2018高考数学一轮复习第2章函数导数及其应用第3节函数的奇偶性与周期性课时分层训练文
高三数学一轮复习 第2章 函数、导数及其应用第3课时 函数的奇偶性与周期性精品 理 北师大版
• 1.对任意实数x,下列函数中为奇函数的是( )
• A.y=2x-3
B.y=-3x3
• C.y=5xD.y=来自|x|cos x• 答案: B
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的
-x2+2x+1x>0, (3)f(x)=x2+2x-1x<0; (4)f(x)=|x+43-|-x23.
• 解析: (1)此函数的定义域为R. • ∵f(-x)=|-x|[(-x)2+1]=|x|(x2+1)=f(x), • ∴f(-x)=f(x),即f(x)是偶函数. • (2)此函数的定义域为x>0,由于定义域关于原点不对称, • 故f(x)既不是奇函数也不是偶函数. • (3)函数的定义域为{x|x≠0}关于原点对称, • 当x>0时,-x<0,f(-x)=x2-2x-1=-f(x), • 当x<0时,-x>0,f(-x)=-x2-2x+1=-f(x), • ∴f(-x)=f(x),即函数是奇函数.
2.奇偶函数的不等式求解时,要注意到:奇函数在对称的单调区 间上有相同的单调性,偶函数在对称的单调区间上有相反的单调性.
(1)设a>0,f(x)=eax+eax是R上的偶函数,求实数a的值; (2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求 满足:f(1-m)+f(1-m2)<0的实数m的取值范围.
1)=-f(1)=0,∴f(x)既是奇函数又是偶函数.
(3)函数定义域为(-∞,0)∪(0,+∞). ∵f(-x)=-x2-x1-1+12 =-x1-2x2x+12=x2x2-x 1-12 =x2x-1 1+12 =f(x) ∴f(x)是偶函数.
高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
2018高考数学一轮复习第2章函数导数及其应用第3节函数的奇偶性与周期性教师用书文北师大版
第三节函数的奇偶性与周期性[考纲传真] 1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图像理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.奇函数、偶函数的概念图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.2.奇(偶)函数的性质(1)对于函数f (x),f (x)为奇函数⇔f (-x)=-f (x);f (x)为偶函数⇔f (-x)=f (x).(2)奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(3)如果奇函数y=f (x)在原点有定义,则f (0)=0.3.函数的周期性(1)对于函数f (x),如果存在非零实数T,对定义域内的任意一个x值,都有f (x+T)=f (x),则f (x)为周期函数.(2)最小正周期:如果在周期函数f (x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x)的最小正周期.(3)若T是函数y=f (x)的一个周期,则nT(n∈Z,且n≠0)也是函数y=f (x)的一个周期.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)偶函数图像不一定过原点,奇函数的图像一定过原点.( )(2)若函数y=f (x+a)是偶函数,则函数y=f (x)关于直线x=a对称.( )(3)若函数y=f (x+b)是奇函数,则函数y=f (x)关于点(b,0)中心对称.( )(4)函数f (x)在定义域上满足f (x+a)=-f (x),则f (x)是周期为2a(a>0)的周期函数.( )[答案] (1)×(2)√(3)√(4)√2.已知f (x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )【导学号:66482035】A .-13B .13 C .12D .-12B [依题意b =0,且2a =-(a -1), ∴b =0且a =13,则a +b =13.]3.(2015·广东高考)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin2x B .y =x 2-cos x C .y =2x+12xD .y =x 2+sin xD [A 项,定义域为R ,f (-x )=-x -sin2x =-f (x ),为奇函数,故不符合题意; B 项,定义域为R ,f (-x )=x 2-cos x =f (x ),为偶函数,故不符合题意; C 项,定义域为R ,f (-x )=2-x +12-x =2x+12x =f (x ),为偶函数,故不符合题意;D 项,定义域为R ,f (-x )=x 2-sin x ,-f (x )=-x 2-sin x ,因为f (-x )≠-f (x ),且f (-x )≠f (x ),故为非奇非偶函数.]4.(2016·四川高考)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f(x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.-2 [∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2,f (2)=f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2+0=-2.]5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.x (1-x ) [当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).]判断下列函数的奇偶性:(1)f (x )=x 3-2x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.[解] (1)定义域为R ,关于原点对称,又f (-x )=(-x )3-2(-x )=-x 3+2x =-(x 3-2x )=-f (x ). ∴该函数为奇函数. 4分(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数. 8分(3)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数. 12分 [规律方法] 1.利用定义判断函数奇偶性的步骤:2.判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性;也可以利用函数的图像进行判断.[变式训练1] (1)(2014·全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数(2)判断函数f (x )=3-x 2+x 2-3的奇偶性.(1)C [A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ),∴h (x )是奇函数,A 错.B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h (x ),∴h (x )是偶函数,B 错.C :令h (x )=f (x )|g (x )|,则h (-x )=f (-x )|g (-x )|=-f (x )|g (x )|=-h (x ),∴h (x )是奇函数,C 正确.D :令h (x )=|f (x )·g (x )|,则h (-x )=|f (-x )·g (-x )|=|-f (x )·g (x )|=|f (x )·g (x )|=h (x ),∴h (x )是偶函数,D 错.](2)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,∴x =±3,3分即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 8分 因此f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数. 12分a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.(1)1 (2)⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0[(1)∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数, ∴f (-x )=-f (x ), 即f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.][规律方法] 1.已知函数的奇偶性求参数,一般采用待定系数法求解,根据f (x )±f (x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;2.已知函数的奇偶性求函数值或解析式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性得出关于f (x )的方程(组),从而可得f (x )的值或解析式.[变式训练2] 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .3A [因为f (x )为定义在R 上的奇函数,所以有f (0)=20+2×0+b =0,解得b =-1,所以当x ≥0时,f (x )=2x+2x -1,所以f (-1)=-f (1)=-(21+2×1-1)=-3.]时,f (x )=2x -x 2,则f (0)+f (1)+f (2)+…+f (2 017)=________.【导学号:66482036】1 009 [∵f (x +2)=f (x ),∴函数f (x )的周期T =2.又当x ∈[0,2)时,f (x )=2x -x 2,∴f (0)=0,f (1)=1,f (0)+f (1)=1. ∴f (0)+f (1)=f (2)+f (3)=f (4)+f (5)=…=f (2 016)+f (2 017)=1, ∴f (0)+f (1)+f (2)+…+f (2 017)=1 009.][迁移探究1] 若将本例中“f (x +2)=f (x )”改为“f (x +1)=-f (x )”,则结论如何?[解] ∵f (x +1)=-f (x ),∴f (x +2)=f [(x +1)+1]=-f (x +1)=f (x ). 5分 故函数f (x )的周期为2. 8分由本例可知,f (0)+f (1)+f (2)+…+f (2 017)=1 009. 12分 [迁移探究2] 若将本例中“f (x +2)=f (x )”改为“f (x +1)=1f x”,则结论如何?[解] ∵f (x +1)=1f x,∴f (x +2)=f [(x +1)+1]=1f x +1=f (x ). 5分故函数f (x )的周期为2. 8分由本例可知,f (0)+f (1)+f (2)+…+f (2 017)=1 009. 12分[规律方法] 1.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,根据函数的周期性,可以由函数局部的性质得到函数的整体性质.2.函数周期性的三个常用结论: (1)若f (x +a )=-f (x ),则T =2a , (2)若f (x +a )=1f x,则T =2a ,(3)若f (x +a )=-1f x,则T =2a (a >0).[变式训练3] (2017·长沙模拟(一))已知定义在R 上的函数f (x )满足f (x +1)=-f (x ),且f (x )=⎩⎪⎨⎪⎧1,-1<x ≤0,-1,0<x ≤1,则下列函数值为1的是( )A .f (2.5)B .f (f (2.5))C .f (f (1.5))D .f (2)D [由f (x +1)=-f (x )知f (x +2)=-f (x +1)=f (x ),于是f (x )是以2为周期的周期函数,从而f (2.5)=f (0.5)=-1,f (f (2.5))=f (-1)=f (1)=-1,f (f (1.5))=f (f (-0.5))=f (1)=-1,f (2)=f (0)=1,故选D.][思想与方法]1.函数奇偶性的三个常用性质(1)若奇函数f (x )在x =0处有定义,则f (0)=0. (2)若f (x )为偶函数,则f (|x |)=f (x ).(3)设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.2.利用函数奇偶性可以解决以下问题(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图像,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用.[易错与防范]1.判断函数的奇偶性,应首先判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.f (0)=0既不是f (x)是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.3.判断分段函数的奇偶性时,要以整体的观点进行判断,不能用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性.。
(新课标)高考数学一轮总复习第二章函数导数及其应用2-3函数的奇偶性与周期性课件文新人教A版
[三基自测]
1.(必修1·习题1.3A组改编)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)
=x2+1x,则f(-1)等于(
)
A.-2
B.0
C.1
D.2
答案:A
2.(必修1·第一章复习参考题改编)函数f(x)=11- +xx是(
)
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数
答案:D
3.(必修1·第一章复习参考题改编)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函 数,那么a+b的值是( )
A.-13
B.13
1 C.2
D.-12
答案:B
4.(必修1·习题1.3A组改编)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2- 4x,那么不等式f(x+2)<5的解集是____________. 答案:{x|-7<x<3}
第三节 函数的奇偶性与周期性
栏目 导航
教材回顾 考点突破
最新考纲
考情考向分析
1.结合具体函数,了解函数奇偶性的含 义. 2.会运用函数图象理解和研究函数的 奇偶性. 3.了解函数周期性、最小正周期的含 义,会判断、应用简单函数的周期性.
