2018届高三数学 第26练 同角三角函数关系式和诱导公式练习
高考数学训练含答案解析——同角三角函数基本关系式与诱导公式
课时作业 A 组——基础对点练1.若cos α=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α等于( )A .-24 B.24 C .-2 2D .2 2解析:∵α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫132=-232, ∴tan α=sin αcos α=-2 2. 答案:C2.sin(-600°)的值为( ) A.32 B .22 C .1D .33解析:sin(-600°)=sin(-720°+120°)=sin 120°=32. 答案:A3.已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25 B .-15 C.15D .25解析:∵sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴cos α=15.故选C. 答案:C4.已知角α(0°≤α<360°)终边上一点的坐标为(sin 235°,cos 235°),则α=( ) A .215°B .225°C .235°D .245°解析:由诱导公式可得sin 235°=-sin 55°<0,cos 235°=-cos 55°<0,角α终边上一点的横坐标、纵坐标均为负值,故该点在第三象限,由三角函数定义得sin α=cos 235°=-cos 55°=sin(270°-55°)=sin 215°,又0°≤α<360°,所以角α的值是215°,故选A. 答案:A5.已知sin α-cos α=2,α∈(0,π),则sin 2α=( ) A .-1 B .-22 C.22D .1解析:∵sin α-cos α=2,∴(sin α-cos α)2=1 -2sin αcos α=2,∴2sin α·cos α=-1,∴sin 2α=-1.故选A. 答案:A6.设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a , ∴b >a .又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b , ∴c >b .∴c >b >a .故选C. 答案:C7.已知2tan α·sin α=3,-π2<α<0,则sin α=( ) A.32 B .-32 C.12D .-12解析:因为2tan α·sin α=3,所以2sin 2αcos α=3,所以2sin 2α=3cos α,即2-2cos 2α=3cos α,所以cos α=12或cos α=-2(舍去),又-π2<α<0,所以sin α=-32. 答案:B8.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ=( )A .1B .-1C .3D .-3解析:原式可化为sin θ+cos θsin θ-cos θ=12,分子、分母同除以cos θ得tan θ+1tan θ-1=12,求得tan θ=-3,故选D. 答案:D9.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为( ) A .-1 B .1 C .3D .-3解析:∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β)=a sin(π+α)+b cos(π+β)=-a sin α-b cos β=-(a sin α+b cos β)=-3. 答案:D10.cos 350°-2sin 160°sin (-190°)=________.解析:原式=cos (360°-10°)-2sin (180°-20°)-sin (180°+10°)=cos 10°-2sin (30°-10°)-(-sin 10°)=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°= 3.答案: 311.化简:cos (α-π)sin (π-α)·sin ⎝ ⎛⎭⎪⎫α-π2·cos ⎝ ⎛⎭⎪⎫3π2-α=__________.解析:cos (α-π)sin (π-α)·sin ⎝ ⎛⎭⎪⎫α-π2·cos ⎝ ⎛⎭⎪⎫3π2-α=-cos αsin α·(-cos α)·(-sin α)=-cos 2α.答案:-cos 2α12.(2018·西安质检)若角θ满足2cos ⎝ ⎛⎭⎪⎫π2-θ+cos θ2sin (π+θ)-3cos (π-θ)=3,求tan θ的值.解析:由2cos ⎝ ⎛⎭⎪⎫π2-θ+cos θ2sin (π+θ)-3cos (π-θ)=3,得2sin θ+cos θ-2sin θ+3cos θ=3,等式左边分子分母同时除以cos θ,得2tan θ+1-2tan θ+3=3,解得tan θ=1.B 组——能力提升练1.若1+cos αsin α=2,则cos α-3sin α=( ) A .-3 B .3 C .-95D .95解析:∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1⇒5sin 2α-4sin α=0⇒sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C. 答案:C2.已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ⎝ ⎛⎭⎪⎫2 015π2-2α的值为( ) A.45 B .-45 C .2D .-12解析:由题意可得tan α=2, 所以cos ⎝ ⎛⎭⎪⎫2 015π2-2α=-sin 2α=-2sin αcos αsin 2α+cos 2α=-2tan αtan 2α+1=-45.故选B.答案:B3.(2018·长沙模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:由题意知,sin θ+cos θ=-m 2,sin θ·cos θ=m 4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案:B4.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( ) A .-43 B .54 C .-34D .45解析:sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1,把tan θ=2代入得,原式=4+2-24+1=45. 故选D. 答案:D5.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θ·cos θ=3716,则sin θ=( )A.35 B .45 C.74D .34解析:∵sin θ·cos θ=3716,∴(sin θ+cos θ)2=1+2sin θ·cos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sinθ-cos θ=3-74 ②,联立①②得,sin θ=34. 答案:D6.已知倾斜角为θ的直线与直线x -3y +1=0垂直,则23sin 2θ-cos 2θ=( )A.103 B .-103 C.1013D .-1013解析:直线x -3y +1=0的斜率为13,因此与此直线垂直的直线的斜率k =-3,∴tan θ=-3,∴23sin 2θ-cos 2θ=2(sin 2θ+cos 2θ)3sin 2θ-cos 2θ=2(tan 2θ+1)3tan 2θ-1,把tan θ=-3代入得,原式=2×[(-3)2+1]3×(-3)2-1=1013.答案:C7.4sin 80°-cos 10°sin 10°=( ) A. 3 B .- 3 C. 2D .22-3解析:4sin 80°-cos 10°sin 10°=4sin 80°sin 10°-cos 10°sin 10°=2sin 20°-cos 10°sin 10°=2sin (30°-10°)-cos 10°sin 10°=-3,故选B.答案:B8.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( ) A.12 B .32 C .0D .-12解析:由f (x +π)=f (x )+sin x ,得f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f ⎝ ⎛⎭⎪⎫ 236π=f ⎝ ⎛⎭⎪⎫116π+2π=f ⎝ ⎛⎭⎪⎫116π=f ⎝ ⎛⎭⎪⎫π+56π =f ⎝ ⎛⎭⎪⎫56π+sin 56π. 因为当0≤x <π时,f (x )=0, 所以f ⎝ ⎛⎭⎪⎫236π=0+12=12.答案:A9.已知锐角θ满足sin ⎝ ⎛⎭⎪⎫θ2+π6=23,则cos ⎝ ⎛⎭⎪⎫θ+5π6的值为( )A .-19 B .459 C .-459D .19解析:因为sin ⎝ ⎛⎭⎪⎫θ2+π6=23,由θ∈⎝ ⎛⎭⎪⎫0,π2,可得θ2+π6∈⎝ ⎛⎭⎪⎫π6,5π12,所以cos ⎝ ⎛⎭⎪⎫θ2+π6=53,则sin ⎝ ⎛⎭⎪⎫θ+π3=459,所以cos⎝ ⎛⎭⎪⎫θ+5π6=cos ⎝ ⎛⎭⎪⎫π2+θ+π3=-sin ⎝ ⎛⎭⎪⎫θ+π3=-459.故选C. 答案:C10.tan θ和tan ⎝ ⎛⎭⎪⎫π4-θ是方程x 2+px +q =0的两根,则p ,q 之间的关系是( )A .p +q +1=0B .p -q -1=0C .p -q +1=0D .p +q -1=0解析:依题意有p =-⎣⎢⎡⎦⎥⎤tan θ+tan ⎝ ⎛⎭⎪⎫π4-θ,q =tan θ·tan ⎝ ⎛⎭⎪⎫π4-θ,化简得p =-tan 2θ+1tan θ+1,q =tan θ-tan 2θ1+tan θ,故p -q =-1,即p -q +1=0.故选C.答案:C11.已知α为锐角,若sin 2α+cos 2α=-15,则tan α=( )A .3B .2 C.12D .13解析:因为sin 2α+cos 2α=-15,所以两边平方可得1+2sin 2αcos 2α=125,即sin 2αcos 2α=-1225,所以联立sin 2α+cos 2α=-15,可得sin 2α=35,cos 2α=-45,所以tan 2α=-34,再由tan 2α=2tan α1-tan 2α,得tan α=3或tan α=-13,因为α为锐角,所以tan α>0,所以tan α=3,故选A. 答案:A12.已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-113.(2018·泰安模拟)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,求sin θ+cos θ的值.解析:法一:由tan ⎝ ⎛⎭⎪⎫θ+π4=12,得1+tan θ1-tan θ=12,解得tan θ=-13,则cos θ=-3sinθ.由sin 2θ+cos 2θ=1,得10sin 2θ=1.∵θ为第二象限角,∴sin θ=1010,cos θ=-31010,∴sin θ+cos θ=-105.法二:由于θ在第二象限,且tan ⎝ ⎛⎭⎪⎫θ+π4=12,因而sin ⎝ ⎛⎭⎪⎫θ+π4=-55,因而sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=-105.。
高考数学专题复习题:同角三角函数基本关系式和诱导公式
高考数学专题复习题:同角三角函数基本关系式和诱导公式一、单项选择题(共4小题)1.已知4sin ,,52πααπ⎛⎫=∈ ⎪⎝⎭,则tan α的值是( ) A .34− B .43− C .34 D .432.tan600°的值是( )A .33−B .33C .3−D .33.已知α为锐角,且2tan(π-α)-3⎪⎭⎫ ⎝⎛+βπ2cos +5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( )A .355B .377C .31010D .134.已知f (sin x )=cos 3x ,则f (cos 10°)的值为( )A .-12B .12C .-32D .32二、多项选择题(共3小题)5.已知θ∈(0,π),sin θ+cos θ=15,则( ) A .θ∈⎪⎭⎫ ⎝⎛ππ,2 B .cos θ=-35 C .tan θ=-34 D .sin θ-cos θ=756.在△ABC 中,若tanA +B 2=sinC ,则下列结论正确的是( ) A .tan A tan B =1 B .1<sin A +sin B ≤2C .sin 2A +cos 2B =1D .cos 2A +cos 2B =sin 2C 7.下列结论中,正确的是( )A .sin(π+α)=-sin α成立的条件是角α是锐角B .若cos(n π-α)=13(n ∈Z),则cos α=13C .若α≠k π2(k ∈Z),则tan ⎪⎭⎫ ⎝⎛+απ2=-1tan αD .若sin α+cos α=1,则sin n α+cos n α=1三、填空题(共4小题)8.若角α的终边在第三象限,则cos α1-sin 2α+2sin α1-cos 2α=________. 9.若sin α=2cos α,则cos 2α+sin αcos α-sin 2α=________.10.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.11.已知cos ⎪⎭⎫ ⎝⎛+απ125=13,且-π<α<-π2,则cos ⎪⎭⎫ ⎝⎛απ-12=________. 四、解答题(共3小题)12.化简计算:(1)sin sin1sin 1sin αααα−+−; (2 13.求值:(1)若α是第二象限角,且cos ⎪⎭⎫ ⎝⎛+απ2=-13,求tan α的值; (2)已知f (α)=sin (3π-α)cos (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos (π-α)sin (-π-α),化简f (α),在(1)的条件下,求f (α)的值. 14.某同学在思考是否存在⎪⎭⎫ ⎝⎛∈22-ππα,,β∈(0,π),使等式sin(3π-α)=2⎪⎭⎫ ⎝⎛−βπ2cos ,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.。
