Cellular Automata in Ecological and Ecohydraulics Modelling

合集下载

长江大保护背景下城市沿江生态空间划定与管控研究——以武汉为例

长江大保护背景下城市沿江生态空间划定与管控研究——以武汉为例

中图分类号 TU984.183 文献标识码 B 文章编号 1003-739X (2023)04-0119-05 收稿日期 2022-09-21摘 要 长江中下游地区城市化进程较快,沿江空间是城市生态属性和社会属性较为显著的区域,也是生态保护和开发建设矛盾较为突出的区域,亟需对沿江生态空间进行保护和管控。

既有研究中,对我国城市沿江生态空间管控仍存在边界不清晰、管控要素不全面、管控体系不健全的问题。

该文以长江中下游地区典型城市武汉为对象,首先通过最小阻力模型划定武汉市沿江空间范围,基于格局与过程原理对沿江空间内的生态安全格局进行构建,继而利用CA模型模拟武汉市2025年、2035年和2050年的城市增长情况,在考虑生态保护与城市发展兼顾的前提下,试图构建“分区管控—动态反馈—政策保障”沿江生态空间管控体系,以期为后期城市化进程中城市沿江生态空间的管控提供参考。

关键词 生态安全格局 沿江生态空间 城市增长 空间管控Abstract The urbanization process in the middle and lower reaches of the Yangtze River is rapid, and the riverside space is an area with significant urban ecological and social attributes, as well as an area where the contradiction between ecological protection and development and construction is prominent. It is urgent to protect and control the ecological space along the Yangtze River. In existing studies, there are still some problems in the control of urban river ecological space, such as unclear boundary, incomplete control elements and imperfect control system. In this paper, Wuhan, a typical city in the middle and lower reaches of the Yangtze River, is selected as the object. Firstly, the spatial scope of Wuhan along the Yangtze River is demarcated by the least resistance model, and the ecological security pattern in the space along the Yangtze River is constructed based on the pattern and process principle. Then, the urban growth of Wuhan in 2025, 2035 and 2050 is simulated by the CA model. Under the premise of considering both ecological protection and urban development, we attempt to construct a "zoning control-dynamic feedback-policy guarantee" ecological space control system along the river, in order to provide reference for the urban ecological space control along the river in the post-urbanization process.Keywords Ecological security patterns, Eco-space along the river, Urban growth, Space control长江大保护背景下城市沿江生态空间划定与管控研究——以武汉为例Control and Demarcation of Wuhan Urban Ecological Space Along the Yangtze River in the Context of Yangtze River Conservation:Taking Wuhan City as an Example随着城镇化进程的加快,人地资源矛盾突出,生态环境问题逐渐成为影响城市绿色可持续发展的主要因素。

元胞自动机在生态学中的应用

元胞自动机在生态学中的应用

N b ,t 1 xii , j j ,2 M . xii , j j ,2 i , j {1,0,1} i , j { 1,0,1} | i | | j | 1 | i | | j | 2 t 1源自p )表示元胞 i 邻居中存在种群
j i j
n
的概率,n 表示邻居数量。在此模型中物种扩散半径与 n 有关,是局部的, 此时侵占源仅仅是 该空元胞邻居中的局域种群,即 S。扩散(侵占)半径 d=1 时,就是我们所说的 Moore 邻居 模式(n=(2d+1)2 -1=8). 从此模型中我们可以发现,元胞状态是连续的,且考虑了元胞的局 部作用(而非全局作用). 因此,CA 模型比集合种群模型更符合实际。 相应的离散状态模型:在离散 CA 模型中,每个元胞的状态只有存在(用‘0’表示)与不
90
100
颜色越白表示存在物种的概率越大 (2)在 Levins 模型拥挤效应下的 CA 模型 拥挤效应:当种群密度过高时个体内分泌腺功能絮乱造成的异常行为,从而使灭绝风 险增加。加拥挤效应参数 D 后的集合种群模型(惠苍 .2003. 《 Dynamical complexity and metapopulation persistence》 ) ,此模型在一定的参数下会产生混沌。
元胞自动机在生态中的应用
一.元胞自动机的简介
元胞自动机由 John von Neumann Stanislaw Ulam 在 1950s 提出的。元胞自动机可用 来研究很多一般现象。其中包括通信、信息传递、计算、构造 、生长 、复制 竞争与进化 等。同时。它为动力学系统理论中有关秩序 (Ordering)、紊动 (Turbulence) 、混沌 (Chaos)、 非对称(Symmetry-Breaking) 、分形(Fractality) 等系统整体行为与复杂现象的研究提供了一个 有效的模型工具。 元胞自动机自产生以来,被广泛地应用到社会、经济、军事和科学研究的各个领域。 应用领域涉及社会学、生物学、生态学、信息科学、计算机科学、数学、物理学、化学、地 理、环境、军事学等。计算机科学-计算机图形学的研究、化学-分子运动、物理-气体扩散、 生命科学-细胞的增长、医学 -肿瘤的生长、历史 -国家的演化动态、交通-交通规则和军事科 学-军事作战模拟等。 元胞自动机(Cellular Automata,简称 CA)也有人译为细胞自动机、点格自动机、分子 自动机或单元自动机 )。是一时间和空间都离散的动力系统。散布在规则网格 (Lattice Grid) 中的每一个元胞(Cell)[也有人叫斑块(Patch)]取有限的离散状态,遵循同样的作用规则,依据 确定的(或随机的)局部规则作同步更新。大量的元胞通过简单的相互作用而构成动态系统的 演化。 元胞自动机根据不同的分法有许多类型,主要有下面两种:1.按维数分类:一维、二维 和三维; 2. 按动态演化行为分类 :平稳型、周期型、混沌型以及复杂型。 3. 按动力学分类: (1)均匀状态(点态吸引子 );(2)简单的周期结构(周期性吸引子 );(3)混沌的非周期性 模式(混沌吸引子 );(4)第四类行为可以与生命系统等复杂系统中的自组织现象相比拟,但 在连续系统中没有相对应的模式 。这类元胞自动机最具研究价值。 元胞自动机的构成条件: 1. 元胞空间:离散的规则的网格以及边界条件; 2. 状态集:每个元胞都有一定的状态,且状态的数量是有限的; 3. 邻居作用:定义元胞与周围邻居的相互作用; 3. 演进规则:刻画元胞状态的演化动态。 演进规则是把元胞邻居状态映射到该该元胞状态的一种函数,表示如下:

景观生态学的几个热点问题

景观生态学的几个热点问题

城市景观的物流能流(H T Odum 蓝盛芳译,1992)
格局与过程相互作用 景观单元的空间配置影响其内部的生态过程 景观格局是由于镶嵌体上的其它过程产生 景观格局与生态过程相互影响协同进化
景观生态学的任务 描述景观 解释和理解其中的生态过程 跟踪景观动态 分析不同文化背景下的景观格局,以便更好地 理解景观本身的格局动态,并实施管理。
需要考虑的生态系统特征
组分:当前物种和它们的相对丰富度 结构:土壤和植物组分的垂直配置 格局:生态系统组分的水平配置 异质性:特征1-3的复杂变化 功能:基本生态过程的表现(能量、水分、和 养分输运) 种间作用:包括授粉,种子散布等 动力学和恢复力:演替规律、恢复力
景观生态恢复步骤:I
发现问题: 生物分布变化:物种消失、生物入侵 景观流的变化:物种运动、水分和养分运动 美学价值变化:宜人景观类型的减少
景观生态学与生物保护
生态保护起因: 生物多样性丧失 生态系统服务功能降低:稳定性和生产力 生态环境恶化:水、土、气
必须及时采取措施阻止退化、恢复生态系统
生态保护对策: 首先,保护残存生境 其次,生态系统管理 第三,生态系统恢复
长期保存一个物种: 遗传学及其种群生态学特性 所在的生态系统及相关生态过程
廊道corridor—不同于两侧基质的狭长地带。
基质matrix —是景观中范围广阔、相对同质且 连通性最强的背景地域,很大程度上决定着景 观的性质。
岷江干旱河谷
景观格局landscape pattern
景观的构成组分及其空间分布形式。
不同的景观格局是不同动力学机制的产物,也 是不同景观功能的基础。
在缺乏景观发生发展历史资料的情况下,从现 有景观格局出发,可以对景观格局与功能过程 之间的关系进行描述。

《国际景观游戏手册》说明书

《国际景观游戏手册》说明书

Landscape Game ManualIn English, French, Spanish and Bahasa IndonesiaBrings to you the dynamics of land use competition,policy measures and sustainability of a landscapeThe Landscape Game was developed by Herry Purnomowith contributions from Philippe Guizol, Levania Santoso, Edwin Yulianto, Agung Prasetyo, San Afri Awang, Wahyu Wardhana, Gil A. Mendoza, Forestry postgraduate students of Bogor Agricultural University and European Union funded “Levelling the Playing Field” (2004-2007) project members.The game art contributors are Komarudin, Catur Wahyu, Gideon Suharyanto and Eko Prianto.Copyright © 2008 by CIRAD and CIFORLandscape Game3 IntroductionThe game operates on a landscape, which is a mosaic of various land cover and land use patches that work as an ecosystem. The aim of managing the landscape, comprises a forest core, forest edge and mosaic land, is to sustain its ecological, social and economic functions. In this game, players can adapt to other players’ actions and strategies. Through this game, stakeholders can experiment with the likely impacts of human actions in a landscape where competing land uses and policy dynamics interact. Policy makers can learn how to maintain and improve the sustainability and productivity of a landscape by using various policy instruments, e.g., rules, taxes, incentives and disincentives. This learning process can change the players’ perceptions of landscape use, conservation and development.This game can be used to introduce players to a variety of concepts such as landscape conservation, development, environmental services, investment alternatives, trade among players, competition, collaboration and the “Nash equilibrium”1. The game combines concepts of Monopoly, SimCity, American Farmer, Snake and Ladder, cellular automata, game theory and genetic algorithms. The game challenges rational players to maximize their revenues, while at the same time taking care of the ecological and social conditions, which are indicated among other factors by landscape diversity, carbon sequestration and job creation. Players who play to benefit these indicators will be rewarded at the end of the game. This game can be played by adults by applying all the game rules and features or by kids by simplifying the game rules e.g. playing without the government role.How to Play1. Three to six persons can play. Players decide who will be landusers (two to four persons), the banker (one person) and the policy maker or government (zero or one person). The roles of banker and government can be played by the same person. 1“Nash equilibrium” a state in which each player’s decision or strategy is optimal given the other players’ decisions or strategies.4Landscape GamePlayers agree how long to play. Recommended time of play is60 minutes, but participants playing for the first time may need90 minutes to complete the game.2. The banker distributes initial funds of 100 points to each player(we use ‘Þ’ for points). The government holds limited funds,e.g., Þ200, to make its policy work. Players and governmentmay hire advisers (consultants) and they may borrow money. The banker determines the rates. During the game, non-government organization activists, scientists and other stakeholders, based on their own interests, can advocate ideas and try to influence other players’ decisions when they are acting as the government or the banker.3. Initially, players are randomly located by tossing dice onto thelandscape, which is divided into randomly scattered patches numbered from 1 to 100. Players begin from the patches in which their die lands. Each move is driven by the cumulative points of three dice bearing the values 1 to 6. If a player tosses three sixes, producing 18 steps, then the player deserves to move once more. Players move towards patch no. 100, and then restart from patch no. 1, until the agreed time period of play is completed.4. When a player arrives at a patch, various investments can bemade according to patch type (e.g., forest core (dark green), forest edge (light green) and mosaic land (yellow)). Each investment creates a cost at the beginning and provides return after a certain time (Table 1). The banker, with help of a market adviser, for instance, can change the investment costs and returns to meet the projected market of the products and services. Certain patches are reserved for mining and drinking water investments. At the patches of ‘fire’ (37, 80) and ‘landslide’ (43), the players will be charged. At the patch of ‘sustainability fund’ (18, 84), and ‘storm’ (48), the player will take a card from a stack of fund and threat cards.5. Players can invest not only at the patch they are located, butalso at any of the eight adjacent patches, if these have not yet been appropriated by another player.6. The player pays the investment cost to the banker and receivesa property certificate listing type of investment, cost, return andhypothec. The player puts a mark, provided by the banker, onLandscape Game5 the landscape patch. Players openly display all their certificates for other players to see. Players can sell their certificates as hypothec to the bank. Players may rebuy their certificate at Þ10 higher than the written hypothec.7. The banker pays investment return to the player after eachcompletion of the cycle. The player completes a cycle when they have progressed from a specific patch through to patch no. 100 and passes by this patch again (100 steps). Certain investment needs to be re-invested to sustain the return.Second and consecutive investments by the same player ona given patch generally are Þ5 lower than the first investmentdue to the existence of infrastructure. Investment on ecotourism gets a return when another player lands on that patch.8. A player located adjacent to an investment property cannegotiate with the owner to buy that property.9. The government observes players’ behaviour and assesseslandscape changes. The government can deliver policy, investment incentives and rules that apply to all players.Although players can lobby the government for specific policies, the government must be fair to all players.10. At the end of the game:•Players count their cash and tally asset values.•The government may give awards to environmental friendly good players.•The player who collects the most money (including cash, assets and awards) wins.•The banker tallies all players’ money to determine players’ productivity and to quantify the gap between the ‘richest’and the ‘poorest’.•Participants discuss what lessons can be learned from the game, including the best strategy to win, policiesfor managing a landscape, and the art and science ofcompetition, collaboration and productivity. AcknowledgementThe game was primarily developed under the European Union funded project of Levelling the Playing Field: fair partnership for local development to improve the forest sustainability in Southeast6Landscape GameAsia(2003–2007). Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) and Center for International Forestry Research (CIFOR) managed this project with three partners, i.e., Gadjah Mada Univerisity (UGM) Indonesia, University of the Philippines Los Baños (UPLB) and Universiti Putra Malaysia (UPM). Postgraduate students of the Faculty of Forestry of Bogor Agricultural University (IPB) year 2007 contributed to the concept and early development of this game.For further information please contactDr. Herry Purnomo (*******************) orRosita Go (**************)Center for International Forestry Research (CIFOR)Jalan CIFOR, Situ GedeBogor 16115, IndonesiaTel. 62-251-622622Fax. 62-251-622100Landscape Game7T a b l e 1. I n v e s t m e n t p a y o f f s a n d c o n d i t i o n sT y p e o f a r e aP o s s i b l e i n v e s t m e n tC o s t 1(Þ)R e t u r n (Þ)H y p o t h e c (Þ)A s s e t v a l u e (Þ)T i m e p e r i o d t o g e t r e t u r n C o n d i t i o n s F o r e s t c o r e /F o r e s t e d g eE c o t o u r i s m 10257W h e n e v e r a n o t h e r p l a y e r l a n d s o n o r p a s s e s t h e p a t c h E c o t o u r i s m i n H i g h C o n s e r v a t i o n V a l u e F o r e s t s (H C V F )2031015W h e n e v e r a n o t h e r p l a y e r l a n d s o n o r p a s s e s t h e p a t c h H C V F a r e a s F o r e s t l o g g i n g 135067O n e c y c l e N o n -H C V F a r e a s ; n e e d s r e -i n v e s t m e n t a f t e r e a c h c y c l eC a r b o n f o r a v o i d i n g d e f o r e s t a t i o n (R ED D 2)2855O n e c y c l eM o s a i c l a n d A c a c i a p l a n t a t i o n 22401117O n e c y c l eN e e d s r e -i n v e s t m e n t a f t e r e a c h c y c l e O i l p a l m p l a n t a t i o n 21591016O n e c y c l eN e e d s r e -i n v e s t m e n t a f t e r e a c h c y c l eJ a t r o p h a c u r c a s p l a n t a t i o n f o r b i o -e n e r g y 6835O n e c y c l eC o m m u n i t y b a s e d a g r o -f o r e s t r y ( P a r a s i a n t h e s f a l c a t a r i a o r a l b i z i a , l o c a l l y n a m e d s e n g o n )30741525O n e c y c l eN e e d s r e -i n v e s t m e n t a f t e r e a c h c y c l e8Landscape GameT y p e o f a r e a P o s s i b l e i n v e s t m e n tC o s t 1(Þ)R e t u r n (Þ)H y p o t h e c (Þ)A s s e t v a l u e (Þ)T i m e p e r i o d t o g e t r e t u r n C o n d i t i o n sT e a k p l a n t a t i o n 601503050T w o c y c l e sN e e d s r e -i n v e s t m e n t a f t e r e v e r y t w o c y c l e s C a r b o n f o r a f f o r e s t a t i o n a n dr e f o r e s t a t i o n (C D M 3)6635O n e c y c l eS p e c i fi c a r e a sS u s t a i n a b i l i t y f u n d —T a k e a c a r d—F u n d c a r d d i s p l a y s h o w m a n y p o i n t s y o u r e c e i v e F i r e 25——I f t h e r e a r e fi v e p a t c h e s o f f a s t w o o d p l a n t a t i o n (a c a c i a , s e n g o n ) a n d o i l p a l m (t o g e t h e r )L a n d s l i d e15——I f t h e r e a r e fi v e p a t c h e s o f l o g g i n g c o n c e s s i o n a n d c o a l m i n i n g (t o g e t h e r )R i s k —T a k e a c a r d —R i s k c a r d i n d i c a t e s w h a t r i s k /t h r e a t y o u f a c e C o a l m i n i n g 50752030O n e c y c l eR e i n v e s t a f t e r e v e r y t w o c y c l e s D r i n k i n g W a t e r 5053040G e t Þ5 f o r e v e r y o t h e r p l a y e r ’s i n v e s t m e n t1L o g g i n g a n d p l a n t a t i o n (a c a c i a , s e n g o n , j a t r o p h a , t e a k ) c o s t s a r e Þ5 c h e a p e r f o r p a t c h e s a l o n g t h e r o a d a n d Þ10 h i g h e r f o r p a t c h e s a d j a c e n t t o l o c a l c o m m u n i t y s e t t l e m e n t s i n a n y d i r e c t i o n .2 R e d u c i n g E m i s s i o n f r o m D e f o r e s t a t i o n a n d D e g r a d a t i o n .3 C l e a n D e v e l o p m e n t M e c h a n i s m .Mosaic LandForest CoreForest EdgeHigh Conservation Value Forest。