函数的奇偶性与周期性是高考 重要考点,常将奇偶性、周期性与 单调性综合在一起交汇命题. 题型多以选择题、填空题形式出 现,一般为容易题,但有时难度也 会很大.
由函数周期性可得 f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=…=f(2 011)+f(2 012)+…+f(2 016) =1, 而f(2 017)=f(6×336+1)=f(1)=1, ∴f(1)+f(2)+…+f(2 017)=336×1+1=337.
2018年高考数学一轮温习第二章函数导数及其应用课时达标6函数的奇偶性与周期性理
A.-2B.2
C.-98D.98
解析:因为f(x+4)=f(x),因此f(x)是以4为周期的周期函数,因此f(2 015)=f(503×4+3)=f(3)=f(-1).
因此f(1)+f(2)+f(3)+f(4)+f(5)=0.
三、解答题
10.已知函数f(x)= 是奇函数.
(1)求实数m的值;
(2)假设函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
解析:(1)设x<0,那么-x>0,
因此f(-x)=-(-x)2+2(-x)=-x2-2x,
又f(x)为奇函数,因此f(-x)=-f(x),
2.已知f(x)=3ax2+bx-5a+b是偶函数,且其概念域为[6a-1,a],那么a+b=( A )
A. B.-1
C.1D.7
解析:因为偶函数的概念域关于原点对称,因此6a-1+a=0,因此a= .又因为f(x)为偶函数,因此3a(-x)2-bx-5a+b=3ax2+bx-5a+b,得b=0,因此a+b= ,应选A.
解析:f(x)是概念在R上的奇函数,且y=f(x)的图象关于直线x= 对称,因此f(-x)=-f(x),
f =f ⇒f(x)=f(1-x),
因此f(-x)=f(1+x)=-f(x),
f(2+x)=-f(1+x)=f(x),
因此f(0)=f(1)=f(3)=f(5)=0,f(0)=f(2)=f(4)=0,
(2)f(x)为偶函数,证明如下:
令x1=x2=-1,有f(1)=f(-1)+f(-1),
因此f(-1)= f(1)=0.
高考数学一轮复习 第2章 函数、导数及其应用 第3节 函数的奇偶性与周期性课件 理_00001
12/11/2021
第七页,共五十页。
2.周期性的几个常用结论 对 f(x)的定义域内任一自变量的值 x,周期为 T,则 (1) 若 f(x+a)=-f(x),则 T=2a; (2)若 f(x+a)=f1x,则 T=2a; (3)若 f(x+a)=f(x+b),则 T=a-b.
12/11/2021
∴f(x+1)=f(-x+1)=-f(x-1),
∴f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),∴f(x)是周期为 4 的
周期函数,则 f(4)=f(0)=0,f(5)=f(1)=2,
∴f(4)+f(5)=0+2=2.]
12/11/2021
第三十页,共五十页。
解析答案
第2章 函数 、导数及其应用 (hánshù)
第三节 函数(hánshù)的奇偶性与周期性
12/11/2021
第一页,共五十页。
[考纲传真] 1.结合具体函数,了解函数奇偶性的含义;2.会运用 函数的图象理解和研究函数的奇偶性;3.了解函数周期性、正周期 的含义, 会判断、应用简单函数的周期性.
12/11/2021
[答案] (1)× (2)× (3)√ (4)√
12/11/2021
第九页,共五十页。
答案
2.(教材改编)下列函数中为偶函数的是(
A.y=x2sin x
B.y=x2cos x
C.y=|ln x|
D.y=2-x
) B [A 为奇函数,C,D 为非奇非偶函数,B 为 偶函数,故选 B.]
12/11/2021
第二页,共五十页。
01
知识 全通 课前·
(zhī shi)
栏
目
(lán mù)
高考数学一轮复习第二章函数导数及其应用第三节函数的奇偶性与周期性学案理(含解析)新人教A版
第三节函数的奇偶性与周期性2019考纲考题考情1.函数的奇偶性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期。
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。
1.一条规律奇、偶函数定义域的特点是关于原点对称。
函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件。
2.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0。
(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇。
3.函数周期性常用的结论对f(x)定义域内任一自变量的值x,(1)若f(x+a)=-f(x),则T=2a(a≠0)。
(2)若f(x+a)=1f(x),则T=2a(a≠0)。
(3)若f(x+a)=-1f(x),则T=2a(a≠0)。
一、走进教材1.(必修1P 35例5改编)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x解析 根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数,也不是偶函数。
故选B 。
答案 B2.(必修4P 46A 组T 10改编)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________。
解析 由题意得,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1。
高考数学一轮总复习 第二章 函数、导数及其应用 第三节 函数的奇偶性与周期性课件 文
答案:D
(2)(2014·课标全国Ⅰ卷)设函数 f(x),g(x)的定义域都为 R,且 f(x) 是奇函数,g(x)是偶函数,则下列结论中正确的是( )
第三节 函数的奇偶性与周期性
函数奇偶性的判断
判断下列函数的奇偶性
(1)f(x)= 3-x2+ x2-3; (2)f(x)=lg|(x-1-2|-x22);
(3)f(x)=x-2+x2x+,x,
x<0, x>0.
解:(1)由3x-2-x32≥≥00得 x2=3,所以 x=± 3, 即函数 f(x)的定义域为{- 3, 3}, 从而 f(x)= 3-x2+ x2-3=0. 因此 f(-x)=-f(x)且 f(-x)=f(x), 所以函数 f(x)既是奇函数又是偶函数. (2)由1|x--x22|>≠02,得,定义域为(-1,0)∪(0,1). ∴x-2<0,∴|x-2|-2=-x, ∴f(x)=lg(1--xx2). 又∵f(-x)=lg[1-(x-x)2]=-lg(1--xx2)=-f(x),
C.y=2x+21x
D.y=x2+sin x
解析:A 项,定义域为 R,f(-x)=-x-sin 2x=-f(x),为奇函 数,故不符合题意;
B 项,定义域为 R,f(-x)=x2-cos x=f(x),为偶函数,故不符 合题意;
C 项,定义域为 R,f(-x)=2-x+21-x=2x+21x=f(x),为偶函数, 故不符合题意;
C.{x|x<0,或 x>4} D.{x|0<x<4}
解析:(1)因为 f(x)为定义在 R 上的奇函数,所以有 f(0)=20+2×0 +b=0,解得 b=-1,所以当 x≥0 时,f(x)=2x+2x-1,所以 f(- 1)=-f(1)=-(21+2×1-1)=-3.