4.2同角三角函数的基本关系式及诱导公式(学案)
4.2同角三角函数的基本关系式及诱导公式(学案)知识归纳1、 同角三角函数的基本关系式(1) 平方关系 (2) 商数关系 (3) 倒数关系)记忆口诀:奇变偶不变,符号看象限(其中的奇、偶是指 的奇数倍和偶数倍,变与不变是指 的变化(2)利用诱导公式把任意的三角函数转化为锐角三角函数的基本步骤是:任意角的三角函数→正角的三角函数→00360 的角的三角函数→锐角三角函数 3、平方关系 s is α商数关系 t a nαc o t α倒数关系 s e c α 4、sin cos ,sin cos ,sin cos αααααα+-三者之间的关系()2sin cos 12sin cos αααα+=+()2sin cos 12sin cos αααα-=- ()()22sin cos sin cos 2αααα++-=()()22sin cos sin cos 4sin cos αααααα+--=5、同角三角函数关系式和诱导公式的应用主要包括三类题型:求值、化简、证明典型例题例1、(1)已知()cot 2πα-=,求3sin 2πα⎛⎫+⎪⎝⎭的值 (2) 已知()cot 0m m α=≠,求cos α例2、已知tan 1tan 1αα=--,求下列各式的值:()4sin 2cos 15cos 3sin αααα-+ ()2s i n c o s αα ()()23sin cos αα+例3、已知()()()()()3sin cos 2tan 2cot sin f ππαπααααππα⎛⎫---+ ⎪⎝⎭=----(1) 化简()f α(2) 若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值 (3) 若313πα=-,求()f α的值例4、(1)求证:tan sin tan sin tan sin tan sin αααααααα⋅+=-⋅(2)已知()()sin 2cos 2αππα-=- 求证:()()()()sin 5cos 233cos sin 5παπαπαα-+-=----例5、已知关于x的方程)2210x x m -+=的两根为sin θ和cos θ,()0,2θπ∈求(1)sin cos 1cot 1tan θθθθ+--的值(2)m 的值(3)方程的两根及此时θ的值堂清练习1、19sin 6π⎛⎫- ⎪⎝⎭的值等于( )A 、12B 、12- C2D、2-2、如果A 为锐角,()1sin 2A π+=-,那么()cos A π-=( )A 、12- B 、12C、2-D23、已知a =200sin ,则160tan 等于A、- B、C、a-D、a4cos sin 1+=-,则θ是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角5、若022x π≤≤cos 2x =成立的x 的取值范围是( )A 、0,4π⎛⎫⎪⎝⎭B 、3,4ππ⎛⎫⎪⎝⎭ C 、5,44ππ⎛⎫ ⎪⎝⎭ D 、30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦6、405cot 300tan +的值为____。
高考数学专题复习题:同角三角函数基本关系式及诱导公式
高考数学专题复习题:同角三角函数基本关系式及诱导公式一、单项选择题(共8小题)1.已知α是第三象限角,sin α=-35,则tan α=( )A.-34B.34C.-43D.43 2.已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭( ) A .35 B .12 C .12− D .25− 3.若cos α=35,α是第一象限角,角α,β的终边关于y 轴对称,则tan β=( )A.34B.-34C.43D.-434.“sin cos 1αα+=”是“sin20α=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若α为锐角,tan α=1cos 2α+1,则tan α=( )A.12B.1C.2-3D.36.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 4π5,cos 4π5,则α的最小正值为( ) A.π5 B.3π10 C.4π5 D.17π107.如果函数321()(1)23f x x x f =++',且该函数的图象在点3x =处的切线的倾斜角为α,那么π3πsin cos 22αα⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭的值为( ) A .310 B .310− C .910 D .34−二、多项选择题(共3小题)9.已知α∈(0,π),且sin α+cos α=15,则( )A. π2<α<πB. sin αcos α=-1225C. cos θ=-45D. cos α-sin α=-75 10.已知sin α+cos αsin α-cos α=3,-π2<α<π2,则( ) A.tan α=2B.sin α-cos α=-55C.sin 4α-cos 4α=35D.1-2sin αcos αsin 2α-cos 2α=1311.若sin θ+cos θ=t ,θ∈⎝ ⎛⎭⎪⎫-π2,π2,t ∈(-1,2],函数f (θ)=sin θ+cos θ-sin θcos θ,则下列选项正确的是( )A .当t =12时,sin θcos θ的值为38B .当t =12时,sin 3θ-cos 3θ的值为-5716C .函数f (θ)的值域为(-1,2]D .函数f (θ)的值域为(-1,1]三、填空题(共3小题)12.若θ∈⎝ ⎛⎭⎪⎫0,π2,tan θ=12,则sin θ-cos θ=________. 13.已知sin(3π+θ)=13,则cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=________.14.已知-π<x <0,sin(π+x )-cos x =-15,则sin 2x +2sin 2x 1-tan x =________.。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,并且是第二象限的角,那么的值等于()A.B.C.D.【答案】A【解析】由,又为第二象限角,,则.故选A.【考点】三角函数的平方公式.2.己知a为锐角,且,,则sina的值是( ). A.B.C.D.【答案】C.【解析】根据诱导公式,已知条件的两个式子可化为如下关系:,解得,又本题要求的是,因此由前述可知有,解得(a为锐角).【考点】诱导公式,同角三角函数的基本关系.3.已知,则的值为.【答案】-11【解析】【考点】弦化切4.求的值域.【解析】可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.解:原函数可化为令可得则【考点】同角三角函数的基本关系式,一元二次函数求值域.5.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1);(2).【解析】(1)根据诱导公式,将中的三角函数都转化为的三角函数,即可得到;(2)由,可得,又由条件是第三象限角及(1)中得到的的表达式,即可得到.(1);(2)由得,,因为是第三象限角,所以,∴.【考点】1.诱导公式;2.同角三角函数基本关系.6.已知 .【答案】【解析】∵,∴,∴原式=.【考点】1.诱导公式;2.同角三角函数基本关系.7.已知,则tanα的值是()A.±B.C.D.无法确定【答案】B【解析】∵,∴,即.【考点】同角三角函数的基本关系.8.( )A.B.C.D.【答案】D【解析】.【考点】同角三角函数基本关系.9.已知,则 ( )A.B.C.D.【答案】A【解析】由【考点】同角三角函数基本关系10. sin的值是()A.B.-C.D.-【答案】B【解析】.【考点】诱导公式,特殊角的三角函数值.11.已知,则的值为()A.B.C.D.【答案】A【解析】由条件,得,整理得:,即①,代入中,得,整理得:,即,解得(舍)或,把,代入①,得,所以,故选A.【考点】同角三角函数基本关系.12.若,的化简结果为()A.B.C.D.【答案】D【解析】,=.【考点】同角的基本关系.13.已知(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)因为,可得=−2,α为钝角且cosα<0.再由sin2α+cos2α=1,求得cosα的值.(2)原式=,把tanα=-2代入运算求得结果.试题解析:解:(1)因为,所以cosa=(2)原式=【考点】1.同角三角函数间的基本关系;2.三角函数的化简求值.14.若,则计算所得的结果为()A.B.C.D.【答案】A【解析】先根据诱导公式化简,原式=,再将代入即得答案为A.【考点】诱导公式.15.已知=,则的值等于( )A.B.-C.D.±【答案】A【解析】诱导公式,注意,,所以选A【考点】诱导公式16.已知,则的值是( )A.B.C.D.【答案】C【解析】由与可得,而,选C.【考点】同角三角函数的基本关系式.17.已知为第三象限角,.(1)化简;(2)若,求的值.【答案】(1);(2).【解析】(1)应用三角诱导公式进行化简即可得出答案;(2)根据同角三角函数的基本关系式求出,由求出,最后由正切的二倍角公式可计算得结果.试题解析:(1) 6分(结果为酌情给3分)(2)由,得. 又已知为第三象限角所以,所以 8分所以 10分故 12分.【考点】1.诱导公式;2.同角三角函数的基本关系式;3.二倍角公式.18.已知tanα,是关于x的方程x2-kx+k2-3=0的两实根,且3π<α<π,求cos(3π+α)-sin(π+α)的值.【解析】关于方程两根的问题可用韦达定理解决,,从而求出k =±2,再根据角的范围可知为正,从而求得。
下学期高三数学课时作业18:同角三角函数的基本关系式与诱导公式(附答案)
课时作业18同角三角函数的基本关系式与诱导公式时间:45分钟 分值:100分一、选择题(每小题5分,共30分)1.已知cos α=45,α∈(-π4,0),则sin α=( )A .-35B.35C .±35D .以上都不对解析:∵cos α=45,α∈(-π4,0),∴sin α=-1-cos 2α=-1-452=-35.答案:A 2.1-++等于( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos2解析:原式=1-2-sin2-cos2 =1-2sin2cos2=|sin2-cos2|, ∵sin2>0,cos2<0,∴原式=sin2-cos2. 答案:A3.记cos(-80°)=k ,那么tan100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:由cos(-80°)=k ,得cos80°=k , ∴sin80°=1-k 2,∴tan100°=tan(180°-80°)=-tan80°=-1-k 2k .答案:B4.若cos α+2sin α=-5,则tan α=( )A.12 B .2 C .-12D .-2解析:由⎩⎨⎧ cos α+2sin α=-5,sin 2α+cos 2α=1,①②将①代入②得(5sin α+2)2=0, ∴sin α=-255,cos α=-55.∴tan α=2. 答案:B5.(2013·东莞模拟)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( ) A .-43B.54 C .-34D.45解析:sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45.答案:D6.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (2 011)=3,则f (2 012)的值是( ) A .-1 B .-2 C .-3D .1 解析:∵f (2 011)=a sin(2 011π+α)+b cos(2 011π+β) =a sin(π+α)+b cos(π+β)=-a sin α-b cos β=3. ∴a sin α+b cos β=-3,∴f (2 012)=a sin(2 012π+α)+b cos(2 012π+β) =a sin α+b cos β=-3. 答案:C二、填空题(每小题5分,共15分)7.(tan x +1tan x )cos 2x 化简的结果是__________.解析:(tan x +1tan x )cos 2x =(sin x cos x +cos xsin x )cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =cos x sin x =1tan x.答案:1tan x8.(2013·德州模拟)已知角α终边上一点P (-4,3),则π2+α-π-α11π2-α9π2+α的值为__________.解析:∵tan α=y x =-34,∴π2+α-π-α11π2-α9π2+α=-sin α·sin α-sin α·cos α=tan α=-34.答案:-349.