2018年安徽中考数学复习课件1.4 分式(安徽)
最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件
一般步骤:
(1)去分母;(2)解整式方程;(3)检验.
注意:由于去分母后解得的整式方程的解不一定是原分式方程的
解,所以需要检验.
巩固练习
指出下列方程中各分母的最简分母,并写出去分母后得
到的整式方程.
1
2
①
2x
x 3
2
4
2
②
x 1
x 1
解:①最简公分母2x(x+3),去分母得x+3=4x;
;
=
+1
2x
x+ 3 x - 5
x - 25
x+1 3 x+3
与上面的方程有什么共同特征?
分母中都含有未知数.
.
探究新知
分式方程的概念:
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
追问2:你能再写出几个分式方程吗?
注意:我们以前学习的方程都是整式方程,它们
的未知数不在分母中.
−
A)
D.x=–3
= 解为x=4,则常数a的值为
( D )
A.a=1
B.a=2
C.a=4
D.a=10
课堂检测
基础巩固题
1.若关于x的分式方程
(B
A.5
C.3
−
−
= 的解为x=2,则m的值为
)
B.4
D.2
课堂检测
2.方程
A.x=–1
C.x=
=
+
的解为( D )
解得x=–3,
经检验:x=–3是原方程的根.
中考数学专题复习4分式、分式方程及一元二次方程(解析版)
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
中考(安徽地区)数学复习(课件)备选课件 分式
(4)最后按照式子顺序,从左到右计算分式加减运算,直到化为最简形式;
(5)将所给数值代入求值,代入数值时要注意使原分式有意义.
【例1】(2015年随州)若代数式
1 x 1
x 有意义,则实数x的取值范围是
(D)
A.x≠1
B.x≥0
C.x≠0
1.4.3 分式的运算法则
1.加减法: (1)同分母分式相加减,分母不变,把分子相加减,即:a d a b.
cc c
(2)异分母分式相加减,先通分,变为同分母的分式,再加减.即:
. 2.乘法运算: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母 ,即:
a c ac b d bd
【解析】根据分式的基本性质,把分式的分子和分母扩大或缩小相同的倍数,
分式的值不变,但无论是扩大还是缩小,都不要漏乘(除)分子、分母中的
任何一项,且扩大(缩小)的倍数不能为0,同时在分式的变形中,还要注意
符号法则,即分式的分子、分母及分式的符号,只有同时改变两个分式的值
才不变.所以
1 1值的一般步骤:
(1)若有括号的,先计算括号内的分式运算,括号内如果是异分母加减运算 时,需将异分母分式通分化为同分母分式运算,然后将分子合并同类项,把括 号去掉,简称:去括号;
(2)若有除法运算的,将分式中除号(÷)后面的式子分子分母颠倒,并把 这个式子前的“÷”变为“×”,保证几个分式之间除了“+、-”就只有“× 或·”,简称:除法变乘法;
1.4.2 分式的性质及相关概念
1. 分式的基本性质: A A C , A A C (C 0), 其中A,B,C是整式.