高考数学一轮总复习教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性
5.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+x-1,则函数
f(x)的解析式为
+ -, > 0,
f(x)= , = ,
- + + , < 0
.
解析:设x<0,则-x>0,由题意可知f(-x)=(-x)2-x-1=x2-x-1,
因为f(x)是R上的奇函数,
√
D.1
)
-
f(-x).若 f(- )= ,则 f( )等于(
ቤተ መጻሕፍቲ ባይዱ
A.
B.
C.
√
D.
)
解析:因为 f(x)是定义在 R 上的奇函数,所以 f(-x)=-f(x).
又 f(1+x)=f(-x),
所以 f(2+x)=f[1+(1+x)]=f[-(1+x)]=-f(1+x)=-f(-x)=f(x),
所以f(x)=-f(-x)=-x2+x+1,且f(0)=0.
+ -, > 0,
综上所述,f(x)= , = ,
- + + , < 0.
提升·关键能力
类分考点,落实四翼
考点一
函数奇偶性的判断
[例1] (多选题)(2024·山东临沂统考一模)已知f(x)=x3g(x)为
==-f(x),
-
所以函数 f(x)为奇函数.
③显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.
因为当x<0时,-x>0,
17-18版 第2章 第3节 函数的奇偶性与周期性
是偶函数,则下列结论中正确的是( A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数
(2)判断函数 f(x)= 3-x2+ x2-3的奇偶性.
上一页
返回首页
下一页
高三一轮总复习
(1)C [A:令 h(x)=f(x)· g(x),则 h(-x)=f(-x)· g(-x)=-f(x)· g(x)=-h(x), ∴h(x)是奇函数,A 错. B: 令 h(x)=|f(x)|g(x), 则 h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x), ∴h(x)是偶函数,B 错. C:令 h(x)=f(x)|g(x)|,则 h(-x)=f(-x)|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x) 是奇函数,C 正确. D:令 h(x)=|f(x)· g(x)|,则 h(-x)=|f(-x)· g(-x)|=|-f(x)· g(x)|=|f(x)· g(x)|= h(x), ∴h(x)是偶函数,D 错.]
高三一轮总复习
抓 基 础 · 自 主 学 习
第二章
第三节
函数、导数及其应用
函数的奇偶性与周期性
明 考 向 · 题 型 突 破
上一页 返回首页 下一页
课 时 分 层 训 练
高三一轮总复习
1.函数的奇偶性 奇偶性 偶函数 定义 如果对于函数 f(x)的定义域内任意一个 x,都有
f(-x)=f(x) ,那么函数 f(x)就叫做偶函数 ____________
1 1 ∴b=0 且 a=3,则 a+b=3.]
)
1 B.3 1 D.-2
B [依题意 b=0,且 2a=-(a-1),
新高考数学一轮复习第二章函数导数及其应用2.3函数的奇偶性与周期性课件
1.思考辨析 判断下列结论正误(在括号内打“√”或“×”)
(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )
(2)若函数 y=f(x+a)是偶函数,则函数 y=f(x)关于直线 x=a 对
称.( √ )
(3) 定 义 域 关 于 原 点 对 称 是 函 数 具 有 奇 偶 性 的 一 个 必 要 条
件.( √ )
(4)若 T 是函数的一个周期,则 nT(n∈Z,n≠0)也是函数的周
期.( √ )
解析:(1)奇函数只有在原点有定义时才过原点,且 f(0) =0,而偶函数不管在原点有无定义,都不一定过原点.
(2)因为 y=f(x+a)为偶函数,则 f(x+a)=f(-x+a)=f(a- x),可知 x=a 为对称轴.
1 2
.
解析:解法 1:因为函数 f(x)=x3(2x-1 1+a)为偶函数,所
以 f(-x)=f(x),即(-x)3(2-x1-1+a)=x3(2x-1 1+a),所以 2a=
-(2-x1-1+2x-1 1),所以 2a=1,解得 a=12.
解法 2:因为函数 f(x)=x3(2x-1 1+a)为偶函数,所以 f(-1)=f(1),所以(-1)3×(2-11-1+a)=13×(21-1 1+a),解 得 a=12,经检验,当 a=12时,函数 f(x)为偶函数.
时,f(-x)=-f(x);当 x>12时,fx+12=fx-12,则 f(6)等于( D )
A.-2
B.-1
C.0
D.2
解析:当 x>12时,fx+12=fx-12,即周期为 1,则 f(6)= f(1)=-f(-1)=-[(-1)3-1]=2.
2.已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x<2 时,
高考数学一轮总复习第二章函数、导数及其应用第3讲函数的奇偶性与周期性课件文
y=x2+1,y=2sinx 中,奇函数的个数是(
)
A.4 个
B.3 个
C.2 个
D.1 个
答案(dá àn):C
(6)(2012 年广东(guǎng dōng))下列函数为偶函数) 的是(
A.y=sinx
B.y=x3
C.y=ex
D.y= ln x2 1
解析:y=sinx 是奇函数,y=x3 是奇函数,y=ex 为非奇非 偶函数.对于 D 选项,由 f(x)=ln x2+1,得 f(-x)=ln -x2+1 =ln x2+1=f(x),故 y=ln x2+1是偶函数.
是偶函数,B 错;f( -x)|g( -x)| =-f(x)|g(x)| =-[f(x)|g(x)|] ,
答案(dá àn):C
f(x)|g(x)|是奇函数,C 正确;|f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,
|f(x)g(x)|是偶函数,D 错.
第九页,共27页。
(2)(2015 年广东)下列函数(hánshù)中,既不是奇函数(hánshù), 数的是( )
选项既不是奇函数,也不是偶函数.故选 B.
答案:B
第十一页,共27页。
(4)(2014 年广东(guǎng dōng))下列函数为奇函数) 的是(
A.y=2x-
1
2x
C.y=2cosx+1
B.y=x3sinx D.y=x2+2x
解析:对于 A 选项中的函数 f(x)=2x-21x=2x-2-x,函数定 义域为 R,f(-x)=2-x-2-(-x)=2-x-2x=-f(x),则该函数为奇 函数;对于 B 选项中的函数 g(x)=x3sinx,g(-x)=-x3sin(-x) =x3sinx=g(x),则该函数为偶函数;对于 C 选项中的函数 h(x)
高三理科数学一轮复习 第二章 函数、导数及其应用 第三节 函数的奇偶性与周期性课件
已知 f(x)是定义在 R 上的偶函数,并且 f(x+2)=-������(1������),当 2≤x≤3 时,f(x)=x,则 f(105.5)=
.
2.5 【解析】由已知,可得 f(x+4)=f[(x+2)+2]=-������(������1+2) = − -������1(1������)=f(x),故函数 f(x)的周期为 4,则
13
【变式训练】
1.判断函数 f(x)=
������ ������
2-2������ 2 + 2������
(������ ≥ (������
<0)0, )的奇偶性.
1.【解析】解法1:f(x)的定义域为R,当x>0时,-x<0,
f(-x)=(-x)2+2(-x)=x2-2x=f(x). 当x=0时,f(0)=0=f(-0).当x<0时,-x>0,
第三节 函数的奇偶性与周期性
1
考纲概述
考查热点
考查频 备考指导
次
(1)了解函数奇偶性的含义,并能 奇偶性的含义与
运用奇偶性的含义判断一些简单 判断
★★★★
函数的奇偶性; (2)掌握奇函数与偶函数的图象 对称关系,并能熟练地利用对称
利用周期性含义 ★★
求函数值
函数的奇偶性与周期性在高考中占有重要的地位,在命题时主要 是与函数的概念、图象、性质等综合在一起考查.题型以选择题与
性解决函数的综合问题;
函数的奇偶性、对
填空题为主,数形结合是解决此类问题的重要工具.
