基于单片机控制的锂电池充电和保护
基于单片机的锂离子电池充电器设计
基于单片机的锂离子电池充电器设计摘要:锂离子电池充电器应用非常广泛,它用到了单片机模数转换采样技术。
除此之外,锂离子电池充电器在电路设计上用到了保护机制与应急处理机制,基准电压发生器和多充电模式设计方法。
关键词:充电充电器单片机随着笔记本电脑、移动电话机以及小体积高功率电器的广泛应用,锂离子电池也被广泛地用作供电电源。
本人利用单片机设计锂离子电子电池充电器,由于充电器的规格和功能不同,其结构和电路布线也会软件设计存在很大的不同。
锂离子电池充电器的设计分为硬件设计、锂离子电池充电器的设计分为硬件设计、软件设计两个部分。
本文重点介绍充电器的硬件设计。
1 充电器功能的描述按照目前市面上常用的手机电池,设计了一款通用的锂离子充电放电曲线与充电器的设计参器。
只要用户手机电池的特性参数和充、只要用户手机电池的特性参数和充、放电曲线与充电器的设计参数相同,就可以利用它来进行充电。
按照锂子电池的特性参数和充放电曲线完成充电器设计,经产品测试后,可以完成的功能如下:(1)电池充电功能。
完成基本的功能,能按电池的充电曲线,完成恒流/恒压充电。
(2)LED指示。
电池正在充电,充电器的LED指示灯显示为红色;充电后,LED指示灯为绿色。
(3)保护机制。
当电池和充电器的工作温度超出设定的范围,或者充电电压出现异常时,系统的红色LED 指示灯间隔0.5s 闪烁一次。
此外,对于过压和过流状况采取相应的保护措施,保证充电的正常进行。
(4)异常处理。
系统能在排除异常后,重新恢复充电。
重新恢复充电。
2 充电器硬件设计充电器硬件设计2.1 系统设计框架及技术参数系统设计框架及技术参数设计系统框架时,应考虑系统的可靠性和安全性。
为了保证充电不对电池造成永久性的损坏,在设计中必须考虑保护措施(包括过流保护,过压保护和温度保护)。
另外,充电器充电过程包括了恒流工作阶段和恒压工作阶段,且系统必须保证恒流、恒压的稳定性。
系统的设计框架,包括电压/温度采样模块、开关控制模块、保护机制模块和充电模块(实际设计中并没有严格按照这种顶层的模块划分)。
基于单片机的锂电池充电器设计
基于单片机的锂电池充电器设计摘要电子技术的快速发展使得各种各样的电子产品都朝着便携式和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。
目前,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。
它们的各自特点决定了它们将在相当长的时期内共存发展。
由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有诸多不便。
本课题设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。
阐述了系统的软硬件设计。
以C语言为开发工具,进行了详细设计和编码。
实现了系统的可靠性、稳定性、安全性和经济性。
该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。
在生活中更好的维护了充电电池,延长了它的使用寿命。
关键词:充电器;单片机;锂电池;MAX1898Lithium Battery Charger Design Based On Single ChipAbstractElectronic technology's fast development causes various electronic products develops toward portable and the small lightweight direction, It also causes the more electrification products to use based on battery's power supply system. At present, the many use's batteries have the nickel cadmium, the nickel hydrogen, the lead accumulator and the lithium battery. Their respective characteristic had decided they will coexist in a long time develop. Because the different type battery's