊙D于E,AD交⊙D于M,BE交AD于N.求证:△BND∽△ABD.30、如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、D6、D7、A8、B9、D10、C11、B12、C13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

新版北师大初三数学九年级(下册)第三章圆练习题(分节练习)【含答案】

新版北师大初三数学九年级(下册)第三章圆练习题(分节练习)【含答案】

新版北师大初中数学九(下)第三章圆分节练习第1节圆01、【基础题】已知⊙O的面积为25 . (1)若PO=,则点P在_____;(2)若PO=4,则点P 在_____;(3)若PO=_____,则点P在⊙O上.01.1【综合Ⅰ】如左下图,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以点C为圆心,5cm为半径作圆,则A、B、C、M四点在圆外的有_______,在圆上的有_______,在圆内的有_______.01.2、【综合Ⅲ】如右上图,菱形ABCD的对角线AC和BD相交于点O,点E、F、G、H分别为AB、BC、CD、DA的中点,那么E、F、G、H是否在同一个圆上?说明理由.01.3、【综合Ⅲ】若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),则点P的位置是()A、在⊙A内B、在⊙A上C、在⊙A外D、不能确定02、【综合Ⅰ】设AB=3 cm,作图说明满足下列要求的图形:(1)到点A和点B的距离都等于2cm的所有点组成的图形;(2)到点A和点B的距离都小于2 cm的所有点组成的图形;(3)到点A的距离小于2 cm,且到点B的距离大于2 cm的所有点组成的图形.03、【提高】海军部队在某灯塔A的周围进行爆破作业,A的周围3 km的水域为危险水域,有一渔船误入离灯塔A 有2 km远的B处,为了尽快驶离危险区域,该船应往哪个方向航行?请给予证明.03.1【提高】已知点P不在⊙O上,且点P到⊙O上的点的最小距离是5,最大距离是7,求⊙O 的半径.第2节圆的对称性04、【基础题】如左下图,在⊙O中,⌒AC =⌒BD ,∠1=30°,那么∠2=_____.04.1、【基础题】如右上图,在⊙O中,弧AB等于弧AC,∠A=30°,则∠B=_____.05、【综合Ⅰ】如左下图,点A、B、C、D是⊙O上的四点,AB=DC,那么△ABC与△DCB全等吗?为什么?05.1、【基础题】如右上图,在⊙O中,AD=BC,试说明AB与CD相等.05.2【基础】如左下图,AB、DE是⊙O的直径,C是⊙O上的一点,且⌒AD=⌒CE,那么BE和CE的大小有什么关系?为什么?05.3【综合Ⅰ】如右上图,AB是⊙O的直径,OD∥AC,那么⌒CD与⌒BD的大小有什么关系?为什么?06、【综合Ⅰ】如左下图,A、B是⊙O上两点,∠AOB=120°,C是⌒AB的中点,试确定四边形OACB的形状.06.1、【综合Ⅱ】如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=______.* 第3节垂径定理07、【基础题】如左下图,已知⊙O中,OC⊥弦AB于C,AB=8,OC=3,则⊙O的半径等于______.07.1、【基础题】如右上图,已知⊙O 的半径为30 mm ,弦AB =36 mm ,求点O 到AB 的距离及∠OAB 的余弦值.08、【综合Ⅱ】如左下图,有一圆弧形拱桥,拱的跨度AB=16 m ,拱高CD=4 m ,那么拱形的半径是____m.08.1、【综合Ⅱ】“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为数学语言就是:如右上图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长.09、【综合Ⅰ】如右图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.(1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?为什么?10、【综合Ⅰ】 已知⊙O 的半径为5 cm ,弦AB ∥弦CD ,AB =6 cm ,CD =8 cm ,试求AB 与CD 间的距离.10.1、【综合Ⅱ】 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?11、【综合Ⅲ】如右图,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC =2 cm ,则⊙O 的半径为______ cm .第4节 圆周角和圆心角的关系(包括圆内接四边形)12、【基础题】如左下图,在⊙O 中,已知∠BOC =100°,则∠BAC 的度数是_____°D C BADC B AO12.1、【基础题】如右上图,在⊙O 中,∠BAC =25°,则∠BOC =_____°12.2、【综合Ⅰ】 如图,∠A 是⊙O 的圆周角,∠A =40°,求∠OBC 的度数.13、【基础题】如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD (弧BCD 所对的圆心角)和∠BAD 的大小.13.1、【基础题】左下图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是_____.13.2【基础题】如右上图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 是_____°.13.3【综合Ⅰ】在圆内接四边形ABCD 中,对角∠A 与∠C 的度数之比是4:5,求∠C 的度数.13.4、【综合Ⅱ】如左下图,圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且∠E =40°,∠F =60°,求∠A 的度数.14、【基础题】如右上图,⊙O 的直径AB =10 cm ,C 为⊙O 上的一点,∠B =30°,求AC 的长.14.1、【基础题】如左下图,AB 是⊙O 的直径,∠C =15°,求∠BAD 的度数.14.2、【综合Ⅰ】如右上图,⊙O 的弦AB =16,点C 在⊙O 上,且sin C =54,求⊙O 的半径的长.14.3、【中考题】A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A 、B 重合),我们称∠APB 是⊙O 上关于点A 、B 的滑动角.(1)若AB 是⊙O 的直径,则∠APB 是多少度?(2)若⊙O 的半径是1,AB =2,则∠APB 是多少度?15、【基础题】平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A 、正方形B 、菱形C 、矩形D 、等腰梯形16、【提高题】如右图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 的长是一元二次方程01272=+-x x 的两根,求tan ∠DPB.第5节 确定圆的条件17、【基础题】分别作出下面三个三角形的外接圆,并指出它们外心的位置有什么特点17.1、【基础题】如左下图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用多少次,就可以找到圆形工件的圆心?为什么?17.2、【基础题】如右上图,A、B、C三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置(尺规作图,不写作法,保留作图痕迹).18、【综合Ⅰ】在△ABC中,AC=10,BC=8,AB=6,求△ABC外接圆的半径18.1、【综合Ⅰ】等边三角形的边长为a,求这个三角形外接圆的面积.第6节直线和圆的位置关系19、【基础题】如右图,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2 cm和4 cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?19.1【基础题】直线l与半径为r的⊙O相交,且点O到直线l的距离为5,求r的取值范围.19.2、【综合Ⅰ】在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m,⊙O的半径为r,当r与m满足怎样的关系时,(1)AC与⊙O相交?(2)AC与⊙O相切?(3)AC与⊙O相离?20、【基础题】如左下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.20.1【基础题】如右上图,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.20.2、【综合Ⅰ】如左下图,P A、PB分别与⊙O相切于点A、B,∠P=70°,则∠C=( )°°°°20.3、【综合Ⅱ】如右上图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.20.4【综合Ⅱ】如右图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC,求证:AD·BC=OB·BD.21、【中考题,2014陕西23题】(本题满分8分)如右下图,⊙O的半径为4,B是⊙⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1) 求证:AD平分∠BAC(2) 求AC的长22、【基础题】如左下图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?22.1、【中考题,2013年孝感市23题,10分】如右上图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.23、【基础题】如图,已知锐角三角形、直角三角形和钝角三角形,分别作出它们的内切圆. 请问,三角形的内心是否都在三角形的内部?23.1、【基础题】等边三角形的边长为a,求这个三角形内切圆的面积.23.2、【综合Ⅰ】已知在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r =__ _ .24、【综合Ⅰ】如左下图,在△ABC中,∠A=68°,点I是内心,求∠I的度数.24.1、【综合Ⅰ】如右上图,在四边形ABCD中,∠B=60°,∠DCB=80°,∠D=100°,若P、Q两点分别为三角形ABC和三角形ACD的内心,那么∠PAQ的度数是多少?24.2、【综合Ⅲ】在Rt△ABC中,∠C=90°,AC=8 cm,BC=6 cm,求其内心和外心之间的距离.*第7节切线长定理25、【基础题】如图,PA、PB是⊙O的两条切线,A、B是切点. 求证:PA=PB25.1、【基础题】已知⊙O的半径为3 cm,点P和圆心O的距离为6 cm,过点P画⊙O的两条切线,求这两条切线的切线长.25.2、【综合Ⅰ】如左下图,PA和PB是⊙O的两条切线,A、B是切点,C是弧AB上任意一点,过点C画⊙O的切线,分别交PA和PB于D、E两点. 已知PA=PB=5 cm,求△PDE的周长.25.3、【综合Ⅲ】如右上图,PA和PB是⊙O的两条切线,A、B为切点,∠P=40°,点D在AB上,点E和点F分别在PB和PA上,且AD=BE,BD=AF,求∠EDF的度数.26、【综合Ⅰ】如左下图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O是△ABC的内切圆,切点分别为D、E、F,求⊙O的半径. (利用切线长定理来解题)26.1、【综合Ⅲ】如右上图,⊙O是△ABC的内切圆,D、E、F为切点,且AB=9 cm,BC=14 cm,CA=13 cm,求AF、BD、CE的长.26.2、【综合Ⅲ】如图,在四边形ABCD中,AB=AD=6 cm,CB=CD=8 cm,且∠B=90°,该四边形存在内切圆吗?如果存在,请计算内切圆的半径.第8节圆内接正多边形27、【基础题】如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.27.1、【综合Ⅱ】有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为______.27.2、【综合Ⅱ】如右图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE,求这个正六边形的面积.27.3、【基础题】请求出半径为6的圆内接正三角形的边长和边心距.28、【基础题】已知正方形的边长是a,其内切圆的半径为r,外接圆的半径为R,则r∶R∶a=______.28.1、【基础题】请利用尺规作一个已知圆的内接正四边形.28.2、【综合Ⅰ】请利用尺规作一个已知圆的内接正八边形.29、【综合Ⅲ】如图,点M、N分别是⊙O的内接正三角形ABC、内接正方形ABCD、内接正五边形ABCDE、……、内接正n边形的边AB、BC上的点,且BM=CN,连接OM、ON. (1)求图1中的∠MON的度数;(2)在图2中,∠MON的大小是______,在图3中,∠MON的大小是______;(3)根据图n,请说明∠MON的度数与正n边形的边数n之间的关系(直接写出答案).第9节 弧长及扇形的面积(含圆锥侧面积题目)30、【中考题,2014年云南省第7题3分】已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( )A 、B .2πC . 3πD . 12π30.1、【中考题,2014四川自贡第8题4分】 一个扇形的半径为8cm ,弧长为cm ,则扇形的圆心角为( )30.2、【基础题】已知圆上一段弧长为4 cm ,它所对的圆心角为100°,则该圆的半径是_____.31、【中考题,2014成都,3分】在圆心角为120°的扇形AOB 中,半径OA =6 cm ,则扇形AOB 的面积是________2cm .31.1、【中考题,2014山东东营第5题3分】如左下图,已知扇形的圆心角为60°,半径为3,则图中弓形(阴影)面积是_________.31.2、【中考题,2014·浙江金华第10题4分】如右上图,一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,两个正方形的边长都为1,则扇形纸板和圆形纸板的面积比是 ( )A .5:4B .5:2C .5:2D .5:232、【中考题,2014杭州第2题3分】左下图,已知一个圆锥体的三视图如图所示,则这个圆锥为______2cm . 的侧面积33、【综合Ⅲ】如右上图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是________.33.1、【中考题,2014山东泰安第19题3分】如图,半径为2cm,圆心角为90°的扇形OAB中,cm.分别以OA、OB为直径作半圆,则图中阴影部分的面积为________233.2、【中考题,2014福建泉州第17题4分】如右图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为_____ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______ 米.新版北师大初中数学九(下)第三章圆分节练习答案第1节答案01、【答案】(1)圆外;(2)圆内;(3)501.1、【答案】在圆外的有点B,在圆上的有点M,在圆内的有点A和点C.【答案】E、F、G、H四个点共圆.证明:连接OE、OF、OG、OH∴AB=BC=CD=DA,DB⊥AC∵E、F、G、H分别是各边的中点∴1111,,,2222OE AB OF BC OG CD OH AD====(直角三角形斜边上的中线等于斜边的一半)∴OE OF OG OH===∴E、F、G、H四个点都在以O为圆心、OE长为半径的圆上.【答案】选A02、【答案】(1)如图1,所求图形即P、Q两点;(2)如图2,所求图形为阴影部分(不包括阴影的边界);(3)如图3,所求图形为阴影部分(不包括阴影的边界).03、【答案】往射线AB方向航行【证明】如图,设航线AB交⊙A于点C,在⊙A上任取一点D(不包括C关于A的对称点)连接AD、BD;在△ABD中,∵AB+BD>AD,AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.答:应沿AB的方向航行.03.1【答案】当点P在圆外时,半径是1;当点P在圆内时,半径是6.第2节答案04、【答案】30°【答案】75°05、【答案】全等,可先证AC=DB.、【提示】证弧CD和弧AB相等.05.2【答案】相等.【提示】先证弧BE和弧AD相等.05.3、【答案】相等【提示】连接OC06、【答案】四边形OACB 是菱形【证明】连接OC∵C 是弧AB 的中点,∠AOB=120°∴∠AOC=60°∴△AOC 是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB 是菱形、【答案】 120°【提示】 连接OC 、OD ,可证△BOC 和△COD 都是等边三角形.* 第3节 答案07、【答案】半径等于5.【提示】如右图,利用垂径定理和勾股定理来算半径.07.1、【答案】 点O 到AB 的距离是24 mm ,∠OAB 的余弦值是0.608、【答案】 10 m.【提示】 在如图的圆弧形中,CD 是拱高,根据圆的对称性可知CD 垂直平分AB ,则CD 所在直线过圆心,延长CD ,作圆心O ,并且连接OB.设拱形的半径OB 为r ,则OD 为(r -4),根据勾股定理可得24)-(r +28=2r ,解得r =10 m. 【总结】求圆的直径或半径常常过圆心作弦的垂线或连接圆心和弦的端点构造直角三角形,再根据勾股定理来求出半径. 有些题目不能直接求出半径则需列方程来解决.08.1【答案】 直径CD 是26寸.【解析】09、【提示】(1)用HL证明Rt△AOE与Rt△COF全等;(2)用HL证明Rt△AOE与Rt△COF全等.10、【答案】AB与CD间的距离为7 cm或1 cm.【提示】如图,若AB和CD在圆心两侧,则可求出OE=3,OF=4,则AB、CD距离是7 cm;若AB和CD在圆心同侧,则距离是1 cm.、【答案】相等.【解析】如图示,过圆心O作垂直于弦的直径EF,由垂径定理得:弧AF=弧BF,弧CF=弧DF,用等量减等量差相等原理,弧AF-弧CF=弧BF-弧DF,即弧AC=弧BD,故结论成立.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.11、【答案】2【解析】第4节答案12、【答案】∠BAC的度数是50°.12.1、【答案】∠BOC=50°12.2、【答案】∠OBC=50°13、【答案】∠BOD=160°,∠BAD=80°13.1【答案】∠CBD 的度数是70°13.2【答案】∠DCE=105°13.3【答案】∠C=100°【答案】∠A=40°14、【答案】AC=5 cm、【答案】∠BAD的度数是75°14.2【答案】半径的长为10.【提示】连接AO,延长AO交⊙O于D,连接BD. 、【答案与解析】15、【答案】选C716、【答案】tan∠DPB=3【解析】第5节 答案17、【答案】 锐角三角形的外心在内部;直角三角形的外心在斜边中点;钝角三角形的外心在外部.、【答案】 最少使用两次、【提示】连接AB 、AC ,分别作线段AB 和AC 的垂直平分线,两条垂直平分线的交点即为供水站的位置.18、【答案】 △ABC 外接圆的半径是5.、【答案】 312a第6节 答案19、【答案】 (1)当半径长为32 cm 时,AB 与⊙C 相切.(2)当半径为2 cm 时,⊙C 与AB 相离;当半径为4 cm 时,⊙C 与AB 相交.19.1【答案】 5>r19.2【答案】 (1)m r 23> (2)m r 23= (3)m r 23<20、【答案】 40°20.1【答案】 PA =4、【答案】 选B20.3【答案】 (1)提示:证∠A =∠D =30°(2)半径是10.20.4【提示】 证明Rt △CBO ∽ Rt △BDA21、【答案】证明:(1)连接OD∵BD 是⊙O 的切线,D 为切点∴BC OD ⊥∵BD AC ⊥∴OD ∥AC∴∠ODA=∠CAD又∵OD=OA∴∠BAD=∠CAD∴AD 平分∠ABC(2)解:∵OD ∥AC , ∴ΔBOD ∽ΔBAC , ∴=, ∴=, ∴ AC =320 22、【提示】 连接OC ,证明OC ⊥AB22.1、【答案与解析】(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA , ∴PA 是⊙O 的切线.(2)在Rt △OAP 中,∵∠P=30°,∴PO=2OA=OD+PD ,又∵OA=OD ,∴PD=OA ,∵,∴. ∴⊙O 的直径为.23、【答案】 都在内部23.1、【答案】 π1212a、【答案】 r =2.24、【答案】 ∠I =124°24.1、【答案】∠PAQ的度数是60°、【答案】5cm【解析】*第7节答案25、【解析】3cm25.1、【答案】325.2、【答案】△PDE的周长是10 cm.25.3、【答案】∠EDF=70°26、【答案】⊙O的半径是426.1、【答案】AF=4 cm,BD=5 cm,CE=9 cm.【提示】设AE=AF=x,BF=BD=y,CE=CD=z2426.2、【答案】存在内切圆,内切圆半径是7第8节答案2.27、【答案】中心角是60°,边长是4,边心距是327.1、【答案】外接圆的半径为4627.2、【答案】正六边形的面积是36,边心距是3.27.3、【答案】边长是328、【答案】1∶2∶228.1、【提示】用直尺和圆规作两条互相垂直的直径,在圆周上得到四个点,依次连接这四个点,就得到圆的内接正四边形.28.2、【提示】如图,先作出两条互相垂直的直径,再作出两条直径所形成的直角的角平分线,即可在圆周上得到圆内接正八边形的顶点第9节答案30、【答案】根据弧长公式:l==3π,故选C.30.1、【答案】选B30.2、【答案】7.2 cm.31、【答案】12π2cm31.1、【答案】4332-π【答案】选A【解析】32、【答案】 π15 2cm33、【答案】33π-【解析】33.1、【答案】 (﹣1) cm 2【解析】分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P ,Q 面积相等.连接AB ,OD ,根据两半圆的直径相等可知∠AOD =∠BOD =45°,故可得出绿色部分的面积=S △AOD ,利用阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色,故可得出结论. 解:∵扇形OAB 的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm 2),半圆面积为:×π×12=(cm 2),∴S Q +S M =S M +S P =(cm 2), ∴S Q =S P ,连接AB ,OD ,∵两半圆的直径相等,∴∠AOD =∠BOD =45°,∴S 绿色=S △AOD =×2×1=1(cm 2),∴阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色=π﹣﹣1=﹣1(cm 2).33.2、【答案】 (1)1 米; (2)41 米. 【解析】分析: (1)根据圆周角定理由∠BAC =90°得BC 为⊙O 的直径,即BC =,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.解答:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为1,.。