(3)了解函数周期性的含义,能根 称性及周期性的 ★★★★ 据函数的周期性将给定自变量转 综合应用
[推荐学习]2018版高考数学一轮总复习第2章函数导数及其应用2.3函数的奇偶性与周期性模拟演练理
2018版高考数学一轮总复习 第2章 函数、导数及其应用 2.3 函数的奇偶性与周期性模拟演练 理[A 级 基础达标](时间:40分钟)1.若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则( ) A .函数f [g (x )]是奇函数 B .函数g [f (x )]是奇函数 C .函数f (x )·g (x )是奇函数 D .函数f (x )+g (x )是奇函数 答案 C解析 令h (x )=f (x )·g (x ),∵函数f (x )是奇函数,函数g (x )是偶函数,∴f (-x )=-f (x ),g (-x )=g (x ),∴h (-x )=f (-x )g (-x )=-f (x )·g (x )=-h (x ), ∴h (x )=f (x )·g (x )是奇函数,故选C.2.[2017·西安模拟]函数f (x )=ax 2+bx +2a -b 是定义在[a -1,2a ]上的偶函数,则a +b =( )A .-13 B.13 C .0 D .1答案 B解析 首先数轴上表示a -1和2a 的两点应关于原点对称,即2a =1-a ,解得a =13,代入得f (x )=13x 2+bx +23-b ,又因为函数f (x )是偶函数,得b =0,所以a +b =13.3.[2014·湖南高考]已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3 答案 C解析 ∵f (-x )=f (x ),g (-x )=-g (x ),f (x )-g (x )=x 3+x 2+1,∴f (-x )-g (-x )=-x 3+x 2+1,即f (x )+g (x )=-x 3+x 2+1.∴f (1)+g (1)=-1+1+1=1.4.[2017·唐山统考]f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln (1+x ).则当x <0时,f (x )=( )A .-x 3-ln (1-x ) B .x 3+ln (1-x ) C .x 3-ln (1-x ) D .-x 3+ln (1-x )答案 C解析 当x <0时,-x >0,f (-x )=(-x )3+ln (1-x ),∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-[(-x )3+ln (1-x )],∴f (x )=x 3-ln (1-x ).5.[2017·南阳模拟]函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)答案 C解析 f (x )的图象如图.当x ∈[-1,0)时,由xf (x )>0得x ∈(-1,0);当x ∈[0,1)时,由xf (x )>0得x ∈∅; 当x ∈[1,3]时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).6.已知偶函数f (x )在[0,+∞)上单调递减,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则x 的取值范围是________.答案 -13<x <43解析 由题可知f (x )在区间(-∞,0]上单调递增,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则-53<2x -1<53,即-13<x <43.7.[2017·金版创新]已知f (x )=ax 3+bx +2017,且f (2017)=2018,则f (-2017)=________.答案 2016解析 f (x )=ax 3+bx +2017,令g (x )=ax 3+bx ,则g (x )为奇函数,f (x )=g (x )+2017,f (2017)=g (2017)+2017=2018,g (2017)=1,故f (-2017)=g (-2017)+2017=-g (2017)+2017=-1+2017=2016.8.[2016·江苏高考]设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________. 答案 -25解析 由题意可得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.9.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.解 ∵f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 解得-2<m <1.② 综合①②可知-1≤m <1. 即实数m 的取值范围是[-1,1). 10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[B 级 知能提升](时间:20分钟)11.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值可以是( )A.23 B .2 C .4 D .6 答案 B解析 由题意知,3-2a <x +1<a +1,∴2-2a <x <a ,故2-2a +a =0,∴a =2,故选B. 12.[2017·衡水模拟]已知y =f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 ∵y =f (x )+x 2是奇函数,且f (1)=1, ∴f (-1)+(-1)2=-[f (1)+12], ∴f (-1)=-3.因此g (-1)=f (-1)+2=-1.13.[2016·苏州模拟]定义在R 上的偶函数f (x )满足f (x +2)·f (x )=1对于x ∈R 恒成立,且f (x )>0,则f (119)=__________.答案 1解析 因为f (x +2)=1f x,所以f (x +4)=f (x +2+2)=1fx +=f (x ),f (x )为周期函数,且周期为4,又因为f (x )为偶函数,所以f (-x )=f (x ),f (119)=f (29×4+3)=f (3)=f (3-4)=f (-1)=f (1),又因为f (-1+2)=1f-1, 所以f (1)·f (-1)=1,即f 2(1)=1,因为f (x )>0, 所以f (1)=1,f (119)=1.14.函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. (2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数,∴0<|x-1|<16,解之得-15<x<17且x≠1.∴x的取值范围是(-15,1)∪(1,17).。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标6 函数的奇偶性与周期性 理
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标6函数的奇偶性与周期性 理[解密考纲]本考点考查函数的奇偶性、周期性.单独命题多以选择题的形式呈现,排在中间靠前的位置,题目难度系数属于中等或中等偏上;另外,函数的性质也常常与三角函数、向量、不等式、导数等相结合出解答题,有一定难度.一、选择题1.下列函数是奇函数的是( A ) A .f (x )=x |x | B .f (x )=lg x C .f (x )=2x+2-xD .f (x )=x 3-1解析:选项B ,f (x )=lg x 的定义域是x >0,所以不是奇函数,所以B 错;选项C ,f (-x )=2-x +2x =f (x ),f (x )是偶函数,所以C 错;选项D ,f (x )=x 3-1不过原点,所以f (x )是非奇非偶函数,所以D 错.只有A ,满足定义域关于原点对称,并且f (-x )=-f (x ),是奇函数.2.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( A ) A .17 B .-1 C .1D .7解析:因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,得b =0,所以a +b =17,故选A .3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)=( A )A .-2B .2C .-98D .98解析:因为f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,所以f (2 015)=f (503×4+3)=f (3)=f (-1).又f (x )为奇函数,所以f (-1)=-f (1)=-2×12=-2, 即f (2 015)=-2.4.(2016·重庆模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1100=( D )A .1lg 2B .-1lg 2C .lg 2D .-lg 2解析:因为当x >0时,f (x )=lg x , 所以f ⎝⎛⎭⎪⎫1100=lg 1100=-2,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1100=f (-2),因为函数y =f (x )是奇函数, 所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1100=-f (2)=-lg 2. 5.(2016·河北石家庄调研)已知偶函数y =f (x )满足f (x +5)=f (x -5),且0≤x ≤5时,f (x )=x 2-4x ,则f (2 016)=( B )A .-1B .0C .1D .12解析:∵f (x +5)=f (x -5),∴f (x +10)=f (x ),∴f (x )为周期函数,且周期为10,∴f (2 016)=f (201×10+6)=f (6)= f (-4)=f (4)=42-4×4=0,故选B .6.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x∈⎣⎢⎡⎦⎥⎤12,1时恒成立,则实数a 的取值范围是( D ) A .[-2,1] B .[-5,0] C .[-5,1]D .[-2,0]解析:因为f (x )是偶函数,在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1时恒成立,则ax +1≤|x -2|,即x -2≤ax +1≤2-x .由ax +1≤2-x ,得ax ≤1-x ,a ≤1x -1,而1x -1在x =1时取得最小值0,故a ≤0.同理,x -2≤ax +1时,a ≥-2,所以a 的取值范围是[-2,0].二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =0.解析:因为函数f (x )=x 2-|x +a |为偶函数,所以f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |,所以|-x +a |=|x +a |,所以a =0.8.(2016·湖南长沙模拟)设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是⎣⎢⎡⎭⎪⎫-1,12.解析:因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |).所以不等式f (1-m )<f (m ),等价于f (|1-m |)<f (|m |).