安徽2018年中考专题复习课件:第13题图片漫画集锦(共11张PPT)
(1)认真学习宪法,树立宪法意识;(2)在日常生活中养成遵守和维护 宪法的习惯,如严肃认真的参加升国旗、唱国歌等仪式,刻苦学习等;( 3) 正确行使权利,自觉履行义务;(4)积极宣传宪法;积极行使监督权,同 违反宪法的行为作斗争,时时处处用实际行动捍卫宪法的尊严。(6 分,答 出三点即可)
【铸造品质 健康成长】 右图是某校开展的两项活动。观察图片,回答下列问题。 (1)根据提示,完 成任务。 图片一腰鼓展演体现了 中华文化_________ 源远流长 、 博大精深 的特点; __________ 图片二的活动意在保护公民的__________ 生命健康 权。
(2)运用所学,分析学校开展这些活动的意义。
【行使权利 履行义务】 (8分)观察图片,回答问题。
图片一:同学们上课认真听讲
图片二:拍摄军事基地
(1)请你根据图片中的信息填写下面空格。(2分) A. 图片一告诉我们要珍惜_____________________ 受教育 权利。 维护国家安全 B. 图片二中的公民在履行______________________________________ 义务 (2)请你任选一幅图片,谈谈如何正确行使这一权利或者自觉履行这一义务。(6分) 图片―:(1)按时入学的义务;(2)接受规定年限的义务教育的义务,不中途辍学; (3)遵守法律和学校纪律,尊敬师长,努力完成规定的学习任务的义务;(4)积极开 展自主学习、合作学习、探究学习;(5)注意养成良好的学习习惯,提高学习能力等。
【感受关怀 积极参与】
为积极推行素质教(1)根据提示,填写 下列空格。
坚强的意志(自立自强、团结合作) 远足拉练活动可以培养学生 品质; 隐私 让学生在私密空间说出自己心里话可以保护学生的_________ 权。 (2)任选其中一项活动,说说它对促进青少年成长的积极作用。 活动一:(1)磨砺意志;(2)强身健体;(3)劳逸结合; (4)互帮互助;(5)增强集体意识和团队意识等 活动二:(1)维护学生的隐私权;(2)帮助中学生调控心理, 促进身心协调发展;(3)帮助学生克服青春期烦恼等。
中考数学课件 第1章 第2节 整 式
B.10(100-x)元
• C.8(100-x)元
D.(100-8x)元
• 2.(2022·广安)已知a+b=1,则代数式a2-b2+2b+9的 值1为0 _____.
考点 幂的运算性质
• 3.(2022·台州)下列运算正确的是
• A.a2·a3=a5
B.(a2)3=a8
• C.(a2b)3=a2b3
安徽十年精选
考点 幂的运算性质
• 1.(2022·安徽)下列各式中,计算结果等于a9的是 ( B )
• A.a3+a6
B.a3·a6
• C.a10-a
D.a18÷a2
2.(2020·安徽)计算-a6÷a3 的结果是
• A.-a3
B.-a2
• C.a3
D.a2
(C )
• 3.(2018·安徽)下列运算正确的是
B
• 10.(2014·安徽)下列四个多项式中,能因式分解的是
()
• A.a2+1
B.a2-6a+9
• C.x2+5y
D.x2-5y
考点 规律探究
• 11.(2022·安徽)观察以下等式: • 第1个等式:(2×1+1)2=(2×2+1)2-(2×2)2; • 第2个等式:(2×2+1)2=(3×4+1)2-(3×4)2; • 第3个等式:(2×3+1)2=(4×6+1)2-(4×6)2; • 第4个等式:(2×4+1)2=(5×8+1)2-(5×8)2;
• 8.(2018·安徽)下列分解因式正确的是 • A.-x2+4x=-x(x+4)
( C)
• B.x2+xy+x=x(x+y)
• C.x(x-y)+y(y-x)=(x-y)2
• D.x2-4x+4=(x+2)(x-2)
安徽省2018年中考数学试题及答案解析
学霸推荐学习七法一、听视并用法上课听和看注意力集中一、听思并用法上课听老师讲并思考问题三、符号助记法在笔记本上课本上做记号标记四、要点记取法重点要点要在课堂上认真听讲记下五、主动参与法课堂上积极主动的参与老师的讲题互动六、听懂新知识法听懂老师讲的新知识并做好标记七、目标听课法课前预习不懂得标记下,在课堂上不会的标记点认真听讲做笔记带着求知的好奇心听课,听不明白的地方就标记下来,并且课后积极的询问并弄懂这些知识,听明白的知识点也要思考其背后的知识点,打牢基础。
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
尺规作图复习课件
(保留作图痕迹,不写作法)
精准备考用木牍 | 安徽名师编写,更懂安徽考情
课标导航
十年真题再现
十年真题再现
教材知识网络
重难考点突破
-6-
7.1 尺规作图
精现
十年真题再现
教材知识网络
重难考点突破
-7-
7.1 尺规作图
(学用见P105~106)
求作的角
依据:三边分别相等的两个三角形全等;全等三角形的对
应角相等;两点确定一条直线
课标导航
十年真题再现
教材知识网络
重难考点突破
-4-
7.1 尺规作图
3.作已知角
的平分线
尺
规
作
图
五
种
基
本
作
图
4.作线段的垂
直平分线
已知:∠AOB,求作:射线 OC,使∠AOC=∠BOC
作法:(1)以点 O 为圆心,适当长为半径作弧,交 OA 于点 D,交 OB 于点 E
定一条直线
精准备考用木牍 | 安徽名师编写,更懂安徽考情
课标导航
十年真题再现
教材知识网络
重难考点突破
-5-
7.1 尺规作图
(学用见P104)
命题点 尺规作图[10年1考]
1.(2018·安徽第20(1)题)如图,☉O为锐角△ABC的外接圆,半径
为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交
年安徽的第20题考查了“角的平分线”的作法,并且与圆的相
关知识结合起来,这可能成为未来的一个重要考向.