北师大版九年级数学下册第三章圆测试题

北师大版九年级数学下册第三章圆测试题

北师大版九年级数学下册第三章《圆》测试题一、选择题1. 如图所示,A、B、C是。

O上的三点,/ BAC=30则/ BOC勺大小是()O O O O2. 如图,AB是。

O的直径,C是。

0上的一点,若AC=8,AB=10, ODL BC于点D, 则BD的长为()3. 下列命题正确的是()A.相等的圆心角所对的弦相等B. 等弦所对的弧相等C.等弧所对的弦相等D. 垂直于弦的直线平分弦4. 如图,A、D是。

上的两个点,BC是直径,若/ D = 35。

,则/ OAC的度数是()A. 35°B. 55°C. 65°D. 70°5如图O是厶ABC的外接圆,已知/ B=60。

,则/ CAO勺度数是()A. 15°B. 30°C. 45° D . 60°6. 如图,已知。

O的两条弦AC, BD相交于点E,Z A=7(J,Z c=50°,那么sin / AEB的值为()A. 1B. -1C. 2D. 三2 3 2 27. 如图,在5X 5正方形网格中,一条圆弧经过A, B, C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点RD.点M8. 如图,。

0是厶ABC的外接圆,AD是。

0的直径,若。

0的半径为6, sinB=」,3 则线段AC的长是()B.49. 如图,是的直径,点在的延长线上,切于若则等于()A. B. C. D.10. 如图是△的外接圆,是。

的直径,若。

的半径为,,则的值是()A. B. C. D.、填空题11. 如图,,为上的点,且,圆与相切,则圆的半径为________ .12. 如图,△ ABC内接于。

O, AC是的直径,/ AC9 50°,点D是BAC上一点,则/ D= ________________ .13. 如图,已知。

O的半径是6cm,弦CB=6「3cm, ODL BC,垂足为D,则/COB ________ .14. 中,,以点B为圆心6cm为半径作,则边AC所在的直线与的位置关系是__________ .15. 如图,一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“ 2”和“10”(单位:cm), 那么该光盘的直径是—cm.16. 如图,AB为O O的直径,点C, D在O O上.若/ AO430°,则/ BCD勺度数是 __________ .17. 如图,AB是O O的直径,弦DC与AB相交于点E,若/ACD=60 , / ADC=50 , 则/ ABD= _____ ,/ CEB= .18. 如图6,已知AB是O O的直径,PB是O O的切线,PA交O O于C, AB=3cm PB=4cm 贝U BC= . ___19. 如图,点A B C在O O上,切线CD与OB的延长线交于点D,若/ A=30°, CD=则O O的半径长为______________ .20. 如图,扇形AOB的半径为1,Z AOB=90,以AB为直径画半圆,则图中阴影部分的面积为___________ .三、解答题21. 如图,在O O中,CD是直径,AB是弦,且CD丄AB, 已知CD = 20, CM= 4,求AB.22. 已知:如图,AB是。

北师大版九年级数学下册第三章《圆》同步练习3

北师大版九年级数学下册第三章《圆》同步练习3

《圆》同步练习31.如图所示,⊙O 中点A ,O ,D 以及点B ,O ,C 分别在同一直线上,图中弦的条数为( ).A 、2条B 、3条C 、4条D 、5条2.如图31-6,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为 9 cm ,则⊙O 的直径为 ( )图31-6 A .6.5 cm B .2.5 cm C .13 cm D .不可求3.正方形ABCD 的边长为1,对角线AC ,BD 交于点O .现以点O 为圆心,使点C 在⊙O 外,则⊙O 的半径可以为( )A 、12B 3C 、22D 、1 4.正方形ABCD 的边长为1,对角线AC ,BD 交于点O .现以点O 为圆心,使点C 在⊙O 外,则⊙O 的半径可以为( ) A.12 B. 32 C. 22 D .15.已知⊙O 的周长为8 cm ,若PO =2cm ,则点P 在_______;若PO =4cm ,则点P 在_____;若PO =6cm ,则点P 在_______.6.如图31-7,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE ,点C 为弧AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC .求证:CD =CE .图317.如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B ,与y 轴交于点C 、D ,试求出点A 、B 、C 、D 的坐标. yx P O CD AB8.如图31-9所示,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,与点P 相距320千米.(1)本次台风会不会影响B 市?(2)求这次台风影响B 市的时间.图31-99、如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,试问:是否存在一个圆,使A 、B 、C 、D 四个点都在这个圆上?如果存在,请指出这个圆的圆心和半径;如果不存在,说明理由.OCD AB【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

九年级数学下册期末综合训练三圆北师大版

九年级数学下册期末综合训练三圆北师大版

期末综合训练(三)圆一、选择题1. (2015 •河北)如图,AC, BE是O 0的直径,弦AD与BE交于点F,下列三角形中,外心不是点0的是(B )A.A ABE B . △ACFC.A ABD D . △ADE,第1题图),第3题图)2. 已知圆0的直径是方程x2—5x —24= 0的根,且点A到圆心0的距离为6,则点A 在(C )A. 圆0上B .圆0内C.圆0外D .无法确定3. (2015 •张家界)如图,/ 0= 30°, C为0B上一点,且0C= 6,以点C为圆心,半径为3的圆与0A的位置关系是(C )A. 相离B. 相交C. 相切D. 以上三种情况均有可能4. 如图,以点0为圆心的两个圆中,大圆的弦AB切小圆于点C, 0A交小圆于点D.若10D= 2, tan / 0AB=㊁,贝U AB的长是( C )A. 4 B . 2 C . 8 D . 4,第4题图),第5题图)5. (2015 •青岛)如图,正六边形ABCDE内接于O 0,若直线PA与O 0相切于点A,则 / PAB=( A )A. 30° B . 35° C . 45° D . 60°6. 如图,在△ ABC中,CA= CB / ACB= 90°, AB= 2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为(D )n 1 1A" "2 + 2 B .冗—4D.,第6题图),第7题图)二、填空题7. 如图,在O 0中,弦AB垂直平分半径0C垂足为D,若O 0的半径为2,则弦AB的长为_ V3 .&如图,AB是O 0的直径,/ BAC= 42 °,点D是弦AC的中点,则/ D0C的度数是48 度.,第8题图),第9题图)19. 如图,直线MN与O 0相切于点M, ME= EF且EF// MN贝U C0S E= 一.10. 如图,半径5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线 b 重合为止,则圆心 0运动路径的长度等于,第10题图),第11题图)111. (2015 •烟台)如图,直线I : y =-2X + 1与坐标轴交于 A B 两点,点 M (m 0)是x 轴上一动点,以点 M 为圆心,2个单位长度为半径作O M,当O M 与直线I 相切时,则m 的值 为__2 — 2讯或2+ 2寸5—.112. 如图,在矩形 ABCD 中, AA 8, E 是边AB 上一点,且 AE = -AB. O O 经过点E ,与边 CD 所在直线相切于点 G (/ GEB 为锐角),与边AB 所在直线交于另一点 F ,且EG : EF = 5 : 2.当边AD 或 BC 所在的直线与O O 相切时,AB 的长是__12 或 4__.三、解答题13.O OABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图①,图②中 画出一条弦,使这条弦将△ ABC 分成面积相等的两部分.(保留作图痕迹,不写作法 )(1) 如图①,AC= BC;(2) 如图②,直线l 与O O 相切与点P ,且I // BC.解:(1)连接CC 并延长交O O 于D, CD 即为所求(图略)(2)连接PC 并延长交BC 于E , 连接AE 并延长交O O 于F , AF 即为所求(图略)14. 在O O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦 AC 翻折交AB 于点D,连接CD. (1)如图①,若点D 与圆心O 重合,AC = 2,求O O 的半径r ;⑵ 如图②,若点D 与圆心O 不重合,/ BAC= 25°,请直接写出/ DCA 的度数.解:(1)过点O 作AC 的垂线交 AC 于E ,交劣弧于 F ,由题意可知,OE= EF ,vOE 丄AC , ••• AE= 2A C 在 Rt △ AOE 中, A O = O E + A E ,「・ 宀 1 + (苏2,(2) / DCA= 40° 点拨:连接 BC 则/ B = 90°— 25°= 65°,:/ B 为劣弧 AC 所对圆周角,/ ADC 等于优弧 ABC 所对圆周角,•/ B+Z AD = 180°,又/ BD(+Z ADC= 180°,BD =Z B = 65°,「・Z DCA= 65°— 25°= 40°15. 如图,在△ ABC 中,Z C = 90°, AC + BC = 8,点O 是斜边 AB 上一点,以 O 为圆心 的O O 分别与AC, BC 相切于点D, E.(1) 当AC = 2时,求O O 的半径;(2) 设AC = x , O O 的半径为y ,求y 与x 的函数关系式.解:(1)连接OD OE 贝y O [丄AC OEL BC,可证四边形 ODCE 是正方形,设 Ot = CD =2 一 r r3 x 一 y y1 2r ,由厶 AD©-^ ACB 寻〒=? • r =(2)同(1)可得一= ,• y = — x 2+ x2. 3r2 6 2 x 8—x 816. (2015 •安顺)如图,等腰三角形 ABC 中, AC = BC= 10, AB= 12,以BC 为直径作O O 交AB 于点D,交AC 于点G DF 丄AC,垂足为F ,交CB 的延长线于点 E.(1)求证:直线EF 是O O 的切线;⑵求COS E 的值.解:(1)连接OD CD// BC 是直径,••• CDL AB.V AG BC /. D 是的AB 中点.又O 为CB的中点,• OD/ AC./DF 丄AC • ODL EF, • EF 是O O 的切线 (2)连接BG // BC 是直径, .在 Rt △ ACD 中,DC= AC — AD = 102- 62 = 8••/ AB- CD= 2S A ABC =ABCD = 12j ^8= 48••/ BGL AC EF L AC • BG// EF , E =Z CBG •• / BGC= 90 ° AC- BG •- BG=cosE= cos / CBG=BG_24 BC T25。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试题(包含答案解析)(3)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试题(包含答案解析)(3)