一种用于微观组织模拟的三维元胞自动机模型 2005

一种用于微观组织模拟的三维元胞自动机模型 2005

收稿日期:2004-09-03基金项目:江西省自然科学基金资助项目(0250006);江西省科技厅资助项目作者简介:许林(1980-),男,硕士研究生. 文章编号:1006-0456(2005)02-0024-04一种用于微观组织模拟的三维元胞自动机模型许林a,郭洪民b,杨湘杰a(南昌大学a .机电工程学院,江西南昌330029;b .材料科学与工程学院,江西南昌330047) 摘要:元胞自动机是复杂体系的一种理想化模型,特别适合于处理那些难以用数学定量描述的复杂动态体系问题,如材料微观组织的演变模拟.它非常适合于计算机模拟实施.利用C ++计算机语言,运用OpenG L 图形函数库建立了一种三维元胞自动机模型.该模型具备了经典元胞自动机的基本特征,因此可以根据需要进行扩展.由于运用了OpenG L 的实时3D 技术使得模拟结果更加逼真,并可以从多角度进行观察.文中运用该模型进行了简化的枝晶生长模拟,并与二维的模拟结果进行比较,验证了该模拟的正确性.关键词:元胞自动机;三维建模;OpenG L 中图分类号:TP39119 文献标识码:A 元胞自动机(CA )是建立于细胞发育演化基础上的时空离散、状态离散的并行数学模型[1].从历史角度看,元胞自动机最早是由数学家、物理学家John Von Neu mann 和Stanisla w U la m 在1940年提出的[2].从应用角度看,直到John Hort on Con way 在1960年运用元胞自动机建立了一种“生命游戏”后[3~5],元胞自动机才得到了广泛的运用.80年代,由于元胞自动机这类简单模型能十分方便地复制出复杂的现象或动态演变过程中的吸引子、自组织和混沌现象,从而引起了物理学家、计算机科学家的极大兴趣,并在许多领域得到了应用,如混沌、分形的产生[6],模式分类[7],智能材料[8],复杂现象[1]等,并提出了许多变形的元胞自动机,如以凝固理论为演化规则的元胞自动机[9],模糊元胞自动机[10],神经元胞自动机[11]等.根据元胞自动机中元胞的空间展布,可将元胞自动机分为一维和多维(二维、三维等)的.OpenG L 是在SGI 、M icr os oft 、DEC 等著名计算机公司的倡导下,基于SGI 的G L 图形标准制定的一个通用共享的开发式三维图形标准库[12].它是一种过程性而不是描述性的图形AP I .它与操作系统无关,用OpenG L 编写的应用程序可以很容易移植到支持OpenG L 的操作系统,例如UN I X .由于它出色的3D 功能使得其在实现实时三维、科学计算可视化等方面得到了广泛的应用.本文的目的是建立一种用于微观组织模拟的三维元胞自动机模型并使其能够根据需要进行扩展.1 模型描述111 元胞自动机的定义[13]1)计算定义(Computati onal Definiti on )用元胞自动机进行模拟计算时,通常将其视为一类算法.因此可将其作为计算机程序代码按照如下步骤在计算机上运行:①定义存储元胞状态的元胞数组,这里元胞数组对应于元胞空间,数组元素对应于元胞,数组元素的值对应于元胞的状态;②定义一系列根据局部规则改变元胞数组元素值的函数;③在每个时间步内,运用函数同步更新元胞数组元素的值.2)物理学定义(Scientific Definiti on )元胞自动机最基本的组成部分包括元胞(cell )、元胞空间(lattice )、邻居(neighbor )及演变规则(rule ).它是定义在一个具有离散、有限状态的元胞组成的元胞空间上,并按照一定局部规则,在离散的时间维上演化的动力学系统.具有如下属性:①构成元胞自动机的部件被称为“元胞”,每个元胞的状态是离散有限的;②元胞规则地排列在被称为“元胞空间”的空间网格上;③元胞的状态随着时间变化,根据一个“局部第27卷第2期2005年6月 南昌大学学报・工科版Journal of Nanchang University (Engineering &Technol ogy )Vol .27No .2Jun .2005规则”进行更新,也就是说,一个元胞在某个时刻的状态值取决于且仅仅取决于上一个时刻该元胞的状态以及该元胞所有邻居元胞的状态;④元胞空间内的元胞按局部规则进行同步状态更新,整个元胞空间则表现为在离散的时间维上的变化.112 三维元胞自动机在计算机上的实现本文程序中定义了节点类、元胞类用于空间元胞的产生,定义了邻居定义函数用于定义每个元胞的邻居,定义了局部规则函数用于实现元胞状态的改变.程序实现顺序如下:1)在X、Y、Z方向定义一系列节点对象,包括节点坐标、节点号等;2)用这些节点对象定义一系列元胞对象(立方体和球),包括元胞号、包含的节点等;3)定义这些元胞对象的邻居元胞,根据不同的邻居类型定义;4)局部规则函数可以根据具体模拟情况进行定义,在本模拟中定义了一种简化的枝晶生长规则函数.113 计算机上运用OpenG L实现三维环境的关键技术1)重新设置窗口象素格式,使其符合OpenG L 对象素的需要,并按OpenG L的要求设置好窗口的属性和风格;2)先获得W indows设备描述表,然后将其与事先设置好的OpenG L绘制描述表联系起来;3)调用OpenG L命令进行图形绘制和坐标变化实现三维效果;4)退出程序,释放OpenG L绘制描述表和W in2 dows设备描述表.114 三维枝状构型元胞自动机枝晶生长是非平衡态结构模式形成的典型实例.由于自身动力学的不稳定性,微观层面的简单行为可导致宏观上非常丰富和复杂的结构.最简单地表述过冷熔体中枝晶形貌演变的确定性三维元胞自动机模型可表述为:1)元胞形状:立方体;2)元胞状态:0代表液相(未凝固),1代表固相(已凝固);3)邻居结构:6邻居(最近邻,类似与二维中的Von_numann邻居),18邻居(最近邻和次近邻,类似与二维中的Moor邻居),26邻居(元胞的最近一层邻居);4)假定元胞凝固后始终保持固相,即不考虑固相的重熔;5)演变规则:元胞状态由元胞本身的状态值与邻居元胞的状态值之和决定.即:S t+1i=f(σt i)σti=∑j∈NNS t j式中,映射f的定义域为[0,m],值域为0或1,m为邻居状态值的总和.2 模拟结果及讨论211 模拟结果本文按上述三维枝状构型元胞自动机模型中提出的规则进行了模拟.当在模拟空间内设一个元胞的状态值为1时,可能出现四种生长行为:1)无生长现象:f(σ)=0,σ∈[0,m];2)生长成平面板状(三维立方体)结构:f(σ)=1,σ∈[0,m];3)生长成非晶态:f(σ)=1,σ=2;4)呈枝状结构生长,f(σ)=1,σ=2.本文中按照第4种规则进行模拟,结果如图1,图2,图3所示:图1 二维的Von-nu mann邻居与三维6邻居模拟的对比212 讨论模拟结果中产生的枝状结构具有典型的自相似性.每2n时间步后,生长结构为立方体,之后在各个顶角方向生出枝状臂,然后所有分枝生长到彼此内・52・第2期 许林等:一种用于微观组织模拟的三维元胞自动机模型图2 二维的Moor 邻居与三维18邻居模拟的对比图3 三维的26邻居模拟循环14次部,又形成立方体,如此反复.从图3中可以明显看出这种现象.从模拟结构可以看出,演变规则4简单的局部作用可产生整体上的复杂枝晶结构.由于模拟没有考虑金属凝固的物理意义,如凝固过程中的热传导、随机形核、结晶潜热的释放等因素,所以与实际金属凝固枝晶组织存在比较大的差异.但本文的目的是建立一种模型框架,可以根据具体研究内容,加入相应的物理意义,将此模型框架进行扩展.3 结论本文建立了一种用于微观组织模拟的三维元胞自动机.由于C ++语言良好的可移植性以及Open 2G L 图形函数库的与系统无关性,所以该模型可以根据需要很容易的进行扩展和移植.运用简化的枝晶生长规则对不同邻居情况下三维枝晶生长进行了模拟并与二维的模拟情况进行了对比,验证了该模型的正确性.参考文献:[1] 赵松年.非线性科学-它的内容、方法和意义[M ].北京:科学出版社,1994.69-76.[2] Von Neu mann,J Burks,A W.Theory of Self -Rep r odu 2cing Aut omata [M ].U rbana:University of Illinois Press,1966.[3] Martin Gardner .The Fantastic Combinati ons of John Con 2way’s Ne w Solitaire Ga me of "L ife"[J ].Scientific Ameri 2can,1970,223(4):120-123.[4] De wdney A K .A cellular Universe of Debris,D r op lets,Defects and De mons[J ].Scientific American,1989,261(2):102-106.[5] De wdney A K .The Cellular Aut omata Pr ogra m s That Cre 2ate W ire world,Rug world and O ther D iversi ons [J ].Sci 2entific American,1990,262(1):146-149.[6] Karel Culik,Si m ant Dube .Fractal and recurrent behavi orof cellular aut omata [J ].Computing and I nfor mati on,1989,(3):253-267.[7] Tzi onas P G,Tsalides P G,Thanilakis A.A New CellularAut omata -based Nearest Pattern Classifier and its VLSI I m p le mentati on [J ].I EEE Trans Very Large Scale I ntegr (VLSI )syst,1994,2(3):343-347.[8] Ame m iya Yoshihit o .I nf or mati on Pr ocessing U sing I ntelli 2gentM aterials -inf or mati on -p r ocessing A rchitectures f or Material Pr ocess ors [J ].Journal of I ntelligent M aterial Syste m s and Structures,1994,5(3):418-423.[9] 郭洪民,刘旭波,杨湘杰.元胞自动机法模拟微观组织演变的建模框架[J ].材料工程,2003,(8):23-27.[10]姚国正.神经形态发生的一种细胞自动机(CA )模型[J ].科学通报,1991,19:1496-1499.[11]郭燕利,胡建军.利用OpenG L 三维图形库进行三维实体造型[J ].微型电脑应用1998,(6):93-96.[12]凌云,储林波.用V isual C ++中的M FC 和OpenG L 建立三维图形应用环境[J ].微型机与应用,1998,(4):8-10.[13]郭洪民.元胞自动机法模拟铝合金凝固组织形态演变[D ].南昌:南昌大学,2003.・62・南昌大学学报・工科版2005年 A Three -D i m ensi onal Cellul ar Auto maton M odelfor M i crostructure Si m ul ati onXU L in a,G UO Hong -m in b,Y ANG Xiang -jiea(a .School of M echanical and Electrical Engineering,N anchang U niversity,N anchang 330029;b .School of M aterial Science and Egineering,N anchang U niversity,N anchang 330047,China )Abstract:The cellular aut omat on is an ideal model f or a comp lex syste m;it is suitable t o describe the p r oble m about the comp lex dyna m ic syste m ,such as the si m ulati on f or evoluti on of m icr ostructures of materials .It is als oeasy t o be used in the computer .I n the paper,we use the OpenG L AP I t o construct a three -di m ensi onal cellular aut omat on model by C ++.This model possesses the basic ele ments,which the classic cellular aut omat on has .So this model can be expanded by peop le with different require ments .Because we use the 3D technol ogy of OpenG L,the si m ulati on results become more realistic;it can be watched fr om different angles .I n the paper,we use themodel t o si m ulate the gr owth of p redigest branch model .W e compare the 3D results with the 2D results,which val 2idate the validity of this model .Key W ords:cellular aut omat on;three -di m ensi onal model;OpenG L(上接第23页)并应用其解决一种新型微小机器人设计中遇到的困难,即获得了对复合球副的方案设计和对柔性铰链的技术设计,但该理论还处于发展阶段,40条发明原理,39个通用工程参数、冲突矩阵还有待于进一步的完善,紧密跟踪T R I Z 理论的发展动态,能为我们的创新设计工作提供更强大的支持.参考文献:[1] 檀润华.创新设计-T R I Z:发明问题解决理论[M ].北京:机械工业出版社,2002.[2] 乐万德,王可,吴通,等.基于TR I Z 的产品概念设计研究[J ].机械科学与技术,2003,22(4):531-534.[3] 蒙运红,吴昌林,黎星.创新思维的程式化方法-TR I Z 之一:解决矛盾的理论[J ].机械设计与研究,2002(增刊):45-46.[4] 薛实福,李庆祥.精密仪器设计[M ].北京:清华大学出版社,1991.The Appli cati on of Theory of I nventi ve Proble m Solvi n g i na New M i cro -Parallel Robot Desi gnZHOU Yan -hui,LUO Yu -feng,T ANG Man -hua,SH I Zhi -xin(School of M echanical and E lectrical Engineering,N anchang U niversity,N anchang 330029,China )Abstract:This paper intr oduces one theory within T R I Z,the p r ogra m method of s olving conflict .It includes for 2ty inventi on p rinci p les,thirty nine general engineering para meters,the separate p rinci p le,the conflict matrix and its app licati on .Then,the theory is used t o s olve the technol ogy conflict in a ne w m icr o -parallel r obot and the usage of the conflict matrix,and a ne w kind of compound s pherical j oint is designed .Finally,the analysis of physics conflict of the flexible j oint structure in a ne w m icr o -parallel r obot carried on,the usage of the separate p rinci p le dra ws a conclusi on corres pondingly .Key W ords:theory of inventive p r oble m s olving;conflict;r obot;ne w compound s pherical j oint;flexible j oint・72・第2期 许林等:一种用于微观组织模拟的三维元胞自动机模型。

细胞自动机化学系统建模教材说明书

细胞自动机化学系统建模教材说明书

Cellular Automata Modeling of Chemical SystemsCellular Automata Modeling of Chemical SystemsA textbook and laboratory manualLemont B.Kier,PhDProfessor of Medicinal ChemistrySenior Fellow,CSBCrVirginia Commonwealth UniversityUSAPaul G.Seybold,PhDProfessor of ChemistryWright State UniversityExternal Fellow,CSBCrVirginia Commonwealth UniversityUSAChao-Kun Cheng,PhDAssociate Professor of Computer ScienceFellow,CSBCFrVirginia Commonwealth UniversityA publication of the Center for the Study of Biological ComplexityrVirginia Commonwealth UniversityRichmond VirginiaUSAA C.I.P.Catalogue record for this book is available from the Library of Congress.ISBN-101-4020-3657-4(HB)ISBN-13978-1-4020-3657-6(HB)ISBN-101-4020-3690-6(e-book)ISBN-13978-1-4020-3690-3(e-book)Published by Springer,P.O.Box17,3300AA Dordrecht,The Netherlands.Printed on acid-free paperAll Rights ReservedC2005SpringerNo part of this work may be reproduced,stored in a retrieval system,or transmittedin any form or by any means,electronic,mechanical,photocopying,microfilming,recording or otherwise,without written permission from the Publisher,with the exceptionof any material supplied specifically for the purpose of being enteredand executed on a computer system,for exclusive use by the purchaser of the work. Printed in the Netherlands.Table of ContentsPreface vii1.Modeling Nature12.Cellular Automata93.Water as a System394.Solution Systems575.Dynamic Aqueous Systems736.Water-Surface Effects877.First-Order Chemical Kinetics1098.Second-Order Chemical Kinetics1259.Additional Applications in Chemical Kinetics139e of the CASim Program157Index169PrefaceOver the past two decades there has been a significant growth in the use of computer-generated models to study dynamic phenomena in the nature.These studies have ranged over many of thefields of human endeavor.For example, insect behavior is a target for dynamic models;automobile traffic is another. The sociologists have picked up on the possibilities afforded by computer mod-els to study dynamic systems.In the physical and biological sciences,dynamic computer models have been used to study a variety of phenomena.Some studies in chemistry have appeared in the literature,but thefield is so vast that only a small area has been considered for computer modeling.In our view chemistry is ripe for studies utilizing this paradigm.The study of chemistry is usually focused on changes;we establish a structure,a form,but it is of real interest wwhen we consider how and to what it is boratory studies in schools introduce the student to simple processes that always work.More com-plex transformations are difficult to set up as experiments;they often do not “work”and so the didactic value of such experiences is marginal.It is our purpose in this book to explore and reveal how some computer mod-els might enrich the practical experiences,traditionally carried out in“wet”labs. We pursue this goal using one of the modeling schemes that was developed a half century ago:cellular automata.The record of cellular automata as a model-ing paradigm is revealed in the literature.We have used cellular automata in our research for a decade,modeling solution and kinetic phenomena of chemical systems.We feel that this approach can bring new meaning to experimental chemistry in the form of in silico experiments.This book is dedicated to that objective.The book is organized into three sections.In thefirst section we introduce the student to some of the concepts that are fundamental to an understandingviii Preface of chemical phenomena.These include a look at the subject of complexity. Imbedded in these concepts are general chemical phenomena such as self-organization,emergent properties,and local interactions.This section sets the stage for a look at some of the modeling techniques used to explore complex systems.In the second section we present a brief overview of some currently used dynamic modeling methods before introducing cellular automata.After a brief history of this method we describe the ingredients that drive the dynamics exhibited by cellular automata.These include the platform on which cellular automata plays out its modeling,the state variables that define the ingredients, and the rules of movement that develop the dynamics.Each step in this section is accompanied by computer simulation programs carried on the CD in the back of the book.WWith this background the student is then equipped to witness what has been done in chemistry using cellular automata models.These studies are accompanied by unfinished studies and challenges,“what if”ideas for the student.The laboratory in a general chemistry course is an ideal place to use this approach since it brings to the student views of many phenomena,previously difficult to visualize.As an adjunct to experimental work in the lab,it opens up a new level of understanding.It may even pique interest in pursuing new theoretical investigations in chemistry.At a nearfinal stage of writing this book,we had a golden opportunity to test the modeling exercises.Seven students in the Integrated Life Sciences graduate program at the Virginia Commonwealth University were asked to read the text and to perform many of the examples and studies.Their experiences were of immense value to us infinalizing the manuscript.We want to acknowledge them and thank them for their efforts.They are Xiangrong Kong,Julie Naumann, Jean Nelson,Antoine Nicolas,Elizabeth Prom,Alexander Tulchinsky,and Carl Zimmerman.We also want to thank Yingjin Cui for her help in creating some of thefigures.The authors thank Marco Tomassini for early,helpful reviews of the manuscript.We thank Enguang Zhao for his help in preparing the Java version of the CA program.Finally we acknowledge the scholarly climate and encour-agement given to us at the Center for the Study of Biological Complexity at the Virginia Commonwealth University.Lemont B.KierPaul G.SeyboldChao-Kun Cheng。

