福建高考数学(文科)试卷与答案
普通高等学校招生国统一考试数学文试题福建卷,含答案
卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕第I 卷〔选择题一共60分〕一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
1.复数〔2+i 〕2等于 A.3+4iB.5+4iC.3+2iD.5+2i2.集合M={1,2,3,4},N={-2,2},以下结论成立的是⊆M ∪N=M ∩N=N ∩N={2}3.向量a=〔x-1,2〕,b=〔2,1〕,那么a ⊥b 的充要条件是 A.x=-12B.x-1C.x=5D.x=0 4.一个几何体的三视图形状都一样,大小均等,那么这个几何体不可一世A 球B 三棱锥C 正方体D 圆柱5双曲线22x a -25y =1的右焦点为〔3,0〕,那么该双曲线的离心率等于C 32D 436阅读右图所示的程序框图,运行相应的程序,输出s 值等于A-3B-10C0D-27.直线与圆x 2+y 2=4相交于A,B 两点,那么弦AB 的长度等于A.8.函数f(x)=sin(x-4π)的图像的一条对称轴是A.x=4πB.x=2πC.x=-4πD.x=-2π,那么f(g(π))的值是A1B0C-1D π10.假设直线y=2x 上存在点〔x ,y 〕满足约束条件那么实数m 的最大值为 A.-1B.1C.3211.数列{a n }的通项公式,其前n 项和为S n ,那么S 2021等于 A.1006B.2021C.50312.f 〔x 〕=x ³-6x ²+9x-abc ,a <b <c ,且f 〔a 〕=f 〔b 〕=f 〔c 〕=0.现给出如下结论:①f 〔0〕f 〔1〕>0;②f 〔0〕f 〔1〕<0;③f 〔0〕f 〔3〕>0;④f 〔0〕f 〔3〕<0.其中正确结论的序号是A.①③B.①④C.②③D.②④第二卷〔非选择题一共90分〕二、填空题:本大题一一共4小题,每一小题4分,一共16分。
2024年福建省高考数学真题及参考答案
2024年福建省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
2021年普通高等学校招生全国统一考试数学文试题附答案(福建卷)(Word可编辑版)
2021年普通高等学校招生全国统一考试数学文试题附答案(福建卷)(最新版)-Word文档,下载后可任意编辑和处理-2021年高考数学福建卷文科一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知两条直线和互相垂直,则等于(A)2 (B)1 (C)0 (D)(2)在等差数列中,已知则等于(A)40 (B)42 (C)43 (D)45 (3)是的(A)充分而不必要条件(B)必要不而充分条件(C)充要条件(D)既不充分也不必要条件(4)已知则等于(A)(B)(C)(D)(5)已知全集且则等于(A)(B)(C)(D)(6)函数的反函数是(A)方(B)(C)(D)(7)已知正方体外接球的体积是,那么正方体的棱长等于(A)(B)(C)(D)(8)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A)108种(B)186种(C)216种(D)270种(9)已知向量与的夹角为,则等于(A)5 (B)4 (C)3 (D)1(10)对于平面和共面的直线、下列命题中真命题是(A)若则(B)若则(C)若则(D)若、与所成的角相等,则(11)已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A)(B)(C)(D)(12)已知是周期为2的奇函数,当时,设则(A)(B)(C)(D)二.填空题:本大题共4小题,每小题4分,共16分。
把答案填在答题卡的相应位置。
(13)展开式中的系数是_____(用数字作答)。
(14)已知直线与抛物线相切,则(15)已知实数、满足则的最大值是____。
(16)已知函数在区间上的最小值是,则的最小值是____。
三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知函数(I)求函数的最小正周期和单调增区间;(II)函数的图象可以由函数的图象经过怎样的变换得到?(18)(本小题满分12分)每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率;(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。
普通高等学校招生全国统一考试数学文试题附答案(福建卷).doc
年高考数学福建卷文科一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于(A )2 (B )1 (C )0 (D )1-(2)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于(A )40 (B )42 (C )43 (D )45(3)"tan 1"α=是""4πα=的(A )充分而不必要条件 (B )必要不而充分条件(C )充要条件 (D )既不充分也不必要条件(4)已知3(,),sin ,25παπα∈=则tan()4πα+等于(A )17 (B )7 (C )17- (D )7-(5)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)-(6)函数(1)1xy x x =≠-+的反函数是 (A )(1)1x y x x =≠+方 (B )(1)1xy x x =≠-(C )1(0)x y x x -=≠ (D )1(0)xy x x-=≠(7)已知正方体外接球的体积是323π,那么正方体的棱长等于(A ) (B (C (D (8)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种 (9)已知向量a 与b 的夹角为120o,3,13,a a b =+=则b 等于 (A )5 (B )4 (C )3 (D )1 (10)对于平面α和共面的直线m 、,n 下列命题中真命题是 (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n(11)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞(12)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<二.填空题:本大题共4小题,每小题4分,共16分。
高考数学文(福建卷)WORD解析版
一.选择题1.复数z 1 2i (i为虚数单位)在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限 D .第四象限【答案】 C【分析】此题考察的知识点是复数的几何意义.由几何意义可知复数在第三象限.2.设点P( x, y),则“x2且y 1 ”是“点 P 在直线 l : x y 1 0 上”的()A .充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件【答案】 A【分析】此题考察的知识点是逻辑中充要条件的判断.由于(2,1) 点代入直线方程,切合方x 2且 y 1 ”可推出“点P在直线 l : x y 1 0 上”;而点P在直线上,不必定程,即“就是 (2,1) 点,即“点 P 在直线 l : x y 1 0 上”推不出“x 2且 y 1 ”.故“x 2且y1”是“点 P 在直线 l : x y 1 0 上”的充足而不用要条件.3.若会合A {1,2,3}, B {1,3,4} ,则A B的子集个数为()A . 2B . 3 C. 4 D.16【答案】 C【分析】此题考察的是会合的交集和子集.由于 A B {1,3} ,有2个元素,因此子集个数为 22 4 个.4.双曲线x2 y2 1的极点到其渐近线的距离等于()A .1B.2C. 1 D . 2 2 2【答案】 B【分析】此题考察的是双曲线的性质.由于双曲线的两个极点到两条渐近线的距离都相等,故可取双曲线的一个极点为(1,0) ,取一条渐近线为y x ,因此点 (1,0) 到直线 y x 的距离为2.25.函数 f ( x) ln( x21) 的图象大概是()A .B .C.D.【答案】 A【分析】此题考察的是对数函数的图象.由函数分析式可知 f ( x) f ( x) ,即函数为偶函数,清除 C;由函数过(0,0) 点,清除 B,D .x y 26.若变量x, y知足拘束条件x 1 ,则 z 2x y 的最大值和最小值分别为()y 0A.4和 3 B.4和2 C.3和 2 D.2和0【答案】 B【分析】此题考察的简单线性规划.如图,可知目标函数最大值和最小值分别为4和2.y2O 1 2 x7.若2x 2 y 1,则 x y 的取值范围是()A .[0,2] B.[ 2,0] C.[ 2, ) D .( , 2]【答案】 D【分析】此题考察的是均值不等式.由于 1 2 x 2y 2 2 x 2 y,即2x y 22,因此x y 2 ,当且仅当2x 2 y,即x y时取等号.8 .阅读以下图的程序框图,运转相应的程序,假如输入某个正整数n 后,输出的S (10,20) ,那么 n 的值为()A.3B.4C. 5D. 6【答案】 B【分析】此题考察的是程序框图.循环前:S 1, k 2 ;第 1 次判断后循环:S 3,k 3 ;第 2 次判断后循环:S 7, k 4 ;第3次判断后循环:S 15,k 5 .故 n 4 .9.将函数f ( x) sin(2x )(2 2) 的图象向右平移( 0) 个单位长度后获得函数 g (x) 的图象,若 f ( x), g( x) 的图象都经过点 P(0, 3) ,则的值能够是()25 5C.D.A .B.3 6 2 6【答案】 B【分析】此题考察的三角函数的图像的平移.把P(0, 3) 代入2f ( x) sin( 2x )(2),解得,所以 g( x) sin( 2x 2 ) ,把2 3 3P( 0, 3) 代入得,k 或k ,察看选项,应选 B 2 610.在四边形ABCD中,AC (1,2), BD ( 4,2) ,则该四边形的面积为()A . 