charge characteristic is different, usually to different type, even different voltage, capacity rank battery use different battery charger, but this has many inconveniences in the actual use.This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency.The intelligence battery charger has the examination lithium ion battery's condition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life.Key words:Charger; SCM;Lithium battery; MAX1898目录引言 (1)第1章绪论 (2)1.1课题研究的背景 (2)1.2课题研究的主要工作 (3)第2章电池的充电方法与充电控制技术 (5)2.1电池的充电方法和充电器 (5)2.1.1 电池的充电方法 (5)2.1.2 充电器的要求和结构 (9)2.1.3单片机控制的充电器的优点 (10)2.2充电控制技术 (10)2.2.1 快速充电器介绍 (10)2.2.2 快速充电终止控制方法 (11)第3章锂电池充电器硬件设计 (14)3.1单片机电路 (14)3.2电压转换及光耦隔离电路 (17)3.3电源电路 (18)3.4充电控制电路 (20)3.4.1MAX1898充电芯片 (20)3.4.2充电控制电路的实现 (24)第4章锂电池充电器软件设计 (26)4.1程序功能 (26)4.2主要变量说明 (26)4.3程序流程图 (26)结论与展望 (29)致谢 (30)参考文献 (31)附录A 电路原理图 (32)附录B 外文文献及其译文 (33)附录C 主要参考文献的题录及摘要 (40)附录D 主要源程序 (42)插图清单图2-1 恒流电源充电电路 (5)图2-2 准恒流充电电路 (5)图2-3 恒压充电电路 (6)图2-4 浮充方式充电电路 (6)图2-5 涓流方式的简单示意图 (6)图2-6 分阶段充电的简单示意图 (7)图2-7 -△V控制系统框图 (7)图2-8 充电电池、电池电压和充电时间的关系 (8)图2-9 电池温度检测简图 (8)图2-10 电池温度和充电时间的关系 (9)图2-11 充电器结构框图 (10)图2-12 锂电池的充电特性 (11)图2-13 快速充电器原理框图 (12)图3-16N137光耦合器 (18)图3-2 lm7805样品 (18)图3-3 LM7805内部结构框图 (19)图3-4 LM7805功能框图 (20)图3-5 MAX1898的引脚 (21)图3-6 MAX1898的典型充电电路 (22)图3-7 基于MAX1989的智能充电器的原理图 (23)图3-8 锂离子电池充电电路 (25)图4-1(a) 等待外部信号输入 (27)图4-1(b) 外部中断程序 (27)图4-1(c) 定时器程序 (28)图4-1 智能充电器的程序流程图 (28)安徽工程大学毕业设计(论文)- -5 表格清单表1-1 铅酸、镍镉、镍氢和锂离子电池的性能比较 (2)表4-1 P3口 (15)表4-2 LED 指示灯状态说明 (22)表5-1 变量及说明 (26)项冲:基于单片机的锂电池充电器设计引言社会信息化进程的加快对电力、信息系统的安全稳定运行提出了更高的要求。
基于AT89C51单片机在锂离子手机电池充电器中的应用设计
基于AT89C51单片机在锂离子手机电池充电器中的应用设计锂离子电池作为一种重要的储能设备,广泛应用在手机、笔记本电脑等各种便携式电子设备中。
而充电器作为供电设备之一,其充电效率和充电控制对于锂电池的使用寿命和安全性具有重要影响。
因此,设计一种基于AT89C51单片机的锂离子手机电池充电器,实现对锂电池的高效充电和精确控制,具有一定的实际意义和应用价值。
一、锂离子电池的基本原理与特性锂离子电池是目前最为广泛应用的可充电电池之一,其具有高能量密度、低自放电率、无记忆效应等优点,被广泛应用在各个领域。
锂离子电池的工作原理是通过正极材料(比如钴酸锂、锰酸锂等)和负极材料(比如石墨、碳纳米管等)之间锂离子的往复迁移来实现电池的充放电过程。
锂离子电池的充电特性决定了其在使用过程中需要精确的充电控制。