2015—2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响

2015—2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响

第44卷第1期2024年2月水土保持通报B u l l e t i no f S o i l a n d W a t e rC o n s e r v a t i o nV o l .44,N o .1F e b .,2024收稿日期:2023-06-08 修回日期:2023-07-11资助项目:黑龙江省自然科学基金联合引导性项目 黑龙江省绿色空间碳储量与景观格局适应性调控路径研究 (L H 2022E 001);黑龙江省自然科学基金项目 遗产学视角下的黑龙江省渔猎文化景观的保护传承及其作用机制研究 (L H 2020E 008);国家自然科学基金项目寒地城市森林水平与垂直结构季相变异的冷岛机制研究 (42171246) 第一作者:高铭阳(1998 ),女(汉族),黑龙江省绥化市人,硕士研究生,研究方向为风景园林规划与设计和蓝绿空间碳储量研究㊂E m a i l:1733646229@q q .c o m ㊂ 通信作者:张俊玲(1968 ),女(汉族),黑龙江省哈尔滨市人,博士,副教授,主要从事少数民族文化景观及其栖息地生态环境研究㊂E m a i l :z h a jl @163.c o m ㊂2015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响高铭阳,张俊玲,石淞,刘威(东北林业大学园林学院,黑龙江哈尔滨150040)摘 要:[目的]预测黑龙江省大兴安岭地区蓝绿空间用地变化并分析其对碳储量的影响,为实现大兴安岭 双碳 目标提供科学参考㊂[方法]基于2015,2020年黑龙江省大兴安岭地区土地利用数据,通过二元L o g i s t i c 回归检验的驱动因子引入P L U S 模型,预测2030年蓝绿空间用地格局,耦合I n V E S T 模型分析蓝绿空间变化对碳储量的影响,量化并验证蓝绿空间对碳储量波动的主要驱动地类㊂[结果]①2015 2030年蓝绿空间持续增长,林地均达蓝绿空间转入的60%以上,占绝对优势㊂②2015 2020年蓝绿空间占碳储量增长空间总面积的96.52%,2030年自然发展㊁蓝绿空间保护㊁城镇快速发展情景碳储量分别为1.4594ˑ109,1.4831ˑ109和1.4647ˑ109t,主要为大量非蓝绿空间向林地㊁草地的转入,其中蓝绿空间保护对碳储量增加作用最明显㊂③蓝绿空间中林地㊁草地㊁水域聚集程度与碳储量呈显著正相关,林地㊁草地为碳储量变化第一㊁第二主导地类㊂[结论]未来应延续优良生态政策,对黑龙江省大兴安岭地区蓝绿空间进行重点保护,提高林地㊁草地结构完整性,助力该地区实现 双碳 目标㊂关键词:蓝绿空间;I n V E S T 模型;P L U S 模型;碳储量;大兴安岭;黑龙江省文献标识码:A 文章编号:1000-288X (2024)01-0453-12中图分类号:F 301.2,X 171.1文献参数:高铭阳,张俊玲,石淞,等.2015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响[J ].水土保持通报,2024,44(1):453-464.D O I :10.13961/j.c n k i .s t b c t b .20231024.001;G a o M i n g y a n g ,Z h a n g J u n l i n g ,S h iS o n g ,e ta l .L a n du s ec h a n g e si nb l u e -g r e e ns p a c ea n dt h e i r i m pa c t so n c a rb o ns t o r a g e i nD a x i n g a nM o u n t a i n s o fH e i l o n g j i a n g P r o v i nc e f r o m2015t o 2020[J ].B u l l e t i n o f S o i l a nd W a te rC o n s e r v a t i o n ,2024,44(1):453-464.L a n dU s eC h a n g e s i nB l u e -g r e e nS p a c e a n dT h e i r I m pa c t s o n C a rb o nS t o r a g e i nD a x i n ga n M o u n t a i n s o f H e i l o n g j i a n g Pr o v i n c e f r o m2015t o 2020G a oM i n g y a n g ,Z h a n g J u n l i n g ,S h i S o n g,L i u W e i (C o l l e g e o f L a n d s c a p eA r c h i t e c t u r e ,N o r t h e a s tF o r e s t r y U n i v e r s i t y ,H a r b i n ,H e i l o n g j i a n g 150040,C h i n a )A b s t r a c t :[O b j e c t i v e ]T h e c h a n g e s i nb l u e -g r e e ns p a c e l a n du s ew e r e p r e d i c t e da n d t h e i r i m pa c t so nc a rb o n s t o r a g e i nD a x i n g a n M o u n t a i n sw e r ea n a l y z e d i no r d e r p r o v i d esc i e n t i f i cs t r a t e g i c f o r r e a l i z i n g t h ed u a l -c a r b o n g o a l g u i d a n ce r ef e r e n c e s .[M e t h o d s ]B a s e do n l a n du t i l i z a t i o nd a t a f o rD a x i ng a nM o u n t a i n s i n 2015a n d 2020,th ed ri v i n g f a c t o r so fab i n a r y l o g i s t i cr e g r e s s i o nt e s tw e r e i n t r o d u c e d i n t ot h eP L U S m o d e l t o p r e d i c t t h eb l u e -g r e e n s p a c e l a n d u t i l i z a t i o n p a t t e r n i n 2030.T h e I n V E S T m o d e l w a s c o u pl e dw i t h t h e r e s u l t s t o a n a l y z e t h e i m p a c t o f c h a n g e s i nb l u e -g r e e n s p a c e o n c a r b o n s t o r a g e .T h em a i nd r i v i n g l a n d t y pe s of b l u e -g r e e ns p a c ec a u s i n g ch a n g e si nc a r b o ns t o r a g e w e r e q u a n t i f i e da n dv e r i f i e d .[R e s u l t s ]①B l u e -g r e e ns p a c e c o n t i n u e d t o g r o wf r o m2015t o2030.F o r e s t l a n d i n c r e a s e do v e r t h i s t i m e p e r i o d ,a c c o u n t i n g fo rm o r e t h a n 60%o f t h e b l u e -g r e e n s p a c e t r a n s f e r ,i n d i c a t i n g t h a t f o r e s t l a n d h e l d a n a b s o l u t e a d v a n t a ge .②F r o m2015t o2020,b l u e-g r e e ns p a c ea c c o u n t e df o r96.52%o ft h et o t a la r e ao fc a r b o ns t o r a g e g r o w t hs p a c e.C a r b o n s t o r a g e f o r t h e n a t u r a l d e v e l o p m e n t,b l u e-g r e e n s p a c e p r o t e c t i o n,a n d r a p i d u r b a n d e v e l o p m e n t s c e n a r i o s i n2030 w e r e1.4594ˑ109t,1.4831ˑ109t,a n d1.4647ˑ109t,r e s p e c t i v e l y,m a i n l y d u e t o t h e t r a n s f e r o f a l a r g e a m o u n t o f n o n-b l u e-g r e e ns p a c e t o f o r e s t l a n da n d g r a s s l a n d.P r o t e c t i o no fb l u e-g r e e ns p a c e sh a dt h e m o s t o b v i o u s e f f e c t o n t h e i n c r e a s e o f c a r b o n s t o r a g e.③T h e d e g r e e o f a g g r e g a t i o no f f o r e s t l a n d,g r a s s l a n d,a n d w a t e r a r e a s i nt h eb l u e-g r e e ns p a c ew a ss i g n i f i c a n t l y a n d p o s i t i v e l y c o r r e l a t e d w i t hc a r b o ns t o r a g e.F o r e s t l a n d a n d g r a s s l a n dw e r e t h e f i r s t a n ds e c o n d m o s td o m i n a n t t y p e so f c a r b o ns t o r a g e c h a n g e s.[C o n c l u s i o n] E x c e l l e n t e c o l o g i c a l p o l i c i e s s h o u l db e p r o m o t e d i n t h e f u t u r e t o p r o t e c t t h e b l u e-g r e e n s p a c e a n d t o i m p r o v e t h e s t r u c t u r a l i n t e g r i t y o f f o r e s t l a n da n d g r a s s l a n ds oa s t oa c h i e v e t h e d u a l-c a r b o n s t r a t e g i c g o a l i nt h e D a x i n g a n M o u n t a i o n s.K e y w o r d s:b l u e-g r e e n s p a c e;I n V E S T m o d e l;P L U Sm o d e l;c a r b o ns t o r a g e;D a x i n g a n M o u n t a i o n s;H e i l o n g j i a n g P r o v i n c e土地利用覆被变化(l a n d u s e a n d c o v e r c h a n g e s, L U C C)被认为是人类活动在政策的驱动及制约下呈现出的不同发展形式,作为改变陆地生态系统时空格局,引起区域碳储能力及碳储量变化的重要原因[1]㊂分析土地利用覆被变化对陆地生态系统碳储量的影响,成为中国政府和学者关注的焦点㊂在全球碳中和大背景下,人们将研究范围逐渐聚焦在城市中承载大部分生态功能的蓝绿空间[2]㊂综合评价耕地㊁林地㊁草地和水域对碳储量时空分布的影响,是保障碳中和目标顺利达成的关键手段㊂以往对碳储量的研究多聚焦于土地利用时空格局变化的影响,致力于突破原有实地调查和理化数据分析对成本和尺度的限制,利用逐步丰富的碳密度实测结果,采用模型预测分析㊂张平平等[3]和L i Z u z h e n g等[4]利用M a r k o v-I n V E S T模型,在预测保护区用地变化的基础上,验证生态保护政策对碳储量提升具有显著作用,表明模型量化L U C C对陆地生态系统碳储量影响的精确性㊂随着国内用地模拟研究的推进,研究区逐渐由重要生态保护或脆弱区转移为城市群㊂张斌等[5]利用M a r k o v-F L U S模型耦合I n V E S T模拟 三线 约束下武汉城市群L U C C对碳储量的影响,探究其下降的主导因素㊂为提高斑块级研究的模拟精度,伍丹等[6]和张鹏等[7]应用在F L U S 上改进的P L U S模型,结合I n V E S T计算多情景碳储量分布,优化空间格局㊂如克亚㊃热合曼等[8]和林彤等[9]也利用P L U S-I n V E S T预测用地格局与碳储量变化,探究其时空关联性㊂目前关于土地利用时空格局对碳储量影响的探索已趋于成熟,随碳汇等概念兴起,蓝绿空间日益受到更广泛关注[10],但少有研究涉及蓝绿空间单一地类与碳储量的关系,仅少数学者对蓝绿空间的分布㊁演变及评估等做出分析㊂蓝绿空间指的是由河湖水系构成的蓝色空间和绿地系统构成的绿色空间㊂许浩等[11]以苏锡常都市圈为研究对象,针对蓝绿空间,探究其演变趋势及优化策略㊂W a n g H a o y i n g等[12]和Z h a oC h u n l e i等[13]开始结合生态学景观格局指数分析蓝绿空间分布特征㊂殷利华等[14]为建立蓝绿空间的科学评估方法,探讨了武汉园博园的碳汇绩效㊂然而,大部分研究缺乏碳储量层面的区域蓝绿空间规划,对蓝绿空间高比例的 双碳 目标区关注度不足,忽略其单一地类转换引起的碳储量变化,在对蓝绿空间的模型估算中,仍存在P L U S驱动因子搭配未检验其适宜性,碳密度仍采用气温降水系数修正,忽视实测数据的权威性与准确性,导致难以支撑以 双碳 目标为决策重心的城市管控等问题㊂大兴安岭地区森林覆盖率高,蓝绿空间终年稳定在85%以上,其重点国有林区森林碳储量约占全省森林碳储量的32.67%[15],是中国实现碳中和的重要实践区域㊂伴随城镇化快速推进, 增绿 与 增收 矛盾愈发突出㊂基于此,本文以黑龙江省大兴安岭地区为研究区,通过适宜性检验的驱动因子引入P L U S 模型分析2015 2020年土地利用变化,预测2030年自然增长㊁蓝绿空间保护㊁城镇快速发展情景下蓝绿空间用地格局,优先选用实测数据耦合I n V E S T模型分析蓝绿空间变化对碳储量的影响,量化与碳储量的数值和空间关联性,验证蓝绿空间影响碳储量波动的主要驱动地类,旨在统筹推进黑龙江省大兴安岭地区以碳中和为规划重心的区域层面的有效性㊂1研究区概况黑龙江省大兴安岭地区(图1)面积6.48ˑ104k m2,下辖漠河1市和呼玛㊁塔河2县(不含加格达奇㊁松岭㊁新林㊁呼中4区,面积1.82ˑ104k m2),东经121ʎ12' 127ʎ00',北纬50ʎ11' 53ʎ33'㊂南靠大兴安岭山脉呈浅山丘陵地带,属寒温带大陆性季风气候,蓝绿空间454水土保持通报第44卷面积所占比例从2015年的89.93%增加至2020年96.90%㊂独特的资源禀赋使其成为国家生态安全重要保障区和木材资源战略储备基地㊂图1黑龙江省大兴安岭地区地形图F i g.1T o p o g r a p h y m a p o fD a x i n g a n M o u n t a i n s i nH e i l o n g j i a n g P r o v i n c e2材料与方法2.1数据来源与处理2015,2020年土地利用数据选自全球30m地表覆盖(G l o b e L a n d30)数据集(h t t p:ʊw w w.g l o b a l-l a n d c o v e r.c o m/),其空间分辨率为30mˑ30m,分为耕地㊁林地㊁草地㊁水域㊁建设用地和未利用地6类㊂统一投影坐标系为WG S_1984_U T M_Z o n e_50N,严格保证分辨率和行列数一致㊂根据文献[16-17],选取贡献度较高的13个模拟驱动因子㊂5个气候环境因子:年均降水㊁气温㊁土壤类型源于中国科学院资源环境科学数据中心(h t t p:w w w.r e s d c.c n/D O I),数字高程及坡度数据源于地理空间数据云(h t t p:ʊw w w.g s c l o u d.c n/s e a r c h)㊂8个社会经济因子:人口㊁G D P源于资源环境科学与数据中心(h t t p s:ʊw w w.r e s d c.c n/)(个别缺失数据根据当年各区县统计数据计算补充);到县政府驻地㊁河流㊁铁路㊁一级㊁二级㊁三级道路的距离来源于O p e n S t r e e tM a p(h t t p s:ʊw w w.o p e n h i s t o r i c a l m a p.o r g)㊂I n V E S T模型碳密度选取以实测数据为基准㊁以同研究区或同气候带同类研究内容㊁相近年份数据优先为原则,结合国家生态科学数据中心下载的数据,剔除异常值,获取各地类平均碳密度数据㊂2.2基于P L U S模型的蓝绿空间土地利用变化及模拟P L U S(p a t c h-g e n e r a t i n g l a n d u s e s i m u l a t i o n m o d e l)模型在M a r k o v基础上发展出精度更高的L E A S(l a n d e x p a n s i o na n a l y s i s s t r a t e g y:土地扩展分析策略)和C A R S(c e l l u l a r a u t o m a t am o d e l b a s e do n m u l t i-c l a s s r a n d o m p a t c hs e e d s:多级随机斑块种子的元胞自动机模型)模块㊂在L E A S中利用随机森林算法,提取原有用地扩张,将各地类发展概率作为约束条件,利用M a r k o v计算得到的未来用地需求输入C A R S中,模拟土地利用变化[18]㊂该模型在动态模拟林地和草地斑块变化中更具适用性,对于以蓝绿空间为主体的黑龙江大兴安岭地区,其模拟优势显著㊂2.2.1土地利用模型参数设定邻域权重反映各土地利用类型转化的难度系数,范围为0~1,值越大则稳定性越高,发生转变概率越小㊂本文类比相似研究区前人研究成果[6-9,17,19-20],参考2015 2020年各地类扩张面积比例,得到邻域权重参数(见表1)㊂表1黑龙江省大兴安岭地区各土地利用类型邻域权重参数T a b l e1N e i g h b o r l y w e i g h t p a r a m e t e r s o f l a n du s e t y p e s i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e土地利用类型耕地林地草地水域建设用地未利用地邻域权重0.42810.08170.03490.00120.43640.01772.2.2未来土地利用情景模拟设置2015年黑龙江大兴安岭地区进入天然林全面保护新阶段,大肆开采状态有效缓解,蓝绿空间全方位管控,此前的用地转换趋势对转型发展后的研究区参考意义不大㊂因此,本文基于2015,2020年蓝绿空间土地利用数据,模拟2030年自然增长㊁蓝绿空间保护㊁城镇快速发展3种情景㊂(1)自然增长情景(S1)㊂依现行自然经济社会情况,延续2015 2020年发展趋势,借助M a r k o v计算2030年用地需求,预测蓝绿空间土地利用情况㊂(2)蓝绿空间保护情景(S2)㊂依据‘大兴安岭地区国家生态文明建设示范区规划(2022 2030年)“及‘河北雄安新区规划纲要“的参数[21],保持其蓝绿空间所占比例在70%以上㊂参照同样进行 天然林保护工程 的临近研究地(吉林㊁黑龙江和内蒙古等)将林地㊁草地向建设用地转移概率降低50%,结合 基本农田保护 将耕地向建设用地转移降低30%,建设用地㊁耕地㊁草地向林地转移增加30%㊂(3)城镇快速发展情景(S3)㊂参考‘大兴安岭地区国土空间总体规划(2021 2035年)“,鼓励建设用地扩张,耕地㊁林地㊁草地向建设用地转移概率增加20%,建设用地向其他用地(除耕地)转移概率减少20%㊂2.2.3模型精度验证通过R O C曲线验证驱动因子的搭配是否具有较好解释力[22],利用k a p p a系数554第1期高铭阳等:2015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响和O A系数检验P L U S模型精度㊂用二元L o g i s t i c 回归分析各地类与驱动因子关系(表2)㊂R O C取值越接近1精度越高㊂经检验6种地类R O C值均大于0.700,分别为0.832,0.873,0.854,0.757,0.812, 0.869㊂驱动因子对蓝绿空间具有较好解释力,搭配具有合理性㊂基于2015年模拟2020年黑龙江大兴安岭地区土地利用分布,与实际用地对比,计算k a p p a 系数和O A系数㊂当数值超过0.7000表示模拟结果与真实情况较接近㊂经计算k a p p a系数为0.7428, O A系数为0.7973,P L U S模型模拟精度较高㊂表22015 2020年黑龙江省大兴安岭地区土地利用变化的L o g i s t i c回归结果T a b l e2L o g i s t i c r e g r e s s i o n r e s u l t s o f l a n du s e c h a n g e i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e f r o m2015t o2020驱动因子耕地B E x p(B)林地B E x p(B)草地B E x p(B)水域B E x p(B)建设用地B E x p(B)未利用地B E x p(B)坡度-1.1426*0.5824*0.1493*1.1731*0.0672*1.0798*-0.0501*0.9324*-0.0583*0.8541*0.1124*1.1295*高程-0.0028*0.9843*0.0540*1.0565*0.0371*1.0337*-0.0729*0.8428*-0.0532*0.8604*-0.0503*0.9326*年均气温0.2146*1.3581*0.0134*1.0142*-0.2179*0.7995*-0.0502*0.9324*0.0087*1.0084*-0.03070.9513年均降水-0.0034*0.9815*0.0023*1.0028*0.0512*1.0547*0.0238*1.0218*0.0434*1.0478*-0.0683*0.8496*土壤类型0.0543*1.0567*-0.0786*0.8447*-0.08930.7965-0.0613*0.8499*0.0032*1.0039*-0.03070.9529人口-0.0012*0.9985*-0.0008*0.9979*-0.0019*0.9961*-0.00240.98870.4132*1.5375*-0.0541*0.8572* G D P-0.0018*0.9965*-0.0017*0.9965*0.00211.0024-0.00290.98400.0012*1.0023*0.01641.0173到县政府距离-0.0970*0.7378*-0.0861*0.7952*0.0547*1.0568*0.0536*1.0562*0.1742*1.2343*-0.0024*0.9885*到河流距离0.0540*1.0566*-0.1325*0.7617*0.0142*1.0161*0.74531.89460.0000*1.0000*0.0014*1.0023*到铁路距离-0.0073*0.9792*0.0021*1.0025*-0.0034*0.9814*-0.68420.3214-0.0007*0.9981*0.54121.6793到一级路距离-0.0013*0.9984*0.0022*1.0025*0.0047*1.0059*0.0058*1.0061*-0.0078*0.9840*0.0136*1.0147*到二级路距离0.00331.00400.0014*1.0016*0.0507*1.0541*0.0047*1.0058*0.00611.00630.0072*1.0068*到三级路距离0.01421.01630.0036*1.0047*0.0513*1.0544*0.0031*1.0038*0.0156*1.0149*0.06801.0813 R O C值0.8320.8730.8540.7570.8120.869注:*表示结果p值通过显著性检验;B值为回归系数;E x p(B)为发生比率即地类分布概率㊂2.3基于I n V E S T模型的碳储量评估2.3.1 碳储量计算本研究采用I n V E S T模型c a r b o n模块,估算研究时段内碳储量㊂总碳储量划为4个基本碳库,包括地上生物碳库㊁地下生物碳库㊁土壤有机质碳库和死亡有机质碳库㊂公式如下:C i=C i-a b o v e+C i-b e l o w+C i-d e a d+C i-s o i l(1)C i-t o t a l=ðni=1C iˑS i(2)式中:C i为地类i的总碳密度;C i-a b o v e为地类i的地上碳密度;C i-b e l o w为地类i的地下碳密度;C i-d e a d为地类i的死亡有机质碳密度;C i-s o i l为地类i的土壤碳密度;C i-t o t a l为区域内所有地类i的总碳储量之和;S i为地类i的区域面积㊂2.3.2碳密度确定碳密度数据优先选择省内或气候带相同㊁时段邻近的实测数据,基于前人研究成果,参照以蓝绿空间为主要研究对象的实测结果或文献,结合黑龙江大兴安岭土壤类型,整理结果见表3[15,23-27]㊂2.4验证蓝绿空间对碳储量的主要地类驱动力2.4.1空间关联性分析双变量空间自相关分析研究区生成的5k mˑ5k m共2673个格网,选用土地利用强度与碳储量数据链接,计算双变量全局和局部M o r a n I指数,得到4种空间聚集类型[28]的L I S A集聚图,其中高 低代表高土地利用强度和低碳储量分布聚集区,低 低㊁低 高㊁高 高类型依次类推㊂依据人类活动对各地类开发程度量化不同地类,参考已有研究划分强度等级[29],并设定:未利用地开发(1);林地㊁草地㊁水域开发(2);耕地开发(3);建设用地开发(4)㊂2.4.2数值相关性及地类驱动力分析蓝绿空间主要地类比例与碳储量经正态性检验后,验证两者数值波动是否存在共性,计算两者间的皮尔逊相关系数(P e a r s o n s r)[30],r值为正,则呈正相关,反之为负相关㊂p值<0.05,则显著㊂为量化主要地类对碳储量的驱动力,判断各地类影响程度高低,运用地理探测器模型,其q值[31]表示各因素对碳储量空间分布的影响,取值区间为[0,1]㊂q值越大影响越大,反之越小㊂表3黑龙江大兴安岭地区碳密度参数[15,23-25,32]T a b l e3C a r b o nd e n s i t y p a r a m e t e r s i nD a x i n g a nM o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e t/h m2土地利用类型地上碳密度地下碳密度土壤碳密度死亡有机物碳密度耕地10.1226.83147.000.00林地11.6230.24173.902.25草地8.5651.2374.602.84水域8.722.1423.010.00建设用地8.754.3827.781.16未利用地10.020.0044.790.00654水土保持通报第44卷3结果与分析3.1黑龙江省大兴安岭地区蓝绿空间土地利用变化分析3.1.12015 2020年蓝绿空间用地变化由黑龙江省大兴安岭地区蓝绿空间变化(图2)可知,2015 2020年该区蓝绿空间面积比例持续增加,新增用地以林地和水域为主,明显集聚在西北侧漠河市和塔河县周边,区政府对 天保二期 的积极响应是西北近5a 蓝绿空间面积迅速扩张的重要原因㊂结合土地利用变化(表4),该区蓝绿空间比例由89.83%增至96.90%㊂南侧蓝绿空间大幅增加的林地多由林区转型发展期间的草地与非蓝绿空间转入,林地㊁耕地和水域面积达蓝绿空间总转入的137.33%,1.41%, 1.96%㊂虽然草地面积减少明显,占蓝绿空间总转入面积的40.70%,但整体趋向蓝绿空间发展更完好状态㊂东南侧呼玛县作为经济和人口的重要流动区,存在一定规模的非蓝绿空间, 北南西侧多,东侧少,林草变化为主 的蓝绿空间半包围式格局已具雏形㊂图22015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用分布及变化F i g.2D i s t r i b u t i o na n d c h a n g e o f l a n du s e i nb l u e-g r e e n s p a c e i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e f r o m2015t o2020表42015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用面积及变化T a b l e4L a n du s e a r e a a n d c h a n g e o f b l u e a n d g r e e n s p a c e i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e f r o m2015t o2020k m2项目蓝绿空间面积耕地林地草地水域非蓝绿空间面积2015年685.5048021.639088.78631.926613.12 2020年748.8754213.697253.83720.241991.70 2015 2020年63.376192.06-1834.9588.32-4621.423.1.22030年多情景蓝绿空间用地变化预测预测2030年自然增长(S1)㊁蓝绿空间保护(S2)㊁城镇快速发展(S3)多情景用地变化:2020 2030年蓝绿空间面积持续增加(图3),主要以北侧漠河市和东南侧呼玛县的林草转入为主,但土地利用结构基本不变㊂S2情景中,在商业性禁伐基础上,政策设置更倾向蓝绿空间生态养护㊂2020 2030年,林地和草地转入较其他情景显著提升(表5),分别增加5528.11, 3051.44k m2㊂南侧在快速城镇化的S3情景中仍为生态保护主导区,东南侧呼玛县在进行重点经济建设的同时,提升城市公园㊁绿道等蓝绿空间所占比例,因此较S1的蓝绿空间转入增加1124.46k m2,但城镇发展对周边生态用地的侵占导致其转入小于S2情景㊂综上所述,S2最大程度上促进现有非蓝绿空间向生态型用地转化,强化了对现存蓝绿空间的管控,使S2情景对蓝绿空间转入作用最明显,其次为S3,最次为S1㊂黑龙江省大兴安岭地区在 天然林保护工程 长效惠及下,持续加强天然次生林保护与修复力度,使南侧林区生态系统的质量和稳定性提高㊂因此,3种情景下蓝绿空间均增速较快,分别转入6627.91,8943.92,7752.37k m2,林地和草地转入情况与2015 2020年基本相同,均占蓝绿空间转入的绝对优势㊂3.2黑龙江省大兴安岭地区碳储量变化分析3.2.12015 2020年碳储量变化分析黑龙江省大兴安岭地区碳储量变化(图4)可知,高碳储量区主要集中在南侧大兴安岭山脉附近,低碳储量区位于东南侧非蓝绿空间所占比例较高的呼玛县周边,整体与蓝绿空间分布相似,呈 北南西侧高,东侧低,林草变化为主 的时空格局㊂北侧的漠河市与塔河县汇集大量具有转林潜力的优质草地,以不到研究区1/2的土地,分布超2/3的碳储增长面积㊂754第1期高铭阳等:2015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响注:图例中耕表示耕地;林表示林地;草表示草地;水表示水域;建表示建设用地;未表示未利用地(耕 林为耕地转为林地,以此类推)㊂图32030年黑龙江省大兴安岭地区多情景蓝绿空间土地利用分布及变化F i g.3D i s t r i b u t i o na n d c h a n g e o f l a n du s e i nb l u e-g r e e n s p a c e u n d e rm u l t i-s c e n a r i o s c e n a r i o s i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e i n2030表52020 2030年黑龙江省大兴安岭地区蓝绿空间土地利用转移矩阵T a b l e5B l u e-g r e e n s p a c e l a n du s e t r a n s f e rm a t r i x i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e f r o m2020t o2013项目2030年面积/k m2耕地林地草地水域非蓝绿空间转入蓝绿空间转入占蓝绿空间转入比例/%2 m k /积面年0 2 0 2耕地444.6118.3948.0812.4742.53221.47 3.34林地215.7252772.273818.75106.32834.054974.846627.9175.06 S1情景草地53.351093.063267.7532.0565.121243.5818.76水域4.89103.0956.53540.0323.51188.022.84非蓝绿空间30.31126.8762.7129.371026.48249.26 耕地412.3899.9733.6112.6246.05192.252.15林地246.0453112.244295.17111.39875.515528.118943.9261.81 S2情景草地62.24795.612856.536.2996.413051.4434.12水域4.92102.8741.73531.3022.60172.121.92非蓝绿空间8.8511.818.251.19101.5930.10 耕地426.92137.3846.4212.8940.99237.683.07林地224.7352370.344185.12148.28842.495400.627752.3769.66 S3情景草地57.011791.342905.6135.4864.921948.7525.14水域4.3081.7759.20491.4920.05165.322.13非蓝绿空间24.74107.6835.7730.60139.30198.79注:S1,S2,S3分别表示自然增长㊁蓝绿空间保护㊁城镇快速发展情景㊂分析碳储量变化(表6)发现,5a间研究区天然林保护卓有成效,林区生态带动蓝绿空间各地类主导碳储量增长㊂2015 2020年以蓝绿空间增长为主体提升了2.3669ˑ109t,达总增量的96.52%㊂与同时期土854水土保持通报第44卷地利用变化情况相似,蓝绿空间林草地类的碳储增量占绝对优势,分别达蓝绿空间碳储增量的81.88%和18.01%,其余地类不足5%㊂相比之下,除耕地因面积减少略有降低外,蓝绿空间碳储量整体呈增长势㊂图4 2015 2020年黑龙江省大兴安岭地区碳储量空间分布及变化F i g .4 S p a t i a l d i s t r i b u t i o na n d c h a n g e o f c a r b o n s t o c k s i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g Pr o v i n c e f r o m2015t o 2020表6 2015 2020年黑龙江省大兴安岭地区碳储量及变化T a b l e 6 C a r b o n s t o r a g e a n d c h a n g e i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g Pr o v i n c e f r o m2015t o 2020项目耕地林地草地水域非蓝绿空间总计2015年面积/106t12.531158.2413.862.014.781191.422020年面积/106t12.271350.5356.162.536.621428.112015 2020年变化面积/106t-0.26192.2942.30.521.84236.69占蓝绿空间碳储量变化比例/%-0.1181.8818.010.223.2.2 2030年多情景碳储量变化及预测2020 2030年蓝绿空间碳储量变化(表7)占总增长量的90%以上,3种情景分别增加3.062ˑ107,5.046ˑ107和3.598ˑ107t㊂与蓝绿空间分布格局相似(图5),均为 西北南高,东低 态势㊂在此期间林地和草地持续主导,其他地类碳储提供量微乎其微㊂因低碳储量区的东侧呼玛县对建设用地需求较高,城镇发展水平较高,生态空间呈破碎化,故相比之下城镇发展水平较低,林草地分布广的西南北侧,一直稳定为高碳储量区㊂表7 2020 2030年黑龙江省大兴安岭地区多情景碳储量及变化T a b l e 7 C a r b o n s t o r a g e a n d c h a n g e s u n d e rm u l t i p l e s c e n a r i o s i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e f r o m2020t o 2030年份情景项目耕地林地草地水域蓝绿空间非蓝绿空间总计2020碳储量/106t12.271350.5356.162.531421.496.621428.11S 1碳储量/106t13.701366.6769.122.621452.117.251459.362030S 2碳储量/106t14.321371.0683.952.621479.9211.141483.09S 3碳储量/106t13.481333.08108.512.401457.177.241464.712020 2030S 1碳储量变化/106t1.4316.1412.960.0930.620.6331.25占蓝绿空间碳储量变化比例/%4.6752.7142.330.2%S 2碳储量变化/106t2.0520.5327.790.0950.464.5254.98占蓝绿空间碳储量变化比例/%4.0640.6955.070.18S 3碳储量变化/106t1.21-17.4552.35-0.1335.980.6236.60占蓝绿空间碳储量变化比例/%3.36-48.50145.50-0.36自然增长情景中(S 1),具备高碳储量的林地和草地增加1.614ˑ107和1.096ˑ107t ,占蓝绿空间碳储增量的95.04%㊂蓝绿空间保护情景(S 2)下提升了蓝绿空间完整性,使得林地和草地对蓝绿空间碳储增量的贡献高达95.73%,带动部分非蓝绿空间转为生态服务型用地,使大面积天然次生林生态功能得以恢复㊂在城镇快速发展情景(S 3)中林地与草地仍为变化主体,但城镇快速发展下,非蓝绿空间的无序扩张破坏了生态用地结构,象征顶层生态的林地部分退化为草地,其碳储量减少1.745ˑ107t㊂然而前期 天保工程 的中幼龄林所占比例较高,林地碳储量大幅提升具有滞后性,其增量爆发于2020 2030阶段,带动增设的公园和绿道等蓝绿空间提供大量碳储量,整体导致S 3情景较S 1情景变化更明显㊂3种情景下,954第1期 高铭阳等:2015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响S2碳储增量最明显,S3次之,S1最小㊂从 双碳 角度规划黑龙江大兴安岭地区,应在重点保护蓝绿空间基础上辅以城镇发展策略,合理增加城市生态用地比例,进一步加强蓝绿空间和碳储量的协同发展㊂综上所述,本文结合2015 2030年蓝绿空间和碳储量分布情况,初步假设研究区碳储量变化,均以蓝绿空间中的林地和草地变化为主,其结果有待进一步验证㊂图52030年黑龙江省大兴安岭地区多情景碳储量空间分布及变化F i g.5S p a t i a l d i s t r i b u t i o n a n d c h a n g e o f c a r b o n s t o c k s u n d e rm u l t i p l e s c e n a r i o s i nD a x i n g’a nM o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e i n20303.3大兴安岭蓝绿空间对碳储量的主要驱动地类验证3.3.1蓝绿空间与碳储量的空间相关性分析为验证碳储量高值分布区的蓝绿空间聚集情况,用双变量空间自相关法分析土地利用强度和碳储量的空间相关性,结果见图6㊂5期数据均通过显著性检验(p< 0.05,z>1.96),表现为95%置信度的明显聚类特征,双变量M o r a n I指数均<0,分别为-0.2693,-0.2374, -0.2498,-0.2591,-0.2322,证明其存在空间负相关,且结果显著,即低 高聚集现象显著存在㊂低用地强度定义为蓝绿空间的聚集,以林地㊁草地和水域聚集为主(见图6)㊂图3表明未利用地极易向蓝绿空间转化,故不作考虑)㊂研究时段内均以低 高聚集最为显著,蓝绿空间多集中在南侧大兴安岭山脉附近,形成黑龙江省大兴安岭地区的 碳储高值保障带 ㊂研究区整体国土空间开发程度较低,现存植被生长发育状态良好,碳储量增长趋势有长期保障㊂高 高聚集呈散点分布,且多集中在低 高聚集的周围,表明该区域虽受人为活动影响导致城市化水平相对较高,但若对蓝绿空间管控合理,其对周边碳储量增长仍起一定保护作用㊂高 低聚集现象出现在林地㊁草地和水域面积所占比例较小,开发程度和蓝绿空间破碎化程度较高的东侧㊂综上所述,该区整体结构特点为低 高聚集的半包围式,蓝绿空间聚集程度与碳储量呈显著正相关,林地㊁草地和水域分布对高碳储量聚集作用明显㊂3.3.2蓝绿空间对碳储量变化的驱动分析鉴于蓝绿空间中林地㊁草地和水域分布对高碳储量聚集作用明显,分析3种地类面积占比与碳储量变化的数值相关性,并量化各地类驱动力,验证前文假设是否成立,即林地和草地为碳储量变化的主导地类㊂将各地类与碳储量变化对比(图7),初步判断 林草叠加比例 与碳储量波动可能存在一致性,利用P e a r s o n s r进一步确认两者数值波动是否存在共性㊂在下限为0.864,上限为0.942的95%置信区间中,进行正态性分析(表8),结果表示皮尔逊相关系数为0.897,呈正相关;p=0.013,符合p<0.05,呈显著相关㊂经验证,林地和草地占比与碳储量波动呈显著正相关㊂利用地理探测器分析各地类对碳储量变化的驱动力(图7),p<0.05通过显著性检验,各地类因子按决定力q值依次为:林地(0.8973)>草地064水土保持通报第44卷(0.8142)>水域(0.7598)>耕地(0.6737)>未利用地(0.5487)>建设用地(0.3294)㊂因子探测结果表明影响碳储量分布的主导地类依次为林地和草地,其中林地贡献率最高(达0.8973),其次是草地(为0.814 2)㊂交互产生作用最大的为林地ɘ草地(0.9151),说明研究区 林草交互 的分布及面积增减,势必影响区域碳储量大幅变化㊂综上所述,充分验证黑龙江大兴安岭地区蓝绿空间与碳储量分布呈显著正相关,其中林地和草地分别为碳储量的第一和第二驱动地类,即前文假设成立㊂图62015 2030年黑龙江省大兴安岭地区双变量空间自相关分析F i g.6B i v a r i a t e s p a t i a l a u t o c o r r e l a t i o na n a l y s i s i nD a x i n g a n M o u n t a i n s o fH e i l o n g j i a n g P r o v i n c e f r o m2015t o2010图7蓝绿空间比例与碳储量变化趋势及各地类交互作用热力图F i g.7T r e n do f s p a t i a l p r o p o r t i o no f b l u e a n d g r e e n s p a c e a n d c a r b o n s t o r a g e a n dt h e r m a lm a p s o f i n t e r a c t i o nb e t w e e nd i f f e r e n t c l a s s e s表8林地㊁草地总面积比例及碳储量相关性T a b l e8C o r r e l a t i o nb e t w e e n t o t a l a r e a o f f o r e s t l a n da n d g r a s s l a n da n d c a r b o n s t o r a g e项目|偏度/标准误差||峰度/标准误差|科尔莫哥洛夫斯米诺夫(V)a夏皮洛威尔克皮尔逊相关系数s i g值(双尾)蓝绿空间面积比例/%0.6120.4900.200*0.5230.897**0.013年总碳储量/106t1.3210.4080.200*0.384注:正态检验显著性*表示真显著性的下限;皮尔逊相关性**表示在0.01水平(双尾),相关性显著㊂164第1期高铭阳等:2015 2020年黑龙江省大兴安岭地区蓝绿空间土地利用变化及其对碳储量的影响。