已知sin(π4+α)=32,则sin(3π4-α)的值为__________.解析:sin(3π4-α)=sin(π4+α)=32.答案:32三、解答题(共55分) 10.(15分)已知sin(3π+θ)=13,求+θcos θ-θ-1]+θ-θ-3π2θ--3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13,∴原式= -cos θcos θ-cos θ-+-θ-3π2-θ-θ+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ =21-cos 2θ=2sin 2=2-132=18.11.(20分)已知:sin α+cos α=13.(1)求sin2α的值.(2)求sin 4α+cos 4α的值. 解:(1)sin α+cos α=13,两边平方得:1+sin2α=19,sin2α=-89.(2)sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-3281=4981.12.(20分)(2013·常州模拟)已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两根. (1)求cos 3(π2-θ)+sin 3(π2+θ)的值;(2)求tan(π-θ)-1tan θ的值.解:由已知,原方程判别式Δ≥0, 即(-a )2-4a ≥0,∴a ≥4或a ≤0.∵⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a , 又(sin θ+cos θ)2=1+2sin θcos θ,∴a 2-2a -1=0,∴a =1-2或a =1+2(舍去), ∴sin θ+cos θ=sin θcos θ=1- 2. (1)cos 3(π2-θ)+sin 3(π2+θ)=sin 3θ+cos 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ) =(1-2)[1-(1-2)]=2-2. (2)tan(π-θ)-1tan θ=-tan θ-1tan θ=-(tan θ+1tan θ)=-(sin θcos θ+cos θsin θ)=-1sin θcos θ=-11-2=2+1.。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.已知,且,则 .【答案】【解析】由已知得,.【考点】三角函数基本运算.2.已知函数f(x)= ,则f[f(2014)]= ( )A.1B.-1C.0D.【答案】A【解析】∵f(2014)=2014-14=2000∴f[f(2014)]=f(2000)=cos(×2000)=cos500=13.若,则 .【答案】【解析】.【考点】诱导公式.4.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-5.已知tanθ=2,则=__________.【答案】-2【解析】==-2.6.已知2tanα·sinα=3,-<α<0,则cos(α-)=____________.【解析】依题意得=3,即2cos2α+3cosα-2=0,解得cosα=或cosα=-2(舍去).又-<α<0,因此α=-,故cos=cos=cos=0.7.已知tan=3,则 .【答案】45【解析】已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得.【考点】弦化切8.已知函数f(x)=sin+-2cos2,x∈R(其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.【答案】(1)[-3,1](2)(k∈Z)【解析】(1)f(x)=sin ωx+cos ωx+sin ωx-cos ωx-(cos ωx+1)=2-1=2-1.由-1≤≤1,得-3≤2s-1≤1,所以函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y=f(x)的周期为π,所以=π,即ω=2.所以f(x)=2sin-1,再由2kπ-≤2x-≤2kπ+ (k∈Z),解得kπ-≤x≤kπ+(k∈Z).所以函数y=f(x)的单调增区间为 (k∈Z).9.=()A.-B.-C.D.【答案】C【解析】====sin 30°=.10.已知,则()A.B.C.D.【答案】D【解析】解法(一)切化弦的思想:因为,所以,.又因为.所以解得.所以.故选D. 解法(二)弦化切的思想:因为.故选D.【考点】1.切与弦互化的思想.2.二倍角公式.3.方程的思想.11.已知,则=______________.【答案】【解析】本题三角函数式的求值,一般要先化简,而化简方法有透导公式化为同角,然后用切割化弦法,.【考点】诱导公式与同角关系.12.已知,且,则等于()A.B.C.D.【答案】B【解析】,且,所以,因此,故选B.【考点】1.诱导公式;2.同角三角函数的基本关系13.已知函数,.(1)求的最大值和最小正周期;(2)若,是第二象限的角,求.【答案】(1)函数的最大值为,最小正周期为;(2).【解析】(1)先利用辅助角公式将函数的解析式化简为的形式,进而求出函数的最大值与最小正周期;(2)先利用已知条件求出的值,再结合角的取值范围,求出的值,最后利用二倍角公式求出的值.试题解析:(1),,,即函数的最大值为,最小正周期为;(2),,为第二象限角,,因此,.【考点】1.辅助角公式;2.三角函数的最值;3.三角函数的周期性;4.同角三角函数的基本关系;5.二倍角14.已知,,,则的值=________________.【答案】【解析】因为,所以,,则,,则.【考点】1、同角三角函数值的互化;2,、三角函数的和差化积公式.15.化简的结果是 .【答案】【解析】.【考点】三角函数的诱导公式.16.已知,则 .【答案】【解析】由,.【考点】三角恒等变性及求值.17.函数的最小正周期是()A.B.C.2πD.4π【答案】B【解析】函数,所以周期为.【考点】诱导公式,二倍角公式,三角函数的周期.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①;②;③;④;⑤.(1)从上述五个式子中选择一个,求出常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.【答案】(1);(2).【解析】(1)∵②中的15°的2倍是30°,便于计算,可选用②算出a值;(2)观察发现两角之和为30°,可猜想,再运用降次公式,两角和与差公式,同角三角函数的关系式进行证明.试题解析:(1)选择②式计算.(2)猜想的三角恒等式为.证明:.【考点】降次公式,两角和与差公式,同角三角函数的关系式.19.若,且,则.【答案】【解析】∵,,∴是第三象限角,.【考点】同角三角函数的关系.20.已知是第二象限角,则()A.B.C.D.【答案】A【解析】∵是第二象限角,∴.故选A.【考点】三角求值21.已知角终边上一点,则()A.B.C.D.【答案】D【解析】根据题意,由于角终边上一点,则可知,故答案为D.【考点】三角函数的定义点评:解决的关键是根据三角函数的定义来得到其正弦值和余弦值,得到结论,属于基础题。
高考数学一轮复习专题训练—同角三角函数的基本关系式与诱导公式
同角三角函数的基本关系式与诱导公式考纲要求 1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式 公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α-tan__α口诀函数名不变,符号看象限 函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α. 2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( )(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( )答案 (1)× (2)× (3)× (4)×解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13,当k 为偶数时,sin α=-13.2.已知tan α=2,则3sin α-cos αsin α+2cos α=( )A.54B.-54C.53D.-53答案 A解析 原式=3tan α-1tan α+2=3×2-12+2=54.3.已知α为锐角,且cos α=45,则sin(π+α)=( )A.-35B.35C.-45D.45答案 A解析 由题意得sin α=1-cos 2α=35,故sin(π+α)=-sin α=-35.4.(2021·天津南开质检)cos 480°=( ) A.-12B.12C.-32D.32答案 A解析 由诱导公式可得cos 480°=cos(540°-60°)=cos(180°-60°)=-cos 60°=-12.故选A.5.(2021·成都诊断)已知θ∈(0,π),sin θ+cos θ=15,则下列结论错误的是( )A.θ∈⎝⎛⎭⎫π2,πB.cos θ=-35C.tan θ=-34D.sin θ-cos θ=75答案 C解析 ∵sin θ+cos θ=15,①∴(sin θ+cos θ)2=⎝⎛⎭⎫152, 即sin 2θ+2sin θcos θ+cos 2θ=125,∴2sin θcos θ=-2425,∴(sin θ-cos θ)2=1-2sin θcos θ=4925,∵θ∈(0,π),∴sin θ>0,cos θ<0, ∴θ∈⎝⎛⎭⎫π2,π,sin θ-cos θ=75.② ①+②得sin θ=45,①-②得cos θ=-35,∴tan θ=sin θcos θ=45-35=-43.6.(2021·海南期末)若cos ⎝⎛⎭⎫π3-α=15,则sin ⎝⎛⎭⎫π6+α=________.答案 15解析 sin ⎝⎛⎭⎫π6+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π3-α=15.考点一 诱导公式的应用1.化简cos (π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫11π2-αcos (π-α)sin (-π-α)sin ⎝⎛⎭⎫9π2+α的结果是( )A.-1B.1C.tan αD.-tan α答案 C解析 由诱导公式,得原式=-cos α·(-sin α)·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·sin ⎝⎛⎭⎫π2+α=-sin 2α·cos α-sin α·cos 2α=tan α,故选C.2.(2021·长春模拟)已知α为锐角,且sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=tan ⎝⎛⎭⎫α+π3,则角α=( ) A.π12 B.π6C.π4D.π3答案 C解析 由条件得sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=sin ⎝⎛⎭⎫α+π3cos ⎝⎛⎭⎫α+π3,又因为α为锐角,所以sin ⎝⎛⎭⎫α-π3=cos ⎝⎛⎭⎫α+π3,即sin ⎝⎛⎭⎫α-π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3,所以有α-π3=π2-⎝⎛⎭⎫α+π3,解得α=π4,故选C. 3.(2021·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________. 答案 -33解析 sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33. 感悟升华 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.如cos(5π-α)=cos(π-α)=-cos α. 考点二 同角三角函数基本关系及其应用角度1 切弦互化【例1】 (1)已知α是第四象限角,tan α=-815,则sin α等于( )A.1517B.-1517C.817D.-817(2)已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( )A.12B.2C.35D.-38答案 (1)D (2)C解析 (1)因为tan α=-815,所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289,又α是第四象限角,所以sin α=-817.(2)由f ′(x )=2x 2,得tan α=f ′(1)=2, 故sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35.故选C.角度2 sin α±cos α与sin αcos α的转化【例2】(2020·东北三省三校联考)若sin θ-cos θ=43,且θ∈⎝⎛⎭⎫34π,π,则sin(π-θ)-cos(π-θ)=( ) A.-23B.23C.-43D.43答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79,∴(sin θ+cos θ)2=1+2sin θcos θ=29,又θ∈⎝⎛⎭⎫34π,π,∴sin θ+cos θ<0, ∴sin θ+cos θ=-23, 则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A. 感悟升华 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.【训练1】 (1)已知α是第四象限角,sin α=-1213,则tan(π+α)等于( )A.