在锂电池充电的过程中,正极和负极材料之间的锂离子会发生嵌入/脱嵌反应,充电时锂离子从正极脱出,从负极嵌入,放电时锂离子则相反。
过充或过放电都会损伤锂电池,并且可能导致安全问题。
因此,设计一种能够精确控制充电过程的充电器对于锂电池的安全和寿命具有重要意义。
二、基于AT89C51单片机的电池充电控制原理AT89C51是一款功能强大的单片机,具有丰富的外设接口和良好的稳定性,适合于电池充电器的控制系统设计。
基于AT89C51单片机的电池充电器可以实现对充电电压、电流等参数的实时监测和控制,提高了充电器的充电效率和充电精度。
在设计基于AT89C51单片机的锂电池充电器时,首先需要实现对充电电压和电流的监测。
通过采集正极和负极的电压信号,可以实时监测电池的充电状态。
同时,通过设计合适的电路和程序,可以实现对充电电流的控制,确保充电过程中电流稳定,并避免过充或过放电的情况发生。
另外,基于AT89C51单片机的电池充电器还可以实现充电过程中的温度监测和保护。
锂电池在充电过程中会产生一定的热量,过高的温度会损害电池,甚至引发安全问题。
基于单片机的智能锂电池充电管理系统设计
题目:基于单片机的智能锂电池充电管理系统设计系部:电子信息系专业:应用电子技术学号: _学生姓名: ___ ____指导教师: _____ ___职称: ______ ___目录1摘要 (2)1.1 课题研究的背景 (3)1.2镍氢电池、镍镉电池与锂离子电池之间的差异 (4)1.3 课题研究的意义 (5)2 电池的充电方法与充电控 (6)2.1电池的充电方法和充电器 (5)2.1.1 电池的充电方法 (5)2.2 充电控制技术 (9)2.2.1 快速充电器介绍 (9)2.2.2 快速充电终止控制方法 (10)3锂电池充电器硬件设计 (12)3.1 AT89C51 (13)3.2 电压转换及光耦隔离电路部分 (15)3.3 充电控制电路部分 (17)3.3.1 MAX1898充电芯片充电芯片充电芯片充电芯片 (17)4 锂电池充电器软件设计 (22)4.1程序功能 (22)4.2 主要变量说明 (22)4.3 程序流程图 (23)致谢 (28)参考文献 (29)1摘要本课题设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。
阐述了系统的软硬件设计。
以C语言为开发工具,进行了详细设计和编码。
实现了系统的可靠性、稳定性、安全性和经济性。
该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。
在生活中更好的维护了充电电池,延长了它的使用寿命。
关键词:充电器;单片机;;锂电池;MAX1898Abstract:This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency.The intelligence battery charger has the examination lithium ion battery'scondition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life.Key words:Charger; SCM; Lithium battery; MAX1898社会信息化进程的加快对电力、信息系统的安全稳定运行提出了更高的要求。
基于单片机技术的锂电池充放电管理系统设计
基于单片机技术的锂电池充放电管理系统设计摘要:随着科技的不断进步,锂电池逐渐取代了传统的镍氢电池和铅酸电池,成为了一种常见的电池类型。
然而,由于锂电池具有较高的电化学能量密度和较低的运行电压,其充放电过程需要严格控制,否则会产生安全风险。
本文基于单片机技术,设计了一种锂电池充放电管理系统,实现了对锂电池的充电和放电过程的自动控制和监测。
系统采用了多种保护措施,包括过压保护、欠压保护、过流保护和过温保护等,确保了锂电池的安全和稳定运行。