Cellular_automata

Cellular_automata
formation. Models of fundamental physics.
Powerful computation engines.
Allow very efficient parallel computation.
Could allow the cells to grow and die.
Discrete lattice of cells.
Homogeneity – all of the cells of the lattice are equivalent.
Discrete states – each cell takes on one of a finite number of possible discrete states.
Probabilistic CA
The deterministic state-transitions are replaced with specifications of the probabilities of the cellvalue assignments.
Non-homogenous CA
Basic Idea: Simulate complex systems by interaction of cells following easy rules.
To put it another way:
“Not to describe a complex system with complex equations, but let the complexity emerge by interaction of simple individuals following simple rules.”
CA's are said to be discrete because they operate in finite space and time and with properties that can have only a finite number of states.

英语--计算机之父冯诺依曼

英语--计算机之父冯诺依曼

Along with Edward Teller (爱德华特勒)and Stanislaw Ulam(斯坦尼斯 乌拉姆), von Neumann
worked out key steps in the nuclear physics(核物 理) involved in
thermonuclear reactions(热核反应) and the hydrogen bomb(氢弹).
----
John Von Neumann (约翰.冯.诺依曼)
The eldest of three brothers, von Neumann was born Neumann János Lajos in Budapest, Hungary, to a wealthy Jewish family. His father is a lawyer who worked in a bank.
János, nicknamed “Jancsi” (Johnny), was a child prodigy(奇才) who showed an aptitude for languages, memorization, and mathematics.
Although he attended school at the grade level appropriate to his age, his father hired private tutors (家庭教师) to give him advanced instruction in those areas in which he had displayed an aptitude。 He received his Ph.D. (Philosophiae Doctor) in mathematics from Pázmány Péter University in Budapest at the age of 22.