-513B.513C.-125D.125(2)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________.答案 (1)C (2)43或34解析 (1)因为α是第四象限角,sin α=-1213,所以cos α=1-sin 2α=513,故tan(π+α)=tan α=sin αcos α=-125.(2)将sin α+cos α=75两边平方得1+2sin αcos α=4925,∴sin αcos α=1225,∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34.考点三 同角三角函数基本关系式和诱导公式的综合应用【例3】 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53B.23C.13D.59(2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. (3)已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 (1)A (2)-33(3)0 解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53.故选A. (2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π, ∴tan ⎝⎛⎭⎫5π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33.(3)∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ=-cos ⎝⎛⎭⎫π6-θ=-a ,sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 感悟升华 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.【训练2】 (1)已知α是第四象限角,且3sin 2α=8cos α,则cos ⎝⎛⎭⎫α+2 021π2=( ) A.-223B.-13C.223D.13(2)(2020·上海徐汇区期中)若sin ⎝⎛⎭⎫α+π4=35,则cos ⎝⎛⎭⎫α-π4=________. 答案 (1)C (2)35解析(1)∵3sin 2α=8cos α,∴sin 2α+⎝⎛⎭⎫3sin 2α82=1, 整理可得9sin 4α+64sin 2α-64=0, 解得sin 2α=89或sin 2α=-8(舍去),又∵α是第四象限角,∴sin α=-223,∴cos ⎝⎛⎭⎫α+2 021π2=cos ⎝⎛⎭⎫α+1 010π+π2 =cos ⎝⎛⎭⎫α+π2=-sin α=223,故选C. (2)∵sin ⎝⎛⎭⎫α+π4=35, ∴cos ⎝⎛⎭⎫α-π4=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π2 =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=35.A 级 基础巩固一、选择题 1.tan 420°=( ) A.- 3 B. 3 C.33D.-33答案 B解析 tan 420°=tan(360°+60°)=tan 60°= 3. 2.若角α的终边在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A.3B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知3s in(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( )A.-π6B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ), ∴-3sin θ=cos θ,∴tan θ=-33, ∵|θ|<π2,∴θ=-π6.4.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝⎛⎭⎫432=-79. 5.1-2sin (π+2)cos (π-2)=( )A.sin 2-cos 2B.sin 2+cos 2C.±(sin 2-cos 2)D.cos 2-sin 2答案 A 解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 6.已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B.-35C.-3D.3答案 A 解析sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.故选A.7.(2021·四川名校联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( )A.-32B.-52C.52D.±32答案 B解析 ∵在△ABC 中,sin A ·cos A =-18,∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2 =-cos 2A +sin 2A -2sin A cos A =-1-2×⎝⎛⎭⎫-18=-52. 8.已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( ) A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0. 消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 二、填空题9.(2021·西安调研)sin(-570°)+cos(-2 640°)+tan 1 665°=________.答案 1解析 原式=sin(-570°+720°)+cos(-2 640°+2 880°)+tan(1 665°-1 620°)=sin 150°+cos 240°+tan 45°=sin 30°-cos 60°+1=12-12+1=1. 10.若sin ⎝⎛⎭⎫θ+π4=35,则sin ⎝⎛⎭⎫3π4-θ=________. 答案 35解析 sin ⎝⎛⎭⎫3π4-θ=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+θ =sin ⎝⎛⎭⎫θ+π4=35. 11.已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________.答案 -43解析 由(sin θ+3cos θ)2=1=sin 2θ+cos 2θ,得6sin θcos θ=-8cos 2θ,又因为θ为第四象限角,所以cos θ≠0,所以6sin θ=-8cos θ,所以tan θ=-43. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________.答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4, 又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5, 又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.B 级 能力提升13.已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15B.55C.33D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=2cos 2α,因为α∈⎝⎛⎭⎫0,π2,cos α≠0,所以 2sin α=cos α.又因为sin 2α+cos 2α=1,所以5sin 2α=1,sin 2α=15,sin α=55.故选B. 14.已知α∈[0,2π),cos α+3sin α=10,则tan α=( )A.-3B.3或13C.3D.13 答案 C解析 因为(cos α+3sin α)2=10,所以cos 2α+6sin αcos α+9sin 2α=10,所以cos 2α+6sin αcos α+9sin 2αcos 2α+sin 2α=10,所以1+6tan α+9tan 2α1+tan 2α=10,所以tan α=3. 15.(2021·嘉兴联考)已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α=________,cos ⎝⎛⎭⎫α-π4=________.答案 -74 34 解析 sin ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=cos ⎝⎛⎭⎫π4+α, ∵α为钝角,∴34π<π4+α<54π. ∴cos ⎝⎛⎭⎫π4+α<0.∴cos ⎝⎛⎭⎫π4+α=-1-⎝⎛⎭⎫342=-74.cos ⎝⎛⎭⎫α-π4=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫π4+α=34. 16.已知2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59, 所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z . 所以k π<θ<π4+k π,k ∈Z . 所以0<tan θ<1.所以tan θ=22.。
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知是第四象限角,,则()A.B.C.D.【答案】D【解析】利用切化弦以及求解即可.,又是第四象限角,,故选:D.【考点】任意角的三角函数的定义.2.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算3.已知,则( )A.B.C.D.【答案】C【解析】本题主要考查三角函数求值.由,故选C.【考点】诱导公式,三角函数求值.4.已知.【答案】.【解析】对式子两边平方,得,从而.【考点】同角三角函数基本关系(平方关系),注意通过平方可与联系.5.若,则.【答案】【解析】因为==,故.考点:角的配凑;诱导公式6.在中,若,则的形状是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】A【解析】由题知====,所以,所以,故选A.【考点】诱导公式;两角与差的正弦公式7.已知,则______________.【答案】3【解析】对分子分母同除以得===3.【考点】同角三角函数基本关系式8.已知x,y均为正数,,且满足,,则的值为.【答案】【解析】因为,所以而所以由得,因此或∵x、y为正数,∴【考点】同角三角函数关系,消参数9.化简:.【答案】【解析】此类化简题的关键在于诱导公式的使用,要能够理解诱导公式口决“奇变偶不变,符号看象限”的意义,奇偶指的是的倍数如,中是的偶数倍,4倍,中是的奇数倍,11倍;符号看象限,指的是使用诱导公式时,将看成锐角时的所在的象限,不管题中的范围,如中,为锐角时,为第四象限角,则符号为负,故可知.当然也可用诱导公式层层推进.本题由诱导公式易化简.解:原式=.【考点】诱导公式.10.求的值域.【解析】可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.解:原函数可化为令可得则【考点】同角三角函数的基本关系式,一元二次函数求值域.11.已知α∈,.(1) 求值; (2)求的值.【答案】(1) ; (2).【解析】应用公式时注意方程思想的应用;对于,,这三个式子,利用,可以知一求二.解:由,知,即,可得又,可得.【考点】同角的三角函数基本关系式.12.已知,则()A.2B.1C.4D.【答案】A【解析】本题考查同角三角函数基本关系式,齐次式求值,先利用分子、分母同除以原式=,带人可得答案为A,【考点】不等式的性质13.(1)化简:(2)已知tan α=3,计算的值.【答案】(1)原式=; (2).【解析】用诱导公式和同角三角函数之间的关系化简即可.1)原式=4分2)由原式==....8分【考点】诱导公式、同角三角函数之间的关系.14.已知均为锐角,且,.(1)求的值;(2)求的值.【答案】(1)的值为;(2)的值为.【解析】(1)由同角三角函数的基本关系:即可求出结果;(2)因为,用恒等变换公式可求的值.试题解析:(1)∵,从而.又∵,∴. 4分∴. 6分(2)由(1)可得,.∵为锐角,,∴. 10分∴ 12分。
高考数学真题 三角函数的概念、同角三角函数的基本关系式和诱导公式