一、选择题1.下列事件是必然事件的是( )A .有两边及一角对应相等的两个三角形全等B .若a 2=b 2则有a =bC .二次函数的图象是双曲线D .圆的切线垂直于过切点的半径 2.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为( )A .12πB .πC .3π2D .3π3.如图,A B C D 、、、是O 上的点,180AOD BOC ∠+∠=︒.若2,6AD BC ==,则BOC ∆的面积为( )A .3B .6C .9D .12 4.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .2 5.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .12 6.如图,O 的直径AB 交弦CD 相于点P ,且45,APC ∠=︒若33,3PC PD ==OA 的长为( )A .3B .23C .32D .157.下列关于正多边形的叙述,正确的是( )A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720︒C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形8.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,4CE =,6CD =,则AC 的长为( )A .7B .8C .9D .109.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan ∠API 的值是( )A .3B .2C .2D .110.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A.55°B.65°C.70°D.75°11.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm,则水面AB的宽度为()A.12cm B.18cm C.20cm D.24cm12.如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则cos∠ADC的值为()A.213B.13C.313D.23二、填空题13.如图,从点P引⊙O的切线PA,PB,切点分别为A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周长为20cm,则PA=______cm.14.如图,AB是O的直径,点C是上半圆的中点,1AC=,点P是下半圆上一点(不与点A,B重合),AD平分PAB∠交PC于点D,则PD的最大值为______.15.如图,PA、PB切⊙O于A、B,点C在AB上,DE切⊙O于C交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是_____.16.圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠C的度数等于_____.17.已知O的半径为1,AB是O的弦,2AB=,P为O外一点,且PA切O于PA=,则线段PB的长为________.点A,118.如图所示的是边长为4的正方形镖盘ABCD,分别以正方形镖盘ABCD的三边为直径在正方形内部作半圆,三个半圆交于点O,乐乐随机地将一枚飞镖投掷到该镖盘上,飞镖落在阴影区域的概率为________.19.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形ADE(阴影部分,点E在对角线AC上).若扇形ADE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是________.20.已知圆锥的母线长为10cm ,高为8cm ,则该圆锥的展开图(扇形)的弧长为______(结果保留π).三、解答题21.如图,△ABC 的三个顶点都在⊙O 上,直径AD =6cm ,∠DAC =2∠B .(1)连CO ,证明:△AOC 为等边三角形;(2)求AC 的长.22.已知等边三角形ABC (如图).(1)用直尺和圆规作ABC 的外接圆(不写作法,保留作图痕迹).(2)若83cm AB =,求ABC 的外接圆半径.23.如图,在四边形ABCD 中,//,AD BC DE BC ⊥于点,E BAD ∠的角平分线交DE 于点О,以点О为圆心,OD 为半径的圆经过点C ,交BC 于另一点F .()1求证:AB 与О相切;()2若24,5CF OE ==,求CD 的长.24.如图,ABC 中,D 为AB 边上一点,连接CD ,BD CD =.以AC 为直径作O ,过点O 作OE AC ⊥ 交BC 于点E ,连接DE ,BDE CDE ∠=∠.(1)求证:AB 为O 的切线; (2)若16AB =,8AC =,求BD 的长. 25.如图,AB 是O 的直径,AC 是弦,OD AC ⊥于点D ,过点A 作O 的切线AP ,AP 与OD 的延长线交于点P ,连接PC 、BC .(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.(2)求证:PC是O的切线.26.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C 作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求⊙O的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角形全等的判定方法可判断,A由平方根的含义可判断,B由二次函数的图像可判断,C 由圆的切线的性质可判断.D 再结合必然事件的概念可得答案.【详解】解:有两边及一角对应相等的两个三角形不一定全等,所以是随机事件,故A 不符合题意;若22a b =则有,a b =±所以是随机事件,故B 不符合题意;二次函数的图象是抛物线,所以是不可能事件,故C 不符合题意;圆的切线垂直于过切点的半径,是必然事件,故D 符合题意;故选:.D【点睛】本题考查的是确定事件与随机事件的概念,同时考查了二次函数的图像,圆的切线的性质,掌握以上知识是解题的关键.2.C解析:C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==, 故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.3.A解析:A【分析】作出辅助线延长BO 交O 于点E ,连接CE ,由此构建圆心角AOD COE ∠=∠,根据圆周角与弧长和弦长的关系得到2AD CE ==,再据此求出BEC △的面积,经由OB OE =即可求出BCE 的面积.【详解】解:如图延长BO 交O 于点E ,连接CE ,∵B O E 、、三点共线∴180COE BOC ∠+∠=︒,90BCE ∠=︒,∴CE BC ⊥,∵180AOD BOC ∠+∠=︒,∴AOD COE ∠=∠,∴AD CE =,∴2AD CE ==,∵6BC =, ∴1162622S BC CE ==⨯⨯=△BCE , ∵OB OE =,∴116322S S ==⨯=△BOC △BEC . 故选A.【点睛】本题主要考查圆心角所对弧、弦的关系,圆周角定理,关键在于作出OB 的延长线OE ,来构造出圆心角相等,以此来解决问题. 4.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可.【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒,∴AB 和BC 所对的圆心角都是60︒,∵AD 是直径,∴CD 所对的圆心角也是60︒,∴30CAD ∠=︒,在Rt ACD △中,cos3082AC AD =⋅︒=⨯=. 故选:B .【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法. 5.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.6.D解析:D【分析】过点O 作OE CD ⊥,连接OC ,设OE x =,根据垂径定理计算即可;【详解】过点O 作OE CD ⊥,连接OC ,设OE x =,∵45APC ∠=︒,∴PE OE x ==, ∵33PC = ∴33CE x =-,∵CE DE =, ∴333x x -=+, ∴3x = ∴()==+=+=2222(3)2315OA OC OE CE故选:D .【点睛】 本题主要考查了垂径定理的应用,结合勾股定理计算是解题的关键.7.C解析:C【分析】根据中心对称图形、轴对称图形的定义、多边形外角和定理、正多边形的性质对各选项逐一判断即可得答案.【详解】A.正七边形是轴对称图形,不是中心对称图形,故该选项错误,B.任意多边形的外角和都等于360°,故该选项错误,C.任何正多边形都有一个外接圆,故该选项正确,D.∵正三角形的每个外角为120°,对应的每个内角为60°,∴存在每个外角都是对应每个内角两倍的正多边形,故该选项错误,故选:C .【点睛】本题考查正多边形的性质、中心对称图形、轴对称图形的定义及多边形外角和定理,熟练掌握相关性质及定理是解题关键.8.C解析:C【分析】首先连接BC ,由AC 平分∠BAD ,易证得∠BDC=∠CAD ,继而证得△CDE ∽△CAD ,然后由相似三角形的对应边成比例求得AE 的长,进而求出AC 的长.【详解】解:∵AC 平分∠BAD ,∴∠BAC=∠CAD∴=BC CD ,∴∠BDC=∠CAD ,∵∠ACD=∠DCE ,∴△CDE ∽△CAD ,∴CD :AC=CE :CD ,∴CD 2=AC•CE ,∴62=4(4+AE ),∴AE=5,∴AC=AE+CE=9,故选:C .【点睛】此题考查了圆周角定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.A解析:A【分析】连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M .∵ABCDEF 是正六边形,∴∠DEF =∠F =120°,∵FA =FE ,∴∠FEA =∠FAE =30°,∴∠AED =90°,同法可证,∠DEI=∠EIH=90°,∴∠AED+∠DEI=180°,∴A,E,I共线,设HI JI JE a===,∵JM⊥EI,∴EM=MI=32a,∴AI=2EI=23a,∵∠API=∠AHI,∴tan∠API=tan∠AHI=AIHI =2323a=,故选:A.【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题.10.B解析:B【分析】连接CD,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD,∵∠A=50°,∴∠CDB=180°-∠A=130°,∵ E是边BC的中点,∴ OD⊥BC,∴ BD=CD,∴∠ODB=∠ODC=12∠BDC=65°,故选:B.【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.11.D解析:D【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ), ∴()221692512BD OB OD cm =-=-= ,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.12.C解析:C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【详解】由图可知ADC ABC ∠=∠,在Rt △ABC 中,2AC =,3BC =, ∴223213AB +=∴cos ∠ADC 3313cos 1313BC ABC AB =∠===; 故答案选C .【点睛】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键.二、填空题13.10【分析】由于PAPBDE 都是⊙O 的切线可根据切线长定理将△PDE 的周长转化为切线PAPB 长的和【详解】解:∵PAPBDE 分别切⊙O 于ABC ∴PA=PBDA=DCEC=EB ;∴C △PDE=PD+D解析:10【分析】由于PA 、PB 、DE 都是⊙O 的切线,可根据切线长定理将△PDE 的周长转化为切线PA 、PB 长的和.【详解】解:∵PA 、PB 、DE 分别切⊙O 于A 、B 、C ,∴PA =PB ,DA =DC ,EC =EB ;∴C △PDE =PD +DE +PE =PD +DA +EB +PE =PA +PB =20;∴PA =PB =10,故答案为10.【点睛】此题主要考查的是切线长定理,能够发现△PDE 的周长和切线PA 、PB 长的关系是解答此题的关键.14.【分析】由同弧所得的圆周角相等得到直径所得的圆周角是90°得到继而证明再根据角平分线的性质解得结合三角形外角的性质可证接着由线段的和差解得由此可知当为直径时值最大然后证明为等腰直角三角形最后根据等腰1【分析】由同弧所得的圆周角相等得到APC ABC ∠=∠,直径所得的圆周角是90°得到90ACB ∠=︒,继而证明45APC ABC ,再根据角平分线的性质解得BAD DAP ∠=∠,结合三角形外角的性质可证CAD ADC ∠=∠,接着由线段的和差解得1PD CP CD CP =-=-,由此可知当CP 为直径时PD 值最大,然后证明ACB △为等腰直角三角形,最后根据等腰直角三角形的性质及勾股定理解题.【详解】 解:点C 是上半圆的中点,AC BC ∴=APC ABC1AC BC ∴== AB 是O 的直径,90ACB ∴∠=︒45CAB CBA ∴∠=∠=︒45APC ABC AD 平分PAB ∠ 12BAD DAP BAP ∴∠=∠=∠ 45,45ADC APC DAP DAP CAD CAB BAD BAD ∠=∠+∠=︒+∠∠=∠+∠=︒+∠ CAD ADC ∴∠=∠1AC AD ∴==1PD CP CD CP ∴=-=-要使PD 最大,即使得CP 最大,当CP 为直径时值最大,在Rt ACB 中,45,CAB AC BC ∠=︒=ACB ∴为等腰直角三角形,22AB AC ∴==CP ∴最大值为2PD ∴最大值为21-,故答案为:21-.【点睛】本题考查同弧所得的圆周角相等、直径所得的圆周角是90°、角平分线的性质、三角形外角的性质、等腰直角三角形的判定与性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.15.24cm 【分析】连接OAOB 由切线长定理可得:PA=PBDA=DCEC=EB ;由勾股定理可得PA 的长△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB 即可求得△PDE 的周长【解析:24cm【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得△PDE 的周长.【详解】解:连接OA 、OB ,如图所示:∵PA 、PB 为圆的两条切线,∴由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;∵OA ⊥PA ,OA=5cm ,PO=13cm ,∴在Rt △POA 中,由勾股定理得:12=cm ,∴PA=PB=12cm ;∵△PDE 的周长=PD+DC+CE+PE ,DA=DC ,EC=EB ;∴△PDE 的周长=PD+DA+PE+EB=PA+PB=24cm ,故答案为:24cm.【点睛】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.16.【分析】根据圆内接四边形对角互补计算即可;【详解】∵圆内接四边形ABCD 中∠A :∠B :∠C =1:2:3设根据圆内接四边形对角互补∴∴∴;故答案是【点睛】本题主要考查了圆内接四边形的性质准确计算是解题解析:135︒【分析】根据圆内接四边形对角互补计算即可;【详解】∵圆内接四边形ABCD 中,∠A :∠B :∠C =1:2:3,设A x ∠=,2B x ∠=,3C x ∠=,根据圆内接四边形对角互补,∴3180A C x x ∠+∠=+=︒,∴45x =︒,∴3135C x ∠==︒;故答案是135︒.【点睛】本题主要考查了圆内接四边形的性质,准确计算是解题的关键. 17.1或【分析】先利用勾股定理逆定理求出∠AOB 是直角再利用一组对边平行且相等得到四边形APBO 是平行四边形从而PB 的长等于半径OA 另当B 在右侧时还需讨论【详解】解:①如图所示:连接OAOB ∵OA=OB解析:1【分析】先利用勾股定理逆定理求出∠AOB 是直角,再利用一组对边平行且相等得到四边形APBO 是平行四边形,从而PB 的长等于半径OA .另当B 在右侧时,还需讨论.【详解】解:①如图所示:连接OA 、OB .∵OA=OB=1,AB=2,∴根据勾股定理的逆定理,得∠AOB=90°,根据切线的性质定理,得∠OAP=90°,则AP ∥OB ,又AP=OB=1,所以四边形PAOB 是平行四边形,所以PB=OA=1;②当B 在右侧时,如图所示:与①同理可证四边形APOB 是平行四边形,且∠AOB=90°, ∴11,222OC AC BP BC ===, 在Rt △OBC 中,根据勾股定理 222215()12BC OC OB =+=+= ∴PB=25BC =故答案为:15【点睛】考查了圆的性质、平行四边形判定和性质以及勾股定理,解题关键是能够根据勾股定理的逆定理发现直角三角形,进一步发现特殊四边形平行四边形.18.【分析】先判断出两半圆交点为正方形的中心连接OAOD 则可得出所产生的四个小弓形的面积相等先得出2个小弓形的面积即可求阴影部分面积根据即可求得概率【详解】解:由题意易知两半圆的交点即为正方形的中心设此解析:12【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积,根据ABCD S S 阴影正方形即可求得概率.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O ,连接AO ,DO ,则图中的四个小弓形的面积相等,∵两个小弓形面积=14AOD AOD AOD ABCD S S S S --△半圆半圆正方形=, 又∵正方形ABCD 的边长为4,∴各半圆的半径为2,∴两个小弓形面积=2112-44=2-424ππ⨯⨯⨯⨯, ∴=2S S ⨯阴影半圆-4个小弓形的面积=()22-22-4=8ππ⨯, ∴飞镖落在阴影部分的概率为:81==162ABCD S S 阴影正方形, 故答案为:12. 【点睛】 本题考查扇形的面积、正方形的性质、几何概率,解题的关键是求出小弓形的面积. 19.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可【详解】解:设圆锥的底面圆的半径为r 根据题意可得:AD=AE=4∠DAE =45°∵底面圆的周长等于弧长即解得:∴该圆锥的底面圆的半径是解析:12【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【详解】解:设圆锥的底面圆的半径为r ,根据题意可得:AD=AE=4,∠DAE =45°,∵底面圆的周长等于弧长, 即4542180r ππ︒⨯⨯=︒解得:12r =, ∴该圆锥的底面圆的半径是12, 故答案为12. 【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥的底面周长与展开后所得扇形的弧长相等. 20.【分析】根据勾股定理先求出圆锥的底面圆的半径然后根据圆锥的展开图为扇形其弧长等于圆锥底面圆的周长利用圆的周长公式即可计算【详解】设圆锥底面圆的半径为:由勾股定理得:圆锥底面圆的周长为:圆锥的展开图为 解析:12π【分析】根据勾股定理先求出圆锥的底面圆的半径,然后根据圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用圆的周长公式即可计算.【详解】设圆锥底面圆的半径为:r ,由勾股定理得:6r ==,∴圆锥底面圆的周长为:22612r πππ=⨯⨯=,圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,∴该圆锥展开图的弧长为:12π,故答案为:12π.【点睛】本题考查了圆锥的计算,要掌握圆锥的展开图为扇形,其弧长等于圆锥底面圆的周长,利用勾股定理求出圆锥底面圆的半径是解题关键.三、解答题21.(1)见解析;(2)AC =3cm【分析】(1)根据圆周角定理得到∠AOC =2∠B ,加上∠DAC =2∠B ,所以∠AOC =∠DAC ,然后根据等边三角形的判定方法可得到结论;(2)直接利用等边三角形的性质求解即可.【详解】(1)证明:如图,连接OC ,∵∠AOC =2∠B ,∠DAC =2∠B∴∠AOC =∠DAC ,∴OC =AC ,∵OC =OA ,∴OA =OC =AC ,∴△OAC 为等边三角形;(2)解:∵△OAC 为等边三角形,AD =6cm ,∴AC =OA =12AD =12×6=3(cm ). 【点睛】本题考查了圆周角定理及等边三角形的判定与性质,熟练掌握圆周角定理是解答此题的关键.22.(1)见解析;(2)8cm .【分析】(1)按尺规作图方法,作出其中两边的垂直平分线,以此交点为圆心,圆心到三角形任意顶点的距离为半径画圆即可;(2)连接OB ,利用等边三角形的性质,垂径定理,再结合三角函数解直角三角形即可求出半径.【详解】(1)如图:圆O 即为所求(2)如图,连接OB ,设AB 的垂直平分线交AB 于点E ,AC 的垂直平分线交AC 于点F ,则点B 、O 、F 在同一条直线上,1432BE AB cm ∴==,90AFB BEO ∠=∠=︒,60A∠=︒,30EBO∴∠=︒,∴在t R BEO△中,cosBE EBOBO ∠=,343∴=,8()BO cm∴=,∴ABC的外接圆半径为8cm.【点睛】本题考查了作图—复杂作图,等边三角形的性质,垂径定理,解直角三角形等知识,灵活运用所学知识解决问题是解题关键.23.()1见解析;()2613【分析】(1)过点O作OG⊥AB,垂足为G.先证明DE AD⊥,再利用角平分线的性质,得OD=OG=r,则AB是⊙O的切线;(2)连接OC,依据垂径定理可知CE=EF=12,在Rt△OEC中,依据勾股定理可知求得OC=13,然后可得到DE的长,最后在Rt△DEC中,利用勾股定理求解即可.【详解】()1证明:过点O作OG AB⊥,垂足为G//AD BC DE BC⊥,,DE AD∴⊥,又BAD∠的角平分线交DE于点OOG OD∴=又OG AB⊥AB∴与O相切()2连接OC.DE CF⊥∴1122CE CF在Rt OEC ∆中,2213OC OE CE OD = 18DE OD OE ∴=+= 在Rt DEC ∆中,22613CDDE CE 【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用,角平分线的性质等知识,掌握本题的辅助线的作法是解题的关键.24.(1)见解析;(2)10【分析】(1)根据等腰三角形的性质可证点E 为BC 的中点,在结合三角形中位线定理,证明//OE AB ,即可得到结论(2)设BD=CD=x ,在Rt ACD △中利用勾股定理,列出关于x 的方程即可求解【详解】(1)BD CD =BDC ∴是等腰三角形又BDE CDE ∠=∠.BE EC ∴=,AO OC =OE ∴为ABC 的中位线//OE AB ∴,BAC EOC ∴∠=∠OE AC ⊥,90BAC EOC ∴∠=∠=︒ AB AC ∴⊥,AC 为O 的直径,AB ∴是O 的切线(2)设BD x =,CD BD x ∴==,16AB =,16AD x ∴=-在Rt ADC 中,222AD AC DC +=,8AC =()222168x x ∴-+=,解得:10x =, 10BD ∴=【点睛】本题考查了圆切线的判定,等腰三角形的性质,以及勾股定理,解题关键是熟练掌握圆切线的判定定理,和等腰三角形性质的应用.25.(1)//OD BC ,12CD BC =,证明见解析;(2)见解析 【分析】 (1)根据垂径定理可得点D 是AC 的中点,则OD 是△ABC 的中位线,根据三角形中位线定理即可求证结论;(2)连接OC ,设OP 与O 交于点E ,根据全等三角形的判定证得OAP △≌OCP △,利用全等三角形对应角相等可得OCP OAP ∠=∠,继而根据切线的性质和判定定理即可求证结论.【详解】(1)猜想://OD BC ,12CD BC =证明:∵OD AC ⊥,∴AD =DC ,∵AB 是O 的直径,∴OA OB =,∴OD 是△ABC 的中位线,∴//OD BC ,12CD BC =. (2)证明:连接OC ,设OP 与O 交于点E .∵OD AC ⊥,OD 经过圆心O ,∴AE CE =,即∠AOE =∠COE ,在OAP △和OCP △中,∵OA OC =,OP OP =,∠AOE =∠COE ,∴OAP △≌OCP △,∴OCP OAP ∠=∠,∵PA 是O 的切线,∴90OAP ∠=︒.∴90OCP ∠=︒,即OC PC ⊥,∴PC 是O 的切线.【点睛】本题考查切线的性质定理和判定定理,三角形中位线定理,涉及到全等三角形的判定和性质,解题的关键是熟练掌握切线的有关知识.26.(1)PC 是⊙O 的切线,见解析;(2)154r =【分析】(1)结论:PC 是⊙O 的切线.只要证明OC ∥AD ,推出∠OCP =∠D =90°,即可. (2)先利用锐角三角函数求出PD ,进而求出AP ,再由OC ∥AD ,推出OC OP AD AP=,由此即可计算.【详解】解:(1)结论:PC 是⊙O 的切线.理由:连接OC .如图1,∵AC 平分∠EAB ,∴∠EAC =∠CAB ,又∵OA =OC ,∴∠CAB =∠ACO ,∴∠EAC =∠OCA ,∴OC ∥AD ,∵AD ⊥PD , ∴∠OCP =∠D =90°, ∴PC 是⊙O 的切线.(2)在Rt △ADP 中,∠ADP =90°,AD =6,tan ∠P =34, ∴PD =8tan AD P=∠,AP =10, 设半径为r ,∵OC ∥AD , ∴OC OP AD AP =,即10610r r -=, 解得r =154,故半径为154.【点睛】本题考查直线与圆的位置关系、切线的判定、解直角三角形、平行线的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.。