又当x ∈[0,2)时,f (x )是减函数.所以⎩⎪⎨⎪⎧|1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12.9.(2016·陕西西安模拟)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=0.解析:f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,所以f (-x )=-f (x ),f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ⇒f (x )=f (1-x ),所以f (-x )=f (1+x )=-f (x ),f (2+x )=-f (1+x )=f (x ),所以f (0)=f (1)=f (3)=f (5)=0,f (0)=f (2)=f (4)=0, 所以f (1)+f (2)+f (3)+f (4)+f (5)=0. 三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解析:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x , 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].11.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式. 解析:(1)∵f (x )是周期为2的奇函数, ∴f (1)=f (1-2)=f (-1)=-f (1), ∴f (1)=0,f (-1)=0.(2)由题意知,f (0)=0.当x ∈(-1,0)时,-x ∈(0,1). 由f (x )是奇函数,得f (x )=-f (-x )=-2-x 4+1=-2x4+1,综上,在[-1,1]上,f (x )=⎩⎪⎨⎪⎧2x4+1,x ∈,,-2x 4x+1,x ∈-1,,0,x ∈{-1,0,1}.12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解析:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)f (x )为偶函数,证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), 所以f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数. (3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,所以f (x -1)<2,等价于f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数,所以0<|x -1|<16,解得-15<x <17且x ≠1, 所以x 的取值范围是{x |-15<x <17且x ≠1}.。
高考数学一轮复习 第2章 函数、导数及其应用 第3讲 函数的奇偶性与周期性创新教学案(含解析)新人教
第3讲函数的奇偶性与周期性[考纲解读] 1.了解函数奇偶性的含义.2.会运用基本初等函数的图象分析函数的奇偶性.(重点)3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.(重点)[考向预测] 从近三年高考情况来看,函数的奇偶性与周期性是高考的一个热点.预测2021年高考会侧重以下三点:①函数奇偶性的判断及应用;②函数周期性的判断及应用;③综合利用函数奇偶性、周期性和单调性求参数的值或解不等式.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有01f(-x)=f(x),那么函数f(x)就叫做偶函数关于02y轴对称奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有03f(-x)=-f(x),那么函数f(x)就叫做奇函数关于04原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有01f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个02最小的正数,那么这个03最小正数就叫做f(x)的最小正周期.1.概念辨析(1)“a+b=0〞是“函数f(x)在区间[a,b](a≠b)上具有奇偶性〞的必要条件.( )(2)假设函数f(x)是奇函数,那么必有f(0)=0.( )(3)假设函数y=f(x+a)是偶函数,那么函数y=f(x)的图象关于直线x=a对称.( )(4)假设函数y=f(x+b)是奇函数,那么函数y=f(x)的图象关于点(b,0)中心对称.( )(5)函数y=f(x)是定义在R上的偶函数,假设在(-∞,0)上是减函数,那么在(0,+∞)上是增函数.( )(6)假设T为y=f(x)的一个周期,那么nT(n∈Z)也是函数f(x)的周期.( )答案(1)√(2)×(3)√(4)√(5)√(6)×2.小题热身(1)以下函数中为奇函数的是( )A.y=x2sin x B.y=x2cos xC.y=|ln x| D.y=2-x答案 A解析A是奇函数,B是偶函数,C,D是非奇非偶函数.(2)假设f(x)是R上周期为2的函数,且满足f(1)=1,f(2)=2,那么f(3)-f(4)=________.答案-1解析因为f(x)是R上周期为2的函数,所以f(3)=f(1)=1,f(4)=f(2)=2,所以f(3)-f(4)=1-2=-1.(3)设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,那么f(-2)+f(0)=________.答案-5解析因为f(x)是定义在R上的奇函数,所以f(-2)=-f(2)=-(22+1)=-5,f(0)=0,所以f(-2)+f(0)=-5.(4)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,那么f(-1)=________.答案 3解析因为函数y=f(x)是偶函数,所以f(-1)=f(1),因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3.综上可知,f(-1)=3.(5)设奇函数f(x)的定义域为[-5,5],假设当x∈[0,5]时,f(x)的图象如下图,那么不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析因为函数f(x)是奇函数,所以其图象关于原点中心对称,作出其图如右,观察图象可知,不等式f(x)<0的解集为(-2,0)∪(2,5].题型一函数的奇偶性角度1 判断函数的奇偶性1.(2020·某某市高三阶段考试)y=f(x)是定义在R上的奇函数,那么以下函数中为奇函数的是( )①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.A.①③B.②③C.①④D.②④答案 D解析因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x),由f(|-x|)=f(|x|),知①是偶函数;由f[-(-x)]=f(x)=-f(-x),知②是奇函数;由y=f(x)是定义在R上的奇函数,且y=x是定义在R上的奇函数,奇×奇=偶,知③是偶函数;由f(-x)+(-x)=-[f(x)+x],知④是奇函数.2.判断以下函数的奇偶性:(1)f(x)=3-x2+x2-3;(2)f (x )=(1-x )1+x1-x; (3)f (x )=lg 1-x2|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, ∴f (x )=3-x 2+x 2-3=0. ∴f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数. (2)由1+x1-x ≥0得-1≤x <1,所以f (x )的定义域为[-1,1), 所以函数f (x )是非奇非偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=lg1-x2-x.又f (-x )=lg [1--x2]x=lg 1-x2x=-f (x ),∴函数f (x )为奇函数.(4)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,那么f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,那么f (-x )=(-x )2-x =x 2-x =-f (x ); 综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ),∴函数f (x )为奇函数. 角度2 奇函数、偶函数性质的应用3.(2019·某某模拟)f (x )是定义在R 上的奇函数,假设x >0时,f (x )=x ln x ,那么x<0时,f (x )=( )A .x ln xB .x ln (-x )C .-x ln xD .-x ln (-x )答案 B解析 设x <0,那么-x >0,所以f (-x )=-x ln (-x ).又f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (x )=x ln (-x ).4.设函数f (x )=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e 2的最大值为M ,最小值为N ,那么(M +N -1)2020的值为( )A .1B .2C .22020D .32020答案 A解析 由x ∈R ,f (x )=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1.令g (x )=sinπx +2e xx 2+e 2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值和为0,所以M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,所以(M +N -1)2020=1.5.假设f (x )=ln (e 3x+1)+ax 是偶函数,那么a =________. 答案 -32解析 解法一:因为f (x )=ln (e 3x+1)+ax 是偶函数,所以f (-x )=f (x ),所以f (-x )=ln (e -3x+1)-ax =ln ⎝ ⎛⎭⎪⎫1e 3x +1-ax =ln ⎝ ⎛⎭⎪⎫1+e 3xe 3x -ax =ln (1+e 3x )-3x -ax =ln (e 3x +1)+ax ,所以-3-a =a ,解得a =-32.解法二:函数f (x )=ln (e 3x+1)+ax 为偶函数,故f (-x )=f (x ), 即ln (e-3x+1)-ax =ln (e 3x+1)+ax ,化简得ln 1e 3x =2ax =ln e 2ax ,即1e 3x =e 2ax,整理得e2ax +3x=1.所以2ax +3x =0,解得a =-32.1.判断函数奇偶性的三种方法(1)定义法(如举例说明2)(2)图象法(3)性质法(如举例说明1(③),4)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.2.函数奇偶性的应用(1)求函数值:将待求值利用奇偶性转化为求解析式的区间上的函数值.(2)求解析式:将待求区间上的自变量转化到解析式的区间上,再利用奇偶性的定义求出.如举例说明3.(3)求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性或等式恒成立的条件得方程(组),进而得出参数的值.