《Mathematica》使用手册

《Mathematica》使用手册
Axiom Macsyma Maple Mathematica Reduce Derive 符号计算系统通常都有两种运行方式:一种是交互式,每发一个命令,就执行一种 相应的数学计算。 另一种方式是写一段程序,执行一系列的命令,就想用 Fortran 或 C 写程序一样。 每个符号计算系统都有自己的程序设计语言,这些语言与通用的高级语言大同小异。请 看 C 语言和 Mathematica 中的几个语句形式:
DanielR.Grayson 是伊里诺大学的数学教授。他于 1976 年在麻省理工获得数学博士 学位,曾在哥伦比亚大学和高等研究所工作。他写了 Mathematica 的数学部分的许多内 容,包括任意精度的算术运算、解方程、矩阵演算、幂级数和椭圆函数。Grayson 主要 的研究兴趣是代数 K 理论,这个数学分支把代数几何、线性代数和数论的概念结合在一 起。Grayson 广泛地使用计算机研究数论中的猜想。在参加 Mathematica 工作以前, Grayson 开发了一种用于数论研究的交互式计算机系统。
0.3 初识 Mathematica
Mathematica 是什么? Mathematica 能做什么? 希望 Mathematica 会成为你工作和学习中的好伙伴!
进入 math4.0
在“开始”菜单中的“程序”中单击
,进入 Mathematica 4.0
之后,得到如下的 Notebook 窗口,并给 Notebook 暂时取名 Untitled-1,直到用户保存时 另命名为止。
Roman E.Maeder 负责 Mathematica 的符号积分、多项式因式分解和其它多项式运 算。Maeder 于 1986 年在苏黎世高等工艺学院获得博士学位,其论文是关于程序设计语 言的数学理论。从 1983 年起,Maeder 的工作领域是计算机代数及其对数学教育的应用。 他给计算数学研究生开设了“数学实验室”课程。

基于元胞自动机的生命游戏

基于元胞自动机的生命游戏

算注语言信IB与电厢China Computer&Communication2020年第23期基于元胞自动机的生命游戏黄嘉诚(江南大学物联网工程学院,江苏无锡214122)摘要:生命游戏是在一定规则下,在划分的网格上根据元胞的局部空间状态来判断生死,并分别使用window,h和graphics,h头函数实现基于元胞自动机的生命游戏,比较两种函数实现功能的图形变化。

window,h函数在数量有限的情况下显示非常直观,而graphics,h函数则可以描绘更大范围内的图形,显示的结果更为清晰、美观.关键词:元胞;生命游戏;规则中图分类号:TP301文献标识码:A文章编号:1003-9767(2020)23-040-03Life Games Based on Cellular AutomatonHUANG Jiacheng(School of Internet of Things Engineering,Jiangnan University,Wuxi Jiangsu214122,China) Abstract:The life game is to judge the life and death according to the local space state of the cell on the divided grid under certain rules,and use the window,H and graphics・H header functions to realize the life game based on cellular automata,and compare the graphic changes of the two functions.Window.H function is very inttdtive in the case of lim让ed number,while graphics.H function can describe a larger range of graphics,and the results are more clear and beautiful.Keywords:cell;game of life;rules0引言由同性的一系列元胞所组成的空间模型称为元胞自动机E。

计算机电子通信等信息类SCI期刊大全

计算机电子通信等信息类SCI期刊大全

计算机类SCI分区数据WoS四区(cs.whu)序号刊名1 AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS2 JOURNAL OF COMMUNICATIONS AND NETWORKS3 International Journal of Network Management4 ETRI JOURNAL5 INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING6 Journal of Web Semantics7 R Journal8 Security and Communication Networks9 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS10 QUEUEING SYSTEMS11 INFORMATICA12 Frontiers of Computer Science13 IET Information Security14 Ad Hoc & Sensor Wireless Networks15 JOURNAL OF COMPUTATIONAL BIOLOGY16 Journal on Multimodal User Interfaces17 INFORMATION TECHNOLOGY AND LIBRARIES18 MICROPROCESSORS AND MICROSYSTEMS19 ENGINEERING COMPUTATIONS20 ACM Transactions on Modeling and Computer Simulation21 ACTA INFORMATICA22 CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS23 INTEGRATION-THE VLSI JOURNAL24 INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS25 INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE26 International Journal of Microwave and Wireless Technologies27 COMPUTATIONAL INTELLIGENCE28 JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY29 WIRELESS PERSONAL COMMUNICATIONS30 JOURNAL OF VISUALIZATION31 Radioengineering32 IEEE TECHNOLOGY AND SOCIETY MAGAZINE33 ADVANCED ROBOTICS34 IETE JOURNAL OF RESEARCH35 Semiconductors and Semimetals36 China Communications37 International Journal on Document Analysis and Recognition38 International Journal of Humanoid Robotics39 TRANSPORTATION JOURNAL40 Journal of Signal Processing Systems for Signal Image and Video Technology41 AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFAC42 IET Computer Vision43 Journal of the Society for Information Display44 Intelligent Service Robotics45 SIGMOD RECORD46 CONNECTION SCIENCE47 INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL48 Elektronika Ir Elektrotechnika49 ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS50 JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS51 Mobile Information Systems52 Journal of Applied Logic53 Computer Science and Information Systems54 IEICE TRANSACTIONS ON COMMUNICATIONS55 Statistical Analysis and Data Mining56 Computers and Concrete57 AI MAGAZINE58 KYBERNETES59 Journal of Ambient Intelligence and Smart Environments60 ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE61 Advances in Mathematics of Communications62 Information Retrieval Journal63 Advances in Computers64 Research in Transportation Economics65 International Journal on Artificial Intelligence Tools66 Natural Computing67 MODELING IDENTIFICATION AND CONTROL68 Intelligent Data Analysis69 Journal of Simulation70 IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE71 Journal of Zhejiang University-SCIENCE C-Computers & Electronics72 Computational and Mathematical Organization Theory73 INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS74 INTERNATIONAL JOURNAL OF QUANTUM INFORMATION75 ENGINEERING WITH COMPUTERS76 Journal of Organizational and End User Computing77 New Review of Hypermedia and Multimedia78 JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION79 JOURNAL OF ELECTRONIC IMAGING80 Biologically Inspired Cognitive Architectures81 PRESENCE-TELEOPERATORS AND VIRTUAL ENVIRONMENTS82 INFORMATION PROCESSING LETTERS83 INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING84 JOURNAL OF COMPUTATIONAL ACOUSTICS85 Language Resources and Evaluation86 MICROELECTRONICS INTERNATIONAL87 ALGORITHMICA88 IET Software89 Current Computer-Aided Drug Design90 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS91 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE92 INTERNATIONAL JOURNAL OF ELECTRONICS93 CIRCUIT WORLD94 International Journal of Data Warehousing and Mining95 DISCRETE & COMPUTATIONAL GEOMETRY96 International Arab Journal of Information Technology97 DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE98 SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNAT99 INTERNATIONAL JOURNAL OF GAME THEORY100 COMPUTER JOURNAL101 DISCRETE DYNAMICS IN NATURE AND SOCIETY102 Journal of Public Transportation103 Transportation Letters-The International Journal of Transportation Research 104 International Journal of Ad Hoc and Ubiquitous Computing105 THEORETICAL COMPUTER SCIENCE106 JOURNAL OF UNIVERSAL COMPUTER SCIENCE107 Journal of Cellular Automata108 COMPUTER APPLICATIONS IN ENGINEERING EDUCATION109 Journal of Logical and Algebraic Methods in Programming110 ENVIRONMENTAL AND ECOLOGICAL STATISTICS111 FUNDAMENTA INFORMATICAE112 Translator113 JOURNAL OF FUNCTIONAL PROGRAMMING114 JOURNAL OF COMPUTER INFORMATION SYSTEMS115 INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION116 CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES117 APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING118 International Journal of Web Services Research119 Logical Methods in Computer Science120 NEW GENERATION COMPUTING121 AI COMMUNICATIONS122 APPLIED ARTIFICIAL INTELLIGENCE123 ANNALS OF PURE AND APPLIED LOGIC124 JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS125 RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA126 THEORY OF COMPUTING SYSTEMS127 INTELLIGENT AUTOMATION AND SOFT COMPUTING128 Advances in Applied Clifford Algebras129 ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN130 Journal of Nonlinear and Convex Analysis131 JOURNAL OF COMPUTATIONAL MATHEMATICS132 Asian Journal of Communication133 International Journal of Sensor Networks134 Analysis and Mathematical Physics135 IEEE Latin America Transactions136 VIRTUAL REALITY137 Scientific Programming138 Journal of Noncommutative Geometry139 ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING140 Frontiers of Information Technology & Electronic Engineering141 INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AN 142 International Communication Gazette143 European Journal of Transport and Infrastructure Research144 Applications of Mathematics145 International Journal of Shipping and Transport Logistics146 JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS147 Complex Analysis and Operator Theory148 Journal of Computational and Theoretical Transport149 Malaysian Journal of Computer Science150 DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL151 JOURNAL OF MATHEMATICAL ECONOMICS152 RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING153 Advances in Electrical and Computer Engineering154 Problems of Information Transmission155 Journal of Web Engineering156 JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE157 Turkish Journal of Electrical Engineering and Computer Sciences158 JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY159 LOGIC JOURNAL OF THE IGPL160 STOCHASTIC ANALYSIS AND APPLICATIONS161 ELECTRICAL ENGINEERING162 JOURNAL OF MATHEMATICAL SOCIOLOGY163 Differential and Integral Equations164 ACM Transactions on Asian and Low-Resource Language Information Processing 165 Chinese Journal of Communication166 NETWORK-COMPUTATION IN NEURAL SYSTEMS167 Iranian Journal of Fuzzy Systems168 RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS169 Journal of Systems Science & Complexity170 PROGRAM-ELECTRONIC LIBRARY AND INFORMATION SYSTEMS171 COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS172 INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS173 Journal of Logic Language and Information174 Annals of Combinatorics175 ELECTRONIC JOURNAL OF COMBINATORICS176 Pacific Journal of Optimization177 Mathematical Control and Related Fields178 Journal of Pseudo-Differential Operators and Applications179 Journal of Systems Engineering and Electronics180 Journal of Electrical Engineering & Technology181 IEEJ Transactions on Electrical and Electronic Engineering182 DESIGN AUTOMATION FOR EMBEDDED SYSTEMS183 ELECTROMAGNETICS184 IET Computers and Digital Techniques185 Journal of Semiconductor Technology and Science186 MINDS AND MACHINES187 CHINESE JOURNAL OF ELECTRONICS188 Econometrics Journal189 Numerical Mathematics-Theory Methods and Applications190 IEICE TRANSACTIONS ON ELECTRONICS191 ACM Journal on Computing and Cultural Heritage192 Journal of Grey System193 Revista Iberoamericana de Automatica e Informatica Industrial194 DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS195 Journal of Nanoelectronics and Optoelectronics196 JOURNAL OF ALGEBRA AND ITS APPLICATIONS197 COMPUTING AND INFORMATICS198 COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRI 199 Homology Homotopy and Applications200 JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS201 JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL202 Social Semiotics203 Journal of Electrical Engineering-Elektrotechnicky Casopis204 JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS205 INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MAT 206 Annals of Functional Analysis207 Information Technology and Control208 Discrete Optimization209 Continuum-Journal of Media & Cultural Studies210 JOURNAL OF INFORMATION SCIENCE AND ENGINEERING211 Journal of Transportation Safety & Security212 Revista de la Union Matematica Argentina213 International Journal of Wavelets Multiresolution and Information Processin 214 FREQUENZ215 Fixed Point Theory216 JOURNAL OF DATABASE MANAGEMENT217 QUARTERLY JOURNAL OF SPEECH218 INTEGRATED FERROELECTRICS219 Milan Journal of Mathematics220 IEICE Electronics Express221 Computational Methods and Function Theory222 KSII Transactions on Internet and Information Systems223 Journal of Function Spaces224 FUNCTIONAL ANALYSIS AND ITS APPLICATIONS225 Communication Culture & Critique226 Text & Talk227 ACTA MATHEMATICA SINICA-ENGLISH SERIES228 JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS229 APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL230 Statistics and Its Interface231 COMPUTATIONAL COMPLEXITY232 JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY233 MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS234 Proceedings of the Steklov Institute of Mathematics235 Journal of Mathematics and Music236 Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenie 237 East Asian Journal on Applied Mathematics238 NATURAL RESOURCE MODELING239 COMPUTER ANIMATION AND VIRTUAL WORLDS240 MATHEMATICAL SOCIAL SCIENCES241 Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica 242 Journal of Mass Media Ethics243 Theory and Applications of Categories244 Mathematics and Financial Economics245 Periodica Mathematica Hungarica246 JAVNOST-THE PUBLIC247 IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS248 COMPUTER MUSIC JOURNAL249 Journal of Numerical Mathematics250 Funkcialaj Ekvacioj-Serio Internacia251 Neural Network World252 INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE253 Automatika254 KYBERNETIKA255 TOPOLOGY AND ITS APPLICATIONS256 INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION257 JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING258 Romanian Journal of Information Science and Technology259 PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS260 COMPUTER SYSTEMS SCIENCE AND ENGINEERING261 Media International Australia262 ALGEBRA COLLOQUIUM263 CMC-Computers Materials & Continua264 ACM SIGPLAN NOTICES265 Advances in Difference Equations266 Iranian Journal of Science and Technology-Transactions of Electrical Engine 267 Rhetoric Society Quarterly268 Glasnik Matematicki269 NARRATIVE INQUIRY270 Mathematical Communications271 ARCHIVE FOR HISTORY OF EXACT SCIENCES272 JOURNAL OF APPLIED COMMUNICATION RESEARCH273 Bollettino di Storia delle Scienze Matematiche274 Economic Computation and Economic Cybernetics Studies and Research275 INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING 276 DYNAMIC SYSTEMS AND APPLICATIONS277 Mathematical Population Studies278 University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Ma 279 IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUT 280 UTILITAS MATHEMATICA281 HISTORIA MATHEMATICA282 MICROWAVE JOURNAL283 CRYPTOLOGIA284 Applied Mathematics-A Journal of Chinese Universities Series B285 Acta Mathematicae Applicatae Sinica-English Series286 PROGRAMMING AND COMPUTER SOFTWARE287 Ukrainian Mathematical Journal288 International Journal of Transport Economics289 JOURNAL OF MEDIA ECONOMICS290 Electronics and Communications in Japan291 FUJITSU SCIENTIFIC & TECHNICAL JOURNAL292 INFOR293 ELECTRICAL ENGINEERING IN JAPAN294 African Journalism Studies295 Tijdschrift voor Communicatiewetenschap296 Journal of African Media Studies297 ICGA JOURNAL298 Pure and Applied Mathematics Quarterly299 Light & Engineering300 EPE Journal301 SOLID STATE TECHNOLOGY302 Journal of the Institute of Telecommunications Professionals303 Traitement du Signal304 ELECTRONICS WORLD305 Road & Transport Research306 IEEE Transactions on Cognitive and Developmental Systems引用次数影响因子eigenFactorScore 1506 1.1470.00259826 1.130.00268225 1.1180.000261153 1.1160.00199354 1.0790.000471091 1.0750.00154422 1.0750.002561095 1.0670.002551474 1.0660.002631335 1.060.00221398 1.0560.00071405 1.0390.00113355 1.0370.00082311 1.0340.000683216 1.0320.00826197 1.0310.00048260 1.0290.00039691 1.0250.00111406 1.010.0019363810.0010278310.0003749810.000350410.0007724610.0001511650.9940.001513580.9760.001096280.9640.000949110.9560.0021335080.9510.007044170.950.0008911340.9450.001912590.9430.0003915720.920.002442950.9090.000334380.9090.000287350.9030.001784610.9020.000525580.90.000644640.8970.000216800.8930.001555770.8850.000584870.8780.0011510280.8770.00151340.8750.0003513140.8750.001413580.8670.000279300.8630.000897700.8590.001266140.850.0011615580.850.002752610.8490.000362830.8380.000733920.8370.00093 17340.8270.00279 3750.8270.00196 4040.8130.00085 12310.8120.00113 7850.8110.00071 2620.8090.00033 8330.8070.00113 2540.80.00168 9270.7910.00103 3510.7890.00048 6690.7810.00166 4220.7780.00063 6630.7780.00084 3530.7750.00031 8220.7720.00113 3610.7720.00063 8860.7710.00099 3230.770.00081 3640.7690.00031 9620.7690.00137 8180.7660.00162 8530.7650.00137 1380.7595.00E-05 1410.7580.00018 19260.7570.00654 18130.7540.00261 1610.7530.00029 16520.750.00054 36180.7480.00625 5970.7460.00106 4540.740.00067 4400.7380.00104 1940.7370.00029 19870.7350.00516 2280.7330.0004 3860.7320.00052 51150.7310.00754 5620.730.00145 12450.7290.00109 2260.7270.00024 2190.7270.00019 17270.7240.00645 5020.7240.0003 3350.7230.00176 12930.720.00137 13120.7130.00235 32140.7110.00301 13590.7110.00349 5440.710.00063 1860.7060.00048 3480.7050.00064 73280.6980.01629 10670.6960.001127860.6880.00125 17110.6870.0028 2360.6860.00028 4050.6770.00081 7300.6750.00073 3320.6740.00046 14080.670.0028 3700.6670.00099 1340.6670.00024 5070.6610.00337 3510.6570.0003 3620.6540.00098 5880.6520.00049 11180.6470.0037 3710.6470.00055 4130.6460.00131 6630.6450.0029 3390.6440.00041 4020.6430.00078 3650.6430.00081 5790.6420.00151 6830.6410.00128 3470.6380.00057 3050.6350.00038 620.6320.00082 10060.6310.00102 3640.6280.00031 3430.6270.00047 2080.6250.00235 13240.6230.00216 880.6220.00016 3820.6220.00065 4860.6220.00103 3610.6190.00061 3240.6180.00058 1730.6090.00048 5730.6090.00097 2980.6050.00209 3230.60.00042 890.68.00E-05 4550.5970.00124 11650.5970.00354 2060.5970.00047 3360.5950.00038 6580.5810.00081 1060.580.00019 2670.5790.00023 6860.5780.00107 4490.5750.00025 3730.5750.0015 7600.5730.00199120.5620 1290.5620.00043 6380.5620.00024 2760.560.00063 2100.5580.00067 5590.5560.00106 3300.5560.00037 7710.5480.00163 8420.5480.00142 2480.5480.00036 4010.5440.0022 18450.5430.01147 3490.5430.00127 1040.5420.00125 840.5290.00056 8250.5290.00152 7680.5250.00183 4890.5170.00076 1390.5160.00035 4100.5160.00058 2310.5150.00049 2750.5150.00073 3580.5140.00045 5290.5130.00075 7910.5130.00287 1900.5090.00091 10750.5030.00156 900.50.00019 3560.50.0002 1440.50.00028 5980.4970.00346 4200.4970.00073 6020.4890.00428 3380.4880.00053 7110.4870.00121 2470.4860.00149 3170.4860.00078 3620.4840.00051 3440.4840.00072 4170.4830.00043 5880.4810.00075 950.4780.00016 1370.4770.00098 1630.4750.00031 4580.4690.00161 4960.4680.00091 6340.4680.00089 930.4650.00034 870.4640.00046 3270.4630.00053 2070.4620.000259130.4570.00109 2670.4570.0012 9790.4560.00189 2500.4550.00111 5690.4520.00119 1500.4510.00068 18410.450.00144 2090.4480.00071 2970.4480.00083 14430.4460.0042 9350.4460.00076 4810.4440.00099 4210.4440.00201 6360.4410.00124 5780.4410.00194 3450.4390.00074 8600.4360.00318 530.4350.00011 840.4310.00017 600.4260.00037 3530.4260.0006 3670.4240.00099 7510.4230.00131 1440.4220.00052 2430.4190.00037 3030.4190.00145 1630.4150.00129 3440.4150.00079 1910.4130.00033 14480.4110.00196 4020.4050.00018 2760.4050.00163 5040.3940.00125 2510.3940.00023 6160.390.00185 1590.380.00041 8080.3790.00125 19520.3770.00551 1520.3750.0001 3320.3650.00087 1080.3650.0002 18640.3570.00117 1550.3480.00015 2640.3460.00068 3750.3430.00142 3150.3390.00093 25410.3350.0032 8490.3350.00233 220.333 5.00E-05 2040.3330.0003 2560.3280.000496920.3080.00072 150.30 1030.2990.00019 3450.2990.00054 2640.2980.00052 1700.2860.00021 1840.2790.00034 13810.2740.00196 4820.2610.00082 2210.2580.00028 3960.2580.00063 1600.2563.00E-05 1740.2470.00049 5380.2420.00106 1140.230.00017 6990.2280.00079 1890.220.00021 1870.2170.00017 1670.2020.00036 1730.1910.00022 3800.1890.00025 3980.1880.00033 120.1712.00E-05 420.1717.00E-05 660.1540.00018 630.1520.00028 2410.1490.00141 410.1183.00E-05 1010.0910.00011 1620.0820.000170.0780 720.0281.00E-05 450.0262.00E-05 1150.0210.00014 7-999.999 1.00E-05。