关键词:锂电池;充放电管理系统;单片机技术;安全保护Abstract:With the continuous progress of technology, lithium batteries have gradually replaced traditional nickel-hydrogen batteries and lead-acid batteries, becoming a common type of battery. However, due to the high electrochemical energy density and low operating voltage of lithium batteries, the charging and discharging process needs to be strictly controlled, otherwise there will be safety risks. In this paper, based on the single-chip microcomputer technology, a lithium battery charging and discharging management system is designed to achieve automatic control and monitoring of the charging and discharging process of lithium batteries. The system adopts multiple protection measures, including over-voltage protection, under-voltage protection, over-current protection and over-temperature protection, ensuring the safety and stable operation of lithium batteries.Keywords: lithium battery; charging and discharging management system; single-chip microcomputer technology; safety protection1.引言随着手机、平板、笔记本电脑、电动自行车等电子设备的不断普及,锂电池已成为一种不可或缺的能源来源。
基于单片机的电动车36V锂电池组保护电路设计实施方案
基于单片机的电动车36V锂电池组保护电路设计方案随着电动自行车普及,锂电池也成为众人关心的焦点。
锂电池与镍镉、镍氢电池不太一样,因其能量密度高,对充放电要求很高。
当过充、过放、过流及短路保护等情况发生时,锂电池内的压力与热量大量增加,容易产生爆炸,因此通常都会在电池包内加保护电路,用以提高锂电池的使用寿命。
针对目前电动车锂电池组所用的保护电路大多都由分立原件构成,存在控制精度不够高、技术指标低、不能有效保护锂电池组等特点,本文中提出一种基于单片机的电动车36V锂电池组(由10节3. 6 V锂电池串联而成)保护电路设计方案,利用高性能、低功耗的ATmega16L 单片机作为检测和控制核心,用由MC34063构成的DC /DC变换控制电路为整个保护电路提供稳压电源,辅以LM60 测温、MOS管IRF530N作充放电控制开关,实现对整个电池组和单个电池的状态监控和保护功能,达到延长电池使用寿命的目的。
1 保护电路硬件设计本系统以单片机为数据处理和控制的核心,将任务设计分解为电压测量、电流测量、温度测量、开关控制、电源、均衡充电等功能模块。
系统的总体框图如图1所示。
图1 系统的总体框图电池组电压、电流、温度等信息通过电压采样、电流采样和温度测量电路,加到信号采集部分的A /D输入端。
A /D模块将输入的模拟信号转换为数字信号,并传输给单片机。
单片机作为数据处理和控制的核心,一方面实时监控电池组的各项性能指标和状态,一方面根据这些状态参数控制驱动大功率开关。
由于使用了单片机,使系统具有很大的灵活性,便于实现各种复杂控制,从而能方便地对系统进行功能扩展和性能改进。
1. 1 ATmega16 L单片机模块从低功耗、低成本设计角度出发,单片机模块采用高性能、低功耗的ATmega16 L 单片机作为检测与控制核心。
ATmega16 L 是基于增强的AVRR ISC结构的低功耗8位C MOS微控制器,内部带有16 k 字节的系统内可编程Flash, 512 字节EEPROM, 1 k字节SRAM, 32个通用I/O口线, 32个通用工作寄存器(用于边界扫描的JTAG接口,支持片内调试与编程) , 3个具有比较模式的灵活定时器/计数器( T/C)(片内/外中断) ,可编程串行USART,有起始条件检测器的通用串行接口, 8路10位具有可选差分输入级可编程增益( TQFP封装)的ADC,具有片内振荡器的可编程看门狗定时器,一个SP I串行端口,以及6个可以通过软件进行选择的省电模式。
基于单片机的锂电池快速充电电路
基于单片机的锂电池快速充电电路