专题四 三角函数与解三角形4.1 三角函数的概念、同角三角函数的基本关系式和诱导公式考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京文,7,5分)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB⏜ B.CD ⏜ C.EF ⏜ D.GH ⏜ 答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式.若点P 在AB⏜或CD ⏜(不包含端点A,D)上,则角α在第一象限,此时tan α-sin α=tan α(1-cos α)>0,与tan α<sin α矛盾,故排除A,B.若点P 在GH ⏜(不包含端点G)上,则角α在第三象限,此时tan α>0,cos α<0,与tan α<cos α矛盾,故排除D,故选C.2.(2014课标Ⅰ文,2,5分)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0答案 C 由tan α>0得α是第一或第三象限角,若α是第三象限角,则A,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2×(12)2-1=-12<0,D 错.故选C.评析 本题考查三角函数值的符号,判定时可运用基本知识、恒等变形及特殊值等多种方法,具有一定的灵活性.3.(2014大纲全国文,2,5分)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45答案 D 由三角函数的定义知cos α=√(-4)2+32=-45.故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=( )A.-45B.-35C.35D.45答案 B 解法一:由三角函数定义知,tan θ=2,则cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.解法二:由三角函数定义知,tan θ=2,即sin θ=2cos θ,则sin 2θ=4cos 2θ.从而有cos 2θ=15.故cos 2θ=2cos 2θ-1=-35.5.(2015福建文,6,5分)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B.-125 C.512 D.-512答案 D ∵sin α=-513,α为第四象限角, ∴cos α=√1-sin 2α=1213,∴tan α=sinαcosα=-512.故选D. 6.(2014课标Ⅰ理,8,5分)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2B.3α+β=π2C.2α-β=π2D.2α+β=π2答案 C 由tan α=1+sinβcosβ得sinαcosα=1+sinβcosβ,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2-α),所以sin(α-β)=sin (π2-α),又因为α∈(0,π2),β∈(0,π2),所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.7.(2014大纲全国理,3,5分)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 答案 C ∵b=cos 55°=sin 35°>sin 33°=a,∴b>a. 又∵c=tan 35°=sin35°cos35°>sin 35°=cos 55°=b,∴c>b.∴c>b>a.故选C.8.(2013浙江理,6,5分)已知α∈R,sin α+2cos α=√102,则tan 2α=( )A.43B.34C.-34D.-43答案 C (sin α+2cos α)2=52,展开得3cos 2α+4sin αcos α=32,再由二倍角公式得32cos 2α+2sin 2α=0,故tan 2α=sin2αcos2α=-322=-34,选C.评析 本题考查同角三角函数的基本关系式和三角恒等变换,考查转化与化归思想,考查学生灵活应用公式的能力和运算求解能力.三角函数求值问题关键在于观察角与角之间的关系和三角函数名之间的关系. 9.(2013大纲全国文,2,5分)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213 B.-513 C.513 D.1213答案 A ∵α是第二象限角,∴cos α<0. ∴cos α=-√1-sin 2α=-1213.故选A. 评析 本题考查三角函数值在各象限的符号,同角三角函数关系,属容易题. 10.(2013广东文,4,5分)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15 C.15 D.25答案 C ∵sin (5π2+α)=sin (π2+α)=cos α,∴cos α=15.故选C. 11.(2016课标Ⅲ,5,5分)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C.1 D.1625答案 A 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinαcosαsin 2α+cos 2α=1+4tanαtan 2α+1=1+4×34916+1=6425,故选A.思路分析 利用二倍角公式将所求式子展开,再将其看成分母为1的式子,并用sin 2α+cos 2α代替1,然后分子、分母同除以cos 2α,得到关于tan α的式子,由此即可代值求解.12.(2011江西文,14,5分)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 答案 -8解析 P(4,y)是角θ终边上一点,由三角函数的定义知sin θ=√,又sin θ=-2√55,∴√=-2√55,解得y=-8.评析 本题主要考查任意角三角函数的定义,考查运算求解能力,由题意得√=-2√55是本题求解的关键.13.(2016四川文,11,5分)sin 750°= . 答案12解析 sin 750°=sin(720°+30°)=sin 30°=12. 解后反思 利用诱导公式把大角化为小角. 评析 本题考查了三角函数的诱导公式.14.(2013课标Ⅱ理,15,5分)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 答案 -√105解析 tan θ=tan [(θ+π4)-π4]=12-11+12=-13,∴sin θ=-13cos θ,将其代入sin 2θ+cos 2θ=1得109cos 2θ=1,∴cos 2θ=910,又易知cos θ<0,∴cos θ=-310√10,∴sin θ=√1010,故sin θ+cos θ=-√105.。
高一三角函数公式及诱导公式习题(附答案)
三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。
4.2 同角三角函数基本关系式及诱导公式 练出高分(含答案解析)
§4.2 同角三角函数基本关系式及诱导公式A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32B.32C .-12D.12答案 D解析 因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.2. cos(-2 013π)的值为( )A.12B .-1C .-32D .0答案 B解析 cos(-2 013π)=cos(-2 014π+π)=cos π=-1. 3. 已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝⎛⎭⎫-25π3的值为( ) A.12B .-12C.32D .-32答案 A解析 ∵f (α)=sin αcos α-cos α·(-tan α)=cos α,∴f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3 =cos ⎝⎛⎭⎫8π+π3=cos π3=12. 4. 当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x的最小值是( )A.14B.12C .2D .4答案 D解析 当0<x <π4时,0<tan x <1,f (x )=cos 2x cos x sin x -sin 2x =1tan x -tan 2x , 设t =tan x ,则0<t <1,y =1t -t 2=1t (1-t )≥4. 当且仅当t =1-t ,即t =12时等号成立.二、填空题(每小题5分,共15分)5. 如果sin α=15,且α为第二象限角,则sin ⎝⎛⎭⎫3π2+α=________. 答案265解析 ∵sin α=15,且α为第二象限角,∴cos α=-1-sin 2α=-1-125=-265, ∴sin ⎝⎛⎭⎫3π2+α=-cos α=265. 6. 已知sin ⎝⎛⎭⎫α+π12=13,则 cos ⎝⎛⎭⎫α+7π12的值为________. 答案 -13解析 cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π12+π2 =-sin ⎝⎛⎭⎫α+π12=-13. 7. sin ⎝⎛⎭⎫α+3π2·tan (α+π)sin (π-α)=________.答案 -1解析 原式=-cos α·tan αsin α=-sin αsin α=-1.三、解答题(共22分) 8. (10分)已知sin θ+cos θ=23(0<θ<π),求tan θ的值. 解 将已知等式两边平方,得sin θcos θ=-718,∴π2<θ<π, ∴sin θ-cos θ=(sin θ-cos θ)2=1-2sin θcos θ=43.解方程组⎩⎨⎧sin θ+cos θ=23,sin θ-cos θ=43,得⎩⎪⎨⎪⎧sin θ=2+46,cos θ=2-46,∴tan θ=sin θcos θ=-9-427.9. (12分)已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解 ∵sin(3π+θ)=-sin θ=13,∴sin θ=-13,∴原式=-cos θcos θ(-cos θ-1)+cos (2π-θ)-sin ⎝⎛⎭⎫3π2-θcos (π-θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ =21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. 若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( )A .-79B .-13C.13D.79答案 A解析 ∵⎝⎛⎭⎫π3+α+⎝⎛⎭⎫π6-α=π2, ∴sin ⎝⎛⎭⎫π6-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫π3+α=13. 则cos ⎝⎛⎭⎫2π3+2α=2cos 2⎝⎛⎭⎫π3+α-1=-79. 2. 已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12B .-12C .2D .-2答案 A解析 由同角三角函数关系式1-sin 2α=cos 2α及题意可得cos α≠0且1-sin α≠0, ∴1+sin αcos α=cos α1-sin α,∴cos α1-sin α=-12, 即cos αsin α-1=12.3. 若cos α+2sin α=-5,则tan α等于( )A.12B .2C .-12D .-2答案 B解析 由cos α+2sin α=-5可知,cos α≠0,两边同时除以cos α得1+2tan α=-5cos α, 平方得(1+2tan α)2=5cos 2α=5(1+tan 2α),∴tan 2α-4tan α+4=0,解得tan α=2. 二、填空题(每小题5分,共15分)4. 若sin(π+α)=-12,α∈⎝⎛⎭⎫π2,π,则cos α=________. 答案 -32解析 ∵sin(π+α)=-sin α,∴sin α=12.又α∈⎝⎛⎭⎫π2,π,∴cos α=-1-sin 2α=-32. 5. 已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.答案 45解析 sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θ1=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45. 6. 已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 0解析 cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 三、解答题7. (13分)已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A . (2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tan B .解 (1)由已知可得,3sin A -cos A =1① 又sin 2A +cos 2A =1, ∴sin 2A +(3sin A -1)2=1, 即4sin 2A -23sin A =0, 得sin A =0(舍去)或sin A =32,∴A =π3或2π3, 将A =π3或2π3代入①知A =23π时不成立,∴A =π3.(2)由1+2sin B cos Bcos 2B -sin 2B=-3,得sin 2B -sin B cos B -2cos 2B =0, ∵cos B ≠0,∴tan 2B -tan B -2=0, ∴tan B =2或tan B =-1.∵tan B =-1使cos 2B -sin 2B =0,舍去, 故tan B =2.。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.若,则A.B.C.D.【答案】C【解析】由,可得:同正或同负,即可排除A和B,又由,故.【考点】同角三角函数的关系2.设,向量,若,则______.【答案】【解析】因为,所以,即,所以;因为,所以,故,所以,故答案为.【考点】共线定理;三角恒等变换.3.已知sin(π-α)=log,且α∈,则tan(2π-α)的值为________.8【答案】【解析】sin(π-α)=sin α=log=-,8又α ∈,得cos α==,tan(2π-α)=tan(-α)=-tan α=-=.4. sin6000等于()A.B.C.D.【答案】D【解析】.