交通灯控制系统外文

交通灯控制系统外文

Intelligent Traffic Light Control Marco Wiering, Jelle van Veenen, Jilles Vreeken, and Arne Koopman IntelligentSystems GroupInstitute of Information and Computing Sciences Utrecht UniversityPadualaan 14, 3508TB Utrecht, The Netherlandsemail: marco@cs.uu.nlJuly 9, 2004AbstractVehicular travel is increasing throughout the world, particularly in large urban areas.Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm based on reinforcement learning. We have implemented a traffic light simulator, Green Light District, that allows us to experiment with different infrastructures and to compare different traffic light controllers. Experimental results indicate that our adaptive traffic light controllers outperform other fixed controllers on all studied infrastructures.Keywords: Intelligent Traffic Light Control, Reinforcement Learning, Multi-Agent Systems (MAS), Smart Infrastructures, Transportation Research1 IntroductionTransportation research has the goal to optimize transportation flow of people and goods.As the number of road users constantly increases, and resources provided by current infrastructures are limited, intelligent control of traffic will become a very important issue in the future. However, some limitations to the usage of intelligent traffic control exist. Avoiding traffic jams for example is thought to be beneficial to both environment and economy, but improved traffic-flow may also lead to an increase in demand [Levinson, 2003].There are several models for traffic simulation. In our research we focus on microscopic models that model the behavior of individual vehicles, and thereby can simulate dynamics of groups of vehicles. Research has shown that such models yield realistic behavior [Nagel and Schreckenberg, 1992, Wahle and Schreckenberg, 2001].Cars in urban traffic can experience long travel times due to inefficient traffic light control. Optimal control of traffic lights using sophisticated sensors andintelligent optimization algorithms might therefore be very beneficial. Optimization of traffic light switching increases road capacity and traffic flow, and can prevent traffic congestions. Traffic light control is a complex optimization problem and several intelligent algorithms, such as fuzzy logic, evolutionary algorithms, and reinforcement learning (RL) have already been used in attempts to solve it. In this paper we describe a model-based, multi-agent reinforcement learning algorithm for controlling traffic lights.In our approach, reinforcement learning [Sutton and Barto, 1998, Kaelbling et al., 1996] with road-user-based value functions [Wiering, 2000] is used to determine optimal decisions for each traffic light. The decision is based on a cumulative vote of all road users standing for a traffic junction, where each car votes using its estimated advantage (or gain) of setting its light to green. The gain-value is the difference between the total time it expects to wait during the rest of its trip if the light for which it is currently standing is red, and if it is green. The waiting time until cars arrive at their destination is estimated by monitoring cars flowing through the infrastructure and using reinforcement learning (RL) algorithms.We compare the performance of our model-based RL method to that of other controllers using the Green Light District simulator (GLD). GLD is a traffic simulator that allows us to design arbitrary infrastructures and traffic patterns, monitor traffic flow statistics such as average waiting times, and test different traffic light controllers. The experimental results show that in crowded traffic, the RL controllers outperform all other tested non-adaptive controllers. We also test the use of the learned average waiting times for choosing routes of cars through the city (co-learning), and show that by using co-learning road users can avoid bottlenecks.This paper is organized as follows. Section 2 describes how traffic can be modelled, predicted, and controlled. In section 3 reinforcement learning is explained and some of its applications are shown. Section 4 surveys several previous approaches to traffic light control, and introduces our new algorithm. Section 5 describes the simulator we used for our experiments, and in section 6 our experiments and their results are given. We conclude in section 7.2 Modelling and Controlling TrafficIn this section, we focus on the use of information technology in transportation.A lot of ground can be gained in this area, and Intelligent Transportation Systems (ITS) gained interest of several governments and commercial companies [Ten-T expert group on ITS, 2002, White Paper, 2001, EPA98, 1998].ITS research includes in-car safety systems, simulating effects of infrastructural changes, route planning, optimization of transport, and smart infrastructures. Its main goals are: improving safety, minimizing travel time, and increasing the capacity of infrastructures. Such improvements are beneficial to health, economy, and the environment, and this shows in the allocated budget for ITS.In this paper we are mainly interested in the optimization of traffic flow, thus effectively minimizing average traveling (or waiting) times for cars. A common tool for analyzing traffic is the traffic simulator. In this section we will first describe two techniques commonly used to model traffic. We will then describe how models can be used to obtain real-time traffic information or predict traffic conditions. Afterwards we describe how information can be communicated as a means of controlling traffic, and what the effect of this communication on traffic conditions will be. Finally, we describe research in which all cars are controlled using computers.2.1 Modelling Traffic.Traffic dynamics bare resemblance with, for example, the dynamics of fluids and those of sand in a pipe. Different approaches to modelling traffic flow can be used to explain phenomena specific to traffic, like the spontaneous formation of traffic jams. There are two common approaches for modelling traffic; macroscopic and microscopic models.2.1.1 Macroscopic models.Macroscopic traffic models are based on gas-kinetic models and use equations relating traffic density to velocity [Lighthill and Whitham, 1955, Helbing et al., 2002]. These equations can be extended with terms for build-up and relaxation of pressure to account for phenomena like stop-and-go traffic and spontaneous congestions [Helbinget al., 2002, Jin and Zhang, 2003, Broucke and Varaiya, 1996]. Although macroscopic models can be tuned to simulate certain driver behaviors, they do not offer a direct, flexible, way of modelling and optimizing them, making them less suited for our research.2.1.2 Microscopic models.In contrast to macroscopic models, microscopic traffic models offer a way of simulating various driver behaviors. A microscopic model consists of an infrastructure that is occupied by a set of vehicles. Each vehicle interacts with its environment according to its own rules. Depending on these rules, different kinds of behavior emerge when groups of vehicles interact.Cellular Automata. One specific way of designing and simulating (simple) driving rules of cars on an infrastructure, is by using cellular automata (CA). CA use discrete partially connected cells that can be in a specific state. For example, a road-cell can contain a car or is empty. Local transition rules determine the dynamics of the system and even simple rules can lead to chaotic dynamics. Nagel and Schreckenberg (1992) describe a CA model for traffic simulation. At each discrete time-step, vehicles increase their speed by a certain amount until they reach their maximum velocity. In case of a slower moving vehicle ahead, the speed will be decreased to avoid collision. Some randomness is introduced by adding for each vehicle a small chance of slowing down. Experiments showed realistic behavior of this CA model on a single road with emerging behaviors like the formation of start-stop waves when traffic density increases.Cognitive Multi-Agent Systems. A more advanced approach to traffic simulation and optimization is the Cognitive Multi-Agent System approach (CMAS), in which agents interact and communicate with each other and the infrastructure. A cognitive agent is an entity that autonomously tries to reach some goal state using minimal effort. It receives information from the environment using its sensors, believes certain things about its environment, and uses these beliefs and inputs to select an action. Because each agent is a single entity, it can optimize (e.g., by using learning capabilities) its way of selecting actions. Furthermore, using heterogeneousmulti-agent systems, different agents can have different sensors, goals, behaviors, and learning capabilities, thus allowing us to experiment with a very wide range of (microscopic) traffic models.Dia (2002) used a CMAS based on a study of real drivers to model the drivers’ response to travel information. In a survey taken at a congested corridor, factors influencing the choice of route and departure time were studied. The results were used to model a driver population, where drivers respond to presented travel information differently. Using this population, the effect of different information systems on the area where the survey was taken could be simulated. The research seems promising, though no results were presented.A traffic prediction model that has been applied to a real-life situation, is described in [Wahle and Schreckenberg, 2001]. The model is a multi-agent system (MAS) where driving agents occupy a simulated infrastructure similar to a real one. Each agent has two layers of control; one for the (simple) driving decision, and one for tactical decisions like route choice. The real world situation was modelled by using detection devices already installed. From these devices, information about the number of cars entering and leaving a stretch of road are obtained. Using this information, the number of vehicles that take a certain turn at each junction can be inferred. By instantiating this information in a faster than real-time simulator, predictions on actual traffic can be made. A system installed in Duisburg uses information from the existing traffic control center and produces real-time information on the Internet. Another system was installed on the freeway system of North Rhine-Westphalia, using data from about 2.500 inductive loops to predict traffic on 6000 km of roads.。

交通流理论

交通流理论

第四章交通流理论交通流理论(Traffic Flow Theory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。

第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。

交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。

一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。

由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。

Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。

二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。

汽车使用显着增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。

此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。

交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(Kinematic Wave)理论和排队论(Queuing Theory)。

这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚?普列高津(Ilya Prigogine)。

着名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。

Langton.EdgeOfChaos(混沌边缘)

Langton.EdgeOfChaos(混沌边缘)

1.1. Overview
First, we introduce cellular automata and a simple scheme for parameterizing the space of all possible CA rules. We then apply this parameterization scheme to the space of possible one-dimensional CAs in a qualitative survey of the different dynamical regimes existing in CA rule space and their relationship to one another. Next, we present a quantitative picture of these structural relationships, using data from an extensive survey of two-dimensional CAs. Finally, we review the observed relationships among dynamical regimes, and discuss their implications for the more general question raised in the introduction.
1. Introduction
Most of the papers in these Proceedings assume the existence of a physical system with the capacity to support computation, and inquire after the manner in which processes making use of this capacity mj'ght emerge spontaneously. In this paper, we will focus on the conditions under which this capacity to support computation itself might emerge in physical systems, rather than on how this capacity might ultimately come to be utilized. Therefore, the fundamental question addressed in this paper is the following: Under what conditions will physical systems support the basic operations of information transmission, storage, and modification constituting the capacity to support computation? This question is difficult to address directly. Instead, we will reformulate the question in the context of a class of formal abstractions of physical systems: cellular automata (CAs). Our question, thus, becomes:

外文翻译----混凝土结构的耐久性

外文翻译----混凝土结构的耐久性

附录A 外文翻译Cellular Automata Approach to Durability Analysis of Concrete Structures in Aggressive EnvironmentsAbstract: This paper presents a novel approach to the problem of durability analysis and lifetime assessment of concrete structures(under the diffusive attack from external aggressive agents.The proposed formulation mainly refers to beams and frames, but it can be easily extended also to other types of structures.The diffusion process is modeled by using cellular automata.The mechanical damage coupled to diffusion is evaluated by introducing suitable material degradation laws.Since the rate of mass diffusion usually depends on the stress state , the interaction between the diffusion process and the mechanical behavior of the damaged structure is also taken into account by a proper modeling of the stochastic effects in the mass transfer .To this aim, the nonlinear structural analyses during time are performed within the framework of the finite element method by means of a deteriorating reinforced concrete beam element.The effectiveness of the proposed methodology in handling complex geometrical and mechanical boundary conditions is demonstrated through some applications.Firstly, a reinforced concrete box girder cross section is considered and the damaging process is described by the corresponding evolution of both bending moment-curvature diagrams and axial force-bending moment resistance domains.Secondly, the durability analysis of a reinforced concrete continuous T - beam is developed. Finally, the proposed approach is applied to the analysis of an existing arch bridge and to the identification of its critical members.IntroductionSatisfactory structural performance is usually described with reference to a specified set of limit states, which separate desired states of the structure from the undesired ones.In this context, the main objective of the structural design is to assure an adequate level of structural performance for each specified limit state during the whole service life of the structure.From a general point of view, a structure is safe when the effects of the applied actions S are no larger than the corresponding resistance R.However, for concrete structures the structural performance must be considered as time dependent, mainly because of the progressive deterioration of the mechanical properties of materials which makes the structural system less able to withstand the applied actions.As a consequence, both the demand S and the resistance R may vary during time and a durability analysis leading to a reliable assessment of the actual structural lifetime T a should be able to account for such variability (Sa1Ja and Vesikari 1996; Enright and Frangopol 1998a, 1998b).In this way, the designer can address the conceptual design process or plan the rehabilitation of the structure in order to achieve a prescribed design value T d of the structural lifetime.In the following, the attention will be mainly focused on the damaging process induced by the diffusive attack of environmental aggressive agents, like sulfate and chloride, which may lead to deterioration of concrete and corrosion of reinforcement ( CEB 1992 ) .Such process involves several factors, including temperature and humidity.Its dynamics is governed by coupled diffusion process of heat, moisture, and various chemical substances.In addition, damage induced by mechanical loading interacts with the environmental factors and accelerates the deterioration process ( Saetta et al. 1993 , Xi and Bazant 1999 ; Xi et al . 2000 ; Kong et al . 2002 ) .Based on the previous considerations, a durability analysis of concrete structures in aggressive environments should be capable to account for both the diffusion process and the corresponding mechanical damage, as well as for the coupling effects between diffusion, damage and structural behavior.However, the available information about environmental factors and material characteristics is often very limited and the unavoidable uncertainties involved in a detailed and complex modeling may lead to fictitious results.For these reasons, the assessment of the structural lifetime can be more reliably carried out by means of macroscopic models which exploit the power and generality of the basic laws of diffusion to predict the quantitative time-variant response of damaged structural systems.This paper presents a novel approach to the durability analysis of concrete structures under the environmental attack of aggressive agentsThe proposed formulation mainly refers to beams and frames, but it can be easily extended also to other types of structures.The analysis of the diffusion process is developed by using a special class of evolutionary algorithms called cellular automata, which are mathematical idealizations of physical systems in which space and time are discrete and physical quantities are taken from a finite set of discrete values.In principle, any physical system satisfying differential equations may be approximated as a cellular automaton by introducing discrete coordinates and variables, as well as discrete time steps.However, it is worth noting that models based on cellular automata provide an alternative approach to physical modeling rather than an approximation.In fact, they show a complex behavior analogous to that associated with differential equations, but by virtue of their simple formulation are potentially adaptable to a more detailed and complete analysis, giving to the whole system some emergent properties, self-induced only by its local dynamics (von Neumann 1966; Margolus and Toffoli 1987; Wolfram 1994, 2002; Adami1998).Noteworthy examples of cellular automata modeling of typical physical processes in concrete can be found in the field of cement composites (Bentz and Garboczi 1992; Bentz et al. 1992,1994).Based on such an evolutionary model, the mechanical damage coupled to diffusion is then evaluated by introducing a degradation law of the effective resistant area of both the concrete matrix and steel bars in terms of suitable damage indices.Since the rate of mass diffusion usually depends on the stress state, the interaction between the diffusion process and the mechanical behavior of the damaged structure is also taken into account by a proper modeling of the stochastic effects in the mass transfer.To this aim, the nonlinear structural analyses during time are performed within the framework of the finite element method by means of a deteriorating reinforced concrete beam element (Bontempi et al. 1995;Malerba 1998; Biondini 2000).The effectiveness of the proposed methodology in handlingcomplex geometrical and mechanical boundary conditions isdemonstrated through some applications. Firstly, a reinforcedconcrete box girder cross-section is considered and the damaging process is described by the corresponding evolution of both bending moment–curvature diagrams and axial force-bending moment resistance domains. Secondly, the durability analysis of a rein-forced concrete continuous T-beam is developed. Finally, the proposed approach is applied to the analysis of an existing arch bridge and to the identification of its critical members.Diffusion Processes and Cellular AutomataModeling of Diffusion ProcessesThe kinetic process of diffusion of chemical components in solids is usually described by mathematical relationships that relate the rate of mass diffusion to the concentration gradients responsible for the net mass transfer (Glicksman 2000). The simplest model is represented by the Fick‘s first law, which assumes a linear relationship between the mass flux and the diffusion gradient. The combination of the Fick’s model with the mass conservation principle leads to Fick’s second law whic h, in the case of a single component diffusion in isotropic media, can be written as follows:where C=C(x, t)=mass concentration of the component and D=(x, t)=diffusivity coefficient, both evaluated at pointx=(x, y , z) and time t, and where ▽C=grad C.Complexities leading to modifications of this simple model may arise from anisotropy, multicomponents diffusion, chemical reactions, external stress fields, memory and stochastic effects. In the case of concrete structures, for example, the diffusivity coefficient depends on several parameters, such as relative humidity,temperature, and mechanical stress, and the Fick’s equations must be coupled with the governing equations of both heat and moisture flows, as well as with the constitutive laws of the mecha nical problem (CEB 1992; Saetta et al. 1993; Xi and Bažant 1999; Xi etal. 2000).However, as mentioned, due to the uncertainties involved in the calibration of such complex models, the structural lifetime can be more conveniently assessed by using a macroscopic approach which exploits the power and generality of the basic Fick’s laws to predict the quantitative response of systems undergoing diffusion. In particular, if the diffusivity coefficient D is assumed to be a constant, the second order partial di fferential nonlinear Eq. (1) is simplified in the following linear form:where Despite of its linearity, analytical solutions of such an equation exist only for a limited number of simple classical problems. Thus, a general approach dealing with complex geometrical and mechanical boundary conditions usually requires the use of numerical methods. In this study, the diffusion equation is effectively solved by using a special class of evolutionary algorithms called cellular automata.蜂窝式无线通讯系统自动控制方法来分析在恶劣环境下混凝土结构的耐久性摘要:这篇文章描述了一种解决在外部荷载作用下混凝土结构耐久性分析和寿命评估问题的新颖的方法。

基于初等元胞自动机的二维Logistic_混沌系统

基于初等元胞自动机的二维Logistic_混沌系统

由于二维 Logistic 的分布并不均匀,直接将
整数作为密钥流并不安全,且对应的序列随机性
并不高,所以还需利用 ECA 对混沌系统的输出
Copyright©博看网. All Rights Reserved.
· 74·
2023 年
北京电子科技学院学报
图 4 7 bit 重排示意图
的比特位分别进行倒序重排,图 4 中第一行就是
究生物繁殖的数学物理模型,由元胞、元胞空间、
元胞邻居、迭代规则、边界条件构成,也是一种时
间、空间都离散的动力学系统 [14] 。 利用 CA 的
列 [15-17] ,1986 年,Wolfram 利用一维 CA 设计出
了性能较好的伪随机序列发生器,相较于线性反
1 1 二维 Logistic 混沌系统
董 [18] 提出了一种基于基本细胞自动机( ECA) 的
新型伪随机耦合方法的时空混沌系统,并根据
ECA 在每次迭代中向格子引入不同的扰动,使
(1)
得混沌系统中的周期窗口明显消退,序列随机性
Hua [13] 对该混沌系统进行研究,发现该混沌
初等元胞自动机( ECA) 是一种特殊的一维
yi + 1
制中有一定的应用价值。
关键词:混沌;初等元胞自动机;伪随机序列发生器;序列密码;Lyapunov 指数
文章编号:1672 - 464X(2023)2 - 71 - 81
中图分类号:TP309 7 文献标识码:A
契合 [3] ,成为了混沌密码诞生的契机。 由于只
0 引言
需要经过简单迭代以后就能产生复杂的混沌信
一次在数学上定义了“ 混沌” 概念,“ 混沌” 正式
农提出混淆和扩散的密码设计原则,这与混沌具