北大师版九年级数学下册--第三单元 《圆》综合复习同步练习(含答案)

北大师版九年级数学下册--第三单元 《圆》综合复习同步练习(含答案)

初三数学北师大版第三章:知识回顾与测试同步练习(答题时间:50分钟)一、选择题1. 下列命题中正确的是( ) A. 过圆心的线段叫做圆的直径 B. 直径过圆心C. 直径是圆上两点的连线D. 圆内任意一点到圆上任意一点的距离都小于半径 2. ⊙O 的圆心坐标为O (0,0),半径为3,那么点A (2,2)、B (3,1)与⊙O 的位置关系为( )A. 点A 在圆内,点B 在圆外B. 点A 在圆外,点B 在圆内C. 点A 、点B 均在圆内D. 点A 、点B 均在圆外3. 在半径为5cm 的⊙O 中,有一长为5cm 的弦AB ,则圆心O 到AB 的距离为( )A. 5 3B. 52 3C. 5215D. 54 34. 在⊙O 中,两弦AB <CD ,分别过O 作OE ⊥AB 于E ,OF ⊥CD 于F ,则OE 与OF 的关系是( )A. OE >OFB. OE =OFC. OE <OFD. 以上皆有可能 5. 如图所示,⊙O 半径为20cm ,∠S △ABO =( ) A. 253cm 2 B. 503cm 2 D. 2003cm 26. 两圆的半径比为3∶2,当两圆外切时,圆心距为10cm ,那么当两圆内含时其圆心距是( )A. 大于2cm ,且小于6cmB. 小于2cmC. 等于2cmD. 以上结论都不对*7. 如图所示,△ABC 的内切圆O 分别和AB 、BC、CA 切于点D 、E 、F ,∠A =60°,BC =4,△ABC 的周长为10,则DF 的长为( )A. 1B. 2C. 2.5D. 3**8. 如图,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )A. 4-49πB. 4-89πC. 8-49πD. 8-89πA BCE FP二、填空题1. 一条弦分圆周为5∶7两部分,则这条弦所对的圆心角为__________.2. 如图所示,⊙O 的直径为10,弦AB =8,P 是弦AB 上的一个动点,那么OP 的取值范围是__________.OABP3. 如图所示,在⊙O 中,弦AB =2.4cm ,∠C =30°,则⊙O 的半径为__________cm .4. 如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是__________cm 2.68l*5. 如图所示,AB 为⊙O 的直径,CA ⊥AB ,CD =1cm ,DB =3cm ,则AB =__________cm .ABCD*6. 如图所示,AB 是⊙O 的直径,⊙O 过BC 的中点D ,DE ⊥AC 于E ,根据上述条件,可以推出:__________. (要求你填写一个正确的结论即可,不再标注其他字母,不写推理过程)OAE BD**7. 如图所示,扇形AOB 的圆心角为直角,正方形OCDE 内接于扇形,点C 、E 、D 分别在OA 、OB 、︵AB 上,过点A 作AF ⊥ED 交ED 的延长线于F ,垂足为F ,如果正方形OCDE 的边长为1,那么阴影部分的面积为__________.OAB EF**8. 如图所示,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是⊙O 上的任意一点(不与B 、C 重合),已知∠BAC =80°,那么∠BDC =__________.D三、解答题1. 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,求∠DCF 的度数.O CFGDE2. 如图所示,已知AB 为⊙O 的直径,AD 是弦,E 是⊙O 外一点,作EF ⊥AB 于F 点,交AD 于C 点,且ED =EC. 求证:DE 是⊙O 的切线.*3. 相交两圆的半径分别为4cm 和5cm ,公共弦长是6cm ,求圆心距的长.**4. 如图所示,在⊙O 中,AB 是直径,半径为R ,︵AC 的长为13πR . (1)求∠AOC 的度数;(2)若D 为劣弧BC 上一动点,且弦AD 与半径OC 交于点E ,试求△AEC ≌△DEO 时,D 点的位置.**5. 已知AB 是半圆的直径,CD ∥AB ,AB =4,求:(1)如图①,若C、D是半圆上的三分之一点,求阴影部分的面积;(2)如图②,若点P是BA延长线上的点,PC是切线,当其他条件不变时,说明此图中的阴影部分的面积与图①中的阴影部分的面积之间的关系.B B②①P初三数学北师大版第三章:知识回顾与测试同步练习参考答案一、选择题1. B2. A【OA=22<3,故点A在圆内;OB=10>3,故点B在圆外】3. B【过圆心、半径外端点、弦的中点构造直角三角形】4. A5. C【过点O作OC⊥AB于C,则AC=BC,∠AOC=∠BOC=60°. 在Rt△ACO中,AO=20cm,所以OC=10cm,AC=103cm,所以AB=203cm,所以S△ABO=12AB×OC=12×203×10=1003cm2】6. B 【当两圆外切时圆心距等于两圆半径之和,由题意可得两圆半径分别为6cm和4cm. 当两圆内含时圆心距小于半径之差】7. A【连结OD、OE、OF,不难得出AD=AF,BD=BE,CE=CF. 因为△ABC的周长是10,BC=BE+CE=4,所以AD+AF=10-4-4=2,所以AD=1. 因为∠A=60°,所以△ADF 是等边三角形,所以DF=1】8. B【连结AD,则AD⊥BC,且AD=2. 所以S△ABC=12BC×AD=4. 因为∠P=40°,所以∠A=80°,所以S扇形AEDF=80π×22360=89π. 所以阴影部分的面积是S△ABC-S扇形AEDF=4-89π】二、填空题1. 150°2. 3≤OP≤53. 2.4【连结AO并延长交⊙O于点C,则∠ABC=90°,AB=12AC=2.4,即⊙O的半径为2.4cm】4. 60π5. 23【连结AD,则AD⊥BC. 易得△ACD∽△BAD,有CDAD=ADBD. 得AD=3,在Rt△ABD 中,AB=AD2+BD2=23】6. 答案不唯一,例如:DE切⊙O于D【连结OD,因为点D是BC的中点,AO=BO,所以OD ∥AC ,又DE ⊥AC ,所以DE ⊥OD ,所以DE 是⊙O 的切线】7. 2-1【连结OD ,则OD =2,所以AC =OA -OC =2-1. 由题意可知四边形CAFD 是矩形,其面积为AC×CD =2-1. 由圆的对称性可知图形BED 与ACD 面积相等,所以图中阴影部分的面积等于矩形CAFD 的面积】 8. 50°或130°【连结OB 、OC ,易得∠BOC =180°-∠BAC =100°. 当点D 在BC 右侧时,∠BDC =12∠BOC =50°;当点D 在BC 左侧时,∠BDC =12×(360°-100°)=130°,所以∠BDC =50°或130°】三、解答题1. 连结OF ,因为直径CD 平分EF ,所以︵DE =︵DF ,所以∠EOD =∠FOD =40°,∠DCF =12∠FOD =20°.2. 连结OD ,∠A =∠ODA. ∵∠A +∠ACF =90°,∠ACF =∠ECD =∠EDC ,∴∠ODA +∠EDC =90°,∴OD ⊥DE ,即DE 是⊙O 的切线.3. (4+7)cm 或(4-7)cm . 提示:分两种情况(两圆圆心在公共弦同旁和两旁)讨论.4. (1)设∠AOC =n °,则n πR 180=13πR ,解得n =60,所以∠AOC =60°;(2)由(1)知△AOC 是等边三角形. 如果△AEC ≌△DEO ,则CE =OE ,OD =AC. 所以AE ⊥OC ,∠COD =∠ACO =∠AOC =60°,所以OD ∥AC. 所以点D 的位置可描述为∠DOB =60°或AC ∥OD 或劣弧BC 的中点等.5. (1)连结OC 、OD ,则∠COD =13×180°=60°. 因为△ACD 和△COD 有公共底边CD ,又CD ∥AB ,所以这两个三角形的高相等. 所以S △ACD =S △COD . 所以图①中阴影部分的面积为S =60π×22360=23π(2)相等. 道理同(1).。

北师大版初三数学下册单元测试:第三章 圆

北师大版初三数学下册单元测试:第三章 圆

北师大版初三数学下册单元测试:第三章圆选择题已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB 与⊙O的位置关系为()A. 相切B. 相交C. 相切或相离D. 相切或相交【答案】D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于3.此时和半径3的大小不确定,则直线和圆相交、相切都有可能.故选D.选择题如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A. 25°B. 50°C. 60°D. 30°【答案】A【解析】试题解析:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠BAC=∠B=25°,∵OA=OB,∴∠OAB=∠B=25°,故选A.选择题如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A. 10B. 18C. 20D. 22【答案】C【解析】∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故选C.选择题如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A. 2B. 1C.D. 4【答案】A【解析】试题解析:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.选择题如图,在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB 长为半径的圆恰好经过AB的中点D,则AC的长等于()A. 5B. 5C. 5D. 6【答案】A【解析】根据直角三角形斜边上的中线等于斜边的一半,可求出BC以及CD,然后用勾股定理解答即可.连接CD,在Rt△ABC中,则CD=BC==5,依据勾股定理可求AC=.故选:A选择题在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O 为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为A.2,22.5°B.3,30°C.3,22.5°D.2,30°【答案】A【解析】试题分析:连接OA,∵AB与⊙O相切,∴OD⊥AB。