5 B.2 5 C. 5 D. 10【答案】 C【分析】此题考察的是向量垂直的判断以及向量的模长.由于ACBD 1(4) 22 0,因此AC BC,因此四边形的面积为|AC| |BD| 12 22 ( 4)2 222 25,应选C11.已知x与y之间的几组数据以下表:x 1 2 3 4 5 6y 0 2 1 3 3 4? a假定依据上表数据所得线性回归直线方程为y bx? ?.若某同学依据上表中前两组数据(1,0) 和 ( 2,2) 求得的直线方程为y b x a ,则以下结论正确的选项是()A .?? B.?? C.? ? D .??b b , a a b b ,a a b b , a a b b , a a【答案】 C【分析】此题考察的是线性回归方程.画出散点图,可大概的画出两条直线(以下列图),由?两条直线的相对地点关系可判断 b b , a? a .应选 Cy4321O123456x12.设函数 f ( x) 的定义域为R , x0 ( x00) 是 f ( x) 的极大值点,以下结论必定正确的选项是()A .x R, f (x) f (x0 ) B.x0是f ( x)的极小值点C.x0是 f ( x)的极小值点D.x0是 f ( x) 的极小值点【答案】 D【分析】此题考察的是函数的极值.函数的极值不是最值, A 错误;由于 f ( x) 和 f (x) 关于原点对称,故x0是 f ( x) 的极小值点,D正确.二.填空题2x3 , x 013.已知函数 f ( x)tan x,0,则 f ( f ( )) x 42【答案】 2【分析】此题考察的是分段函数求值. f ( f ( )) f ( tan ) f ( 1) 2( 1)3 2 .4 414.利用计算机产生0 ~ 1之间的均匀随机数 a ,则事件“3a 10 ”发生的概率为【答案】131,因此 P11 . 【分析】此题考察的是几何概型求概率.3a 1 0 ,即 a331 3:x 2y 215.椭圆22 1(a b 0) 的左、右焦点分别为 F 1, F 2 ,焦距为 2c .若直线 与ab椭圆 的一个交点 M 知足 MF 1 F 2 2 MF 2F 1 ,则该椭圆的离心率等于【答案】3 1【分析】此题考察的是圆锥曲线的离心率.由题意可知,MF 1F 2中,MF 1 2 MF 2 2 F 1 F 22(2c) 2MF 1 F 2 60 , MF 2 F 1 30 , F 1MF 290 ,因此有 MF 1 MF 2 2a,MF 23MF 1整理得 ec 3 1,故答案为3 1.a16.设 S,T 是 R 的两个非空子集,假如存在一个从S 到 T 的函数 y f ( x) 知足;( i ) T { f ( x) | x S} ;( ii )对随意 x , x2S ,当 xx 时,恒有 f (x )f (x ) .11212那么称这两个会合 “保序同构 ”.现给出以下 3 对会合: ① A N , BN * ;② A { x | 1 x 3}, B { x | 8 x 10} ;③ A { x | 0x1}, BR .此中, “保序同构 ”的会合对的序号是 (写出全部 “保序同构 ”的会合对的序号)【答案】①②③【分析】此题考察的函数的性质.由题意可知S 为函数的一个定义域, T 为其所对应的值域,且函数 yf ( x) 为单一递加函数. 对于会合对①,可取函数 f (x) 2x( x N ) ,是 “保序同构 ”;对于会合对②,可取函数y 9 x 7 ( 1 x 3) ,是 “保序同构 ”;对于会合对2 2 ③,可取函数 ytan( x)(0 x 1) ,是 “保序同构 ”.故答案为①②③.2三.解答题17.(本小题满分 12 分)已知等差数列 { a n } 的公差 d 1 ,前 n 项和为 S n .(1)若1, a1, a3成等比数列,求a1;(2)若S5a1a9,求a1的取值范围.本小题主要考察等比等差数列、等比数列和不等式等基础知识,考察运算求解能力,考察函数与方程思想、化归与转变思想.满分12 分.解:( 1)由于数列{ a n}的公差d 1,且1,a1, a3成等比数列,因此 a12 1 (a1 2) ,即 a 2 a 2 0 ,解得 11或a1 2.1 1 a( 2)由于数列{ a n} 的公差 d 1,且S5 a1a9,因此5a1 10 a12 8a1;即 a12 3a1 10 0 ,解得 5 a1 218.(本小题满分12 分)如图,在四棱锥P ABCD 中,PD 面ABCD ,AB / /DC,AB AD,BC 5, DC 3,AD 4 ,PAD 60o.uuurABCD 的正视图.(要求标出(1)当正视图方向与向量AD的方向同样时,画出四棱锥P尺寸,并画出演算过程);(2)若M为PA的中点,求证:DM / /面PBC;(3)求三棱锥D PBC 的体积.本小题主要考察直线与直线、直线与平面的地点关系及几何体的三视图和体积等基础知识,考察空间想象能力,推理论证能力.运算求解能力,考察数形联合能力、化归与转变思想,满分 12 分.解法一:(Ⅰ)在梯形ABCD 中,过点 C 作 CE AB ,垂足为由已知得,四边形ADCE 为矩形, AE CD 3E ,在 Rt BEC 中,由 BC 5, CE 4 ,依勾股定理得:BE 3,进而 AB 6又由 PD平面ABCD得,PD AD进而在 Rt PDA 中,由 AD 4 ,PAD 60 ,得PD 4 3正视图如右图所示:(Ⅱ)取 PB 中点 N ,连接 MN , CN在 PAB中, M 是 PA中点,∴ MN PAB,MN 1 AB3 ,又CD PAB , CD 3 2∴ MN PCD,MN CD∴四边形 MNCD 为平行四边形,∴又 DM平面PBC,CN平面DM PCN PBC∴DM P平面 PBC(Ⅲ)V D PBC VP1DBC S DBC PD3又 s PBC 6 , PD 4 3 ,因此 V D PBC 8 3解法二:(Ⅰ)同解法一(Ⅱ)取 AB 的中点 E ,连接 ME , DE在梯形 ABCD 中, BE PCD ,且 BE CD∴四边形 BCDE 为平行四边形∴ DE PBC ,又 DE 平面 PBC , BC 平面 PBC∴ DE P平面 PBC ,又在 PAB中, ME PPBME 平面 PBC , PB 平面 PBC∴ ME P平面 PBC .又DE I ME E ,∴平面 DME P平面 PBC ,又 DM 平面 DME∴平面PBCDM P(Ⅲ)同解法一19.(本小题满分 12 分)某工厂有25 周岁以上(含25 周岁)工人 300 名, 25 周岁以下工人 200 名.为研究工人的日均匀生产量能否与年纪相关.现采纳分层抽样的方法,从中抽取了 100 名工人,先统计了他们某月的日均匀生产件数,而后按工人年纪在“25周岁以上(含25 周岁)”和“25周岁以下”分为两组,在将两组工人的日均匀生产件数分红 5 组: [50,60) , [60,70) , [70,80) , [80,90) , [90,100) 分别加以统计,获得如图所示的频次散布直方图.(1)从样本中日均匀生产件数不足60 件的工人中随机抽取 2 人,求起码抽到一名“25周岁以下组”工人的频次.(2)规定日均匀生产件数许多于80 件者为“生产好手”,请你依据已知条件达成 2 2 的列联表,并判断能否有90%的掌握以为“生产好手与工人所在的年纪组相关”?附表:本小题主要考察古典概型、抽样方法、独立性查验等基础知识,考察运算求解能力、应意图识,考察必定和或然思想、化归与转变思想等,满分12 分.解:(Ⅰ)由已知得,样本中有25 周岁以上组工人 60 名, 25 周岁以下组工人40 名因此,样本中日均匀生产件数不足60 件的工人中, 25 周岁以上组工人有60 0.05 3(人),记为 A1, A2 , A3;25周岁以下组工人有40 0.05 2 (人),记为B1 , B2从中随机抽取 2 名工人,全部可能的结果共有10 种,他们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1), (A1,B2 ), ( A2, B1), (A2,B2 ) , (A3 ,B1) , ( A3 ,B2) , (B1,B2)此中,起码闻名“25 周岁以下组”工人的可能结果共有7 种,它们是:(A1, B1) , (A1, B2 ) ,7( A2, B1) , (A2, B2 ) , (A3, B1) , (A3, B2) , (B1,B2) .故所求的概率:P10(Ⅱ)由频次散布直方图可知,在抽取的100 名工人中,“周岁以上组”中的生产好手2560 0.25 15(人),“25 周岁以下组”中的生产好手 40 0.375 15(人),据此可得 2 2 列联表以下:生产好手非生产好手共计25 周岁以上组15 45 6025 周岁以下组15 25 40共计30 70 100因此得: K 2 n(ad bc)2 100 (15 25 15 45)2 25 1.79(a b)(c d )( a c)(b d ) 60 40 30 70 14由于 1.79 2.706 ,因此没有 90%的掌握以为“生产好手与工人所在的年纪组相关”20(.本小题满分12 分)如图,在抛物线E : y2 4x 的焦点为 F ,准线l与 x 轴的交点为 A .点C 在抛物线 E 上,以C为圆心OC为半径作圆,设圆C与准线l的交于不一样的两点M,N.(1)若点C的纵坐标为2,求MN;(2)若AF 2AM AN ,求圆C的半径.本小题主要考察抛物线的方程、圆的方程与性质、直线与圆的地点关系等基础知识,考察运算求解能力、推理论证能力,考察函数与方程思想、数形联合思想、化归与转变思想.满分12分.解:(Ⅰ)抛物线y 24x 的准线l的方程为x1,由点 C 的纵坐标为2,得点 C 的坐标为(1,2)因此点 C 到准线 l 的距离 d 2,又|CO| 5 .因此 |MN | 2 |CO |2 d 2 2542.(Ⅱ)设y 2C 的方程为( xy2 2( y y0 ) 2y 4 2,C( 0 , y0 ) ,则圆0 ) 0 y04 4 16即 x2 y02 x y2 2y0 y 0 .2由 x 1,得y2 2y0 y 1 y02 02设 M ( 1, y1 ) , N ( 1, y2 ) ,则:4 y02 4(1 y02 ) 2y02 4 02y02y1 y2 12由|AF |2 | AM | | AN | ,得 | y1 y2 | 4y021 4 ,解得 y0 6 ,此时0因此2因此圆心 C 的坐标为( 3 , 6)或( 3 , 6)2 2进而 |CO |2 33 ,|CO| 33 ,即圆 C 的半径为334 2 221 12分)如图,在等腰直角三角形OPQ 中,OPQ 90o, OP 2 2 ,(本小题满分点M 在线段 PQ上.