故D正确.【考点】诱导公式.5. [2014·滨州模拟]sin600°+tan240°的值等于()A.-B.C.-D.+【答案】B【解析】sin600°+tan240°=sin240°+tan60°=-sin60°+tan60°=,选B项.6.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.7.的值是()A.B.C.D.【答案】D【解析】.【考点】同角三角函数.8.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.9.已知,则= .【答案】【解析】.【考点】三角函数同角公式,二倍角的正弦公式.10.已知角θ的终边经过点P(-x,-6),且cosθ=-,则sinθ=____________,tanθ=____________.【答案】-,【解析】cosθ==-,解得x=sinθ==-,tanθ=11.已知cos(-α)=,则sin(α-)等于()A.B.-C.D.-【答案】B【解析】∵sin(α-)=-sin(-α)=-sin(+-α)=-cos(-α),而cos(-α)=,∴-cos(-α)=-,故sin(α-)=-.12.若角α的终边落在直线x+y=0上,则+的值等于()A.-2B.2C.-2或2D.0【答案】D【解析】原式=+,由题意知角α的终边在第二、四象限,sinα与cosα的符号相反,所以原式=0.13.已知角α终边经过点P(x,-)(x≠0),且cosα=x.求sinα+的值.【答案】【解析】【思路点拨】利用三角函数定义先确定P到原点的距离r,再代入三角函数公式可解. 解:∵P(x,-)(x≠0),∴点P到原点的距离r=,又cosα=x,∴cosα==x.∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数的定义,有sinα=-,=-,∴sinα+=--=-;当x=-时,同理可求得sinα+=.14.设sin=,则sin 2θ=()A.-B.-C.D.【答案】A【解析】因为sin=,即sin θ+cos θ=,所以sin θ+cos θ=,两边平方得1+2sin θcos θ=,所以sin 2θ=-.15.若tan θ+=4,则sin 2θ的值 ().A.B.C.D.【答案】D【解析】由tan θ+=4,得=4,∴4sin θcos θ=1,则sin 2θ=.16.已知sin x=,x∈,则tan=______.【答案】-3【解析】∵sin x=,x∈,∴cos x=-.∴tan x=-.∴tan==-3.17.已知α∈R,sin α+2cos α=,则tan 2α等于().A.B.C.-D.-【答案】C【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=化简,得4sin 2α=-3cos 2α,∴tan 2α==-.18.若sin=,则sin=______.【答案】-【解析】sin=-cos=-cos=2sin2-1=-.19.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础图.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为.【考点】1.三角函数的化简;2.三角函数的求值.20.已知,,则的值是 .【答案】【解析】先由,结合的范围,求出,再利用两角和的正切公式可得.【考点】已知一个三角函数值,求其他三角函数值;两角和的正切公式.21.若3cos +cos (π+θ)=0,则cos2θ+sin 2θ的值是______.【答案】【解析】∵3cos +cos (π+θ)=0,即3sin θ-cosθ=0,即tanθ=.∴cos2θ+sin2θ=====22.在△ABC中,a=15,b=10,A=60o,则cosB= 。
第三章 三角函数解三角形第二节同角三角函数的基本关系与诱导公式 2018届高考数学(理)总复习检测(含答案)
第二节 同角三角函数的基本关系与诱导公式【最新考纲】 1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x cos x =tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan_α=sin αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.六组诱导公式1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)sin(π+α)=-sin α成立的条件是角α是锐角.( ) (2)cos(n π-θ)=13(n ∈Z),则cos θ=13.( )(3)若α≠k π2(k ∈Z),则tan ⎝ ⎛⎭⎪⎫π2+α=-1tan α.( )(4)若sin α+cos α=1,那么有sin n α+cos n α=1.( ) 答案:(1)× (2)× (3)√ (4)√2.(2015·福建卷)若sin α=-513,且α为第四象限角,则tanα的值等于( )A.125 B .-125 C.512 D .-512解析:因为α为第四象限的角,故cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-5132=1213,所以tan α=sin αcos α=-5131213=-512.答案:D3.已知tan (α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( )A.45 B .-45 C.35 D .-35解析:tan (α-π)=34⇒tan α=34>0.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α∈⎝ ⎛⎭⎪⎫π,3π2. 所以sin ⎝⎛⎭⎪⎫α+π2=cos α=-45.答案:B4.已知sin(π-α)=log 814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(2π-α)的值为( )A .-255 B.255C .±255 D.52解析:sin(π-α)=sin α=log 814=-23,又因为α∈⎝ ⎛⎭⎪⎫-π2,0,则cos α=1-sin 2α=53,所以tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.答案:B5.已知tan θ=2,则sin θcos θ=________.解析:sin θcos θ=sin θ·cos θsin 2θ+cos 2 θ=tan θtan 2θ+1=222+1=25.答案:25一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限. 两个防范1.利用诱导公式进行化简求值时,要注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要注意判断三角函数值的符号.三种方法1.弦切互化法:主要利用公式tan α=sin αcos α进行弦、切互化.2.和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.3.巧用“1”的变换:1=sin 2θ+cos 2θ=tan π4等.一、选择题1.(2016·石家庄一模)已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin(π+α)=( )。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.已知△ABC中,cos(-A)+cos(π+A)=-.(1)判断△ABC是锐角三角形还是钝角三角形;(2)求tanA的值.【答案】(1)△ABC是钝角三角形(2)-【解析】解:(1)由已知得,-sinA-cosA=-.∴sinA+cosA=.①①式平方得,1+2sinAcosA=,∴sinAcosA=-<0,又∵0<A<π,∴sinA>0,cosA<0.∴A为钝角,故△ABC是钝角三角形.(2)∵(sinA-cosA)2=1-2sinAcosA=1+=.又∵sinA>0,cosA<0,∴sinA-cosA>0,∴sinA-cosA=,又由已知得sinA+cosA=,故sinA=,cosA=-,∴tanA==-.3.已知,是以原点为圆心的单位圆上的两点,(为钝角).若,则的值为.【答案】【解析】因为,所以,因为,所以【考点】同角三角函数关系,向量数量积4.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( ) A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形5.已知α、β均为锐角,且sinα=,tan(α-β)=-.(1) 求sin(α-β)的值;(2) 求cosβ的值.【答案】(1)-(2)【解析】(1) ∵α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴sin(α-β)=-.(2) 由(1)可得,cos(α-β)=.∵α为锐角,sinα=,∴cosα=.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.6.已知cos=,且-π<α<-,则cos=________.【答案】-【解析】cos=cos[-]=sin.又-π<α<-,所以-π<+α<-.所以sin=-,所以cos=-.7.已知tanθ=2,则=__________.【答案】-2【解析】==-2.8.已知角α的终边经过点P(x,-2),且cosα=,求sinα和tanα.【答案】【解析】因为r=|OP|=,所以由cosα=,得=,解得x=0或x=±.当x=0时,sinα=-1,tanα不存在;当x=时,sinα=-,tanα=-;当x=-时,sinα=-,tanα=.9.已知sin 2α=,则cos2=( )A.B.C.D.【答案】A【解析】∵sin 2α=,∴cos2==10.已知sinα=,则cos(π-2α)=()A.-B.-C.D.【答案】B【解析】∵sinα=,∴cos(π-2α)=-cos2α=-(1-2sin2α)=-.故选B.11.已知α∈R,sin α+2cos α=,则tan 2α等于________.【答案】【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=.化简,得4sin 2α=-3cos 2α,∴tan 2α=.12.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.13.在中,若,则=()A.B.C.D.【答案】A【解析】由已知, 知为钝角,,,解得,故选A.【考点】同角基本关系式14.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算15.在△ABC中,a=15,b=10,A=60o,则cosB= 。
高考数学总复习考点知识讲解与提升练习27 同角三角函数基本关系式及诱导公式
高考数学总复习考点知识讲解与提升练习 专题27 同角三角函数基本关系式及诱导公式考点知识1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tanα⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式常用结论同角三角函数的基本关系式的常见变形sin2α=1-cos2α=(1+cosα)(1-cosα);cos2α=1-sin2α=(1+sinα)(1-sinα);(sinα±cosα)2=1±2sinαcosα.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)使sin(π+α)=-sinα成立的条件是α为锐角.(×)(2)若sin(kπ-α)=13(k∈Z),则sinα=13.(×)(3)若α,β为锐角,则sin2α+cos2β=1.(×)(4)若α∈R,则tanα=sinαcosα恒成立.(×)教材改编题1.若cosα=13,α∈⎝⎛⎭⎪⎫-π2,0,则tanα等于()A.-24B.24C.-22D.2 2答案C解析由已知得,sinα=-1-cos2α=-1-19=-223,所以tanα=sinαcosα=-2 2.2.若sin α+cos α=22,则sin αcos α等于() A .-12B .-14C.22D .2答案B解析因为sin α+cos α=22,所以(sin α+cos α)2=12, 即sin 2α+cos 2α+2sin αcos α=12,即1+2sin αcos α=12,所以sin αcos α=-14.3.化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·cos(2π-α)的结果为.答案sin α解析原式=sin αcos α·cos α=sin α.题型一同角三角函数基本关系例1(1)(多选)已知θ∈(0,π),sin θ+cos θ=15,则下列结论正确的是()A .θ∈⎝ ⎛⎭⎪⎫π2,πB .cos θ=-45C .tan θ=-34D .sin θ-cos θ=75答案AD解析因为sin θ+cos θ=15,①所以(sin θ+cos θ)2=1+2sin θcos θ=125,则2sin θcos θ=-2425, 因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以θ∈⎝ ⎛⎭⎪⎫π2,π,故A 正确;所以(sin θ-cos θ)2=1-2sin θcos θ=4925,所以sin θ-cos θ=75,②故D 正确;由①②联立可得,sin θ=45,cos θ=-35,故B 错误;所以tan θ=sin θcos θ=-43,故C 错误.