如举例说明5.(4)画函数图象:利用函数的奇偶性可画出函数在另一对称区间上的图象.(5)求特殊值:利用奇函数的最大值与最小值之和为零可求一些特殊结构的函数值.如举例说明4.注意:对于定义域为I的奇函数f(x),假设0∈I,那么f(0)=0.1.f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x+m ,那么f (-2)等于( ) A .-3 B .-54C.54 D .3答案 A解析 由得,f (0)=20+m =0. 解得m =-1.当x ≥0时,f (x )=2x-1,所以f (-2)=-f (2)=-(22-1)=-3. 2.(2019·某某名校联考)函数y =x 2lg x -2x +2的图象( ) A .关于x 轴对称 B .关于原点对称 C .关于直线y =x 对称 D .关于y 轴对称答案 B解析 记f (x )=x 2lgx -2x +2,定义域为(-∞,-2)∪(2,+∞).∵f (-x )=(-x )2lg -x -2-x +2=x 2lg x +2x -2=-x 2lg x -2x +2=-f (x ),∴f (x )为奇函数,即函数y =x 2lg x -2x +2的图象关于原点对称.3.(2020·某某十校联考)假设定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,那么g (x )=( )A .e x -e -xB.12(e x +e -x )C.12(e -x -e x) D.12(e x -e -x ) 答案 D解析 ∵f (x )+g (x )=e x,① ∴f (-x )+g (-x )=e -x,又f (-x )=f (x ),g (-x )=-g (x ), ∴f (x )-g (x )=e -x,②由①②解得g (x )=e x-e-x2.应选D.题型 二 函数的周期性1.(2019·某某模拟)定义在R 上的函数f (x )的最小正周期等于T ,那么以下函数的最小正周期一定等于T2的是( )A .f (2x )B .f ⎝ ⎛⎭⎪⎫x 2C .2f (x )D .f (x 2)答案 A解析 由得f (x +T )=f (x ),所以f (2x +T )=f (2x ),即f ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +T 2=f (2x ),所以函数f (2x )的周期是T 2;f ⎝ ⎛⎭⎪⎫x 2+T =f ⎝ ⎛⎭⎪⎫x 2,即f ⎣⎢⎡⎦⎥⎤12x +2T =f ⎝ ⎛⎭⎪⎫x 2,所以函数f ⎝ ⎛⎭⎪⎫x 2的周期是2T ;2f (x+T )=2f (x ),所以函数2f (x )的周期是T .函数f (x 2)不一定是周期函数.2.定义在R上的函数f(x)满足f(x+2)=1f x,当x∈[0,2)时,f(x)=x+e x,那么f(2020)=________.答案 1解析因为定义在R上的函数f(x)满足f(x+2)=1f x,所以f(x+4)=1f x+2=f(x),所以函数f(x)的周期为4.当x∈[0,2)时,f(x)=x+e x,所以f(2020)=f(505×4+0)=f(0)=0+e0=1.1.求函数周期的方法方法解读适合题型定义法具体步骤为:对于函数y=f(x),如果能够找到一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么T就是函数y=f(x)的周期非零常数T容易确定的函数,如举例说明1递推法采用递推的思路进行,再结合定义确定周期.如:假设f(x+a)=-f(x),那么f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以2a为f(x)的一个周期含有f(x+a)与f(x)的关系式,如举例说明2换元法通过换元思路将表达式化简为定义式的结构,如:假设f(x+a)=f(x-a),令x-a=t,那么x=t+a,那么f(t+2a)=f(t+a+a)=f(t+a-a)=f(t),所以2a为f(x)的一个周期f(bx±a)=f(bx±c)型关系式2.函数周期性的应用根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到区间的功能.在解决具体问题时,要注意结论:假设T是函数的周期,那么kT (k ∈Z 且k ≠0)也是函数的周期.如举例说明2.1.(2019·某某模拟)函数f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <3,f x -4,x ≥3,那么f (9)=________.答案 1解析 f (9)=f (9-4)=f (5)=f (5-4)=f (1)=2×1-1=1.2.f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,那么函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.答案 7解析 因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,那么f (6)=f (4)=f (2)=f (0)=0. 又f (1)=0,∴f (3)=f (5)=f (1)=0,故函数y =f (x )的图象在区间[0,6]上与x 轴的交点有7个.题型 三 函数性质的综合应用角度1 单调性与奇偶性结合1.(2019·某某模拟)函数f (x )为R 上的偶函数,当x ≥0时,f (x )单调递减,假设f (2a )>f (1-a ),那么a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫-∞,13B.⎝ ⎛⎭⎪⎫-13,1C.⎝ ⎛⎭⎪⎫-1,13D.⎝ ⎛⎭⎪⎫-13,+∞ 答案 C解析 因为函数f (x )为R 上的偶函数,所以f (2a )>f (1-a )⇔f (|2a |)>f (|1-a |),又当x ≥0时,f (x )单调递减,所以|2a |<|1-a |,所以(2a )2<(1-a )2,即3a 2+2a -1<0,解得-1<a <13.角度2 周期性与奇偶性结合2.(2018·全国卷Ⅱ)f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).假设f (1)=2,那么f (1)+f (2)+f (3)+…+f (50)=()A .-50B .0C .2D .50答案 C解析 因为f (x )是定义域为(-∞,+∞)的奇函数,且满足f (1-x )=f (1+x ),所以f (1+x )=-f (x -1),f (x +4)=f [1-(x +3)]=f (-x -2)=-f (x +2)=-f [1-(x +1)]=-f (-x )=f (x ).所以f (x )是周期为4的函数.因此f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2),因为f (3)=-f (1),f (4)=-f (2),所以f (1)+f (2)+f (3)+f (4)=0,因为f (2)=f (2-4)=f (-2)=-f (2),所以f (2)=0,从而f (1)+f (2)+f (3)+…+f (50)=f (1)=2,应选C.角度3 单调性、奇偶性和周期性结合3.(2019·某某二中模拟)定义在R 上的函数f (x )满足:①f (x +2)=f (x );②f (x -2)为奇函数;③当x ∈[0,1)时,f x 1-f x 2x 1-x 2>0(x 1≠x 2)恒成立,那么f ⎝ ⎛⎭⎪⎫-152,f (4),f ⎝ ⎛⎭⎪⎫112的大小关系正确的选项是( )A .f ⎝ ⎛⎭⎪⎫112>f (4)>f ⎝ ⎛⎭⎪⎫-152B .f (4)>f ⎝ ⎛⎭⎪⎫112>f ⎝ ⎛⎭⎪⎫-152C .f ⎝ ⎛⎭⎪⎫-152>f (4)>f ⎝ ⎛⎭⎪⎫112D .f ⎝ ⎛⎭⎪⎫-152>f ⎝ ⎛⎭⎪⎫112>f (4) 答案 C解析 由f (x +2)=f (x )可知函数f (x )的周期为2,所以f (x )=f (x -2), 又f (x -2)为奇函数,所以f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫-152=f ⎝ ⎛⎭⎪⎫-152+2×4=f ⎝ ⎛⎭⎪⎫12, f (4)=f (4-2×2)=f (0)=0. f ⎝ ⎛⎭⎪⎫112=f ⎝⎛⎭⎪⎫112-2×3=f ⎝ ⎛⎭⎪⎫-12, 又x ∈[0,1)时,f (x )单调递增.故奇函数f (x )在(-1,1)上单调递增.所以f ⎝ ⎛⎭⎪⎫12>f (0)>f ⎝ ⎛⎭⎪⎫-12, 即f ⎝ ⎛⎭⎪⎫-152>f (4)>f ⎝ ⎛⎭⎪⎫112.函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性的综合.解此类问题常利用以下两个性质:①如果函数f (x )是偶函数,那么f (x )=f (|x |).②奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.如举例说明1.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到解析式的函数定义域内求解.如举例说明2.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性、奇偶性转化自变量所在的区间,然后利用单调性求解.如举例说明3.1.函数f (x )=(mx +n )(x -1)为偶函数,且在(-∞,0)上单调递增,那么f (2-x )>0的解集为( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)答案 A解析 f (x )=(x -1)(mx +n )=mx 2+(n -m )x -n . ∵函数f (x )=(mx +n )(x -1)为偶函数, ∴f (-x )=f (x ).即mx 2+(n -m )x -n =mx 2-(n -m )x -n , 得-(n -m )=(n -m ),即n -m =0,那么m =n , 那么f (x )=mx 2-m ,∵f (x )在(-∞,0)上单调递增,∴m <0, 由f (2-x )>0,得m (2-x )2-m >0, 即(2-x )2-1<0,得x 2-4x +3<0,得1<x <3,即不等式的解集为(1,3).2.(2019·某某某某模拟)定义在R 上的函数f (x )满足f (x )=f (2-x ),f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,那么f ⎝⎛⎭⎪⎫201912=( )A.94 B.14 C .-94D .-14答案 D解析 因为f (x )=-f (-x ),所以f (x )是奇函数, 因为f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=f (-2-x )=-f (2+x )=f (x ), 所以函数f (x )是以4为周期的函数, 所以f ⎝ ⎛⎭⎪⎫201912=f ⎝⎛⎭⎪⎫2020-12=f ⎝ ⎛⎭⎪⎫-12 =-f ⎝ ⎛⎭⎪⎫12, 因为在[0,1]上有f (x )=x 2,所以f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122=14,所以f ⎝ ⎛⎭⎪⎫201912=-f ⎝ ⎛⎭⎪⎫12=-14. 3.