(1)若OM 3 ,求PM的长;( 2)若点N在线段MQ上,且MON 30o,问:当POM 取何值时,OMN 的面积最小?并求出头积的最小值.本小题主要考察解三角形、同角三角函数的基本关系、两角和与差的三角函数等基础知识,考察推理论证能力、抽象归纳能力、运算求解能力,考察函数与方程思想、数形联合思想、化归与转变思想.满分 12 分.解:(Ⅰ)在OMP 中, OPM 45 , OM 5 ,OP 2 2 ,由余弦定理得, OM 2 OP2 MP 2 2 OP MP cos45 ,得 MP2 4MP 3 0 ,解得 MP 1或 MP 3 .(Ⅱ)设POM , 0 60 ,在 OMP 中,由正弦定理,得OM OP ,sin OPM sin OMP因此同理OM OP sin 45 ,sin 45ONOP sin45sin 75故S OMN 1 OM ON sin MON21 OP2 sin 2 454 sin 45 sin 751sin 45sin 45301sin 453sin 451cos 45221 3sin2451sin 45cos 452213 1 cos 90 21sin 9024413 3sin 21cos2444131sin 2 3042由于 060 ,30 2 30 150 ,因此当30 时,sin 2 30的最大值为 1,此时OMN 的面积取到最小值.即2POM30 时, OMN 的面积的最小值为 8 4 3 .22(本小题满分14 分)已知函数 f ( x) x1 aR , e 为自然对数的底数) .e x ( a(1)若曲线 yf (x) 在点 (1, f (1))处的切线平行于 x 轴,求 a 的值;(2)求函数 f (x) 的极值;(3)当 a1 的值时,若直线 l : y kx 1与曲线 y f ( x) 没有公共点,求 k 的最大值.本小题主要考察函数与导数,函数的单一性、极值、零点等基础知识,考察推理论证能力、 运算求解能力, 考察函数与方程思想、 数形联合思想、 分类与整合思想、 化归与转变思想. 满 分14分.解:(Ⅰ)由 f x x 1a ,得 f x 1a .exex又曲线 y f x 在点 1, f 1 处的切线平行于 x 轴,得 f 1 0 ,即 1 a0 ,解得 a e.e(Ⅱ) f x 1 a,e x①当 a 0 时, f x 0 , f x 为, 上的增函数,因此函数 f x 无极值.②当 a 0 时,令 f x 0 ,得e x a ,x ln a .x ,ln a ,f x 0; x ln a, , f x 0 .因此 f x 在,ln a 上单一递减,在ln a, 上单一递加,故 f x 在 x ln a 处获得极小值,且极小值为 f ln a ln a ,无极大值.综上,当 a 0 时,函数 f x 无极小值;当 a 0 , f x 在 x ln a 处获得极小值ln a ,无极大值.(Ⅲ)当 a 1 时, f x x1 1e x令g x f x kx 1 1 k x 1 ,e x则直线 l :y kx 1 与曲线y f x 没有公共点,等价于方程 g x0 在R上没有实数解.假定 k 1,此时 g 0 1 0 ,g111,k 1 1e k 1又函数 g x 的图象连续不停,由零点存在定理,可知g x 0 在R上起码有一解,与“方程 g x 0 在R上没有实数解”矛盾,故 k 1 .又 k 1时,g x 10 ,知方程g x 0 在R上没有实数解.x因此 k 的最大值为e 1.解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当 a 1 时, f x x 1 1.xe直线 l :y kx 1 与曲线y f x 没有公共点,等价于对于 x 的方程kx 1 x 1 1 在 R 上没有实数解,即对于x 的方程:e xk11 x在 R 上没有实数解. ex①当 k1 时,方程( * )可化为 1,在 R 上没有实数解.e x②当 k1 时,方程( * )化为1 xe x.k 1令 g x xe x ,则有 g x 1 x e x .令 gx0 ,得 x1 ,当 x 变化时, g x的变化状况以下表:x, 11g xg x]1e( * )1,Z当 x1时,g x min1时, gx 趋于,同时当 x 趋于,e进而 gx 的取值范围为1,.e因此当1 ,1时,方程( * )无实数解,k 1e解得 k 的取值范围是1 e,1 .综上,得 k 的最大值为 1.。
2020年普通高等学校招生全国统一考试数学文(福建卷,含答案)
2020年普通高等学校招生全国统一考试数学文(福建卷,含答案)第I 卷(选择题 共60分)一、选择题:本大题共12小题。
每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}|0.|3A x x B x x =>=<,则A B I 等于A .{|0}x x <B {|03}x x <<C {|4}x x >D R2. 下列函数中,与函数y x=有相同定义域的是 A ()ln f x x = B 1()f x x=C ()||f x x =D ()x f x e = 组别(0,10](20,20] (20,30) (30,40) (40,50] (50,60] (60,70] 频数1213241516137则样本数据落在(10,40)上的频率为A. 0.13B. 0.39C. 0.52D. 0.644. 若双曲线()222213x y a o a -=>的离心率为2,则a 等于A. 2B. 3C.32D. 1 5. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
则该集合体的俯视图可以是6. 阅读图6所示的程序框图,运行相应的程序,输出的结果是A .-1 B. 2 C. 3 D. 4 7. 已知锐角ABC ∆的面积为33,4,3BC CA ==,则角C 的大小为A. 75°B. 60° B. 45° D.30°8. 定义在R 上的偶函数()f x 的部分图像如右图所示,则在()2,0- 上,下列函数中与()f x 的单调性不同的是 A .21y x =+ B. ||1y x =+C. 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0xx e x oy e x -⎧≥⎪=⎨<⎪⎩9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. -5B. 1C. 2D. 310. 设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线,则//αβ的一个充分而不必要条件是A. 1////m l βα且B. 12////m l l 且nC. ////m n ββ且D. 2////m n l β且 11.若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是A. ()41f x x =-B. ()2(1)f x x =-C. ()1xf x e =- D. ()12f x In x ⎛⎫=-⎪⎝⎭12.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线, a ⊥c ∣a ∣=∣c ∣,则∣b • c ∣的值一定等于A .以a ,b 为邻边的平行四边形的面积B 以b ,c 为两边的三角形面积C .a ,b 为两边的三角形面积D 以b ,c 为邻边的平行四边形的面积第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。
高考卷,普通高等学校招生全国统一考试数学(福建卷·文科)(附答案,完全word版)
高考卷,普通高等学校招生全国统一考试数学(福建卷·文科)(附答案,完全word版)2021年普通高等学校招生全国统一考试数学(文史类)(福建卷)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合A={x|x2-x<0},B={x|0<x<3},则A∩B等于 A.{x|0<x<1} B.{x|0<x<3} C.{x|1<x<3} D.¢(2)“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件(3)设|an|是等左数列,若a2=3,a1=13,则数列{an}前8项的和为(4)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(-a)的值为 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是 A. B. C. D. (6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为 A. B. C. D. (7)函数y=cosx(x∈R)的图象向左平移个单位后,得到函数y=g(x)的图象,则g(x)的解析式为 A.-sinx C.-cosx (8)在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2ac,则角B的值为 A. B. C.或 D.或 (9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 (10)若实数x、y满足则的取值范围是 A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是(12)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PE2|,则双曲线离心率的取值范围为 A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞] 第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x+)9展开式中x2的系数是 .