帕鲁词条中英对照

帕鲁词条中英对照

帕鲁词条中英对照帕鲁(Paru)词条中英对照帕鲁(Paru)是一个位于南美洲巴西亚马逊州的一个城市,同时也是该州的一个自治市。

帕鲁拥有高达35,000平方公里的热带雨林,被誉为“地球之肺”的一部分。

作为亚马逊雨林的一部分,帕鲁被认为是世界上最重要的生态系统之一。

Paru is a city located in the state of Amazonas, Brazil, and is also an autonomous municipality in that state. Paru boasts a vast tropical rainforest spanning over 35,000 square kilometers, known as a part of the "lungs of the earth". As a part of the Amazon rainforest, Paru is considered one of the most crucial ecosystems on the planet.帕鲁市以其丰富的生物多样性而闻名,这里栖息着成百上千种物种,包括热带雨林中独特的植物和动物。

这些物种的存在对维持全球生态平衡至关重要,因此保护帕鲁的生态环境至关重要。

The city of Paru is renowned for its rich biodiversity, hosting hundreds of species, including unique flora and fauna found in the tropical rainforest. The presence of these species is crucial for maintaining the global ecological balance, making the preservation of Paru's ecosystem paramount.除了自然风光和生态系统,帕鲁也有着丰富的文化遗产和传统。