精准备考用木牍 | 安徽名师编写,更懂安徽考情
课标导航
十年真题再现
教材知识网络
2018年安徽中考数学复习课件1.2 整式(安徽)
【例3】(2017年铜仁)单项式2xy3的次数是 A. 1 B. 2 C. 3 D. 4
(
)
【解析】此题考查单项式,单项式2xy3的次数是1+3=4. 【答案】 D
【例4】先化简,再求值:(x+3)(x-3)-x(x-2),其中x=4. 【解析】此题考查了整式的运算,以及化简求值.涉及了平方差公式、单项式 与多项式相乘以及合并同类项的知识,来化解该整式.将整式化简到最简单的 表达方式,再代数求值.
1.2.1 整式的概念
1.整式:单项式和多项式统称为整式. 2.单项式:数或字母的积的式子叫作单项式;单独的一个数或一个 字母也是单项式. 单项式的系数:单项式中的数字因数叫作单项式的系数; 单项式的次数:一个单项式中,所有字母的指数和叫做这个单项 式的次数. 3.多项式:几个单项式的和叫做多项式. 多项式的次数:一个多项式中,次数最高项的次数叫做这个多项 式的次数. 4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同 类项;几个常数项也是同类项.
( )
【解析】本题考查幂的乘方运算,幂的乘方,底数不变,指数相乘,即 (am)n=amn.所以(-xy3)2=x2y6. 【答案】A
【例2】(2017年安顺)下列各式运算正确的是 A. 2(a-1)=2a-1 B.a2b-ab2=0 C. 2a3-3a3=a3 D.a2 +a2=2a2
(
)
【解析】本题考查了合并同类项.A.2(a-1)=2a-2,故选项错误;B.a2bab2,无法合并,故选项错误;C.2a3-3a3=-a3,故选项错误;D.a2 +a2=2a2, 故选项正确. 【答案】D
第一单元 数与式
第2课时 整式
考纲考点
1.代数式 (1)用字母表示的数的意义、代数式. (2)代数式的值. 2.整式 (1)整式的概念. (2)整式的加、减运算. (3)整数指数幂的意义和基本性质. (4)乘法公式. (5)整式的乘法运算.(多项式相乘仅指一次式之间以及一次式与 二次式相乘)
最新人教版八年级数学上册《15.3 分式方程(第2课时)》优质教学课件
解:设提速前列车的平均速度为x km/h,则提速前列车行驶
s
(x+v)
s km所用的时间为 h;提速后列车的平均速度为
km/h,
x
s+50
(s+50)km,所用时间为 x+v h. 根据行驶时间
提速后列车运行
的等量关系可以列出方程:
s s+50
x = x+v
探究新知
去分母得:s(x+v)=x (s+50)
2. 设:选择恰当的未知数,注意单位统一.
3. 列:根据数量和相等关系,正确列出方程.
4. 解:解这个分式方程.
5. 验:检验.既要检验所求的解是不是分式方程的解,又要检验是否符
合实际意义.
6. 答:注意单位和语言完整.
探究新知
素养考点 1 利用分式方程解答工程问题
例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月
方程两边同乘6x,得2x+x+3=6x, 解得 x=1.
检验:x=1时,6x≠0,x=1是原分式方程的解.
答:由上可知,若乙队单独施工1个月可以完成全部任务,
1
而甲队1个月完成总工程的 ,可知乙队施工速度快.