2021-2022学年度强化训练北师大版九年级数学下册第三章 圆专项训练试卷

2021-2022学年度强化训练北师大版九年级数学下册第三章 圆专项训练试卷

北师大版九年级数学下册第三章圆专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB为O的直径,C为D外一点,过C作O的切线,切点为B,连接AC交O于D,∠=︒,点E在AB右侧的半圆周上运动(不与A,B重合),则AEDC38∠的大小是()A.19°B.38°C.52°D.76°2、已知O的半径为5cm,点P到圆心O的距离为4cm,则点P和圆的位置关系()A.点在圆内B.点在圆外C.点在圆上D.无法判断3、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为()A .32 BC .3D .4、如图,O 的半径为10cm ,AB 是O 的弦,OC AB ⊥于D ,交O 于点C ,且CD =4cm ,弦AB 的长为( )A .16cmB .12cmC .10cmD .8cm5、下列说法中,正确的是( )A .相等的圆心角所对的弧相等B .过任意三点可以画一个圆C .周长相等的圆是等圆D .平分弦的直径垂直于弦6)A .2B .3C .4D .5 7、如图,在Rt ABC 中,390,4,tan 4ACB AC A ∠===.以点C 为圆心,CB 长为半径的圆交AB 于点D ,则AD 的长是( )A .1B .75 C .32 D .28、如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB 所对圆周角的是( )A .∠APB B .∠ABDC .∠ACBD .∠BAC9、如图,点A ,B ,C 均在O 上,当35OBC ∠=︒时,A ∠的度数是( ).A .65°B .60°C .55°D .50°10、下列图形中,△ABC 与△DEF 不一定相似的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为___cm .2、如图,点A 、B 、C 、D 、E 在O 上,且弧AB 为50︒,则E C ∠+∠=________.3、如图,在△ABC 中,AB ⊥AC ,∠C =30°,以AB 为直径的⊙O 交BC 于点D ,若BC =4,则图中阴影部分面积为___________(用含π的代数式表示).4、在Rt ABC 中,90BAC ∠=︒,4AC AB ==,D ,E 分别是AB ,AC 的中点,若等腰Rt ADE △绕点A 逆时针旋转,得到等腰11Rt AD E ,记直线1BD 与1CE 的交点为P ,则点P 到AB 所在直线的距离的最大值为________.5、如图,四边形ABCD内接于圆,E为CD延长线上一点,图中与∠ADE相等的角是 _________ .三、解答题(5小题,每小题10分,共计50分)1、如图,PA,PB与⊙O相切,切点为A,B,CD与⊙O相切于点E,分别交PA,PB于点D,C.若PA,PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根.(1)求m的值;(2)求△PCD的周长.2、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且:CF是⊙O的切线.(1)求证:∠DCF=∠CAD.(2)探究线段CF,FD,FA的数量关系并说明理由;(3)若cos B35=,AD=2,求FD的长.3、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.(1)求证:AM是⊙O的切线;(2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC= 30°,求CD的长.4、如图,以四边形ABCD的对角线BD为直径作圆,圆心为O,点A、C在O上,过点A作AE CD⊥的延长线于点E,已知DA平分BDE∠.(1)求证:AE 是O 切线;(2)若4AE =,6CD =,求O 的半径和AD 的长.5、已知:BD 为O 的直径,四边形ACDE 为O 的内接四边形,分别连接BE 、AD ,BE 交AC 于点H ,且AE CD =.(1)如图1,求证:BE AC ⊥;(2)如图2,延长BE 交CD 的延长线于点F ,BE 交AD 于点G ,连接CE ,求证:BGD FEC ∠=∠;(3)如图3,在(2)的条件下,AC 交BD 于点M ,若DG EF =,tan ADB ∠=EG =OM 的长.-参考答案-一、单选题1、B【分析】连接,BD 由AB 为O 的直径,求解903852,CBD ∠=︒-︒=︒ 结合CB 为O 的切线,求解905238,ABD ABC DBC ∠=∠-∠=︒-︒=︒ 再利用圆周角定理可得答案.【详解】解:连接,BD AB 为O 的直径,90,90,ADB BDC ∴∠=︒∠=︒38,C ∠=︒903852,CBD ∴∠=︒-︒=︒ CB 为O 的切线,90,905238,ABC ABD ABC DBC ∴∠=︒∠=∠-∠=︒-︒=︒38,AED ABD ∴∠=∠=︒故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.2、A【分析】直接根据点与圆的位置关系进行解答即可.解:∵⊙O 的半径为5cm ,点P 与圆心O 的距离为4cm ,5cm >4cm ,∴点P 在圆内.故选:A .【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外.3、C【分析】连接OA 、OB ,则OAB 为等腰直角三角形,由正方形面积为18,可求边长为2=18AB ,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OA ,OB ,则OA =OB ,∵四边形ABCD 是正方形,∴90AOB ∠=︒,∴OAB 是等腰直角三角形,∵正方形ABCD 的面积是18,∴2=18AB ,∴222+18OA OB AB ==,即:2218OA =故选C.【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.4、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出6cm=-=,即可利用勾股定理求出OD OC CDAD,即可得到答案.8cm【详解】解:如图所示,连接OA,∵半径OC⊥AB,∴AB=2AD,∠ODA=90°,CD=,∵4cm∴6cmOD OC CD=-=,∴8cmAD==,∴216cm==,AB AD故选:A.【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键.5、C【分析】根据确定圆的条件,圆心角、弦、弧之间的关系,垂径定理和圆周角定理逐个判断即可.【详解】A、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法不正确;B、不在同一直线上的三个点确定一个圆,若这三个点在一条直线上,就不能确定圆,故本选项说法不正确;C、周长相等半径就相等,半径相等的两个圆能重合,故本选项说法正确;D、平分弦(不是直径)的直径垂直于弦,故本选项说法不正确;故选:C.【点睛】本题考查的是对圆的认识,圆心角、弦、弧之间的关系,垂径定理,利用相关的知识逐项判断是基本的方法.6、B【分析】如图,O为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,再由等边三角形的性质,可得∠OAB=30°,12AD AB,然后根据锐角三角函数,即可求解.【详解】解:如图,O为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,根据题意得:OA,∠OAB =30°,12AD AB =, 在Rt AOD △中,3cos 2AD OA OAB =⋅∠== , ∴AB =3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.7、B【分析】利用三角函数及勾股定理求出BC 、AB ,连接CD ,过点C 作CE ⊥AB 于E ,利用cos BC BE B AB BC ==,求出BE ,根据垂径定理求出BD 即可得到答案.【详解】解: 在Rt ABC 中,390,4,tan 4ACB AC A ∠===,∴BC =3,5AB =,连接CD ,过点C 作CE ⊥AB 于E , ∵cos BC BE B AB BC==,∴353BE =,解得95 BE=,∵CB=CD,CE⊥AB,∴1825 BD BE==,∴187555 AD AB BD=-=-=,故选:B.【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.8、C【分析】根据题意可直接进行求解.【详解】解:由图可知:AB所对圆周角的是∠ACB或∠ADB,故选C.【点睛】本题主要考查圆周角的定义,熟练掌握圆周角是解题的关键.9、C【分析】先由OB=OC,得到∠OCB=∠OBC=35°,从而可得∠BOC=180°-∠OCB-∠OBC=110°,再由圆周角定理即可得到答案.【详解】解:∵OB=OC,∴∠OCB=∠OBC=35°,∴∠BOC=180°-∠OCB-∠OBC=110°,∴1=552A BOC∠=∠︒,故选C.【点睛】本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键.10、A【分析】根据相似三角形的判定定理进行解答.【详解】解:A、当EF与BC不平行时,△ABC与△DEF不一定相似,故本选项符合题意;B、由∠ABC=∠EFC=90°,∠ACB=∠EDF可以判定△ABC∽△DEF,故本选项不符合题意;C、由圆周角定理推知∠B=∠F,又由对顶角相等得到∠ACB=∠EDF,可以判定△ABC∽△DEF,故本选项不符合题意;D、由圆周角定理得到:∠ACB=90°,所以根据∠ACB=∠CDB=90°,∠ABC=∠CBD,可以判定△ABC∽△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理.二、填空题1、24【分析】连接OA,过点O作OD⊥AB交AB于点C交⊙O于D,再根据勾股定理求出AC的长,进而可得出AB的长.【详解】解:连接OA,过点O作OD⊥AB交AB于点C交⊙O于D.∵OC⊥AB,∴AC=CB,∵OA=OD=13cm,CD=8cm,∴OC=OD﹣CD=5(cm),∴12(cm)AC==,∴AB =2AC =24(cm ),故答案为:24.【点睛】本题主要考查垂径定理,掌握垂径定理和勾股定理是解题的关键.2、155︒【分析】先根据弧的度数与它所对应的圆心角的度数的关系,求得弧AB 对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得E C ∠+∠.【详解】弧的度数等于它所对应的圆心角的度数,由于弧AB 为50︒,所以3=50∠︒ ,顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:112E ∠=∠ ,122C ∠=∠ , ()()()11112360336050155222E C ∠+∠=∠+∠=︒-∠=︒-︒=︒, 故答案为:155︒.【点睛】本题考查弧、圆周角、圆心角的概念,及它们之间的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.3、3π【分析】连接OD ,根据阴影部分面积为OBD ODA S S +△扇形,根据等边三角形的面积,扇形面积公式进行计算即可【详解】解:如图,连接OD,30AB AC C ⊥∠=︒,4BC =,16022B AB BC ∴∠=︒==,, AB 为直径112OB OD AB ∴=== OBD ∴△是等边三角形60BOD ∴∠=︒180120AOD BOD ∴∠=︒-∠=︒21OBD S ∴==△ ∴阴影部分面积为OBD ODA S S +△扇形212013603ππ⨯=+=故答案为:3π【点睛】 本题考查了求扇形面积,添加辅助线将阴影部分面积转化为OBD ODA S S +△扇形是解题的关键.4、1##【分析】首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长.【详解】解:如图,作PG ⊥AB ,交AB 所在直线于点G ,∵D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,∵∠CAB =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点,∴AD =AE 1=AD 1=PD 1=2,则BD 1=故∠ABP =30°,则PB∴PG =12PB =1,故点P 到AB 所在直线的距离的最大值为:PG =1故答案为:1+【点睛】本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG 的最长时P 点的位置是解题关键.5、∠ABC【分析】根据圆内接四边形的性质可得180ADC ABC ∠+∠=︒,再由题意可得180ADC ADE ∠+∠=︒,由等式的性质即可得出结果.【详解】解:∵四边形ABCD 内接于圆,∴180ADC ABC ∠+∠=︒,∵E 为CD 延长线上一点,∴180ADC ADE ∠+∠=︒,∴ABC ADE ∠=∠,故答案为:ABC ∠.【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.三、解答题1、(1)2m =;(2)2【分析】(1)根据切线长定理可得PA PB =,则一元二次方程的判别式为0,进而即可求得m 的值;(2)根据(1)的结论求得PA 的长,CD 与⊙O 相切于点E ,则,ED DA CE CB ==,根据△PCD 的周长2PC CD PD PC CE ED PD PB PA PA =++=+++=+=即可求解.【详解】 解: PA ,PB 与⊙O 相切,∴PA PB =PA ,PB 的长是关于x 的一元二次方程x 2﹣mx +m ﹣1=0的两个根 ()2410m m ∴∆=--=解得2m =(2)2m =2210x x ∴--=121x x ==1PA PB ∴==PA ,PB 与⊙O 相切, CD 与⊙O 相切于点E ,∴,ED DA CE CB ==∴△PCD 的周长2PC CD PD PC CE ED PD PB PA PA =++=+++=+=2=【点睛】本题考查了切线长定理,一元二次方程根的判别式,解一元二次方程,掌握切线长定理是解题的关键.2、(1)见解析;(2)2·FC FD FA =,见解析;(3)187【分析】(1)连接OC ,根据直径所对的圆周角为直角及切线的性质和各角之间的等量关系即可证明;(2)根据相似三角形的判定定理可得ΔΔΔΔ~ΔΔΔΔ,依据相似三角形的性质:对应边成比例即可得出;(3)根据同弧所对的圆周角相等可得:B ADC ∠=∠,3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,利用锐角三角函数可得65CD =,由勾股定理确定85AC =,由此得出34CD AC =,即为(2)中的相似比,设3FD x =,则4FC x =,32AF x =+,将其代入(2)中结论求解即可.【详解】解:(1)连接OC ,如图所示:∵AD 为O 直径,∴90ACD ∠=︒,90CAD ADC ∠+∠=︒,∵CF 为O 的切线,∴90OCF ∠=︒,即90OCD DCF ∠+∠=︒,∵OC OD =,∴OCD ADC ∠=∠,∴DCF CAD ∠=∠;(2)在ΔΔΔΔ与AFC ∆中,∵DCF CAD ∠=∠,F F ∠=∠,∴ΔΔΔΔ~ΔΔΔΔ, ∴FC FDAF FC =,∴2·FC AF FD =;(3)∵B ADC ∠=∠, ∴3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,2AD =,3cos 5CDADC AD ∠==, ∴6·cos 5CD AD ADC =∠=,∴85AC ==, ∴34CDAC =,由(2)结论可得:ΔΔΔΔ~ΔΔΔΔ, ∴34FC FD CDAF FC AC ===,设3FD x =,则4FC x =,32AF x =+,将其代入结论(2)可得:()()24332x x x =+,解得:67x=或0x=(舍去),∴1837 FD x==.【点睛】题目主要考查圆周角定理、相似三角形的判定和性质、锐角三角函数解三角形、勾股定理等,理解题意,综合运用这些知识点是解题关键.3、(1)见解析(2)CD=【分析】(1)由题意易得BC=BD,∠DAM=12∠DAF,则有∠CAB=∠DAB,进而可得∠BAM=90°,然后问题可求证;(2)由题意易得CD//AM,∠ANC=∠OCE=30°,然后可得OE=1,(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E∴BC=BD∴∠CAB=∠DAB∵AM是∠DAF的平分线∴∠DAM=12∠DAF∵∠CAD+∠DAF=180°∴∠DAB+∠DAM=90°即∠BAM=90°,AB⊥AM∴AM是⊙O的切线(2)解:∵AB⊥CD,AB⊥AM∴CD//AM∴∠ANC=∠OCE=30°在R t△OCE中,OC=2∴OE=1,∵AB是⊙O的直径,弦CD⊥AB于点E∴CD=2CE=【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.4、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OA⊥AE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OF⊥CD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.(1)证明:如图,连接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切线;(2)解:如图,取CD中点F,连接OF,∴OF⊥CD于点F.∴四边形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴5OD=,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴AD=∴AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.5、(1)见解析;(2)见解析;(3【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE //AC ,再证明90BED ∠=︒,即可证得结论;(2)根据三角形外角的性质可证得结论;(3)连接AB ,由圆周角定理得AB AD =AB =,得2AD a =,BD =,再证明2CE AD a ==,证明()ΔΔBGD CEF AAS ≅得2BG CE a ==,通过解直角三角形求出a 的值和BO ,再证明BHM BED ,根据相似三角形的性质可得出BM ,根据OM BM BO =-可得结论.【详解】 解:(1)证明:AE CD =∵ADE CAD ∴∠=∠∴DE//ACBHC BED ∴∠=∠∵BD 为O 的直径90BED ︒∴∠=90BHC ︒∴∠=,即BE AC ⊥(2)证明:∵BGD ∠是△DEG 的外角,=BGD BED EDG ∴∠∠+∠AE CD =∵CED ADE ∴∠=∠90BED DEF ︒∠=∠=,FEC DEF CED ∠=∠+∠BED ADE DEF DEC ∴∠+∠=∠+∠∴BGD FEC ∠=∠(3)连接AB ,如图,∵BD 是O 的直径90BAD BED ︒∴∠=∠=在Rt ABD ∆中,tan ADB ∠=AB AD ∴=∴设AB =,则2AD a =,由勾股定理得:BD =AE CD =∵∴AE CD =AE ED CD ED ∴+=+∴AD CE =∴2CE AD a ==∵DBE ∠和DCE ∠所对的弧都是DE∴DBE DCE ∠=∠在DBG △和FCE △中BGD CEF DBG FCE DG FE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGD CEF AAS ∴∆≅∆2,BG CE a BDG F ∴==∠=∠在Rt ABG ∆中,sin AB AGB BG ∠===60AGB ︒∴∠= ∴30ABG ∠=︒ ∴11222AG BG a a ==⨯=∴2DG AD AG a a a =-=-=在Rt DEG ∆中,90DEG ︒∠=,60DGE AGB ︒∠=∠=,EG =∴30EDG ∠=︒∴2DG EG a ===由勾股定理得,6DE =∴12AB ==,BD =2BG a ==CF BD ∴==BO ∴=在Rt AGH ∆中,90AHG ︒∠=,60AGH ︒∠=,AG a ==∴30GAH ∠=︒12GH AG ∴==6AH ∴=∴BH BG GH =-==BE BG EG ∴=+=∵∠BHM =∠BED =90°,∠HBM =∠EBD∴BHM BED::BH BE BM BD ∴=,即:BM =解得,BM =OM BM BO ∴=-==【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题.。