地铁火灾的事故树分析

地铁火灾的事故树分析

地铁火灾的事故树分析第2强:l_.._=_.lllll____ll.ll_0llll_l_ll|_l_i.lllll_ll0.lI赚;报蹬地铁火灾的事故槲分析卢亿(华南理工大学机械与汽车工程学院,510640,广州//硕士研究生) 摘要运用事故树对地铁火灾进行定性分析.总结了地铁火灾事故发生及预防途径,提出了从火源,可燃物,扑救措施等三方面入手控制地铁火灾的对策措施,以供地铁管理部门参考.关键词地铁;火灾;事故树分析;预防措施中图分类号U231.96 FaultTreeAnalysisofFireDisasterinSubwayLuYi AbstractThispapermakesaqualitativeanalysisofthefire disasterinsubwaybyusingthefaulttreedesignform,sum—marizesthemainreasonsofaccidentandtheprevetionmethods,andeventuallyproposedsomefeasiblemeasures whichcouldofferscientificevidencestothesubwayadmin—istrationdepartment.Keywordssubway;firedisaster;faulttreeanalysis;pre—ventivemeasuresAuthor'SaddressSchoolofMechanical&amp;AutomotiveEn—gineering,SouthChinaUniversityofTechnology,51()64(), Guangzhou,China随着城市地铁的迅速发展,地铁灾害问题愈来愈引起人们的重视.文献E13通过对19()32()04年国内外发生的63起地铁典型事故发生频率统计分析,发现地铁火灾发生频率为32%[1],是地铁灾害中发生频率最高,造成损失最大的事故.据不完全统计,我国地铁自1969年相继投入运行到20()8年,因变电所,地铁车辆内的电气设备和线路出现故障,以及违章电焊和电器设备误操作等,共发生火灾156起,其中重大火灾事故3起,特大火灾事故1起_2].国外地铁也发生过多次火灾;据不完全统计,1903—2004年问共发生45起地铁火灾,典型的如1987年11月18日的英国伦敦地铁火灾,1995年1()月28日傍晚的阿塞拜疆地铁火灾,20()3年2月18日上午的韩国大邱地铁火灾l3].这些事故严重威胁人民的生命,造成巨大的财产损失,不利于社会的和谐与稳定.因此,对地铁火灾的研究显得十分必要.l国内外对地铁火灾的研究现状国内外对地铁火灾的研究主要集中在火灾发生的影响因素上,如:①材料的燃烧性能研究,寻找性能优异的阻燃材料;②地铁火灾中的烟气研究,主要采用经验模拟,区域模拟,网络模拟以及CFD(计算流体动力学)模型等对火灾烟气进行研究;③紧急情况下地铁中的人员疏散,目前疏散研究中最行之有效的方法之一便是建立疏散模型;④地铁火灾中的监控预防技术[4等.而对地铁火灾危险因素进行综合分析的还比较少,目前已采用的分析方法有层次分析法,模糊综合评价法,但未见运用事故树法对地铁火灾进行分析的报道.事故树分析法的逻辑性强,灵活性高,适用范围广,既能找到引起事故的直接原因,又能揭示事故发生的潜在原因,既可定性分析,又可定量分析.事故树分析可用来分析事故,特别是重大恶性事故的因果关系,并能总结出事故发生及预防的主要途径,是安全系统工程的主要分析方法之一L7].地铁火灾的危险因素多,且各因素之问既相互联系,又彼此独立,不利因素之间的多种组合都有可能导致地铁火灾的发生.这种情况采用事故树分析法是比较适宜的.因此,本文运用事故树法对地铁火灾危险的有害因素进行定性分析.2事故树定性分析2.1建立事故树通过阅读大量资料,了解了火灾发生的基本原因,遵循"事故成因分层逐渐展开"的原则,建立地铁火灾的事故树(见图1).其基本事件如表1所示.地铁内部空间空气相对不足,但对发生火灾而言是足够的.空气不足主要影响火灾发生后乘客的安全疏散,故不考虑其对顶上事件的影响,不作展开分析.图1所示的事故树中,用丁表示顶上事件,?9?誊鬻用M1,M2,M3,M4,M5,6,M7,M8,M9,M1o分别表示着火,扑救不及时,火源,可燃物,撞击火花,电火源,明火,未及时发现,发现但未引起注意,灭火设施不起作用.图1地铁火灾事故树图m胡表1基本事件代号基本事件代号基本事件施工中机械碰撞X+2乘客携带的行李,易燃物品2列车脱轨,碰撞3施工隧道内的可燃物,如煤气泄漏电气设备和线路故障x地铁站内的可燃物电器设备误操作Xt5火灾监控和报警设备存在死角x5违章电焊或切割火灾监控和报警设备失灵或不起作用列车运行时产生电弧t未及时向有关人员通报乘客吸烟的火星,随便乱丢烟头1s负责人员不重视8隧道内工作人员吸烟用火不慎1灭火设施不足故意纵火X2o灭火设施失效或损坏x1I】摩擦起火X2t不会使用列车车体材料及装饰材料X22惊慌失措2.2地铁火灾事故树定性分析2.2.1求最小割集与最小径集由图1可见,事故树包含了11个逻辑门;其中?96?逻辑或门9个,与门3个.容易求得事故树的最小割集有320个(不一一列出),最小径集只有3个,故宜从事故树最小径集人手进行分析.第_2期000000000_.≯000.llll|ll_|llll_ll_l_—0000ll_獬:事故树的结构函数式为:T=M1?M2=3?M4?M2=(M5+6+7+X1【1)(X11+X12+13+X14)(M8+M9+M1(1)=X+x2七x3+x4+Xj+xb+x1+8+9+X1())(X11+12+Xj3+X14)(X15+X16+X17+X18+Xl9+2(】+21+X22)故得到事故树的3个最小径集为:P\=x,x2,X3,X4,X5,x6,x1,x8,X9,x,b\P2={12,14}P3={15,16,17,,19,2(1,21,22}2.2.2求结构重要度系数分析以上最小径集P~P.,得最小径集的阶数,p10,p,4,8,且各基本时间均只出现过1次,故结构重要度系数I(1)=I(2)=……=I(10),I(11)=I.(12)=I(13)=I(14),,(15)=I(16)=……=I(22).可求得:I(1)=1/2"≈().()0195I(11)=1/2≈(】.125(15)=1/2≈().00781由此得出结构重要度顺序为:,.(11)=I.(12)=,(13)=,(14)&gt;,(15)=I(16)……I(22)&gt;I(1),(2)=……=I(10)3评价结果分析1)由事故树最小割集的数量可知,导致事故发生的途径有320种,说明地铁火灾极易发生.2)由事故树最小径集的数量可知,预防事故的途径只有3种.根据最小径集定义,只要事故树中的这些基本事件不发生,顶上事件就不会发生,故有如下3种方案可预防地铁火灾的发生:①从P人手,即杜绝火源;②从P人手,即杜绝可燃物;③从P.人手,即采取措施及时扑救火灾.以上3种方案正是从火灾事故发生的3个必要条件——火源,可燃物,滞后的扑救措施人手来防止火灾事故的发生, 是合理的.3)方案分析:原则上应选取包含最少基本事件的最小径集P.作为最优方案,即杜绝可燃物,这与结构重要度的分析结果也是一致的.方案中基本事件可以通过使用先进的阻燃材料来杜绝,但要杜绝的发生并非易事,需要乘客,地铁管理人员,施工人员等的积极配合.P包含的基本事件虽多,但实质就是加强火源的管理,增强公众的火灾风险意识.P包含的基本事件也很多,但实质就是提高负责人员及就乘人员的素质,改善火灾监控与报警设备的功能.除地铁系统本身的材料,功能等地铁自身因素外,以上3种方案都与安全教育与安全管理工作密不可分;3种方案是相互联系的, 仅选取3种方案中的1种是不科学的.因此,用事故树对地铁火灾进行分析具有一定的局限性,但能为制定对策措施提供参考.4减少地铁火灾的对策措施根据以上分析,现提出如下对策措施以减少地铁火灾的发生.1)采用先进的设备或材料:车辆,线路,信号标志等设备都直接影响到列车的安全运行.车辆所使用的阻燃材料是否合格,安全装置是否充足有效,车辆是否符合运行要求,车辆技术状况的好与坏,都会直接影响到地铁的运行安全.韩国大邱地铁车厢内为了防止触电未安装自动报警设备和自动淋水灭火装置,同时未采用先进的阻燃材料,易燃材料燃烧后产生了大量毒气和烟雾,导致了事故的扩大[_=11].2)加强对公众和工作人员的安全教育:社会有关部门要多做安全防火宣传,让公众知道如何尽自己的一份责任减少火灾的发生以及火灾发生时如何冷静理智地对待;新闻媒体在火灾时应客观如实地对灾情进行报导,灾后多做正面报导,和地铁运营部门一起努力重建公众对地铁安全的信任感;加强对工作人员的教育,加强工作人员的责任感.统计表明,几乎每一起重大事故都与地铁工作人员的失职有关,故应加强地铁驾驶人员,维修人员,施工人员的安全教育与培训,杜绝违章操作与误操作.3)加强地铁系统内的安全管理:地铁运营部门是地铁火灾防治的主要执行部门,加强其内部的安全管理,可以起到更加直接的火灾预防作用.具体措施包括:建立进站安全检查制度,派设安全巡视人员,对站台和列车内的情况进行监控,营造舒适的工作和就乘环境,加强对可燃物的管理,对系统设备定期检修和改进,对职工和乘客进行安全教育培训等[1.4)建立自动监视及自动报警系统:为保证地铁的安全运行,每个地铁系统都应具备监测及自动报(下转第102页)?97?《黼潼交翘羁0ll00ll000lllll00000llllll'_0叠曩未涉及其它方面,在应用时更应该全面考虑各种因[6]王彦富,蒋军成.地铁火灾人员疏散的研究[J].中国安全科学素的影响,如换乘设施的设置,客流的诱导等.,''',():'[7]刘真余,芮小平.地铁紧急疏散模型的研究[J].铁路计算机应参考文献用,2008,18(1):25.[8]KardiTeknomo.Microscopicpedestrianflowcharacteristics:[1]谢灼利,张建文,魏利军,等-地铁车站站台火灾中人员的安developmentofanimageDroces;ingdatacolktionand全疏散_J]?中国安全科学,20{)4,14(7):21.!fimtdatk)nModel[D].Toh,0ku:TohokuUniversity,2002.[2]李瑜芳,徐瑞华.火灾下城市轨道交通车站乘客疏散特点分[9]B1uevJ,Adh:rJL_Fundamentalp(:destri~anflowsflrom析[J]?城市轨道交通研究,2010,13(2):42?celluLarattomataⅡficro- simulationrJ].Transportation[3]张建勋,韩宝明,李得伟.VISSIM在地铁枢纽客流微观仿真ResearchRecord,1998(1644):29.中的应用LJ].计算机仿真,2007,24(6):55._10]victorJ.BlueJLA.Cellularautomatamticro-si~nutl,ation(ff [4]喻言,刘栋栋,孔维伟.地铁出口和内部条件对人员疏散的影bidhrectiona1p(:destriaiDfl,3w[J].Transt.)o,rtafionResearch响分析及应用[J].北京建筑工程学院,2008,24(4):30.Record,2000(1678):135.[]V][SSIM5?O0用户说明书[耶]?(2008—05—24)?http://(收稿日期:2009—09—15) (上接第97页)警系统,将火灾消除在萌芽状态.传统的火灾探测器消而不防,造价高昂,需要经常对探测器进行清洁维护,保养,而且其漏报,误报率极高,严重影响了火灾自动报警系统的效率[4].现在人们已研制出了一些新型的消防探测和灭火系统,如线型光纤感温火灾探测报警系统,明显提高了火灾自动报警系统的效率.5结语地铁作为大容量的公共交通工具,其安全性直接关系到广大乘客的生命安全.本文运用事故树原理对地铁火灾的危险因素作了定性分析,得出如下结论:地铁火灾发生的途径很多,预防火灾需要从火源,可燃物,扑救措施等3方面人手;除采用先进的设备,材料和提高火灾监控和报警系统的效率等硬件措施外,更应该加强地铁系统的安全管理和对公众的安全教育,从而有效防止地铁火灾事故的发生.参考文献r1]代宝乾,汪彤,丁辉,等.地铁运营系统危险有害因素辨识分[2][3][4][5][6][7][8][9][ic1][11][12]析[J].中国安全科学,2005,15(10):80.邓艳丽,谭志光.地铁火灾研究现状综述[J].安防科技,2008 (1):6.杜宝玲.国外地铁火灾事故案例统计分析IJ].消防科学与技术,2007,26(2):214.杨立中,邹兰.地铁火灾研究综述[J].工程建设与设计,2005 (11):8.马一太,曾宪阳,刘万福.地铁火灾危险性的模糊综合评判_J].铁道,2006,28(3):1I36.宋维华,殷位洋浅谈层次分析法在预防地铁火灾事故中的运用[J].现代城市轨道交通,2007(1):45.张飞,周连春,王文才,等.煤矿火灾的事故树分析[J].煤炭工程,2【1(】9(6):69.朱向东,石剑荣.学生宿舍火灾事故树分析[J].安全与环境工程,2009,16(1):78.陈国华.风险工程学[M].北京:国防工业出版社,2007.周立新,陈锐,张莉.地铁火灾乘客疏散的仿真分析_J].城市轨道交通,20{Il9(6):30.李为为,唐祯敏.地铁运营事故分析及其对策研究[J].中国安全科学,2004,14(6):1()5.蒋雅君,杨其新.对地铁火灾防治的新认识[J].城市轨道交通研究,2006(6):18.(收稿日期:2009—10—14)北京至武汉高速铁路年内通车全程4小时2011年1月15日,铁道部举行2011年全国铁路春运新闻发布会透露,今后几年,每年投产的铁路新线都在8000km左右,并公布了今年几条重要高速铁路的建成通车时间:6月北京至上海高速铁路建成通车;随后,哈尔滨一大连高速铁路通车,天津一秦皇岛高速铁路投入运营,并连接已运营的北京一天津,秦皇岛一沈阳的城际高速铁路,由此,东北的高速铁路初步成网;年底,北京一石家庄一武汉的高速铁路建成通车,武汉至北京全程时间仅需4h,和已经运营的武广高速铁路相连,整个大京广的高速铁路全线运营通车,同时,武广高速铁路延伸到深圳;南京一杭州,杭州一宁波的高速铁路也会建成通车,和已经运营的沿海高速铁路形成网络.(摘自2011年()1月16日《武汉晚报》,记者左洋报道)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P.M.A. Sloot, B. Chopard, and A.G. Hoekstra (Eds.): ACRI 2004, LNCS 3305, pp. 502–512, 2004.© Springer-Verlag Berlin Heidelberg 2004Cellular Automata inEcological and Ecohydraulics Modelling Arthur Mynett and Qiuwen ChenWL | Delft Hydraulics, P.O. Box 1772600 MH Delft, The Netherlands{arthur.mynett, qiuwen.chen}@wldelft.nlAbstract. Cellular Automata are discrete dynamical systems in which many simple components act together locally to produce complex patterns on a global scale, which may exhibit “self-organising” behaviour. Owing to the ability to model local interactions and spatial heterogeneity, cellular automata have been applied to very broad fields. This paper presents the application of cellular automata to modelling (i) a confined ecosystem, (ii) prey-predator population dynamics, where evolution rules are defined entirely by geometric relations,and (iii) open aquatic ecosystems where external forcings are accounted for in the definition of cell state transitions. The results indicate that cellular automata could be a valuable paradigm in ecological and ecohydraulics modelling.1 IntroductionCellular automata (CA) constitute a mathematical system in which many simple components act together to produce complicated patterns of behaviour. CA models define interactions between species at a local level. Complex interactions emerge on a global scale through the evolution of relatively simple local rules. Such global behaviour may be very difficult – perhaps even impossible – to describe by a set of deterministic equations due to complicated temporal and spatial relationships. The ‘self-organising’ property of CA implies that a randomly distributed population can generate ordered structures through a process of irreversible evolution (Chen, 2004).Cellular automata have been applied in very broad fields, such as lattice gas hydrodynamics, urban dynamics and forest fire spreading. Owing to the ability to deal with local interactions and spatial heterogeneity, cellular automata may provide a viable approach in ecological modelling. This paper presents the capabilities of cellular automata for modelling ecological and ecohydraulics systems through several case studies. Applications include macrophyte vegetation dynamics (Chen, et al.,2002), population dynamics (Chen and Mynett, 2003) and harmful algal bloom prediction (Chen and Mynett, 2004). The model results indicate that CA could be a valuable alternative for differential equations in ecological / ecohydraulics modelling.2 Cellular Automata for Modelling Prey Predator DynamicsModelling population dynamics is of increasing interest in ecological research. These kinds of ecological models are used either for qualitative estimates about species extinction or for more quantitative estimates of spreading and interaction of multiple 网络自动机模拟不连续的,离散的动力系统展现出自组织由于交互作用空间异质性把…应用到封闭的生态系统捕食进化规则,进化论清晰的几何关系开放的水生系统外力证明定义细胞状态转换显示有价值的范例建立定义交互作用出现全球尺度相对简单地确定性方程复杂的时间,空间关系性质随机分布的人口不可逆演化产生有序结构应用到晶格气流体动力学城市动态森林火灾蔓延可行的方法水生植物赤潮选择微分方程定性评估物种灭绝定量评估Cellular Automata in Ecological and Ecohydraulics Modelling 503species under various environmental conditions. They also provide decision support to natural resources management like sustainable harvesting strategies in fishery industries. Population dynamics, however, is not very easy to describe mathematically due to the high complexity of the spatial and temporal relationships. Conventional population dynamics models are mostly aggregated, lumping species into biomass and formulating the dynamics by means of ordinary or partial differential equations. Oneof the simplest paradigms is provided by the predator-prey equations of Lotka-Volterra (LV). However, these models may fail to produce realistic results when individual properties and local interactions play a significant role in determining the relationships between populations and between species and its surroundings.An alternative approach is to apply individual-based modelling techniques or spatially explicit modelling paradigms. In this paper, a cellular automata based prey-predator model (EcoCA) is developed and compared with the Lotka-Volterra model.2.1 Development of EcoCAEcoCA is a stochastic cellular automata based computer simulation model that was developed to approximate a simple prey-predator system (Chen, 2004). It is a two-dimensional CA model which has up to three possible cell states: empty, prey and predator. The boundary conditions are fixed in such a way that the neighbourhoods are completed with cells taking the state of empty. The state of each cell is exclusive;namely that at each time step only one of the three states can exist in one cell. Theevolutions for each cell (i, j) are based on cell current state S i j t ,, the number of itsneighbouring cells occupied by prey, N p yt, and the number of its neighbouring cellsthat are occupied by predator, Npdt , as given by,(,,)t t ti j py pd p f S N N =(1)where f are evolution rules defining the transition probability p that a cell will becomeeither prey or predator dominated or empty at the next time step. These evolution rules take into account reproduction, mortality, predation, loneliness and overcrowdedness. Snapshots of a random initial condition and the spatial pattern at t =600 of a demonstrated run are presented in Fig 1.Fig. 1. Snapshots of initial condition (t = 0) and population dynamics (t= 600)不同环境状况为支持天然资源管理可持续开采策略海捞法规人口动力空间时间传统的大多聚集聚集表达普通或部分微分方程捕食方程?现实的个人财产替代方法个人本位随机的模拟模型接近二维空间的最多具有单元状态边界条件邻域唯一的换句话说跃迁概率,转变几率支配复制死亡捕食行为?空满快照随机初始条件空间图形504 A. Mynett and Q. ChenSeveral runs of this system with various starting conditions all lead to very similar patterns and results as exemplified by the plot of the population dynamics and phase dynamics (Fig 2).Fig. 2. Population dynamics of prey and predator (left), and phase trajectory (right)Table 1. Statistical descriptors of EcoCA model outputMean Standard deviationSkewness Prey 38972.20.11Predator10618.40.112.2 Quantification of Model ResultsThe model is tested to be trend-free, and it also passes the F -test that the variance is constant as well as the t -test that the mean is constant, by using split-record tests. This means that the system is stationary and the simple statistical descriptors given in Table 1 can describe the outputs from the CA ing this way to quantify and visualise the performance of the CA model, it becomes possible to compare the CA model results with real and measured data. As a starting point it was decided to produce a test data set based upon the classical spatially homogeneous LV prey-predator model. This simple deterministic model provides a continuous description of a two-species competition system and may be described in terms of the following ordinary differential equation system:2dGaG bG GH dt α=−−(2)dHcH GH dt β=−+(3)where G represents the population of prey, H represents the population of predators, a is the intrinsic growth rate of prey, b is the carrying capacity limit, c is the mortality rate of predator, α is the functional response of prey on predator, and β is the functional response of predators to prey. Each and every organism in the prey population (G ) and in the predator population (H ) is considered only in relation to thetotal quantity of its functional type. The effect of the predators upon the prey population is only measured by the ‘functional response’ term GH .可作榜样的情节相轨迹量化无趋势变化恒定的拆分记录不动的说明输出的信息形象化同质的捕食模型连续的形容以…的观点常微分方程被掠食者的数量捕食者的数量被掠食者本身的增长速率承载能力极限捕食者的死亡率功能反应生物,有机体与…有关功能型种群动力Cellular Automata in Ecological and Ecohydraulics Modelling 505These equations are highly non-linear. A 4th order Runge-Kutta method was applied to solve these equations numerically, using a time step of 0.2 days. In order to examine whether the CA model output was at all representative for the population dynamics described by the LV equations, the LV model was first calibrated to minimise the mean square error between the CA model output and the LV model output. The population dynamics and phase trajectory of the LV model is given in Fig 3.Fig. 3. Population dynamics of prey and predator (left), and phase trajectory (right)The LV model obviously displays a more uniform and regular periodicity. This is of course a result of the purely deterministic nature of the governing equations, such that the period of oscillation is largely determined by the parameters of the model and the amplitude is determined solely by the initial conditions. Although severe reservations can be expressed about the realism of the LV model for modelling natural systems, the resulting stable limit cycle is an observable property of real populations (May, 1976). Nevertheless, in the absence of real data, the results for theLV model do provide us with a set of data that can be used to perform a quantitative comparison with the CA model. Using the methodologies described above we can quantify the magnitudes of the trend and the periodic components. Once more, the time series was tested for the absence of trend and the invariability of the mean and variance. Having satisfied these tests, the statistical properties of the LV time series were then calculated. These properties are summarised in Table 2.Table 2. Statistical descriptors of LV model outputMean Standard deviation Skewness Prey 389550Predator112140Comparing the values of the statistical descriptors in Table 2 with those in Table 1, it is seen that the means of the two populations are very similar in both cases. The variance of the CA model, however, is significantly larger than the LV model and, of course, the LV model results are completely uniform and thus have a skewness of zero. The differences in the CA model can be explained by the stochastic componentin the CA model, which is entirely absent in the LV model.Based on the results of this非线性的适用于不惜一切?校准求最小值平均平方误差种群动力相轨迹统一的周期性规律的基本方程振动振幅单独地初始条件真实性由此产生的稳定极限环可观测的财富然而缺席比较趋势的幅度周期分量不变性均值和方差概括均值标准偏差偏斜度数据说明方差完全均匀随机分量506 A. Mynett and Q. Chenanalysis, it seems fair to say that the mean field results of the CA model quite closelymatch the population dynamics represented by the classical LV model output.3 Cellular Automata for Modelling Macrophyte Dynamics Clearly, the dynamics of Conway’s “Game of Life” and the EcoCA model introduced in section 2 is still purely dependent on geometric relations between neighbouring cells, and does not account for physical or biological processes. Therefore, the approach followed here is to extend the conventional cellular automata paradigm by incorporating external forcing. The CA model dynamics are thus not solely governed by the geometric relations of the particular stencil that was chosen, but also by external factors (Chen, et al., 2002a), as illustrated in Fig 4. The first case study involves a CA based model developed to simulate the competition and succession oftwo macrophyte species in the eutrophic Lake Veluwe, the Netherlands.Fig. 4. Diagram of CA model coupling with other models3.1 Description of Study AreaLake Veluwe is an artificial isolated part of the larger Lake IJssel in the centre of the Netherlands. The total water surface is around 3300 ha, with an averaged depth of 1.4m. It was formed by the construction of dams in the Southeast part of Lake IJssel in 1952 (Fig 5). According to long-term documentation, the submerged vegetation ofthe lake has experienced a great change after its formation due to the change in nutrient loading. Before 1968, the water in the lake was clear, with diverse macrophyte vegetation. Due to discharge of wastewater from some small cities, the lake was eutrophicated, and blue-green algae became dominant. Some restoration measures were taken in late 1970s, which resulted in the increase of P. pectinatus .The increase of P. pectinatus provided the precondition for the return of C. aspera .After 1990, C. aspera colonised steadily and gradually replaced the dominance of P.pectinatus .From an ecological point of view, it seemed that P. pectinatus would outcompete C. aspera in this lake system. However, C. aspera outcompeted P. pectinatus and replaced it gradually in Lake Veluwe. Analysis of long-term observations indicated a self-reinforcing ability of C. aspera during eutrophication. C. aspera returned at a lower phosphorus level (0.1 mg/l) than the level at the time of their disappearance (0.3平均场结果水生植物动态几何关系对…负有责任延长,扩展传统的网格自动机范例结合外部力单独地几何关系模板模仿人工的孤立的公顷通过…形成水坝建设水中浸没的植被形成营养负荷不同的水生植被污水排放富营养化蓝绿藻恢复措施先决条件稳步拓殖在与…竞争中胜出长期观察指出自增强能力富营养化磷水平Cellular Automata in Ecological and Ecohydraulics Modelling 507mg/l), a phenomenon known as hysteresis, therefore phosphorus is not a key factor in this case. It is supposed that the competition of dissolved inorganic carbon -13HCO and competition of light are the two main factors of the succession. However, the replacement process remained unclear, and triggered the demand for model simulation. In view of the environmental heterogeneity and the local interactions, this research selected a CA approach to simulate the competition of light and -13HCO in order to explain the essential features of the replacement process.Fig. 5. The study area Lake Veluwe3.2 Model DevelopmentIn this CA model, deterministic evolution rules obtained through laboratory and field experiments are applied. The model is designed to contain two partly interacting parallel submodels, one for P. pectinatus and the other for C. aspera . The processes considered in each submodel include shading, attenuation, -13HCO competition,photosynthesis, respiration, morality and spreading. A conceptual framework of the model can be found in Chen, et al., (2002). General aspects of the model include: (1)germination of P. pectinatus and C. aspera from propagules; (2) initialisation with exponential growth rate; (3) growing and spreading; (4) production of propagules.The deterministic evolution rules used in this CA model are based on laboratory experiments and are calibrated against field observations. The algorithms involved are presented in some detail in Chen et al. (2002).3.3 Results and DiscussionThe simulations of the model are presented in two ways: by visualisation of the growing and spreading patterns of the two species in the lake, and by time series of biomass density averaged over sampled cells. Two graphs (Fig 6) show the changes of biomass density of P. pectinatus and C. aspera in each cell and the colonisation process resp. As shown in Fig 6, the colonisation is from the Northeast to the Southwest, and it is faster in longitudinal direction than in transverse direction.Besides, the colonisation of C. aspera is faster than that of P. pectinatus . SeveralVeluwe滞后现象磷溶解无机碳猜想引发对模型仿真的需求异质性通过实验室获得适用交互并行子模型光合作用呼吸作用概念框架一般特性发展繁殖体初始化指数增长速率用…进行标定运算法则可视化生物量密度样品池定植纵向横向508 A. Mynett and Q. ChenC. asperaP. pectinatusC. asperaP. pectinatussimulation scenarios were carried out to test the governing factors. The results showedthat the light intensity and -13HCO are two major factors to the competitive growths of C. aspera and P. pectinatus in Lake Veluwe. Thus, shading and competition of-13HCO become two important processes. The scarcity of -13HCO has a great negative effect on the growth of P. pectinatus , while it has a indirect positive effect onthe growth of C. aspera , which is advantageous to the replacement of P. pectinatus by C. aspera . These results are compatible with the field observations of Marcel (1999),who explored an individual based model to study the effects of changing environmental conditions on the dynamics between C. aspera and P. pectinatus . It can be concluded that a CA model with deterministic local interaction rules proved to be a good modelling paradigm where other methods had failed so far.Fig. 6. Germination of both species (P. pectinatus germinates earlier than C. aspera ) at the left,and colonisation pattern by the end of the second year (P. pectinatus spreads slower than C.aspera ) at the right4 Fuzzy Cellular Automata for Modelling Harmful Algal BloomsThe EcoCA and the macrophyte models use either stochastic rules or deterministic rules. However, there are many systems, in particular ecosystems such as harmful algal blooms, where the detailed mechanisms and their statistical behaviour remain unclear. For that reason, a fuzzy logic technique is introduced into the cellular automata paradigm for rule formulation, denoted as Fuzzy Cellular Automata.4.1 Description of the Study Area The Dutch coast receives outflow from the rivers Rhine and Meuse and is one of the most productive fishing areas in the world. In the past 20-50 years, the increase in nutrient discharged by the rivers has led to eutrophication of the coastal zones. Spring algal blooms occur frequently in Dutch coastal waters. The blooms, defined as chlorophyll a concentration ≥ 30 µg/l, are usually non-toxic, but they may be harmful because the dead algae can lead to anoxia and result in massive mussel mortality.Algal blooming is a multidisciplinary and complex problem wherehydrodynamic, chemical and biological processes take place simultaneously. The 模拟场景控制性因素光密度缺乏,不足间接的有利的协调的萌芽,发展定植模式失真的模拟有害藻类繁殖水生植物随机的决定性的详细的结构统计行为模糊逻辑技术引入制作规则表示为说明荷兰的流出物营养物泻出导致超营养作用海岸带春藻繁殖定义为叶绿素浓度无毒缺氧症大量贻贝死亡多学科的同时地Cellular Automata in Ecological and Ecohydraulics Modelling 509blooms usually occur very locally and show strong patchy dynamics. Some of the processes such as the hydrodynamics can be simulated numerically in detail, while a lot of biological mechanisms remain unclear. Besides, water quality and biological data are usually sparse and uncertain for detailed analysis.Therefore, in this research an integrated numerical and fuzzy cellular automata model was developed to predict phytoplankton biomass and hence algal blooming in the Dutch coastal waters. The numerical Delft3D-WAQ (water quality) module simulates the flow and transport conditions. The fuzzy logic module was transferredfrom the one that was developed on the basis of Noordwijk 10 data (Chen and Mynett,2004a) and was used to predict algal biomass on the basis of the computed abiotic factors. In order to take into account the spatial heterogeneity and local behaviour and to capture patchiness dynamics, a cellular automata paradigm was implemented in the developed model where the local evolution rules f are defined by fuzzy logic.The study focuses on the near shore area of the Dutch coast (Fig 7). The water depth is between 0 and 30 m, and water temperature varies from 5 to 22 ºC, and theirradiance is between 132~1700 Whm -2day -1. The concentrations of inorganic nitrogen and phosphorus are between 0.007~1.246 mg/l and 0~0.073 mg/l respectively. The biomass concentration (in chlorophyll a ) is from 0.1 ~ 90.2 µg/l.The discharge from the River Rhine at the Maassluis station (including tidal effects) is between -2744~4649 m 3/s, with a mean of 1382 m 3/s. The water is usually well mixedexcept for temporary weak stratification caused by salinity.Fig. 7. Study area of Dutch coast of the North Sea and computational grid (right)4.2 Model DevelopmentA curvilinear grid is used for the computations with Delft3-WAQ (Fig 7), totalling 1157 computational cells in the studied area. Following the computational approach as outlined in Chen (2004), the nitrogen, phosphorus and the transport are calculated first. Since the studied area is usually well-mixed with only temporary and weak stratifications, the mean water column irradiance is used.局部地局部动态数字上地稀薄的综合数值失真的浮游植物生物总量并未见有逻辑关系!模数,组件转自非生物计算空间异质性捕捉斑块动态完成近岸海域辐射度无机氮磷各自地要不是由于暂时的弱分层盐性曲线网格计数计算方法描述平均水柱辐射度510 A. Mynett and Q. ChenThe fuzzy logic model was introduced to predict algal biomass on the basis of the calculated nutrient concentrations. The membership functions of Chla and dissolvedinorganic nitrogen are shown in Fig 8. The other variables include Julian date, water temperature and concentration of dissolved inorganic phosphorus. There are in total 72 inference rules in the rule base that come both from ecologists’ experience and from the data learning process. The simulation time step for nutrients is 1 hour and that for algal biomass is 7 days, therefore a time aggregation is made before initiating the fuzzy cellular automata module. The cellular automata module is directly implemented on the topological connectivity of the curvilinear grid. The Moore neighbourhood configuration is applied in the CA model and the local evolution rules constructed by fuzzy logic techniques follow the general formula:1*1,,,(,,)t t t t i j i ji jNSf S SS ++=∑(4)where 1,t i j S +is the state of cell (i , j ) at time step t +1, *1,t i j S +is the state of the cell (i , j ) at time step t +1 which is preliminarily predicted by the fuzzy logic model, andtNS ∑are the states of the eight neighbouring cells at time step t , while f represents the local fuzzy evolution rules.Fig. 8. Membership functions of model variables and output (left: TIN; right: Chla)4.3 Results and DiscussionThe model results for dissolved inorganic nitrogen, inorganic phosphorus and chlorophyll a concentrations in 1995 are given at the left of Fig 9 while the figure at the right shows a satellite image at the peak-bloom period. The modelled peak value of chlorophyll a at station Noorwijk 10 is 48 µg/l which appeared on 30thApril. By examining the observations of 1995, it is found that the algal bloom initiated by the end of April and the first peak at station Noorwijk 10appeared on May 3rd with a chlorophyll a concentration of 58.2 µg/l. The modelled bloom timing and intensity from the fuzzy cellular automata module are seen to be somewhat close to the observations. In the spatial domain, the algal biomass is higher in the estuaries than in the coastal waters since it affected by the residual flow from the River Rhine. For comparison, the satellite image of algal bloom at the beginning of May 2003 along Dutch coast is shown in Fig 9 (right). It is difficult to quantitatively compare the modelled algae concentrations with the satellite image隶属函数溶解无机氮变量溶解无机磷时间聚合拓扑连通性配置通式预先地卫星成像峰值开始时间和强度空间范围河口残流定量对比Cellular Automata in Ecological and Ecohydraulics Modelling 511Fig. 9. Concentrations of modelled algal biomass (left) and remote sensing image (right) atpeak-bloom period.observations. However, the modelled spatial patterns are shown to be comparable with the observation. It is particularly important to point out that the application of the cellular automata paradigm has enhanced the capability of capturing patchy dynamics which can be observed from Fig 9. The case study demonstrated that this way of integrated modelling seems a promising approach indeed.5 DiscussionsIt becomes apparent from the research that in ecological modelling, cellular automata exhibit good flexibility in realising local interactions and spatial heterogeneity. In order to model practical aquatic ecosystems, it is imperative to extend the purely geometrically-determined rules to include external factors. The selection of cell size and time step is determined by the governing physical and biological processes. Based on these ideas, the CA model successfully simulated the competitive growth and succession of two underwater macrophytes in a eutrophic lake, where previous efforts using PDE models failed and had to be replaced by an individual based model.However, in aquatic ecosystems, there are usually many mechanisms remainingunclear and their statistical behaviours are difficult, if not impossible, to be defined due to limited data. Neither deterministic nor stochastic description alone is enough under such conditions. The study presented in this paper demonstrated that, although still at the initial stage, the potential to integrate different paradigms (CA and PDEs)and different techniques (fuzzy logic and numerical simulation) in ecosystem modelling. Their strength lies in the fact that (1) some processes can be simulated in detail numerically; (2) some irregular and sparse data, and the empirical knowledge from experts can be encapsulated by fuzzy logic; (3) the spatial heterogeneity, localinteractions and emergence of patchiness are captured through cellular automata.遥感空间图形证明集成建模显然的适应性实现本地互动和空间异质性实际的水生态系统势在必行的纯粹的几何确定关系营养正常的水上的生态系统潜在性不规则的,稀疏的经验主义的封装出现得到512 A. Mynett and Q. ChenReferences1.Chen, Q., Mynett, A.E., Minns, A.W., 2002. Application of cellular automata to modellingcompetitive growth of two underwater species C. aspera and P. pectinatus in Lake Veluwe. Ecological Modelling, 147: 253-2652.Chen, Q., Mynett, A.E., 2003. Effects of cell size and configuration in cellular automatabased prey-predator modelling. Simulation Modelling Practice and Theory, 11: 609-625 3.Chen, Q., 2004. Cellular Automata and Artificial Intelligence in Ecohydraulics Modelling,PhD thesis, Taylor & Francis Group Plc, ISBN: 90 5809 696 34.Marcel, S., 1999. Charophyte colonisation in shallow lakes. PhD thesis, University ofAmsterdam。

相关文档
最新文档