(用数字作答)(14)若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是 . (15)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是 . (16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集QM,则数集M必为数域; ④数域必为无限集. 其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量,且 (Ⅰ)求tanA的值;(Ⅱ)求函数R)的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD 为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点. (Ⅰ)求证:PO ⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离. (20)(本小题满分12分)已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上. (Ⅰ)求数列{an}的通项公式;(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+,求证:bn ·bn+2<b2n+1. (21)(本小题满分12分)已知函数的图象过点(-1,-6),且函数的图象关于y轴对称. (Ⅰ)求m、n的值及函数y=f(x)的单调区间;(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值. (22)(本小题满分14分)如图,椭圆(a>b>0)的一个焦点为F(1,0),且过点(2,0). (Ⅰ)求椭圆C的方程;(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M. (ⅰ)求证:点M恒在椭圆C上;(ⅱ)求△AMN面积的最大值. 2021年普通高等学校招生全国统一考试数学(文史类)(福建卷)参考答案一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. (1)A (2)C (3)C (4)B (5)C (6)D (7)A (8)A (9)A (10)D (11)A (12)B 二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. (13)84 (14)(15)9(16)①④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力,满分12分. 解:(Ⅰ)由题意得m·n=sinA-2cosA=0, 因为cosA≠0,所以tanA=2. (Ⅱ)由(Ⅰ)知tanA=2得因为xR,所以. 当时,f(x)有最大值,当sinx=-1时,f(x)有最小值-3,所以所求函数f(x)的值域是(18)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力.满分12分. 解:记“第i个人破译出密码”为事件A1(i=1,2,3),依题意有且A1,A2,A3相互独立. (Ⅰ)设“恰好二人破译出密码”为事件B,则有 B=A1·A2··A1··A3+·A2·A3且A1·A2·,A1··A3,·A2·A3 彼此互斥于是P(B)=P(A1·A2·)+P(A1··A3)+P(·A2·A3)==. 答:恰好二人破译出密码的概率为. (Ⅱ)设“密码被破译”为事件C,“密码未被破译”为事件D. D=··,且,,互相独立,则有 P(D)=P()·P ()·P()==. 而P(C)=1-P(D)=,故P(C)>P(D). 答:密码被破译的概率比密码未被破译的概率大. (19)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD. 又侧面PAD ⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD. (Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC. 由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角. 因为AD=2AB=2BC=2,在Rt △AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=, cos∠PBO=, 所以异面直线PB与CD所成的角的余弦值为. (Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD =DP,S△PCD=·2=. 又S△= 设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=. 解法二:(Ⅰ)同解法一,(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz. 则A(0,-1,0),B(1,-1,0),C(1,0,0), D(0,1,0),P(0,0,1). 所以=(-1,1,0),=(t,-1,-1),∞〈、〉=,所以异面直线PB与CD所成的角的余弦值为,(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),由(Ⅱ)知=(-1,0,1),=(-1,1,0),则n·=0,所以-x0+ x0=0, n·=0,-x0+ y0=0,即x0=y0=x0, 取x0=1,得平面的一个法向量为n=(1,1,1). 又=(1,1,0). 从而点A到平面PCD的距离d=(20)本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分. 解法一:(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1, 所以数列{an}是以1为首项,公差为1的等差数列. 故an=1+(a-1)×1=n. (Ⅱ)由(Ⅰ)知:an=n 从而bn+1-bn=2n. bn=(bn-bn-1)+(bn-1-bn-2)+···+(b2-b1)+b1=2n-1+2n-2+···+2+1 ==2n-1. 因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2 =(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1) =-5·2n+4·2n =-2n<0, 所以bn·bn+2<b, 解法二:(Ⅰ)同解法一. (Ⅱ)因为b2=1, bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b =2n+1·bn-1-2n·bn+1-2n·2n+1 =2n(bn+1-2n+1)=2n(bn+2n-2n+1)=2n(bn-2n)=… =2n(b1-2)=-2n〈0,所以bn-bn+2得x>2或x。
最新福建省高考文科数学试卷及答案【word版】
20xx 年福建文科卷一.选择题1.若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于 ( ) }{}{}{}{.34.34.23.23A x x B x x C x x D x x ≤<<<≤<≤≤ 2.复数()32i i +等于 ( ).23.23.23.23A i B i C i D i ---+-+3.以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ).2..2.1A B C D ππ4.阅读右图所示的程序框图,运行相应的程序,输出的n 的值为 ( ).1.2.3.4A B C D5.命题“[)30,.0x x x ∀∈+∞+≥”的否定是 ( ) ()()[)[)3333000000.0,.0.,0.0.0,.0.0,.0A x x x B x x x C x x x D x x x ∀∈+∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥6.已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=7.将函数sin y x =的图象向左平移2π个单位,得到函数()y f x =的函数图象,则下列说法正确的是 ( ) ()()()() (32).-02A y f x B y f x C y f x x D y f x πππ====⎛⎫= ⎪⎝⎭是奇函数的周期是的图象关于直线对称的图象关于点,对称8.若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是 ( )9.要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该溶器的最低总造价是 ( ) .80.120.160.240A B C D 元元元元10.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于 ( )..2.3.4A OM B OM C OM D OM11.已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C =Ω,且圆C 与x 轴相切,则22a b +的最大值为 ( ) .5.29.37.49A B C D12.在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L-距离”定义为121212.PP x x y y =-=-则平面内与x 轴上两个不同的定点12,F F 的“L-距离”之和等于定值(大于12F F )的点的轨迹可以是 ( )二、填空题13、如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________14、在ABC ∆中,3,2,60==︒=BC AC A ,则AB 等于_________15、函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的;零点个数是_________16. 