2022年最新北师大版九年级数学下册第三章 圆专题练习试题(含详细解析)

2022年最新北师大版九年级数学下册第三章 圆专题练习试题(含详细解析)

北师大版九年级数学下册第三章 圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC 中,90ACB ∠=︒,AC BC =,点D 是边AC 上一动点,连接BD ,以CD 为直径的圆交BD 于点E .若AB 长为4,则线段AE 长的最小值为( )A 1B .2C .D 2、如图,AB 是半圆O 的直径,四边形CDMN 和DEFG 都是正方形,其中点C ,D ,E 在AB 上,点F ,N 在半圆上.若10AB =,则正方形CDMN 的面积与正方形DEFG 的面积之和是( )A .25B .50C .30π-D .502π-3、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此时木板与桌面成30°角,则点A 运动到A 2时的路径长为( )A .10B .4πC .72πD .524、如图,O 的半径为10cm ,AB 是O 的弦,OC AB ⊥于D ,交O 于点C ,且CD =4cm ,弦AB 的长为( )A .16cmB .12cmC .10cmD .8cm5、如图,在平面直角坐标系xOy 中,点A (0,3),点B (2,1),点C (2,-3).则经画图操作可知:△ABC 的外接圆的圆心坐标是( )A .(-2,-1)B .(-1,0)C .(-1,-1)D .(0,-1)∠的度数为()6、如图,四边形ABCD内接于O,若130C∠=︒,则BODA.50°B.100°C.130°D.150°7、如图,AB 为⊙O 的直径,弦CD⊥AB,垂足为点E,若⊙O的半径为5,CD=8,则AE的长为()A.3 B.2 C.1 D8、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定∠=()9、如图,AB是O的直径,C、D是O上的两点,若130BOC∠=︒,则ADCA.15°B.20°C.25°D.30°10、如图,点A、B、C在⊙O上,∠BAC=56°,则∠BOC的度数为()A .28°B .102°C .112°D .128°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB 为O 的直径,弦CD AB ⊥于点H ,8CD =,5OA =,则AH 的长为________.2、AC 是⊙O 的直径,弦BD ⊥AC 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =12cm ,OE =52cm ,则OF =________cm . 3、如图,将Rt△ABC 的斜边AB 与量角器的直径恰好重合,B 点与零刻度线的一端重合,∠ABC =38°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是 ___.4、“化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O(纸片),其半径为r.求作:一个正方形,使其面积等于⊙O的面积.作法:①如图1,取⊙O的直径AB,作射线BA,过点A作AB的垂线l;②如图2,以点A为圆心,OA为半径画弧交直线l于点C;③将纸片⊙O沿着直线l向右无滑动地滚动半周,使点A,B分别落在对应的A',B'处;④取CB'的中点M,以点M为圆心,MC为半径画半圆,交射线BA于点E;⑤以AE为边作正方形AEFG.正方形AEFG即为所求.根据上述作图步骤,完成下列填空:(1)由①可知,直线l 为⊙O 的切线,其依据是________________________________.(2)由②③可知,AC r =,AB r π'=,则MC =_____________,MA =____________(用含r 的代数式表示).(3)连接ME ,在Rt AME △中,根据222AM AE EM +=,可计算得2AE =_________(用含r 的代数式表示).由此可得正方形o AEFG S S =.5、已知某扇形的半径为5cm ,圆心角为120°,那么这个扇形的弧长为 _____cm .三、解答题(5小题,每小题10分,共计50分)1、如图,AB 为O 的直径,弦,DA BC 的延长线相交于点P ,且BC PC =求证:2BAD P ∠=∠.2、如图,在▱ABCD 中,∠D =60°,对角线AC ⊥BC ,⊙O 经过点A 、点B ,与AC 交于点M ,连接AO 并延长与⊙O 交于点F ,与CB 的延长线交于点E ,AB =EB .(1)求证:EC 是⊙O 的切线;(2)若AD =O 的半径.3、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程.已知:如图,ABC.∥.求作:直线BD,使得BD AC作法:如图,①分别作线段AC,BC的垂直平分线1l,2l,两直线交于点O;②以点O为圆心,OA长为半径作圆;③以点A为圆心,BC长为半径作孤,交AB于点D;④作直线BD.所以直线BD就是所求作的直线.根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接AD,=,∵点A,B,C,D在O上,AD BC∴AD=______.∴DBA CAB ∠=∠(______)(填推理的依据).∴BD AC ∥.4、如图,AB BC =,ABC BCE α∠=∠=,点D 是BC 上一点,AD 与BE 相交于点F ,且BFD α∠=.(1)求证:BFD ABD ∽△△; (2)求证:AD BE =;(3)若点D 是BC 中点,连接FC ,求证:FC 平分DFE ∠.5、如图,已知正方形 ABCD 的边长为4,以点 A 为圆心,1为半径作圆,点 E 是⊙A 上的一动点,点 E 绕点 D 按逆时针方向转转 90°,得到点 F ,接 AF .(1)求CF 长;(2)当A 、E 、F 三点共线时,求EF 长;(3) AF 的最大值是__________.-参考答案-一、单选题1、D【分析】如图,连接,CE 由CD 为直径,证明E 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AEAO OE 最小,再利用锐角的正弦与勾股定理分别求解,AO OE ,即可得到答案.【详解】解:如图,连接,CE 由CD 为直径,90,CED BECE ∴在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AE AO OE 最小,90ACB ∠=︒,AC BC =,4,AB =45,ABC BAC ∴∠=∠=︒sin 4522,2,AC BC AB OB OC OE 2222210,AO 10 2.AE故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.2、A【分析】连接ON,OF,根据题意可得:ON=OF=5,设CN=x,EF=y,由勾股定理得:x2+(x+DO)2=25①,y2+(y-DO)2=25②,然后①-②化简得:(x+y)(x+DO-y)=0,从而得到y-DO=x,再代入②,即可求解.【详解】解:如图,连接ON,OF,AB ,∵直径10∴ON=OF=5,设CN=x,EF=y,由勾股定理得:x2+(x+DO)2=25①,y2+(y-DO)2=25②,①-②化简得:(x+y)(x+DO-y)=0,因为x+y>0,所以x+DO-y=0,即y-DO=x,代入②,得x2+y2=25,即正方形CDMN的面积与正方形DEFG的面积之和是25.【点睛】本题主要考查了圆的基本性质,勾股定理等知识,熟练掌握圆的基本性质,勾股定理等知识是解题的关键.3、C【分析】根据题意可得:第一次转动的路径是以点B 为圆心,AB 长为半径的弧长,此时圆心角190ABA ∠=︒ ,第二次转动的路径是以点C 为圆心,A 1C 长为半径的弧长,此时圆心角21903060A CA ∠=︒-︒=︒ ,再由弧长公式,即可求解.【详解】解:如图,根据题意得:15AB A B === ,123AC A C == , 第一次转动的路径是以点B 为圆心,AB 长为半径的弧长,此时圆心角190ABA ∠=︒ , ∴190551802AA l ππ⨯== , 第二次转动的路径是以点C 为圆心,A 1C 长为半径的弧长,此时圆心角21903060A CA ∠=︒-︒=︒ , ∴21603180A A l ππ⨯== , ∴点A 运动到A 2时的路径长为1215722AA A A l l πππ+=+= .【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是解题的关键.4、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出6cm=-=,即可利用勾股定理求出OD OC CD8cmAD,即可得到答案.【详解】解:如图所示,连接OA,∵半径OC⊥AB,∴AB=2AD,∠ODA=90°,CD=,∵4cm∴6cm=-=,OD OC CD∴8cmAD==,∴216cm==,AB AD故选:A.【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键.5、A【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.【详解】解:∵△ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:A【点睛】此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.6、B【分析】根据圆内接四边形的性质求出∠A的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB =130°,∴∠A =50°,由圆周角定理得,BOD ∠=2∠A =100°,故选:B .【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7、B【分析】连接OC ,由垂径定理,得到CE =4,再由勾股定理求出OE 的长度,即可求出AE 的长度.【详解】解:连接OC ,如图∵AB 为⊙O 的直径,CD ⊥AB ,垂足为点 E ,CD =8, ∴118422CE CD ==⨯=,∵5AO CO ==,∴3OE ,∴532AE =-=;故选:B .【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出3OE =.8、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.【详解】解:由两点距离公式可得点(8,610,又O的半径为10,∴点(8,6)到圆心的距离等于半径,∴点(8,6)在O上,故选A.【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.9、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=12∠BOC=65°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.10、C【分析】直接由圆周角定理求解即可.【详解】解:∵∠A =56°,∠A 与∠BOC 所对的弧相同,∴∠BOC =2∠A =112°,故选:C .【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.二、填空题1、8【分析】如图所示,连接OC ,由垂径定理可得1=42CH DH CD ==,再由勾股定理求出OH ,即可得到答案.【详解】解:如图所示,连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点H ,CD =8, ∴1=42CH DH CD ==,∠OHC =90°, ∵OC =OA =5,∴OH,∴AH=OA+OH=8,故答案为:8.【点睛】本题主要考查了勾股定理和垂径定理,解题的关键在于能够熟练掌握垂径定理.2【分析】根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解. 【详解】解:如图,连接BO∵AC是⊙O的直径,弦BD⊥AC于点E,BD=12cm,∴162BE ED BD cm===,∵OE =52cm ,BD ⊥AC ,∴132BO CO AO ===cm ,∴9CE CO CE cm =+=,BC =,∵OF ⊥BC ,∴12CF BF BC ==,∴OF ,如图,∵OE =52cm ,BD ⊥AC , 132BO CO AO cm ===,∴4,EC CO OE cm BC =-==,∵OF ⊥BC ,∴12BF CF BC ==,∴OF =.【点睛】 本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.3、76°或142°【分析】设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.【详解】解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,∵Rt△ABC的斜边AB与量角器的直径恰好重合,∴A、C、B、D四点共圆,圆心为点O,∴∠BOD=2∠BCD,①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,连接OD1,则∠BOD1=2∠BCD1=76°;②若BC为等腰三角形的腰时,当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,连接OD2,则∠BOD2=2∠BCD2=142°,当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,综上,点D在量角器上对应的度数是76°或142°,故答案为:76°或142°.【点睛】本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.4、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2)()12r π+,()12r π-;(3) 2r π【分析】(1)根据切线的定义判断即可.(2)由CB '=AC +AB ',2CB MC '=计算即可;根据MA MC AC =-计算即可. (3)根据勾股定理,得2AE 即为正方形的面积,比较与圆的面积的大小关机即可.【详解】解:(1)∵⊙O 的直径AB ,作射线BA ,过点A 作AB 的垂线l ,∴经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;(2)根据题意,得AC =r ,AB '=22πr =πr , ∴CB '=AC +AB '=r +πr ,∴2CB MC '==()12r π+; ∵MA MC AC =-,∴MA =()12rπ+-r =()12rπ-,故答案为:()12rπ+,()12rπ-;(3)如图,连接ME ,根据勾股定理,得22222AE ME MA MC MA =-=-=()()2211[][]22rrπ+π--=2r π;故答案为:2r π.【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.5、103π 【分析】根据弧长公式代入求解即可.【详解】解:∵扇形的半径为5cm ,圆心角为120°, ∴扇形的弧长=120510=1803ππ︒⨯⨯︒. 故答案为:103π. 【点睛】 此题考查了扇形的弧长公式,解题的关键是熟练掌握扇形的弧长公式:180n r π,其中n 是扇形圆心角的度数,r 是扇形的半径.三、解答题1、见解析【分析】 如图:连接AC ,根据AB 为O 的直径可得∠ACB =90°,即AC ⊥BP .再根据BC =PC 可知AC 为BP 的垂直平分线可得AB =AP ,根据等腰三角形的性质得到∠P =∠B ,最后由三角形外角的性质即可证明.【详解】证明:如图:连接AC ,∵AB 为圆O 的直径,∴∠ACB =90°,即AC ⊥BP .∵BC =PC ,∴AC 为BP 的垂直平分线,∴AB =AP ,∴∠P =∠B ,∴∠BAD =∠P +∠B =2∠P .【点睛】本题主要考查了圆周角定理、垂直平分线的判定与性质、三角形外角的性质等知识点,根据题意作出辅助线、构造出圆周角是成为解答本题的关键.2、(1)见详解;(2)4.【分析】(1)连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;(2)根据平行四边形的性质得到BC=AD,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =23 ,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC∴OA =sin 60OH ︒=4, ∴ ⊙O 的半径为4.【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键.3、(1)作图见解析;(2),BC 在同圆中,等弧所对的圆周角相等【分析】(1)根据题干的作图步骤依次作图即可;(2)由作图可得AD BC =,证明AD BC =,利用圆周角定理可得DBA CAB ∠=∠,从而可得答案.【详解】解:(1)如图,直线BD 就是所求作的直线(2)证明:连接AD ,∵点A ,B ,C ,D 在O 上,AD BC =,∴AD BC =.∴DBA CAB ∠=∠(在同圆中,等弧所对的圆周角相等).∴BD AC ∥.故答案为:,BC 在同圆中,等弧所对的圆周角相等【点睛】本题考查的是作线段的垂直平分线,三角形的外接圆,平行线的作图,圆周角定理的应用,掌握“圆周角定理”是理解作图的关键.4、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在BDF 和ABD 中,=BFD ABD α∠=∠,BDF ADB ∠=∠,故可证明三角形相似.(2)由ABD BCE ≌得出AD BE =.(3)法一:由题意知BD CD =,由BFD ABD ∽得BD FD AD BD=,有22BD DF DA CD =⋅=,所以可得CD DF AD CD=,又因为ADC CDF ∠=∠可得CDF ADC ∽,DFC DCA ∠=∠;由于1802BAC BCA DCA DFC α︒-∠=∠==∠=∠,180180EFC 18022ααα︒-︒-∠=︒--=,进而说明DFC EFC ∠=∠,得出FC 平分DFE ∠.法二:通过BFD BCE α∠=∠=得出F 、D 、C 、E 四点共圆,由CD BD CE ==得DFC EFC ∠=∠,从而得出FC 平分DFE ∠.【详解】解:(1)证明在BDF 和ABD 中BFD ABD BDF ADB DBF DAB ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩∴ BDF ABD ∽.(2)证明:在ABD 和BCE 中DAB EBC AB BCABD BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD BCE ∴≌ ()ASAAD BE ∴=.(3)证明:BFD ABD ∽2BD DF DA ∴=⋅ 又D 是BC 中点BD CD ∴=2CD DF DA ∴=⋅CDF ADC ∴∠=∠CDF ADC ∴∽DFC DCA ∴∠=∠AB AC =,ABC α∠=1802BAC BCA α︒-∴∠=∠= 1802DFC DCA BCA α︒-∴∠=∠=∠= 180180EFC 18022ααα︒-︒-∴∠=︒--= DFC EFC ∴∠=∠FC ∴平分DFE ∠.法二:BFD BCE α∠=∠=∴F 、D 、C 、E 四点共圆 又D 是BC 点,CD BD CE ∴==DFC EFC ∴∠=∠FC ∴平分DFE ∠.【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.5、(1)1;(211;(3)1【分析】(1)连接AE ,根据同角的余角相等可得:EDA FDC ∠=∠,利用全等三角形的判定定理可得:EDA FDC ∆≅∆,再由其性质即可得解;(2)分两种情况讨论:①当点E 在正方形内部时,点A 、E 、F 三点共线时,AF 与圆C 相切;②当点E 在正方形外部时,点A 、1E 、1F 三点共线时,1AF 与圆C 相切;两种情况分别利用勾股定理进行求解即可得;(3)根据题意判断出AF 最大时,点C 在AF 上,根据正方形的性质求出AC ,从而得出AF 的最大值.【详解】解:(1)连接AE ,如图所示:∵90EDF ADC ∠=∠=︒,即:90EDA ADF ADF FDC ∠+∠=∠+∠=︒,∴EDA FDC ∠=∠,在EDA ∆与FDC ∆中,ED FD EDA FDC AD DC =⎧⎪∠=∠⎨⎪=⎩, ∴EDA FDC ∆≅∆,∴1CF AE ==;(2)①如图所示:当点A 、E 、F 三点共线时,AF 与圆C 相切,则90AFC ∠=︒,AC ==1CF =,∴AF =,∴1EF AF AE =-=;②如图所示:当点A 、1E 、1F 三点共线时,1AF 与圆C 相切,则190AFC ∠=︒,AC =11CF =,∴1AF=∴111EF AF AE=+;综合可得:当点A、E、F三点共线时,EF11;(3)如图所示,点C在线段AF上,AF取得最大值,AF AC CF=+,∵AC=∴1AF=,即:AF的最大值是1,故答案为:1.【点睛】题目主要考查正方形的性质,切线及旋转的性质,勾股定理等,理解题意,画出相应辅助图形是解题关键.。