(2)已知cos α=-513,则13sin α+5tan α=. 答案0解析∵cos α=-513<0且cos α≠-1,∴α是第二或第三象限角. ①若α是第二象限角,则sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-5132=1213,∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝ ⎛⎭⎪⎫-125=0. ②若α是第三象限角,则sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-5132 =-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝ ⎛⎭⎪⎫-1213+5×125=0.综上,13sin α+5tan α=0. (3)已知tan α=2,则3sin α-2cos αsin α+cos α=;23sin 2α+14cos 2α=.答案43712解析因为tan α=2, 所以3sin α-2cos αsin α+cos α=3tan α-2tan α+1=3×2-22+1=43.23sin 2α+14cos 2α=23·sin 2αsin 2α+cos 2α+14·cos 2αsin 2α+cos 2α=23·tan 2αtan 2α+1+14·1tan 2α+1=23×2222+1+14×122+1=712. 思维升华(1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.跟踪训练1(1)(2023·苏州模拟)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin2α等于()A.35B .-35C .-3D .3 答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35. (2)若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为()A.23B .-23C.43D .-43答案C解析由诱导公式得,sin(π-α)+cos α=sin α+cos α=23,所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169, 所以sin α-cos α=43.题型二诱导公式例2(1)已知x ∈R ,则下列等式恒成立的是() A .sin(3π-x )=-sin x B .sin π-x 2=-cos x2C .cos ⎝ ⎛⎭⎪⎫5π2+3x =sin3x D .cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin2x 答案D解析sin(3π-x )=sin(π-x )=sin x , sin π-x 2=sin ⎝ ⎛⎭⎪⎫π2-x 2=cos x 2,cos ⎝ ⎛⎭⎪⎫5π2+3x =cos ⎝ ⎛⎭⎪⎫π2+3x =-sin3x , cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin2x .(2)已知sin ⎝ ⎛⎭⎪⎫π3-x =13,且0<x <π6,则sin ⎝ ⎛⎭⎪⎫π6+x -cos ⎝⎛⎭⎪⎫2π3+x 的值为. 答案423解析∵0<x <π6,∴π6<π3-x <π3,∴cos ⎝ ⎛⎭⎪⎫π3-x =1-sin 2⎝ ⎛⎭⎪⎫π3-x =223.∴sin ⎝ ⎛⎭⎪⎫π6+x =sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-x =cos ⎝ ⎛⎭⎪⎫π3-x =223,cos ⎝ ⎛⎭⎪⎫2π3+x =cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-x =-cos ⎝ ⎛⎭⎪⎫π3-x =-223.∴sin ⎝ ⎛⎭⎪⎫π6+x -cos ⎝ ⎛⎭⎪⎫2π3+x =423.思维升华诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了; (2)化简:统一角,统一名,同角名少为终了.跟踪训练2(1)若sin (3π-α)-sin ⎝ ⎛⎭⎪⎫-3π2-αcos ⎝ ⎛⎭⎪⎫π2+α+cos (-π+α)=13,则tan α等于()A.34B .-12C .-43D.12 答案D解析因为sin (3π-α)-sin ⎝ ⎛⎭⎪⎫-3π2-αcos ⎝ ⎛⎭⎪⎫π2+α+cos (-π+α)=13,所以sin α-cos α-sin α-cos α=13,所以tan α-1-tan α-1=13,解得tan α=12. (2)已知cos ⎝ ⎛⎭⎪⎫π4+α=45,则sin ⎝ ⎛⎭⎪⎫π4-α的值为()A.35B .-35C.45D .-45 答案C解析由cos ⎝ ⎛⎭⎪⎫π4+α=45,得sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫π4+α=45. 题型三同角三角函数基本关系式和诱导公式的综合应用例3(1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是() A.325 B.357 C.31010 D.13答案C解析由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0,消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910, 又α为锐角,∴sin α>0,则sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.则sin2x +2sin 2x1-tan x =.答案-24175解析由已知得,sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. 因为(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又2sin x cos x =-2425<0, 所以cos x >0,所以sin x -cos x <0, 故sin x -cos x =-75.所以sin2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin xcos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.思维升华(1)利用同角三角函数基本关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数值符号的影响.跟踪训练3(1)(2023·衡水模拟)已知sin ⎝ ⎛⎭⎪⎫3π2-α+cos(π-α)=sin α,则2sin 2α-sin αcos α等于() A.2110B.32C.32D .2 答案D解析由诱导公式可得,sin α=sin ⎝ ⎛⎭⎪⎫3π2-α+cos(π-α)=-2cos α,所以tan α=-2.因此,2sin 2α-sin αcos α=2sin 2α-sin αcos αsin 2α+cos 2α=2tan 2α-tan αtan 2α+1=105=2.(2)已知sin ⎝ ⎛⎭⎪⎫α-2π3=23,其中α∈⎝ ⎛⎭⎪⎫π2,π,则cos ⎝ ⎛⎭⎪⎫α-π6=,sin ⎝ ⎛⎭⎪⎫2α-π3=.答案-23 -459解析方法一令t =α-2π3, 所以sin t =23,α=t +2π3, 所以cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫t +2π3-π6 =cos ⎝⎛⎭⎪⎫t +π2=-sin t =-23.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以α-π6∈⎝ ⎛⎭⎪⎫π3,5π6,所以sin ⎝ ⎛⎭⎪⎫α-π6=53,所以sin ⎝ ⎛⎭⎪⎫2α-π3=sin2⎝ ⎛⎭⎪⎫α-π6 =2sin ⎝ ⎛⎭⎪⎫α-π6cos ⎝ ⎛⎭⎪⎫α-π6=2×53×⎝ ⎛⎭⎪⎫-23=-459.方法二因为sin ⎝⎛⎭⎪⎫α-2π3=23,所以cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫π6-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=sin ⎝ ⎛⎭⎪⎫π3+α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+α=sin ⎝⎛⎭⎪⎫2π3-α=-sin ⎝ ⎛⎭⎪⎫α-2π3=-23. 以下同方法一.课时精练1.sin1620°等于() A .0B.12C .1D .-1 答案A解析由诱导公式,sin1620°=sin(180°+4×360°)=sin180°=0.2.(2023·济南模拟)已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos ⎝ ⎛⎭⎪⎫π2+α=32,则tan α等于()A .-3B.3C .-33D.33答案A解析由已知条件得cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=32,即sin α=-32,∵α∈⎝ ⎛⎭⎪⎫-π2,0,∴cos α=1-sin 2α=1-34=12, ∴tan α=sin αcos α=-3212=- 3. 3.已知角α的顶点在原点,始边与x 轴非负半轴重合,终边与直线2x +y +3=0平行,则sin α-cos αsin α+cos α的值为()A .-2B .-14C .2D .3答案D解析因为角α的终边与直线2x +y +3=0平行,即角α的终边在直线y =-2x 上, 所以tan α=-2,sin α-cos αsin α+cos α=tan α-1tan α+1=3.4.若sin(π+α)-cos(π-α)=35,则sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-α等于()A.825B .-825C.1625D .-1625答案A解析由sin(π+α)-cos(π-α)=35,可得-sin α+cos α=35,平方可得1-2sin αcos α=925, 所以sin αcos α=825, 所以sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=825.5.(多选)在△ABC 中,下列结论正确的是() A .sin(A +B )=sin C B .sinB +C 2=cosA 2C .tan(A +B )=-tan C ⎝⎛⎭⎪⎫C ≠π2 D .cos(A +B )=cos C 答案ABC解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确; sinB +C2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确; tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确;cos(A +B )=cos(π-C )=-cos C ,D 错误.6.(2022·郑州模拟)已知角α∈⎝ ⎛⎭⎪⎫-π2,0,且tan 2α-3tan αsin α-4sin 2α=0,则sin(α+2023π)等于() A.154 B.14C .-34D .-154答案A解析因为tan 2α-3tan αsin α-4sin 2α=0,所以(tan α-4sin α)(tan α+sin α)=0,因为α∈⎝ ⎛⎭⎪⎫-π2,0,所以tan α<0且sin α<0,所以tan α-4sin α=0,即sin αcos α=4sin α,所以cos α=14,所以sin α=-1-cos 2α=-154,所以sin(α+2023π)=-sin α=154. 7.已知sin θ=13,则tan (2π-θ)cos ⎝ ⎛⎭⎪⎫π2-θsin ⎝⎛⎭⎪⎫3π2+θ=.答案98解析原式=-tan θsin θ(-cos θ)=1cos 2θ=11-sin 2θ=11-⎝ ⎛⎭⎪⎫132=98. 8.已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝ ⎛⎭⎪⎫α+4π3的值为. 答案0解析因为cos ⎝ ⎛⎭⎪⎫π6-α=33,所以cos ⎝ ⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-33,所以cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝⎛⎭⎪⎫α+4π3=-33-⎝ ⎛⎭⎪⎫-33=0. 9.(2023·长沙模拟)(1)若α是第二象限角,且cos ⎝ ⎛⎭⎪⎫π2+α=-13,求tan α的值;(2)已知f (α)=sin (3π-α)cos (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos (π-α)sin (-π-α),化简f (α),在(1)的条件下,求f (α)的值.解(1)∵cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-13,∴sin α=13,又α是第二象限角,∴cos α=-1-sin 2α=-223,则tan α=sin αcos α=-24. (2)f (α)=sin (3π-α)cos (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos (π-α)sin (-π-α)=sin αcos α(-cos α)(-cos α)sin α=cos α,由(1)知,cos α=-223, 则f (α)=cos α=-223.