已知集合{}{}2,1,0,,=c b a ,且下列三个关系:①2≠a ②2=b ③0≠c 有且只有一个正确,则________10100=++c b a三.解答题:本大题共6小题,共74分.17.(本小题满分12分)在等比数列{}n a 中,253,81a a ==. (1)求n a ;(2)设3log n n b a =,求数列{}n b 的前n 项和n S .18.(本小题满分12分)已知函数()2cos (sin cos )f x x x x =+.(1)求5()4f π的值; (2)求函数()f x 的最小正周期及单调递增区间.19.(本小题满分12分)如图,三棱锥A BCD -中,,AB BCD CD BD ⊥⊥.(1)求证:CD ⊥平面ABD ;(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.20.(本小题满分12分)根据世行20xx 年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035-4085元为中等偏下收入国家;人均GDP 为4085-12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.21.(本小题满分12分)已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.22.(本小题满分12分)已知函数()x f x e ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(1)求a 的值及函数()f x 的极值;(2)证明:当0x >时,2x x e <(3)证明:对任意给定的正数e ,总存在0x ,使得当0(,)x x ∈+∞时,恒有x x ce <。
普通高等学校招生国统一考试数学文试题福建卷,含答案 试题
卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕本套试卷第I卷〔选择题〕和第II卷〔非选择题〕两局部,第I卷1至3页,第II卷4至6页。
总分值是150分。
本卷须知:“2.第I卷每一小题在选出答案以后,需要用2B铅笔把答题卡上对应的题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II卷用0.5毫米黑色签字笔在答题卡上书写答题,在试题卷上答题,答案无效。
3.在考试完毕之后,考生必须将试题卷和答题卡一起交回。
参考公式:样本数据x1,x2.…,xn的HY差其中x为样本平均数柱体体积公式V=Sh其中S为底面面积,h为高锥体公式V=1 3 Sh其中S为底面面积,h为高球的外表积、体积公式S=4πR2,V=43πR3其中R为球的半径第I卷一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,只有一个项是符合题目要求的。
1.假设集合M={-1,0,1},N={0,1,2},那么M∩N等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}2.i是虚数单位1+i3等于3.假设a∈R,那么“a=1”是“|a|=1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,在高一年级的学生中抽取了6名,那么在高二年级的学生中应抽取的人数为A.6B.8 C5.阅读右图所示的程序框图,运行相应的程序,输出的结果是A.3B.11 C2+mx+1=0有两个不相等的实数根,那么实数m的取值范围是A.(-1,1)B.(-2,2)C.(-∞,-2)∪〔2,+∞〕D.〔-∞,-1〕∪〔1,+∞〕7.如图,矩形ABCD中,点E为边CD的重点,假设在矩形ABCD内部随机取一个点Q,那么点Q取自△ABE内部的概率等于A.14B.13C.12D.238.函数f 〔x 〕=20,1, 0x x x x >⎧⎨+≤⎩,。
最新高考文科数学福建卷(含详细答案)资料
精品文档 精品文档绝密★启用前2013年普通高等学校招生全国统一考试(福建卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数12i z =--(i 为虚数单位)在复平面内对应的点位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. 设点(,)P x y ,则“2x =且1y =-”是“点P 在直线:10l x y +-=上”的 ( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件3. 若集合{1,2,3}A =,{1,3,4}B =,则A B I 的子集个数为( )A . 2B . 3C . 4D . 16 4. 双曲线221x y -=的顶点到其渐进线的距离等于( )A .12B .22C . 1D . 25. 函数2()ln(1)f x x =+的图象大致是( )A .B .C .D .6. 若变量x ,y 满足约束条件2,1,0,x y x y +⎧⎪⎨⎪⎩≤≥≥则2z x y =+的最大值和最小值分别为( )A . 4和3B . 4和2C . 3和2D . 2和0 7. 若221x y +=,则x y +的取值范围是( )A . [0,2]B . [2,0]-C . [2,)-+∞D . (,2]-∞-8. 阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n 后,输出的(10,20)S ∈,那么n 的值为( )A . 3B . 4C . 5D . 69. 将函数ππ()sin(2)()22f x x θθ=+-<<的图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x 的图象都经过点3(0,)P ,则ϕ的值可以是 ( )A .5π3B .5π6C .π2D .π610. 在四边形ABCD 中,(1,2)AC =u u u r ,(4,2)BD =-u u u r,则该四边形的面积为( ) A . 5B . 25C . 5D . 1011. 已知x 与y 之间的几组数据如下表:x1 2 3 4 5 6 y21334假设根据上表数据所得线性回归直线方程为y bx a =+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y b x a ''=+,则以下结论正确的是( )A . $,bb a a ''>>$ B . $,bb a a ''><$ C . $,bb a a ''<>$D . $,bb a a ''<<$ 12. 设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A . x ∀∈R ,0()()f x f x ≤B . 0x -是()f x -的极小值点C . 0x -是()f x -的极小值点D . 0x -是()f x --的极小值点姓名________________ 准考证号_____________---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.已知函数32,0,()πtan,0,2x xf xx x⎧⎪=⎨-⎪⎩<≤<则π(())4f f=________.14.利用计算机产生0~1之间的均匀随机数a,则事件“310a-<”发生的概率为________.15.椭圆2222:1(0)x ya ba bΓ+=>>的左、右焦点分别为1F,2F,焦距为2c.若直线)y x c=+与椭圆Γ的一个交点M满足12212MF F MF F∠=∠,则该椭圆的离心率等于_________.16. 设S,T是R的两个非空子集,如果存在一个从S到T的函数()y f x=满足:(ⅰ){()|}T f x x S=∈;(ⅱ)对任意12,x x S∈,当12x x<时,恒有12()()f x f x<,那么称这两个集合“保序同构”.现给出以下3对集合:①A=N,*B=N;②{|13}A x x=-≤≤,{|810}B x x=-≤≤;③{|01}A x x=<<,B=R.其中,“保序同构”的集合对的序号是_________.(写出所有“保序同构”的集合对的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{}na的公差1d=,前n项和为nS.(Ⅰ)若1,1a,3a成等比数列,求1a;(Ⅱ)若519S a a>,求1a的取值范围.18.(本小题满分12分)如图,在四棱锥P ABCD-中,PD⊥平面ABCD,AB DC∥,AB AD⊥,5BC=,3DC=,4AD=,60PAD∠=o.(Ⅰ)当正视方向与向量ADu u u r的方向相同时,画出四棱锥P ABCD-的正视图(要求标出尺寸,并写出演算过程);(Ⅱ)若M为PA的中点,求证:DM∥平面PBC;(Ⅲ)求三棱锥D PBC-的体积.19.(本小题满分12分)精品文档某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70), [70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:2 2112212211212()n n n n nn n n nχ++++-=(注:此公式也可以写成22()()()()()n ad bcKa b c d a c b d-=++++)20.(本小题满分12分)如图,抛物线2:4E y x=的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,||CO为半径作圆,设圆C与准线l交于不同的两点M,N.(Ⅰ)若点C的纵坐标为2,求||MN;(Ⅱ)若2||||||AF AM AN=g,求圆C的半径.21.(本小题满分12分)如图,在等腰直角OPQ△中,90POQ∠=o,22OP=,点M在线段PQ上.(Ⅰ)若5OM=,求PM的长;(Ⅱ)若点N在线段MQ上,且30MON∠=o,问:当POM∠取何值时,OMN△的面积最小?并求出面积的最小值.22.(本小题满分14分)已知函数()1e xaf x x=-+(a∈R,e为自然对数的底数).(Ⅰ)若曲线()y f x=在点(1,(1))f处的切线平行于x轴,求a的值;(Ⅱ)求函数()f x的极值;(Ⅲ)当1a=时,若直线:1l y kx=-与曲线()y f x=没有公共点,求k的最大值.2()P kχ≥0.1000.0500.0100.001k2.7063.8416.63510.828精品文档2013年普通高等学校招生全国统一考试(福建卷)数学(文史类)答案解析11精品文档精品文档。