3
巩固练习
为了提高产品的附加值,某公司计划将研发生产的1 200件
新产品进行精加工后再投放市场,现有甲、乙两个工厂都
解:方程两边都乘以最简公分母 ( x 1)( x 1)
得: (x–1)+2(x+1)=4
∴x=1
检验:当x=1时,(x+1)(x–1)=0,
所以x=1不是原方程的根.
∴原方程无解.
课堂检测
2018届中考数学总复习 知识方法(安徽专版) 第一单元数与式3分式课件
-
·
· =
.
6分 8分
当 a=- 时,原式= 2 1 =-1.
考法1
考法2
考法3
考法1分式有意义、无意义、为零的条件
4 例1(2017· 重庆)要使分式 ������-3 有意义,x应满足的条件是(
)
A.x>3 B.x=3 C.x<3 D.x≠3 答案:D 解析:由分式的意义,知x-3≠0,解得x≠3,故选D.
例 2(2017· 重庆 B)计算: ������ + 2答案:
������ ������-3
(������ +2)(������ -2)-(3������-4) ������-2 ������(������- 3) ������- 2
3������-4 ������-2
÷
������2 -6������+9 ������-2
3-2������ ������-1
=(
)+
1
������-1
,则(
)中的数是(
B )
B.-2 D.任意实数
3-2������ ������-1
解析:
−
1 ������-1
=
2-2������ ������-1
=-2.
1 1 ������ 2������
5.(2017· 广西柳州 )化简: A.-x
=
.
解析:原式= = =
������2 -3������ ������-2 ������ ������-3
×
������-2 (������-3 )2
·
������-2
(������-3 )2
=
·
中考数学总复习课件(完整版)
第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
2018年中考数学复习第5课时分式课件
x 1 (x 1 )(x 1 ) x 1
x1
x1
x 1 x2 1 x 1 x1 x1
x2 x 2 x 1
x1 x1
(x 1 )( 2 x) x 1 x1 x1
2 x
练习3
先化简再求值:a2 2ab b2 a2 b2
( 1 1 ) ,其中 ab
a 2 1,b 2 1.
,其中a、b、c
是整式,c≠0.
2. 约分的关键是确定公因式,其方法为:
(1)取分子、分母系数的最大公约数作为公因式的系数;
(2)取各个公因式的最低次幂作为公因式的因式; (3)如果分子、分母是多项式,则应先把分子、分母分解因 式,然后判断公因式. 3. 通分的关键是确定最简公分母,其方法为: (1)取各个分母系数的最小公倍数作为最简公分母的系数; (2)取各个公因式的最高次幂作为最简公分母的因式; (3)如果分母是多项式,则应先把每个分母分解因式然后判 断最简公分母.
解:原式
(a b)2 b a
(a b)(a b) ab
a b ab ab ab
ab ab
当a 2 1,b 2 1时
原式
=2 1 =22
2. 4
练习3
先化简: 2 x x1
2x x2
4 1
x2 x2 2x 1
,然后在不
等式x≤2的非负整数解中选择一个适当的数代入求值.
解:原式 2 x
2(x 2 )
(x 1 )2
x 1 (x 1 )(x 1 ) x 2
2x 2x2 x1 x1
2x 2x 2 x1
2 x1
把x=0代入得: 2 2. 01
或把x=2代入得:
2 2. 21 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x 1 1 【例3】(2017年泰安)计算: ( 1 2 ) (1 2 ) x x
.
【解析】原式中括号内两项利用同分母分式的减法法则就算,同时利用除法 法则变形,约分即可得到结果.
2 x 2 2 x 1 x 2 1 (x 1) x2 x 1 2 2 2 x x x (x 1)(x 1) x 1
1.4.2 分式的性质及相关概念
1.
A AC A AC , (C 0), 分式的基本性质: B BC B B C
其中A,B,C是整式.
2. 通分:把几个异分母的分式分别化成与原来的分式相等的同分母
的分式叫做分式的通分. 3. 最简公分母:一般取各分母的所有因式的最高次幂的积作公分母, 它叫做最简公分母. 4. 约分:把一个分式的分子与分母的公因式约去,叫做分式的约分. 5.最简分式:分子与分母没有公因式的分式.