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案 D解析 因为f (x -4)=-f (x ),所以f (x -8)=-f (x -4)=f (x ),所以函数f (x )的周期T =8,所以f (-25)=f (-1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0),又因为奇函数f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),所以f (-25)<f (80)<f (11).组 基础关1.(2019·某某模拟)以下函数中,既是奇函数,又在区间(0,+∞)上单调递增的是( ) A .f (x )=e x-e -xB .f (x )=tan xC .f (x )=x +1xD .f (x )=|x |答案 A解析 f (x )=|x |是偶函数,排除D ;f (x )=x +1x在(0,+∞)上先减后增,排除C ;f (x )=tan x 在(0,+∞)上不是单调函数,排除B ;f (x )=e x -e -x符合题意.2.函数y =f (x )与y =g (x )的图象如下图,那么函数y =f (x )·g (x )的图象可能为( )答案 A解析 因为f (x )为偶函数,g (x )为奇函数,所以y =f (x )·g (x )为奇函数,排除B ;由两函数的图象可知当x ∈⎝ ⎛⎭⎪⎫-π,-π2时,y =f (x )·g (x )<0;当x ∈⎝ ⎛⎭⎪⎫-π2,0时,y =f (x )·g (x )>0,所以只有选项A 符合题意,应选A.3.(2020·某某适应性练习)定义在R 上的函数f (x )的周期为2,且满足f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,假设f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,那么f (5a )等于( ) A.716 B .-25C.1116D.1316答案 B解析 由于函数f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110,所以-12+a =110,所以a =35,因此f (5a )=f (3)=f (-1)=-1+35=-25.应选B. 4.函数y =f (x )+x 是偶函数,且f (2)=1,那么f (-2)=( ) A .2 B .3 C .4 D .5答案 D解析 ∵y =f (x )+x 是偶函数,∴f (-x )+(-x )=f (x )+x ,∴f (-x )=f (x )+2x ,令x =2,那么f (-2)=f (2)+4=5,应选D.5.(2019·某某模拟)假设函数f (x )=1-a2x -1的图象关于原点对称,那么实数a 等于( )A .-2B .-1C .1D .2答案 A解析 由得,函数f (x )为奇函数,所以f (1)+f (-1)=0,即1-a 2-1+1-a12-1=0,1-a +1+2a =0,解得a =-2.6.(2019·某某模拟)偶函数f (x )在[0,+∞)上单调递增,那么对实数a ,b ,“a >|b |〞是“f (a )>f (b )〞的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 因为f (x )是偶函数,所以f (|b |)=f (b ).因为f (x )在[0,+∞)上单调递增,a >|b |≥0.所以f (a )>f (|b |)=f (b ).假设f (a )>f (b ).举反例f (-3)=f (3)>f (1),而-3<|1|.故由f (a )>f (b )无法得到a >|b |.所以“a >|b |〞是“f (a )>f (b )〞的充分不必要条件.7.(2020·某某市高三质检)函数f (x )=1-2x1+2x ,实数a ,b 满足不等式f (2a +b )+f (4-3b )>0,那么以下不等关系恒成立的是( )A .b -a <2B .a +2b >2C .b -a >2D .a +2b <2答案 C解析 由题意知f (-x )=1-2-x1+2-x =2x -12x +1=-1-2x1+2x =-f (x ),所以函数f (x )为奇函数,又f (x )=1-2x1+2x =2-1+2x1+2x=21+2x -1,所以f (x )在R 上为减函数,由f (2a +b )+f (4-3b )>0,得f (2a +b )>-f (4-3b )=f (3b -4),故2a +b <3b -4,即b -a >2.应选C.8.函数f (x )是奇函数,当x >0时,f (x )=lg x ,那么f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1100的值为________. 答案 -lg 2 解析 由得f ⎝⎛⎭⎪⎫1100=lg 1100=-2.f (-2)=-f (2)=-lg 2,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1100=-lg 2.9.奇函数f (x )(x ∈R )满足f (x +4)=f (x -2),且当x ∈[-3,0)时,f (x )=1x +3sin π2x ,那么f (2021)=________.答案 -4解析 因为函数f (x )(x ∈R )为奇函数满足f (x +4)=f (x -2),所以f (x +6)=f (x ), 即函数f (x )是以6为周期的周期函数, 因为当x ∈[-3,0)时,f (x )=1x +3sin π2x ,所以f (2021)=f (337×6-1)=f (-1) =1-1+3sin ⎝ ⎛⎭⎪⎫-π2=-4.10.(2020·某某某某摸底)设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f(x)=log2(x+1),那么函数f(x)在[1,2]上的解析式是________.答案f(x)=log2(3-x)解析因为f(x)是定义在R上以2为周期的函数,当x∈[0,1]时,f(x)=log2(x+1).所以设x∈[1,2],那么x-2∈[-1,0],2-x∈[0,1].所以f(2-x)=log2[(2-x)+1]=log2(3-x),又f(x)为偶函数,所以f(x)=f(x-2)=f(2-x)=log2(3-x).组能力关1.p:a=±1,q:函数f(x)=ln (x+a2+x2)为奇函数,那么p是q成立的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 C解析假设函数f(x)=ln (x+a2+x2)为奇函数,那么f(-x)+f(x)=ln (-x+a2+x2)+ln (x+a2+x2)=ln a2=0,解得a=±1.所以p是q成立的充分必要条件.2.函数f(x)是定义在区间[-a,a](a>0)上的奇函数,假设g(x)=f(x)+2019,那么g(x)的最大值与最小值之和为( )A.0 B.1C.2019 D.4038答案 D解析因为函数f(x)是定义在区间[-a,a]上的奇函数,所以f(x)max+f(x)min=0,所以g(x)max+g(x)min=[f(x)max+2019]+[f(x)min+2019]=f(x)max+f(x)min+4038=4038.3.(2019·某某模拟)函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,那么不等式xf(x)>0在[-1,3]上的解集为( )A.(1,3) B.(-1,1)C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)答案 C解析假设x∈[-2,0],那么-x∈[0,2],∵当x∈[0,2]时,f(x)=x-1,∴f(-x)=-x-1,∵f(x)是偶函数,∴f(-x)=-x-1=f(x),即当x∈[-2,0]时,f(x)=-x-1,即在一个周期[-2,2]内,f (x )=⎩⎪⎨⎪⎧x -1,0≤x ≤2,-x -1,-2≤x <0,假设x ∈[2,4],那么x -4∈[-2,0],即f (x )=f (x -4)=-(x -4)-1=-x +3,x ∈[2,4],作出函数f (x )在[-2,4]上的图象如图:那么当x ∈[-1,3]时,不等式xf (x )>0等价为⎩⎪⎨⎪⎧x >0,f x >0或⎩⎪⎨⎪⎧x <0,f x <0,即1<x <3或-1<x <0,所以不等式xf (x )>0在[-1,3]上的解集为(-1,0)∪(1,3).4.f (x )是定义在R 上的奇函数,对任意两个不相等的正数x 1,x 2,都有x 2f x 1-x 1f x 2x 1-x 2<0,记a =f 4.10.24.10.2,b =f 0.42.10.42.1,c =f log 0.24.1log 0.24.1,那么( )A .a <c <bB .a <b <cC .c <b <aD .b <c <a答案 A解析 设0<x 1<x 2,由x 2f (x 1)-x 1f (x 2)>0,得f x 1x 1>f x 2x 2,所以函数g (x )=f xx在(0,+∞)上单调递减,因为f (x )是定义在R 上的奇函数,所以g (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,因此a =f 4.10.24.10.2=g (4.10.2)<g (1),b =f 0.42.10.42.1=g (0.42.1)>g (0.42)>g (0.5),c =f log 0.24.1log 0.24.1=g (log 0.24.1)=g (log 154.1)=g (-log 54.1)=g (log 54.1)∈(g (1),g (0.5)),即a <c <b ,应选A.5.假设函数f (x )=x ⎝ ⎛⎭⎪⎫1-a 2+1e x +1为偶函数,那么a =________. 答案 1或-1解析 令u (x )=1-a 2+1e x +1,根据函数f (x )=x ⎝ ⎛⎭⎪⎫1-a 2+1e x +1为偶函数,可知u (x )=1-a 2+1e x+1为奇函数,利用u (0)=1-a 2+1e 0+1=0,可得a 2=1,所以a =1或a =-1. 6.(2019·某某重点中学联考)定义在R 上的偶函数f (x )满足f (x +2)=-f (x ),且在[-2,0]上是增函数,下面是关于f(x)的判断:①f(x)的图象关于点P(1,0)对称;②f(0)是函数f(x)的最大值;③f(x)在[2,3]上是减函数;④f(x0)=f(4k+x0),k∈Z.其中正确的选项是________(正确的序号都填上).答案①②④解析因为f(x)是定义在R上的偶函数,所以f(-x)=f(x),又f(x+2)=-f(x),所以f(x+2)=-f(-x),所以f(x)的图象关于点P(1,0)对称,所以①正确;由f(x+2)=-f(x)知,f(x+4)=-f(x+2)=f(x),所以f(x)是以4为周期的函数,所以f(x0)=f(4k+x0)(k ∈Z),所以④正确;因为f(x)是以4为周期的函数,且在[-2,0]上是增函数,所以f(x)在[2,4]上也是增函数,因此③不正确;因为f(x)是定义在R上的偶函数,所以f(x)在[0,2]上是减函数,所以f(x)在[-2,2]上的最大值是f(0),又f(x)是以4为周期的函数,所以②正确.所以正确的判断是①②④.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(六) 函数的奇偶性与周期性
A 组 基础达标 (建议用时:30分钟)
一、选择题
1.(2016·广东肇庆三模)在函数y =x cos x ,y =e x +x 2,y =lg x 2
-2,y =x sin x 中,偶函数的个数是( )
A .3
B .2
C .1
D .0
B [y =x cos x 是奇函数,y =lg x 2
-2和y =x sin x 是偶函数,y =e x
+x 2
是非奇非偶函数,故选B.]