2020年普通高等学校招生全国统一考试数学文试题(福建卷,解析版)(1)
2020年普通高等学校招生全国统一考试数学文试题(福建卷,解析版)本试卷第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至3页,第II 卷4至6页。
满分150分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号、姓名是否一致。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回. 参考公式:样本数据x1,x2.…,xn 的标准差222121--...-n s x x x x x x n⎡⎤=++⎣⎦()()(),其中x 为样本平均数柱体体积公式V=Sh 其中S 为底面面积,h 为高;锥体公式V=13Sh ,其中S 为底面面积,h 为高球的表面积、体积公式S=4πR 2,V=43πR 3,其中R 为球的半径 第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
2. i 是虚数单位1+i 3等于A.iB.-iC.1+iD.1-i【答案】D【解析】因为311i i +=-,故选D.【解析】221,10,123;310,3211;1110a a a a a a =<=+==<=+==>,所以输出11a =,选B.6.若关于x 的方程x 2+m x+1=0有两个不相等的实数根,则实数m 的取值范围是 A. (-1,1) B. (-2,2)C. (-∞,-2) ∪(2,+∞)D.(-∞,-1)∪(1,+∞) 【答案】C【解析】因为方程x 2+mx+1=0有两个不相等的实数根,所以240m ∆=->,解得2m >或2m <-,选C.【解析】因为α∈(0, 2π),且2sin α+1cos 24α=,所以2sin α+221cos sin 4αα-=, 即21cos 4α=,所以cos α=12或12-(舍去),所以3πα=,即tan 3α=,选D.10. 若a>0, b>0, 且函数f(x)=4x 3-ax 2-2bx+2在1x =处有极值,则ab 的最大值等于A. 2B. 3C. 6D. 9 【答案】D【解析】2'()1222f x x ax b =--,所以()f x 在1x =处有极值,所以'(1)12220f a b =--=,即6a b +=,又0,0a b >>,所以2a b ab +≥,即26ab ,所以9ab ≤,当且仅当3a b ==时等号成立,所以ab 的最大值为9,选D.对于②,-3=-5+2,被5除应余2,所以②错;对于③,任意一整数x ,被5除余数为0,1,2,3,4,所以[][][][][]01234x ∈⋃⋃⋃⋃,所以③正确;对于④,先证充分性,因为,a b 是同一类,可设125,5,a n k b n k =+=+则5,,a b n n Z -=∈即5a n b =+,n Z ∈.不妨令5,b m k =+m Z ∈,则55a n m k =++,m Z ∈,n Z ∈,所以,a b 属于同一类,故④正确,则正确的有①③④.第II 卷(非选择题 共90分)注意事项:用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置。
2019年高考试题-文科数学(福建卷)解析版1
2019年高考试题-文科数学(福建卷)解析版1注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。
在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。
考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。
只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。
数学试题〔文史类〕解析第I 卷〔选择题共60分〕一、选择题1、复数i z 21--=〔i 为虚数单位〕在复平面内对应的点位于〔〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限 【答案】C【解析】此题考查的知识点是复数的几何意义、由几何意义可知复数在第三象限、 2、设点),(y x P ,那么“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的〔〕 A 、充分而不必要条件B 、必要而不充分条件 C 、充分必要条件D 、既不充分也不必要条件 【答案】A【解析】此题考查的知识点是逻辑中充要条件的判定、因为)1,2(点代入直线方程,符合方程,即“2=x 且1-=y ”可推出“点P 在直线01:=++y x l 上”;而点P 在直线上,不一定就是)1,2(点,即“点P 在直线01:=++y x l 上”推不出“2=x 且1-=y ”、故“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的充分而不必要条件、 3、假设集合}4,3,1{},3,2,1{==B A ,那么B A 的子集个数为〔〕 A 、2B 、3C 、4D 、16 【答案】C【解析】此题考查的是集合的交集和子集、因为}3,1{=B A ,有2个元素,所以子集个数为422=个、4、双曲线122=-y x 的顶点到其渐近线的距离等于〔〕A 、21B 、22C 、1D 、2【答案】B【解析】此题考查的是双曲线的性质、因为双曲线的两个顶点到两条渐近线的距离都相等,故可取双曲线的一个顶点为)0,1(,取一条渐近线为x y =,所以点)0,1(到直线x y =的距离为22、 5、函数)1ln()(2+=x x f 的图象大致是〔〕A 、B 、C 、D 、 【答案】A【解析】此题考查的是对数函数的图象、由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B,D 、6、假设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,那么y x z +=2的最大值和最小值分别为〔〕A 、4和3B 、4和2C 、3和2D 、2和0 【答案】B【解析】此题考查的简单线性规划、如图,可知目标函数最大值和最小值分别为4和2、7、假设122=+yx,那么y x +的取值范围是〔〕A 、]2,0[B 、]0,2[-C 、),2[+∞-D 、]2,(--∞ 【答案】D【解析】此题考查的是均值不等式、因为y x y x 222221⋅≥+=,即222-+≤yx ,所以2-≤+y x ,当且仅当y x 22=,即y x =时取等号、8、阅读如下图的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为〔〕A 、3B 、4C 、5D 、6【答案】B【解析】此题考查的是程序框图、循环前:2,1==k S ;第1次判断后循环:3,3==k S ;第2次判断后循环:4,7==k S ;第3次判断后循环:5,15==k S 、故4=n 、 9、将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,假设)(),(x g x f 的图象都经过点)23,0(P ,那么ϕ的值可以是〔〕 A 、35πB 、65πC 、2πD 、6π 【答案】B【解析】此题考查的三角函数的图像的平移、把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,应选B 10、在四边形ABCD 中,)2,4(),2,1(-==,那么该四边形的面积为〔〕A 、5B 、52C 、5D 、10 【答案】C【解析】此题考查的是向量垂直的判断以及向量的模长、因为022)4(1=⨯+-⨯=⋅,所以BC AC ⊥,所以四边形的面积为522)4(212||||2222=+-⋅+=⋅,应选C11、与y 之间的几组数据如下表: 假设根据上表数据所得线性回归直线方程a xb yˆˆˆ+=、为假设某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,那么以下结论正确的选项是〔〕A 、a a b b'>'>ˆ,ˆB 、a a b b '<'>ˆ,ˆC 、a a b b '>'<ˆ,ˆD 、a a b b '<'<ˆ,ˆ 【答案】C【解析】此题考查的是线性回归方程、画出散点图,可大致的画出两条直线〔如下图〕,由两条直线的相对位置关系可判断a a b b'>'<ˆ,ˆ、应选C12、设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的选项是〔〕A 、)()(,0x f x f R x ≤∈∀B 、0x -是)(x f -的极小值点C 、0x -是)(x f -的极小值点D 、0x -是)(x f --的极小值点 【答案】D【解析】此题考查的是函数的极值、函数的极值不是最值,A 错误;因为)(x f --和)(x f 关于原点对称,故0x -是)(x f --的极小值点,D 正确、 二、填空题13、函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,那么=))4((πf f 【答案】2-【解析】此题考查的是分段函数求值、2)1(2)1()4tan())4((3-=-=-=-=f f f f ππ、14、利用计算机产生1~0之间的均匀随机数,那么事件“013<-a ”发生的概率为【答案】31【解析】此题考查的是几何概型求概率、013<-a ,即31<a ,所以31131==P 、15、椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2、假设直线)(3c x y +=与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,那么该椭圆的离心率等于 【答案】13-【解析】此题考查的是圆锥曲线的离心率、由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==ace ,故答案为13-、16、设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足;〔i 〕}|)({S x x f T ∈=;〔ii 〕对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <、 那么称这两个集合“保序同构”、现给出以下3对集合: ①*,N B N A ==;②}108|{},31|{≤≤-=≤≤-=x x B x x A ; ③R B x x A =<<=},10|{、其中,“保序同构”的集合对的序号是〔写出所有“保序同构”的集合对的序号〕 【答案】①②③【解析】此题考查的函数的性质、由题意可知S 为函数的一个定义域,T 为其所对应的值域,且函数)(x f y =为单调递增函数、对于集合对①,可取函数)(2)(N x x f x∈=,是“保序同构”;对于集合对②,可取函数)31(2729≤≤--=x x y ,是“保序同构”;对于集合对③,可取函数)10)(2tan(<<-=x x y ππ,是“保序同构”、故答案为①②③、 三、解答题17、〔本小题总分值12分〕等差数列{}n a 的公差1d =,前n 项和为n S 、 〔1〕假设131,,a a 成等比数列,求1a ; 〔2〕假设519S a a >,求1a 的取值范围、本小题主要考查等比等差数列、等比数列和不等式等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想、总分值12分、解:〔1〕因为数列{}n a 的公差1d =,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =、〔2〕因为数列{}n a 的公差1d =,且519S a a >,所以21115108a a a +>+;即2113100a a +-<,解得152a -<<18、〔本小题总分值12分〕如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=、〔1〕当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.〔要求标出尺寸,并画出演算过程〕;〔2〕假设M 为PA 的中点,求证://DM PBC 面; 〔3〕求三棱锥D PBC -的体积、本小题主要考查直线与直线、直线与平面的位置关系及几何体的三视图和体积等基础知识,考查空间想象能力,推理论证能力、运算求解能力,考查数形结合能力、化归与转化思想,总分值12分、 解法一:〔Ⅰ〕在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E , 由得,四边形ADCE 为矩形,3AE CD ==在Rt BEC ∆中,由5BC =,4CE =,依勾股定理得: 3BE =,从而6AB =又由PD ⊥平面ABCD 得,PD AD ⊥从而在Rt PDA ∆中,由4AD =,60PAD ∠=︒,得PD = 正视图如右图所示:〔Ⅱ〕取PB 中点N ,连结MN ,CN 在PAB ∆中,M 是PA 中点,∴MN AB ,132MN AB ==,又CD AB ,3CD =∴MN CD ,MN CD =∴四边形MNCD 为平行四边形,∴DM CN 又DM ⊄平面PBC ,CN ⊂平面PBC ∴DM 平面PBC〔Ⅲ〕13D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆=,PD =,所以D PBC V -=解法二:〔Ⅰ〕同解法一〔Ⅱ〕取AB 的中点E ,连结ME ,DE在梯形ABCD 中,BE CD ,且BE CD =∴四边形BCDE 为平行四边形∴DE BC ,又DE ⊄平面PBC ,BC ⊂平面PBC ∴DE 平面PBC ,又在PAB ∆中,ME PBME ⊄平面PBC ,PB ⊂平面PBC ∴ME 平面PBC .又DE ME E =,∴平面DME 平面PBC ,又DM ⊂平面DME ∴DM 平面PBC〔Ⅲ〕同解法一 19、〔本小题总分值12分〕某工厂有25周岁以上〔含25周岁〕工人300名,25周岁以下工人200名、为研究工人的日平均生产量是否与年龄有关、现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上〔含25周岁〕”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如下图的频率分布直方图、〔1〕从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率、 〔2〕规定日平均生产件数不少于80件者为“生产能手”,请你根据条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:本小题主要考查古典概型、抽样方法、独立性检验等基础知识,考查运算求解能力、应用意识,考查必然和或然思想、化归与转化思想等,总分值12分、 解:〔Ⅰ〕由得,样本中有25周岁以上组工人60名,25周岁以下组工人40名 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=〔人〕, 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=〔人〕,记为1B ,2B从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =〔Ⅱ〕由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=〔人〕,“25周岁以下组”中的生产能手400.37515⨯=〔人〕,据此可得22⨯列联表如下:所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯ 因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关” 20、〔本小题总分值12分〕如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A 、点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N 、〔1〕假设点C 的纵坐标为2,求MN ; 〔2〕假设2AFAM AN =⋅,求圆C 的半径、本小题主要考查抛物线的方程、圆的方程与性质、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想、总分值12分、解:〔Ⅰ〕抛物线24y x =的准线l 的方程为1x =-, 由点C 的纵坐标为2,得点C 的坐标为(1,2) 所以点C 到准线l 的距离2d =,又||CO =所以||2MN ===.〔Ⅱ〕设200(,)4y C y ,那么圆C 的方程为242220000()()416y y x y y y -+-=+, 即22200202y x x y y y -+-=.由1x =-,得22002102y y y y -++=设1(1,)M y -,2(1,)N y -,那么:222000201244(1)240212y y y y y y ⎧∆=-+=->⎪⎪⎨⎪=+⎪⎩由2||||||AF AM AN =⋅,得12||4y y =所以2142y +=,解得0y =0∆>所以圆心C 的坐标为3(2或3(,2从而233||4CO =,||CO =,即圆C21〔本小题总分值12分〕如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,OP =点M 在线段PQ 上、〔1〕假设OM =PM 的长;〔2〕假设点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值、本小题主要考查解三角形、同角三角函数的基本关系、两角和与差的三角函数等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、总分值12分、解:〔Ⅰ〕在OMP ∆中,45OPM ∠=︒,OM =OP = 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=,解得1MP =或3MP =、〔Ⅱ〕设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠, 所以()sin 45sin 45OP OM α︒=︒+,同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦===42=因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值、即230POM ∠=︒时,OMN ∆的面积的最小值为8-22〔本小题总分值14分〕函数()1x a f x x e=-+〔a R ∈,e 为自然对数的底数〕、 〔1〕假设曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;〔2〕求函数()f x 的极值;〔3〕当1a =的值时,假设直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值、 本小题主要考查函数与导数,函数的单调性、极值、零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想、总分值14分、解:〔Ⅰ〕由()1x a f x x e =-+,得()1x a f x e'=-、又曲线()y f x =在点()()1,1f 处的切线平行于x 轴, 得()10f '=,即10a e-=,解得a e =、 〔Ⅱ〕()1x a f x e '=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值、 ②当0a >时,令()0f x '=,得x e a =,ln x a =、(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>、所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值、综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值、〔Ⅲ〕当1a =时,()11xf x x e =-+ 令()()()()111xg x f x kx k x e =--=-+, 那么直线l :1y kx =-与曲线()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解、假设1k >,此时()010g =>,1111101k g k e -⎛⎫=-+< ⎪-⎝⎭, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤、又1k =时,()10x g x e=>,知方程()0g x =在R 上没有实数解、 所以k 的最大值为1、解法二:〔Ⅰ〕〔Ⅱ〕同解法一、〔Ⅲ〕当1a =时,()11xf x x e =-+、 直线l :1y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程111x kx x e-=-+在R 上没有实数解,即关于x 的方程: ()11x k x e-= 〔*〕 在R 上没有实数解、①当1k =时,方程〔*〕可化为10xe =,在R 上没有实数解、 ②当1k ≠时,方程〔*〕化为11x xe k =-、 令()x g x xe =,那么有()()1xg x x e '=+、 令()0g x '=,得1x =-,当x 变化时,()g x '的变化情况如下表:当1x =-时,()min g x e =-,同时当x 趋于+∞时,()g x 趋于+∞,从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭、 所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程〔*〕无实数解, 解得k 的取值范围是()1,1e -、综上,得k 的最大值为1、。
2021年高考真题——数学文(福建卷)word解析版
第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D . 考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα=512=-,故选D . 考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1212332⨯⨯=,侧面积为则其表面积为2+2+4+22=8+221122+B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4 C .3[,1)2D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式.12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC ,045A =,075C =,则BC =_______.2【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以232232BC ⨯==.考点:正弦定理. 15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n n b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d . 由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A . 由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-. 由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由(2,22A ,()F 1,0可得直线F A 的方程为)221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+. 又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262. 【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值. 试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O . (II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =, 所以22112PB =+=. 同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点.从而C C 222''O =OE +E =+=亦即C E +OE 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,PB =C P =所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+1122222=+--⎭2=从而C 'O ==所以C E +OE 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分)已知函数()2cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象. 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得102x <<故()f x 的单调递增区间是10,2⎛+ ⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(福建卷)
数学试题(文史类)
第I 卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求
1. 复数2)2(i +等于( )
A .i 43+
B .i 45+
C .i 23+
D .i 25+
2. 已知集合}4,3,2,1{=M ,}2,2{-=M ,下列结论成立的是( )
A .M N ⊆
B .M N M =
C .N N M =
D .}2{=N M
3. 已知向量)2,1(-=→x a ,)1,2(=→b ,则→→⊥b a 的充要条件是( )
A .2
1-=x B .1-=x C .5=x D .0=x 4. 一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )
A .球
B .三棱锥
C .正方体
D .圆柱
5.已知双曲线15
2
22=-y a x 的右焦点为)0,3(,则该双曲线的离心率等于( ) A .31414 B .324 C .32 D .43
6.阅读右图所示的程序框图,运行相应的程序,输出s 值等于( )
A .3-
B .10-
C .0
D .2-
7.直线023=-+y x 与圆422=+y x 相交于B A ,两点,则弦AB 的长度等于( )
A .25
B .23
C .3
D .1
8.函数)4sin()(π-
=x x f 的图像的一条对称轴是( ) A .4π
=x B .2π
=x C .4π
-=x D .2π
-=x
9.设⎪⎩
⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则))((πg f 值为( )
A .1
B .0
C .1-
D .π=x
10.若直线x y 2=上存在点),(y x 满足约束条件⎪⎩
⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )
A .1-
B .1
C .
2
3 D .2 11.数列}{n a 的通项公式2cos πn n a n =,其前n 项和为n S ,则2012S 等于( ) A .1006 B .2012 C .503 D .0
12.已知c b a abc x x x x f <<-+-=,96)(2
3,且0)()()(===c f b f a f ,现给出如下结论:①0)1()0(>f f ;②0)1()0(<f f ;③0)3()0(>f f ;④0)3()0(<f f 。
其中正确结论的序号是( )
A .①③
B .①④
C .②③
D .②④ 第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分。
把答案填在答题卡的相应位置。
13.在ABC ∆中,已知060=∠BAC ,045=∠ABC ,3=BC ,则=AC _______。
14.一支田径队有男女运动员98人,其中男运动员有56人。
按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x 的不等式022
>+-a ax x 在R 上恒成立,则实数a 的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。
例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10。
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
在等差数列}{n a 和等比数列}{n b 中,8,1411===b b a ,}{n a 的前10项和5510=S 。
(Ⅰ)求n a 和n b ;
(Ⅱ)现分别从}{n a 和}{n b 的前3项中各随机抽取一项写出相应的基本事件,并求这两项的值相等的概率。
18.(本小题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I )求回归直线方程a bx y +=∧,其中-∧-=-=x b y a b ,20
(II )预计在今后的销售中,销量与单价仍然服从(I )中的关系,且该产品的成本是4元/件,为使工厂获得
最大利润,该产品的单价应定为多少元?(利润=销售收入—成本)。