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3,所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3.11.(多选)已知角α满足sin α·cos α≠0,则表达式sin (α+k π)sin α+cos (α+k π)cos α(k ∈Z )的取值为()A .-2B .-1C .2D .1 答案AC解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2. 所以原表达式的取值为-2或2.12.黑洞原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再出来,数字中也有类似的“黑洞”,任意取一个数字串,长度不限,依次写出该数字串中偶数的个数、奇数的个数以及总的数字个数,把这三个数从左到右写成一个新数字串;重复以上工作,最后会得到一个反复出现的数字,我们称它为“数字黑洞”,如果把这个数字设为a ,则sin ⎝⎛⎭⎪⎫a π2+π6等于() A.12B .-12C.32D .-32 答案D解析根据“数字黑洞”的定义,任取数字2021,经过第一步之后变为314,经过第二步之后变为123,再变为123,再变为123, 所以数字黑洞为123,即a =123,所以sin ⎝ ⎛⎭⎪⎫a π2+π6=sin ⎝ ⎛⎭⎪⎫123π2+π6=sin ⎝ ⎛⎭⎪⎫3π2+π6=-cos π6=-32. 13.sin4π3·cos 5π6·tan ⎝⎛⎭⎪⎫-4π3的值是.答案-334解析原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ⎝ ⎛⎭⎪⎫-π-π3=⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334.14.已知sin(3π+θ)=13,则cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=.答案18解析由sin(3π+θ)=13,可得sin θ=-13,∴cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=-cos θcos θ(-cos θ-1)+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=2(1+cos θ)(1-cos θ)=21-cos 2θ=2sin 2θ=18.15.(多选)已知角θ和φ都是任意角,若满足θ+φ=π2+2k π,k ∈Z ,则称θ与φ广义互余.若sin(π+α)=-14,则下列角β中,可能与角α广义互余的有()A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案AC解析若α与β广义互余,则α+β=π2+2k π(k ∈Z ),即β=π2+2k π-α(k ∈Z ). 又由sin(π+α)=-14,可得sin α=14.若α与β广义互余,则sin β=sin ⎝ ⎛⎭⎪⎫π2+2k π-α=cos α=±1-sin 2α=±154,故A 正确;若α与β广义互余,则cos β=cos ⎝ ⎛⎭⎪⎫π2+2k π-α=sin α=14,而由cos(π+β)=14,可得cos β=-14,故B 错误;由A ,B 可知sin β=±154,cos β=14,所以tan β=sin βcos β=±15,故C 正确,D 错误.16.(2022·上海模拟)在角θ1,θ2,θ3,…,θ29的终边上分别有一点P 1,P 2,P 3,…,P 29,如果点P k 的坐标为(sin(15°-k °),sin(75°+k °)),1≤k ≤29,k ∈N ,则cos θ1+cos θ2+cos θ3+…+cos θ29=________. 答案0解析∵sin(75°+k °)=sin(90°-(15°-k °)) =cos(15°-k °),∴P k (sin(15°-k °),cos(15°-k °)), ∴cos θk =sin (15°-k °)sin 2(15°-k °)+cos 2(15°-k °)=sin(15°-k °),∴cosθ1+cosθ2+cosθ3+…+cosθ29=sin14°+sin13°+sin12°+…+sin(-14°),又sin(15°-k°)+sin(k°-15°)=sin(15°-k°)-sin(15°-k°)=0,∴cosθ1+cosθ2+cosθ3+…+cosθ29=sin0°=0.21 / 21。
同角三角函数关系式和诱导公式
同角三角函数关系式和诱导公式【考纲要求】1、理解同角三角函数的基本关系式;2、能利用单位圆中的三角函数线推导出诱导公式,并应用诱导公式。
【重点难点】理解“同角”的含义,明确“切化弦”的意义。
主备教师:冯波 王凤国 审核:李洪川【基础自测】1、已知4sin ,(0,),tan 5ααπα=∈则等于( ) A. 43 B. 34 C. 34± D. 43± 2、tan2400+sin4500的值为( )A. 1B. 1C. 1-D. 1-3、如果1cos()2A π+=-,那么sin()2A π+=( )A. 12-B. 12C. -D. 4、已知α是第四象限角,tan α=512-,则sin α=( ) (A )15- (B )15 (C )513 (D )513- 5、若4sin 2cos 65cos 3sin 11αααα-=+,则tan α=____________ 6、化简cos()tan(8)sin(4)απαπα-+-【典例剖析】例1、 已知178cos -=α,求sin α、tan α的值练习:已知tan α=-2,且α为第二象限角,求α的正弦、余弦例2、已知sin α+cos α=15,且0<α<π,则tan α的值为( ) (A )43- (B )43 (C )34- (D )34练习:已知θθcos sin ,是方程20x ax a -+=的两根(a R ∈).求值:33(1)sin cos ;(2)tan cot .θθθθ++例3、已知3sin 4cos 0αα+=, 求222sin 3cos (1);(2)sin 2sin cos 3cos sin 2cos αααααααα++-+的值。
练习:化简:422444sin cos sin cos .1sin cos θθθθθθ+--例4、已知α是第三象限的角,3sin()cos(2)tan()2()cot()sin()f ππαπααααππα---+=----且,(1)、化简()f α;(2)、31cos(),25πα-=求f(α)的值; (3)、02220αα=-若,求f()的值.练习:化简:)()2cos()2sin(])12([sin 2])12([sin Z n n n n n ∈--+-⋅+++⋅αππαπαπα【课堂练习】1.计算:sin315︒-sin(-480︒)+cos(-330︒)2.已知的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26练 同角三角函数关系式和诱导公式
一、选择题
1.(2016·鹤岗期末)已知角α的终边上有一点P (1,3),则
sin(π-α)-sin ⎝ ⎛⎭
⎪⎫π2+αcos ⎝ ⎛⎭
⎪⎫3π2-α+2cos(-π+α)的值为( ) A .-2
5
B .-45
C .-47
D .-4
2.(2016·黑龙江哈三十二中期中)已知α是第二象限角,tan α=-8
15,则sin α等于
( ) A.18 B .-18
C.817
D .-817
3.(2017·铜川月考)1+2sin(π-3)cos(π+3)化简的结果是( ) A .sin 3-cos 3 B .cos 3-sin 3 C .±(sin 3-cos 3)
D .以上都不对
4.(2016·安徽太和中学月考)已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )
A.1
2 B .-12
C.32
D .-
32
5.设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a
D .c >a >b
6.若sin x ·cos x =18且π4<x <π
2,则cos x -sin x 的值是( )
A .±3
2 B.32
C .-
32
D .±12
7.(2016·宜昌测试)已知A =sin(k π+α)sin α+cos(k π+α)
cos α
(k ∈Z ),则A 构成的集合是
( )
A .{-1,1,-2,2}
B .{1,-1}
C .{2,-2}
D .{-2,-1,0,1,2}
8.若tan α=12,则sin 4α-cos 4
α的值为( )
A .-15
B .-3
5
C.15
D.35
二、填空题
9.(2016·安庆期中)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin θ+cos(π-θ)
sin ⎝ ⎛⎭
⎪⎫π2-θ-sin(π+θ)=________.
10.(2016·大理模拟)已知α为第二象限角,则cos α·1+tan 2
α+sin α1+
1tan 2α
=________. 11.若cos ⎝
⎛⎭⎪⎫π6-θ=33,则cos ⎝ ⎛⎭⎪⎫5π6+θ-sin 2⎝
⎛⎭⎪⎫θ-π6=____________.
12.化简:sin ⎝ ⎛⎭⎪⎫2k π+2π3·cos ⎝
⎛⎭⎪⎫k π+43π(k ∈Z )=____________.
答案精析
1.A [∵点P 在角α的终边上, 则tan α=3,
∴
sin(π-α)-sin ⎝
⎛⎭
⎪⎫
π2+αcos ⎝ ⎛⎭⎪⎫3π2-α+2cos(-π+α)=sin α-cos α-sin α-2cos α
=
tan α-1-tan α-2=-2
5,故选A.]
2.C [∵tan α=sin αcos α=-8
15,
∴cos α=-15
8
sin α.
∵sin 2α+cos 2α=1,∴sin 2
α=64289.
又α是第二象限角,∴sin α>0, ∴sin α=8
17
,故选C.]
3.A [因为sin(π-3)=sin 3,cos(π+3)=-cos 3,
所以原式=1-2sin 3·cos 3=(sin 3-cos 3)2
=|sin 3-cos 3|. 又因为π
2<3<π,
所以sin 3>0,cos 3<0, 所以原式=sin 3-cos 3.] 4.C [由3π4-α=π-⎝ ⎛⎭⎪⎫π4+α, 知sin ⎝
⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭
⎪⎫π4+α=32
.]
5.C [∵a =sin 33°,b =cos 55°=sin 35°,c =tan 35°=sin 35°cos 35°,
又0<cos 35°<1,∴c >b >a .]
6.C [∵π4<x <π
2
,∴cos x -sin x <0,
∴(cos x -sin x )2
=1-2sin x cos x =1-2×18=34
,
∴cos x -sin x =-
3
2
.故选C.] 7.C [当k 为偶数时,sin(k π+α)=sin α,cos(k π+α)=cos α,原式的值为2;当
k 为奇数时,sin(k π+α)=-sin α,cos(k π+α)=-cos α,原式的值为-2.故选C.]
8.B [∵tan α=12,则sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2
α-
cos 2
α
=sin 2α-cos 2αsin 2α+cos 2
α=tan 2
α-1tan 2α+1=14-114+1=-35
.] 9.12
解析 ∵角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,可得tan θ=3.
∴sin θ+cos(π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin(π+θ)=sin θ-cos θcos θ+sin θ=tan θ-11+tan θ=3-11+3=12.
10.0 解析 原式= cos α1+sin 2
α
cos 2α+sin α1+cos 2
αsin 2α =cos α
1
cos 2
α
+sin α1
sin 2
α
=cos α·1-cos α+sin α·1
sin α=0.
11.-2+3
3
解析 因为cos ⎝
⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭
⎪⎫π6-θ=-33,
sin 2⎝ ⎛⎭⎪⎫θ-π6=⎣⎢⎡⎦
⎥⎤-sin ⎝ ⎛⎭⎪⎫π6-θ2
=1-cos 2⎝ ⎛⎭
⎪⎫π
6-θ
=1-⎝
⎛⎭⎪⎫332=23
, 所以cos ⎝
⎛⎭⎪⎫5π6+θ-sin 2⎝ ⎛⎭
⎪⎫θ-π6=-33-23=-2+33.
12.⎩⎪⎨
⎪⎧
34,k 为奇数,-3
4
,k 为偶数
解析 当k 为奇数时, 原式=sin 2π3·⎝ ⎛
⎭⎪⎫-cos 4π3
=sin(π-π3)·⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π+π3
=sin π3·cos π3=32×12=3
4.
当k 为偶数时, 原式=sin 2π3·cos 4π
3
=sin ⎝ ⎛⎭⎪⎫π-π3·cos ⎝ ⎛⎭⎪⎫π+π3 =sin π3·⎝ ⎛
⎭⎪⎫-cos π3
=32×⎝ ⎛⎭⎪⎫-12=-3
4
.。