2.函数y =log 21+x 1-x
的图像( )
【导学号:66482037】
A .关于原点对称
B .关于直线y =-x 对称
C .关于y 轴对称
D .关于直线y =x 对称
A [由1+x 1-x >0得-1<x <1,
即函数定义域为(-1,1),
又f (-x )=log 21-x 1+x =-log 21+x
1-x =-f (x ),
∴函数y =log 21+x
1-x
为奇函数,故选A.]
3.(2016·山东高考)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3
-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭
⎪⎫x -12,则f (6)=( )
A .-2
B .-1
C .0
D .2
D [由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12, 则f (x +1)=f (x ).
又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3
-1,
∴f (-1)=-2,∴f (6)=2.故选D.]
4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2
,
则f (2 019)=( )
A.-2 B.2
C.-98 D.98
A[∵f (x+4)=f (x),
∴f (x)是以4为周期的周期函数,
∴f (2 019)=f (504×4+3)=f (3)=f (-1).
又f (x)为奇函数,∴f (-1)=-f (1)=-2×12=-2,
即f (2 019)=-2.]
5.对于函数f (x),若存在常数a≠0,使得x取定义域内的每一个值,都有f (x)=f (2a-x),则称f (x)为准偶函数.下列函数中是准偶函数的是( )
A.f (x)=x B.f (x)=x2
C.f (x)=tan x D.f (x)=cos(x+1)
D[由f (x)为准偶函数的定义可知,若f (x)的图像关于x=a(a≠0)对称,则f (x)为准偶函数,A,C中两函数的图像无对称轴,B中函数图像的对称轴只有x=0,而D中f (x)=cos(x+1)的图像关于x=kπ-1(k∈Z)对称.]
二、填空题
6.函数f (x)在R上为奇函数,且x>0时,f (x)=x+1,则当x<0时,f (x)=________.
【导学号:66482038】--x-1[∵f (x)为奇函数,x>0时,f (x)=x+1,
∴当x<0时,-x>0,
f (x)=-f (-x)=-(-x+1),
即x<0时,f (x)=-(-x+1)=--x-1.]
7.(2017·安徽蚌埠二模)函数 f (x)= x+2 x+a
x
是奇函数,则实数a=
________.
【导学号:66482039】-2 [由题意知,g(x)=(x+2)(x+a)为偶函数,
∴a=-2.]
8.(2017·郑州模拟)已知函数f (x)是(-∞,+∞)上的奇函数,当x∈[0,2)时,f (x)=x2,若对于任意x∈R,都有f (x+4)=f (x),则f (2)-f (3)的值为________.
1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2),
∴f (2)=0.
∵f (3)=f (-1+4)=f (-1)=-f (1)=-1,
∴f (2)-f (3)=1.] 三、解答题
9.若f (x ),g (x )是定义在R 上的函数,f (x )是奇函数,g (x )是偶函数,且f (x )+
g (x )=
1
x 2-x +1
,求f (x )的表达式.
【导学号:66482040】
[解] 在 f (x )+g (x )=1
x 2
-x +1
中用-x 代替x ,得 f (-x )+g (-x )=
1
-x 2
- -x +1
,3分
又f (x )是奇函数,g (x )是偶函数, 所以-f (x )+g (x )=
1
x 2
+x +1
,6分
联立方程⎩⎪⎨⎪⎧
f x +
g x =1
x 2
-x +1
,-f x +g x =1
x 2
+x +1
,9分
两式相减得f (x )=12⎝ ⎛⎭⎪⎫1x 2-x +1-1x 2+x +1=x x 4+x 2
+1
. 12分 10.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2
x
4x +1.
(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式. [解] (1)∵f (x )是周期为2的奇函数, ∴f (1)=f (2-1)=f (-1)=-f (1),3分 ∴f (1)=0,f (-1)=0. 5分
(2)由题意知,f (0)=0.当x ∈(-1,0)时,-x ∈(0,1). 由f (x )是奇函数,
∴f (x )=-f (-x )=-2
-x
4-x +1=-2
x
4x +1
,9分
综上,在[-1,1]上,f (x )=⎩⎪⎨⎪⎧
2
x
4x
+1
,x ∈ 0,1 ,-2x 4x
+1,x ∈ -1,0 ,
0,x ∈{-1,0,1}.
12分
B 组 能力提升 (建议用时:15分钟)
1.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 018)的值为( )
A .2
B .0
C .-2
D .±2
A [∵g (-x )=f (-x -1),
∴-g (x )=f (x +1).又g (x )=f (x -1),∴f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ),则f (x )是以4为周期的周期函数,∴f (2 018)=f (4×504+2)=f (2)=2.]
2.设 f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=
⎩⎪⎨⎪
⎧
ax +1,-1≤x <0,bx +2
x +1
,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭
⎪⎫32,则a +3b 的值为________.
-10 [因为f (x )是定义在R 上且周期为2的函数,
所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭
⎪⎫-12,
且f (-1)=f (1),故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭
⎪⎫-12,
从而1
2b +212+1=-12a +1,
即3a +2b =-2.①
由f (-1)=f (1),得-a +1=b +2
2
,
即b =-2a .②
由①②得a =2,b =-4,从而a +3b =-10.] 3.已知函数f (x )=⎩⎪⎨⎪
⎧
-x 2
+2x ,x >0,0,x =0,
x 2+mx ,x <0是奇函数,
(1)求实数m 的值;
(2)若函数f (x )在区间[-1,a -2]上递增,求实数a 的取值范围.
【导学号:66482041】
[解] (1)设x <0,则-x >0,
所以f (-x )=-(-x )2
+2(-x )=-x 2
-2x . 2分 又f (x )为奇函数, 所以f (-x )=-f (x ),
于是x <0时,
f (x )=x 2+2x =x 2+mx ,
所以m =2. 5分
(2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上递增.
结合f (x )的图像知⎩⎪⎨
⎪⎧
a -2>-1,
a -2≤1,
9分
所以1<a ≤3,
故实数a 的取值范围是(1,3]. 12分。