解决分式问题的一些方法
1.通分的方法: (1)取各分式的分母中系数的最小公倍数; (2)各分式的分母中所有字母或因式都要取到;
(3)相同字母(或因式)的幂取指数最大的;
(4)所得的系数的最小公倍数与各个字母(或因式)的最高次幂
的积即为最简公分母.
2.在分式约分时,分子、分母公因式的判断方法:
(1)取分子、分母系数的最大公约数作为公因式的系数;
4 【例1】(2017年重庆)要使分式 x3
A. x>3 C. x<3
有意义,x应满足的条件是( )
B. x=3 D. x≠3
【解析】此题考查了分式有意义的条件.该分式有意义必须满足x-3≠0,解得 x≠3.
【答案】D
1 【例2】分式 可变形为 1 x 1 A. x 1
C.
( )
B.
1 1 x
1 1 D. 1 x x 1 【解析】根据分式的基本性质,把分式的分子和分母扩大或缩小相同的倍数,
分式的值不变,但无论是扩大还是缩小,都不要漏乘(除)分子、分母中的 任何一项,且扩大(缩小)的倍数不能为0,同时在分式的变形中,还要注意 符号法则,即分式的分子、分母及分式的符号,只有同时改变两个分式的值 才不变.所以 【答案】D
幂的运算
运算 分式运算
负整数指数幂 分式乘除法 分式乘方 分式加减法
分式混合运算
ห้องสมุดไป่ตู้
1.4.1 分式的概念
1. 分式:一般地,如果A,B表示两个整式,并且B中含有字母,那 么式子 叫做分式,分式 中,A叫做分子,B叫做分母.
2. 满足分式的有关条件: (1)分式有无意义的条件:在分式 当B=0时,分式无意义. (2)分式 的值为0的条件是分子A=0,而分母B≠0. 中,当分母B≠0时,分式有意义;
THANK YOU!
解:原式=
1 x 2 , 其中x 6. 【例4】先化简,再求值: 2 x 3 3 x x 9
【解析】此题考查了分式的综合运算,涉及了分式的除法法则、分式的加减 法、平方差公式、多项式与单项式相乘等多方面知识.熟练运用分式、整式的 运算法则,此题不难解出.
1 x2 9 2 解:原式 x x 3 3 x 1 x 3 x 3 2 x x 3 3 x 2 x 3 x 3 x x x 9 . x 69 1 x 6, 原式 . 6 2
(2)取各个因式的最低次幂作为公因式的因式;
(3)如果分子、分母是多项式,则应先把分子、分母分解因式,
然后判断公因式.
3.分式化简求值的一般步骤:
(1)若有括号的,先计算括号内的分式运算,括号内如果是异分 母加减运算时,需将异分母分式通分化为同分母分式运算,然后将 分子合并同类项,把括号去掉,简称:去括号; (2)若有除法运算的,将分式中除号(÷)后面的式子分子分母 颠倒,并把这个式子前的“÷”变为“×”,保证几个分式之间除了 “+、-”就只有“×或·”,简称:除法变乘法; (3)计算分式乘法运算,利用因式分解、约分来计算乘法运算; (4)最后按照式子顺序,从左到右计算分式加减运算,直到化为最 简形式; (5)将所给数值代入求值,代入数值时要注意使原分式有意义.
1.4.3 分式的运算法则
1.加减法: a d ab . (1)同分母分式相加减,分母不变,把分子相加减,即: c c c (2)异分母分式相加减,先通分,变为同分母的分式,再加减. 即: .
2.乘法运算: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母 , a c ac 即: .
第一单元 数与式
第4课时 分式
考纲考点
(1)分式和最简分式的概念. (2)利用分式的基本性质进行约分与通分. (3)分式的加、减、乘、除运算. 安徽中考近5年只有2015年考查了一次,预测2018年安徽中考数学 考查分式的概率不大.
知识体系图
分子:整式 定义 分母:整式,且不等于0
基本性质
分式
约分、通分 零指数幂
b d bd
3.除法运算: 分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 即: a c ad b d bc . 4.分式的乘方:分式的乘方是把分子,分母各自乘方,即:
n a a n (n为正整数) . b b n
5.混合运算:先算乘方与开方,再算乘除,进行约分化简后,最后 进行加减运算,如有括号,先算括号里的,运算的结果必须是最简 分式或整式.