北师版数学下册3.1圆(练习题课件)

北师版数学下册3.1圆(练习题课件)

*7.【中考·毕节】如图,点 A,B,C 在⊙O 上,∠A=36°,∠C =28°,则∠B 等于( C ) A.100° B.72° C.64° D.36°
【点拨】连接 OA,先根据等腰三角形的性质 得到∠OAC=∠C=28°,再根据等腰三角形的 性质得到∠B=∠OAB,即可求出∠B.
8.【2020·常州】如图,AB 是⊙O 的弦,点 C 是优弧 AB 上的动 点(C 不与 A,B 重合),CH⊥AB,垂足为 H,点 M 是 BC 的 中点.若⊙O 的半径是 3,则 MH 的最大值是( A ) A.3 B.4 C.5 D.6
9.与圆心的距离不大于半径的点所组成的图形是( D ) A.圆的外部(包括边界) B.圆的内部(不包括边界) C.圆 D.圆的内部(包括边界)
10.若⊙O 的面积为 25π,在同一平面内有一个点 P,且点 P 到 圆心 O 的距离为 4.9,则点 P 与⊙O 的位置关系为( C ) A.点 P 在⊙O 外 B.点 P 在⊙O 上 C.点 P 在⊙O 内 D.无法确定
13.如图,A,B,C 都是⊙O 上的点,且点 A,O,B 在同一条 直线上,连接 OC,AC. (1)指出图中的半径与直径.
解:图中的半径有 3 条,分别是 OA,OB,OC;直径有 1 条, 是 AB.
(2)指出图中的弦、弧、优弧.
解:图中的弦有 2 条,分别是 AC,AB;弧有 6 条,分别是
使用 说明
此课件下载后
背Leabharlann 景 图 片 可 单击输入您的封面副标题

一键修改编辑
【提示】下载后此页用户可自行删除!
【提示】下载后此页用户可自行删除!
【提示】下载后此页用户可自行删除!
失量 图标
【提示】下载后此页用户可自行删除!

北师大版九年级下册数学第三章圆练习题(带解析)(2021年整理)

北师大版九年级下册数学第三章圆练习题(带解析)(2021年整理)

(完整)北师大版九年级下册数学第三章圆练习题(带解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北师大版九年级下册数学第三章圆练习题(带解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北师大版九年级下册数学第三章圆练习题(带解析)(word版可编辑修改)的全部内容。

北师大版九年级下册数学第三章圆练习题(带解析) 考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、已知两个半径不相等的圆外切,圆心距为,大圆半径是小圆半径的倍,则小圆半径为A.或B.C.D.2、如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=400,则∠OCB的度数为【】A.400B.500C.650D.7503、已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是A.相离B.外切C.相交D.内切4、如图所示,在⊙O中,,∠A=30°,则∠B=A.150°B.75°C.60°D.15°5、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A.3B.C.2D.6、在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=A.5B.C.D.67、如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA8、如图所示是某公园为迎接“中国﹣﹣南亚博览会"设置的一休闲区.∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是A.米2B.米2C.米2D.米2更多功能介绍www.ykw18。

2021-2022学年北师大版九年级数学下册第三章 圆专题练习试卷(名师精选)

2021-2022学年北师大版九年级数学下册第三章 圆专题练习试卷(名师精选)

北师大版九年级数学下册第三章 圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知⊙O 的半径为4,点P 在⊙O 外部,则OP 需要满足的条件是( )A .OP >4B .0≤OP <4C .OP >2D .0≤OP <22、如图,四边形ABCD 内接于⊙O ,连接BD ,若AC BC =,∠BDC =50°,则∠ADC 的度数是( )A .125°B .130°C .135°D .140°3、如图,点A ,B ,C 均在O 上,当35OBC ∠=︒时,A ∠的度数是( ).A.65°B.60°C.55°D.50°4、如图,在圆中半径OC∥弦AB,且弦AB=CO=2,则图中阴影部分面积为()A.16πB.13πC.23πD.π5、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外6、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角45ACB∠=︒,则这个人工湖的直径AD为()m.A.B.C.D.2007、如图,在ABC中,90ABC︒∠=,30BAC︒∠=,8AC=.将ABC绕点A按逆时针方向旋转90︒后得到AB C''△,则图中阴影部分面积为()A.4πB.8π-C.4π-D.8、已知,在圆中圆心角度数为45°,半径为10,则这个圆心角所对的扇形面积为()A.52πB.5πC.10πD.252π9、如图,O的半径为10cm,AB是O的弦,OC AB⊥于D,交O于点C,且CD=4cm,弦AB的长为()A.16cm B.12cm C.10cm D.8cm10、如图,在Rt ABC中,390,4,tan4ACB AC A∠===.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1 B.75C.32D.2 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.2、如图,正方形ABCD内接于⊙O,点P在AB上,则∠BPC的度数为_____.3、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.4、如图,它是在纸板上剪下的一个半圆和一个圆形,它们恰好能组成一个圆锥模型.已知半圆的半径为1,则该圆锥的侧面积是 _____.5、如图,将半径为4,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是_____.三、解答题(5小题,每小题10分,共计50分)1、新定义:在一个四边形中,若有一组对角都等于90°,则称这个四边形为双直角四边形.如图1,在四边形ABCD中,∠A=∠C=90°,那么四边形ABCD就是双直角四边形.(1)若四边形ABCD是双直角四边形,且AB=3,BC=4,CD=2,求AD的长;(2)已知,在图2中,四边形ABCD内接与⊙O,BC=CD且∠BAC=45°;①求证:四边形ABCD是双直角四边形;②若AB=AC,AD=1,求AB的长和四边形ABCD的面积.2、如图,正方形网格中,每个小正方形的边长都是一个单位长度,ABC在平面直角坐标系中的位置如图所示.(1)画出ABC 关于y 轴对称的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90 得到的222A B C △;(3)在(2)的旋转变换中,求线段BC 扫过的面积.3、已知:如图,△ABC 为锐角三角形,AB =AC求作:一点P ,使得∠APC =∠BAC作法:①以点A 为圆心, AB 长为半径画圆;②以点B 为圆心,BC 长为半径画弧,交⊙A 于点C ,D 两点;③连接DA 并延长交⊙A 于点P点P 即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC ,BD∵AB =AC ,∴点C 在⊙A 上∵BC =BD ,∴∠_________=∠_________∴∠BAC =12∠CAD∵点D ,P 在⊙A 上,∴∠CPD =12∠CAD (______________________) (填推理的依据)∴∠APC =∠BAC4、如图,AB 为⊙O 的直径,半径⊥OD AB 于O ,⊙O 的弦CD 与AB 相交于点F ,⊙O 的切线CE 交AB 的延长线于点E .(1)求证:EC EF =;(2)若⊙O 的半径长为3,且BF BE =,求DF 的长.5、尝试:如图①,ABC 中,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',直接写出图中的一对相似三角形_______;拓展:如图②,在ABC 中,90C ∠=︒,AC BC =,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',若8BB '=,求CC '的长;应用:如图③,在Rt ABC △中,90ACB ∠=︒,2AB =,30ABC ∠=︒,将ABC 绕点A 按逆时针方向旋转一周,在旋转过程中,当点B 的对应点B ′恰好落在Rt ABC △的边所在的直线上时,直接写出此时点C 的运动路径长.-参考答案-一、单选题1、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O 的半径为4,点P 在⊙O 外部,∴OP 需要满足的条件是OP >4,故选:A .【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.2、B【分析】如图所示,连接AC ,由圆周角定理∠BAC =∠BDC =50°,再由等弧所对的圆周角相等得到∠ABC=∠BAC=50°,再根据圆内接四边形对角互补求解即可.【详解】解:如图所示,连接AC,∴∠BAC=∠BDC=50°,∵AC BC,∴∠ABC=∠BAC=50°,∵四边形ABCD是圆内接四边形,∴∠ADC=180°-∠ABC=130°,故选B.【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键.3、C【分析】先由OB=OC,得到∠OCB=∠OBC=35°,从而可得∠BOC=180°-∠OCB-∠OBC=110°,再由圆周角定理即可得到答案.【详解】解:∵OB =OC ,∴∠OCB =∠OBC =35°,∴∠BOC =180°-∠OCB -∠OBC =110°, ∴1=552A BOC ∠=∠︒,故选C .【点睛】本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键.4、C【分析】连接OA ,OB ,根据平行线的性质确定OAB CAB S S =△△,再根据AB =CO 和圆的性质确定OAB 是等边三角形,进而得出60AOB ∠=︒,最后根据扇形面积公式即可求解.【详解】解:如下图所示,连接OA ,OB .∵OC AB ∥,∴OAB CAB S S =△△.∴S 阴=S 扇形AOB .∵AO ,BO ,CO 都是O 的半径,∴AO =BO =CO .∵AB =CO =2,∴AO =BO =AB =2.∴OAB 是等边三角形.∴60AOB ∠=︒.∴S 阴=S 扇形AOB =260223603ππ⨯=. 故选:C【点睛】本题考查平行线的性质,等边三角形的判定定理,扇形面积公式,综合应用这些知识点是解题关键.5、A【分析】根据数轴以及圆的半径可得当d =r 时,⊙A 与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:∵圆心A 在数轴上的坐标为3,圆的半径为2,∴当d =r 时,⊙A 与数轴交于两点:1、5,故当a =1、5时点B 在⊙A 上;当d <r 即当1<a <5时,点B 在⊙A 内;当d >r 即当a <1或a >5时,点B 在⊙A 外.由以上结论可知选项B 、C 、D 正确,选项A 错误.故选A .【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.6、B【分析】连接BD ,利用同弧所对圆周角相等以及直径所对的角为直角,求证ADB ∆为等腰直角三角形,最后利用勾股定理,求出AD 即可.【详解】解:连接BD ,如下图所示:ACB ∠与ADB ∠所对的弧都是AB .45ADB ACB ∴∠=∠=︒.ABD ∠所对的弦为直径AD ,90ABD ∴∠=︒.又45ADB ∠=︒,ADB ∴∆为等腰直角三角形,在ADB ∆中,100AB DB ==,∴由勾股定理可得:AD ===故选:B .【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.7、B【分析】阴影部分的面积=扇形'ACC -扇形'ADB -''ABC S ,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及''ABC ∆的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形'ACC -扇形'ADB -''ABC S ,由旋转性质可知:''90CAC BAB ∠=∠=︒,''ABC ABC ∆∆≌,'AB AB ∴=,'8AC AC ==,在ABC 中,90ABC ︒∠=,30BAC ︒∠=,8AC =,142BC AC ∴==,''60DAB BAB BAC ∠=∠-∠=︒,有勾股定理可知:AB∴阴影部分的面积=扇形'ACC -扇形'ADB -''ABC S2908143602π⨯=--⨯8π=-故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.8、D【分析】利用扇形面积公式直接计算即可.【详解】解:在圆中圆心角度数为45°,半径为10,则这个圆心角所对的扇形面积为:24510253602ππ⨯⨯=,故选:D.【点睛】本题考查了扇形面积计算,解题关键是熟记扇形面积公式,准确进行计算.9、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出6cmOD OC CD=-=,即可利用勾股定理求出8cmAD,即可得到答案.【详解】解:如图所示,连接OA,∵半径OC⊥AB,∴AB=2AD,∠ODA=90°,∵4cmCD=,∴6cmOD OC CD=-=,∴8cmAD==,∴216cmAB AD==,故选:A.【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键.10、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用cosBC BEBAB BC==,求出BE,根据垂径定理求出BD即可得到答案.【详解】解:在Rt ABC中,390,4,tan4 ACB AC A∠===,∴BC=3,5AB=,连接CD,过点C作CE⊥AB于E,∵cosBC BEBAB BC==,∴353BE =,解得95 BE=,∵CB=CD ,CE ⊥AB , ∴1825BD BE ==, ∴187555AD AB BD =-=-=, 故选:B .【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.二、填空题1、2π3【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可.【详解】解:如图,AC ⊥OB ,∵圆心角为60°,OA =OB ,∴△OAB 是等边三角形,∴OC =12OB =1,∴AC =,∴S △OAB =12OB ×AC =12∵S 扇形OAB =2602360π⨯=2π3,∴弓形(阴影部分)的面积= S 扇形OAB - S △OAB =2π3故答案为:2π3【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.2、45°度【分析】连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.【详解】解:连接OB、OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=1452BOC∠=︒,故答案为:45°.【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.3、15【分析】根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.【详解】解:如图,设正多边形的外接圆为⊙O,连接OA,OB,∵∠ADB =12°,∴∠AOB =2∠ADB =24°,而360°÷24°=15,∴这个正多边形为正十五边形,故答案为:15.【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.4、2π 【分析】首先根据题意可确定组成的圆锥侧面刚好为该半圆形,所以求出该半圆形的面积即为该圆锥的侧面积.【详解】解:由题意,半圆为该圆锥的侧面,完整的圆形为该圆锥的底面,∴半圆形的面积即为该圆锥的侧面积,∵半圆的半径为1, ∴2122S S ππ⨯===侧面半圆, 故答案为:2π.【点睛】本题考查圆锥的侧面积计算,本题中理解组成的圆锥侧面恰好为半圆形是解题关键.5、83π【分析】连接OO ',O B ',证明OBB '△是含30°的Rt ,根据BB O OO B S S S ''=-阴影部分△扇形即可求解【详解】解:如图,连接OO ',O B '将半径为4,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴60OAO '∠=︒,OA O A '=,120AOB AO B ''∠=∠=︒,AOO '∴△是等边三角形60AOO '∴∠=︒AO O '=∠1206060O OB AOB AOO ''∴∠=∠-=︒-︒=︒,60120180AO O AO B '''∠+∠=︒+︒=︒ ,,O O B ''∴三点共线60,120AOO AOB '∠=︒∠=︒,OO OB '=OBO '∴是等边三角形O B O B '''=O B B O BB ''''∴∠=∠又60O B B O BB OO B '''''∠+∠=∠=︒90B BO '∴∠=︒BB '∴==216048423603BB O OO B S S S ππ''⨯=-=⨯⨯=阴影部分△扇形 【点睛】本题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键.三、解答题1、(1(2)①见解析;②32【分析】(1)连接BD ,运用勾股定理求出BD 和AD 即可;(2)①连接OB ,OC ,OD ,证明BD 是O 的直径即可;②过点D 作DE AC ⊥于点E ,设圆的半径为R ,由勾股定理求出AB ,AD ,BC ,CD 的长,再根据ABCD ABD BCD S S S ∆∆=+运用三角形面积公式求解即可.【详解】解:(1)连接BD ,如图,在Rt BCD ∆中,BC =4,CD =2,∵222=BD BC CD +∴BD ==在Rt ABD ∆中,AB =3,BD =,∵222=BD BA AD +∴AD =(2)连接OB ,OC ,OD ,如图,∵45BAC ∠=︒∴90BOC ∠=°在BOC ∆和DOC ∆中OB OD OC OC BC CD =⎧⎪=⎨⎪=⎩∴BOC ∆≌DOC ∆∴90DOC BOC ∠=∠=︒∴O 是线段BD 的中点,∴BD 为O 的直径∴90BCD BAD ∠=∠=︒∴四边形ABCD 是双直角四边形;(3)过点D 作DE AC ⊥于点E ,∵45,90BAC BAD ∠=︒∠=︒∴45EAD ∠=︒∴AED ∆是等腰直角三角形在Rt AED ∆中,AE ED =,222AE ED AD +=∵1AD =∴AE ED == 设圆的半径为R ,∵BOC ∆和DOC ∆均为等腰直角三角形,∴BC CD =在Rt ADC ∆中,EC在Rt ABD ∆中,AB =∵AB AC =,AC AE EC =+=解得,21R =∴ABCD ABD BCD S S S ∆∆=+1122AB AD BC CD =⨯+⨯12=2R =132=【点睛】本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点.2、(1)见解析;(2)见解析;(3)2π【分析】(1)根据题意画出即可;关于y 轴对称点的坐标纵坐标不变,横坐标互为相反数;(2)根据网格结构找出点A 、B 、C 以点O 为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用△ABC 旋转时BC 线段扫过的面积扇形BOB 2−扇形COC 2即可求出.【详解】解:(1)111A B C ∆如图.(2)222A B C ∆如图.(3)线段BC2π=【点睛】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠BAC=∠BAD∠CAD∴∠BAC=12∵点D,P在⊙A上,∴∠CPD=1∠CAD(圆周角定理)(填推理的依据)2故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.4、(1)见解析;(2【分析】(1)连接OC.根据半径相等,利用切线的性质和等角的余角相等证得∠ECF=∠EFC,即可得到结论;(2)设BF=BE=x,在Rt△OCE中,利用勾股定理可求得x=2,再在Rt△ODF中,利用勾股定理即可求解.【详解】(1)证明:如图,连接OC.∵CE切⊙O于点C,∴OC⊥CE,∴∠OCF+∠ECF=90°,∵OD⊥AB,∴∠D+∠DFO=90°,∵OC=OD,∴∠ECF =∠OFD又∵∠OFD =∠EFC∴∠ECF =∠EFC ,∴EC =EF ;(2)解: ∵BF =BE ,设BF =BE =x ,则EC =EF =2x ,OE =3+x ,在Rt △OCE 中,OC 2+CE 2=OE 2,∴32+(2x )2=(3+x )2,解得x 1=0(舍),x 2=2,∴OF =OB -FB =1,在Rt △ODF 中,DF =.【点睛】本题考查了切线的性质,勾股定理,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题.5、尝试:''ABB ACC △△;拓展:'CC =;应用:点C 的运动路径长为3π或43π或23π或π或2π. 【分析】尝试:根据AB C ''△是由△ABC 旋转得到的,可得到=BAC B AC ''∠∠,AB AB '=,AC AC '=,即可推出=BAB CAC ''∠∠,1AB AC AB AC =='',则ABB ACC ''△∽△;拓展:由AC =BC ,∠ACB =90°,可得AB =,同(1)可证ABB ACC ''△∽△,得到AB BB AC CC ='',由此求解即可;应用:分点'B 在AC 延长线上时,点'B 在CA 的延长线上时,当点'B 落在边BC 所在直线上时,当点'B 落在边AB 所在直线上时,当点'B 与点B 重合时,点C 旋转一周时,五种情况讨论求解即可得到答案.【详解】解:尝试:ABB ACC ''△∽△,理由如下:∵AB C ''△是由△ABC 旋转得到的,∴=BAC B AC ''∠∠,AB AB '=,AC AC '=, ∴=BAC CAB B AC CAB ''''++∠∠∠∠,即=BAB CAC ''∠∠,1AB AC AB AC =='', ∴ABB ACC ''△∽△;故答案为:ABB ACC ''△∽△;拓展:∵AC =BC ,∠ACB =90°,∴AB , 同(1)原理可证ABB ACC ''△∽△, ∴AB BB AC CC ='',∴AC BB CC AB '⋅'== 应用:∵在Rt ABC 中,2AB =,30ABC ∠=︒, ∴112AC AB ==,60BAC ∠=︒, 当点'B 落在AC 所在直线上时,有两种情况:①若点'B 在AC 延长线上时,如图①所示: 由旋转的旋转可得:'60CAC BAC ∠=∠=︒, ∴点C 运动的路径即为CC ',∴6011803CC ππ⨯'==; ②若点'B 在CA 的延长线上时,如图②所示,此时点B ,'C ,'B 三点共线, ∴点C 运动的路径即为CC ', 由旋转的性质可得'60B AC BAC '∠=∠=︒, ∴'180120CAC B AC ''∠=︒-=︒∠ ∴旋转角360240CAC '=︒-=︒∠, ∴弧240141803'CC ππ⨯==;当点'B 落在边BC 所在直线上时,如图③所示, ∴点C 运动的路径即为CC ',由旋转的性质可得'60B AC BAC '∠=∠=︒,∴'18060CAB B AC BAC ''∠=︒--=︒∠∠,∴120CAC CAB B AC =''''∠=∠+∠︒ ∴弧120121803CC'ππ⨯==;当点'B 落在边AB 所在直线上时,如图④所示,此时点C ,A ,'C 三点共线,旋转角为180︒, ∴弧1801180CC'ππ⨯==. 当点'B 与点B 重合时,点C 旋转一周,∴弧'22CC AC ππ=⨯=.∴当点B 的对应点'B 恰好落在Rt ABC 的边所在直线上时,点C 的运动路径长为3π或43π或23π或π或2π. 【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习三
一、知识点:
㈠、温故而知新
1.在同圆或等圆中,如果在两条弦、两条弧、两个圆心角中有_____组量相等,那么它们所对应的其余各组量都分别相等。

2. 垂径定理:垂直于弦的直径_____________这条弦,并且平分弦所对的两条_______。

3. 垂径定理的逆定理:平分弦(不是__________)的直径__________这条弦,并且平分弦所对的两条___
4. 圆周角与圆心角的关系:一条弧所对的__________等于这条弧所对的__________的一半。

___________________所对圆周角相等。

在同圆或等圆中,相等的圆周角所对的______相等。

直径所对的圆周角是________,____________的圆周角所对弦是直径。

5.圆的切线
⑴判定:经过直径________,并且与这条直径_____________的直线是圆的切线。

⑵性质:圆的切线垂直于___________的直径。

6.三角形的外心
________________________确定一个圆。

经过三角形的三个顶点的圆叫做三角形的_____________,它的圆心叫做三角形的外心;三角形的外心是三角形的_____________________________的交点。

7.三角形的内心
与三角形的三边都_______的圆叫做三角形的________圆,它的圆心叫做三角形的内心;三角形的内心是三角形的三条________________________的交点。

㈡和圆有关的位置关系
8.点和圆的位置关系:有三种。

设圆的半径为r,_______________________的距离为d,则⑴点在圆内⇔_______________;⑵点在圆上⇔_______________;⑶点在圆外⇔_____________________。

9.直线和圆的位置关系:有三种。

设圆的半径为r,_______________________的距离为d,则
⑴直线和圆没有公共点⇔直线和圆_______________⇔d_____r;
⑵直线和圆有惟一公共点⇔直线和圆_______________⇔d_____r;
⑶直线和圆有两个公共点⇔直线和圆_______________⇔d_____r.
10.圆和圆的位置关系:
☆若两圆半径不等,有五种位置关系。

设两圆的半径分别为R,r(R>r),____________为d。

⑴两圆没有公共点且每一圆上的点在另一圆外⇔两圆_______________⇔ d _________________;
⑵两圆有惟一公共点且每一圆上的点在另一圆外⇔两圆_______________⇔d________________;
⑶两圆有两个公共点⇔两圆_______________⇔___________________________;
⑷两圆有惟一公共点且其中一圆上的点除公共点外都在另一圆内⇔两圆____________⇔d__________;
⑸两圆没有公共点且其中一圆上的点都在另一圆内⇔两圆____________⇔__________________.
特例:d =0时,两圆的圆心重合,此时称两圆____________
注:_________和___________统称为相离,_________和___________统称为相切。

☆若两圆半径相等,有三种位置关系,分别为:_______________、______________、____________。

㈢与圆有关的计算:
11. ⑴弧长公式:l =______________(已知弧所对的圆心角度数为n º,所在圆的半径为R )
⑵设扇形的圆心角度数为n º,所在圆的半径为R ,弧长为l ,则扇形的周长为C =____________; 面积S =_______________=_______________
⑶设圆锥的底面半径为r ,高为h ,母线长为l 。

则l 2=r 2+h 2;圆锥侧面积S 侧=_________________; 全面积S 全=_________________________
⑷设圆柱的底面半径为r ,高为h ,母线长为l 。

则l =h ;圆柱侧面积S 侧=_________________;
全面积S 全=_________________________
㈣补充知识
12.⑴圆内接四边形____________________________
⑵相切两圆的连心线经过_________________
⑶相交两圆的连心线___________________________
二、选择题:
13. 若两圆相切,且两圆的半径分别是2,3,则这两个圆的圆心距是( )
A. 5
B. 1
C. 1或5
D. 1或4
14. ⊙O 1 和⊙O 2 的半径分别为1和4,圆心距O 1O 2=5,那么两圆的位置关系是( )
A. 外离
B. 内含
C. 外切
D. 外离或内含
15.如果半径分别为1cm 和2cm 的两圆外切,那么与这两个圆都相切,且半径为3cm 的圆的个数有( )
A. 2个
B. 3个
C. 4个
D. 5个
16.若两圆半径分别为R 和r (R >r ),圆心距为d ,且R 2+d 2-r 2=2Rd ,则两圆的位置关系是( )
A. 内切
B. 外切
C. 内切或外切
D. 相交
17. 如图,⊙O 的直径为10厘米,弦AB 的长为6cm ,M 是弦AB 上的一动点,则线段
OM 的长的取值范围是( )
A. 3≤OM ≤5
B. 4≤OM ≤5
C. 3<OM <5
D. 4<OM <5 18. 已知:⊙O 1和⊙O 2的半径是方程x 2-5x +6=0 的两个根,且两圆的圆心距等于5则⊙O 1和⊙O 2的位置关系是( )
A. 相交
B. 外离
C. 外切
D. 内切
19. 如图,△ABC 为等腰直角三角形,∠A =90°,AB =AC
,⊙A 与BC 相切,
则图中阴影部分的面积为( )
A. 1-2π
B. 1-3π
C. 1-4π
D. 1-5
π
20. 如图,点B在圆锥母线VA上,且VB=1
3
VA,过点B作平行于底面的平面截得一个小圆锥,若小圆
锥的侧面积为S1,原圆锥的侧面积为S,则下列判断中正确的是()
A. S1=1
3
S B. S1=
1
4
S C. S1=
1
6
S D. S1=
1
9
S
三、填空题
21. 若半径分别为6和4的两圆相切,则两圆的圆心距d的值是 _______________ 。

22. ⊙O1和⊙O2的半径分别为20和15,它们相交于A,B两点,线段AB=24,则两圆的圆心距O1O2=____。

23. ⑴⊙O1和⊙O2相切,⊙O1的半径为4cm,圆心距为6cm,则⊙O2的半径为__________;
⑵⊙O1和⊙O2相切,⊙O1的半径为6cm,圆心距为4cm,则⊙O2的半径为__________
24.⊙O1、⊙O2和⊙O3是三个半径为1的等圆,且圆心在同一直线上,若⊙O2分别与⊙O1,⊙O3相交,⊙O1与⊙O3不相交,则⊙O1与⊙O3圆心距d的取值范围是_____。

25. 在△ABC,∠C=90°,AC=3,BC=4,点O是△ABC的外心,现在以O为圆
心,分别以2、2.5、3、为半径作⊙O,则点C与⊙O的位置关系分别是_____________.
26.如图在⊙O中,直径AB⊥弦CD,垂足为P,∠BAD=30°,则∠AOC的度数是
________度.
27.在Rt△ABC,斜边AB=13cm,BC=12cm,以AB的中点O为圆心,2.5cm为半径画圆,则直线BC 和⊙O的位置关系是________________.
28.把一个半径为12厘米的圆片,剪去一个圆心角为120°的扇形后,用剩下的部分做成一个圆锥侧面,那么这个圆锥的侧面积是___________.
29.已知圆锥的母线与高的夹角为30°,母线长为4cm,则它的侧面积为 ________ cm2(结果保留π)。

30. 一个扇形的弧长为4π,用它做一个圆锥的侧面,则该圆锥的底面半径为。

四、解答题:
31. 已知:如图,⊙O1和⊙O2相交于点A、B,过点A的直线分别交两圆于点C,D点M是CD的中点直线,BM分别交两圆于点E、F。

⑴求证:CE//DF
⑵求证:ME=MF
32. △ABC的三边长分别为6、8、10,并且以A、B、C三点为圆心作两两相切的圆,求这三个圆的半径
33.如图所示,⊙O1和⊙O2相切于P点,过P的直线交⊙O1于A,交⊙O2于B,求证:O1A∥O2B
34.如图,A为⊙O上一点,以A为圆心的⊙A交⊙O于B、C两点,⊙O的弦AD交公共弦BC于E点。

(1)求证:AD平分∠BDC
(2)求证:AC2=AE·AD
35. 如图,⊙O的半径OC与直径AB垂直,点P在OB上,CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.
(1)求证:ED是⊙O的切线;
(2)当OC=2,ED=2时,求∠E的正切值tan E和图中阴影部分的面积.
*36.两圆相交于A、B,过点A的直线交一个圆于点C,交另一个圆于点D,过CD的中点P和点B作直线交一个圆于点E,交另一个圆于点F,求证:PE=PF.。

相关文档
最新文档