常见的可充电电池包括镍氢电池、镍镉电池、锂电池和聚合物电池等。
其中,锂电池以其高的能量密度、稳定的放电特性、无记忆效应和使用寿命长等优点得到广泛的应用。
目前绝大多数的手机、数码相机等均使用锂电池。
电池的使用寿命和单次循环使用时间与充电器维护过程和使用情况密切相关。
一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当而造成的记忆效应,即电池活性衰退现象。
单片机电路
单片机芯片为Atmel公司的AT89C52单片机,B1为蜂鸣器,单片机的P2.0口输出控制光耦器件,可以在需要时及时关断充电电源。
充电电路控制模块
充电状态输出引脚/CHG经反相器74LS04后与单片机的P3.2口连接,触发外部中断。
PNP为P沟道的场效应管或三极管。
D1为绿色发光二极管,处于通电状态时亮;D2为红色放光二极管,电源接通时亮。
R1设置充电电流的电阻,阻值为2.8千欧,设置最大充电电流为500mA;C2为设置充电时间的电容,容值为100μF,设置最大充电时间为3小时。
锂电池智能充电器的功能
需要完成预充、快充、满充、断电和报警等功能。
这些功能主要依靠智能充电管理芯片MAX1898内置的充电状态控制和外围的单片机AT89C52控制下共同实现。
预充:在安装好电池后接通输入直流电源,当充电器检测到电池时则将。
基于单片机的锂离子电池充电系统设计方案
济南大学泉城学院毕业设计方案题目基于单片机得锂离子电池充电系统设计专业电气工程及其自动化班级1301班学生姚良洁学号2013010873指导教师张兴达魏志轩二〇一七年四月十日学院工学院专业电气工程及其自动化学生姚良洁学号873设计题目基于单片机得锂离子电池充电系统设计一、选题背景与意义1、国内外研究现状自90年代以来,中国正日趋成为世界上最大得电池生产国与最大得电池消耗国。
随着科技得发展,人们对身边电子产品得数字化、自动化与效率得要求越来越高。
便携式电池成为用户得首选,随着各式各样得电池出现,用户在选用电池时,在考虑到电池得环保、性价比得同时,更加注重电池得便携性。
正因为锂离子电池具有高得体积比能量与环保性能,符合当前世界电池技术得发展趋势,逐渐成为市场得主流[1]。
我国锂电池行业得年增长率已超过20%,2016年电池总体需求量达到50亿块左右。
可见,在当前与今后相当一段时间,锂电池将成为我国电池工业得龙头。
虽然我国已就是仅次于日本得锂离子电池生产大国,市场增长空间巨大,但并非强国,在全球锂离子电池产业仍处于低端。
随着手机用户得日益增多,如何保养手机也成为了众多手机使用者面临得一个实际问题,而手机电池作为手机得一个重要组成部分,直接影响了使用寿命与性能。
智能手机得屏幕越来越大,功能越来越多,现有得锂离子电池产品越来越难以满足需求,选择合适得充电器,可以延长我们得手机锂离子电池得使用寿命。
现阶段消费者除了通过原厂配备得充电器给便携式设备充电之外,普遍采用得就是通过移动电源来补充电池得电量。
根据日本矢野经济研究所得预测,锂离子电池正以53、33%得年增长率快速取代传统得镍铬镍氢电池市场。
目前国内移动电源市场上主要得品牌有小米、爱国者、品胜、华为等,国外市场比较知名得品牌有BOOSTCASE、MALA 等。
移动电源市场在近几年得到了很大得发展,市场中出现了各式各样得品牌。
与此同时,在移动电源产品中也存在很多需要解决得问题。
基于单片机的锂离子电池充电系统设计毕业设计
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.济南大学泉城学院毕业设计题目基于单片机的锂离子电池充电系统设计学院工学院专业电气工程及其自动化班级1301班二〇一七年五月十六日摘要近几年来,便携式电子设备日益趋向轻量小型化,其中主要原因之一是锂离子电池的广泛应用。
随着锂电池在各个市场的迅速发展,其充电与保护的问题也随之而来。
常见的锂离子电池充电设备存在充电模式单一、充电过程指示模糊、保护功能缺失等问题。
针对上述问题,本设计进行了相应研究与实践。
本次课题设计的是一种基于AT89C51单片机的锂离子电池智能充电和保护系统。
选择了高效简洁的硬件设计和稳定可靠的软件设计。
硬件组成包括单片机模块、充电控制模块、充电保护模块、信号采集模块、声光报警模块等。
并结合MAX1898充电芯片,C51高级语言编程软件设计,使系统具有检测锂电池充电状态,根据各个阶段自动切换充电模式,显示充电进度,充电器短路保护,充满电后自动关断等功能。
通过Proteus进行仿真,效果良好,提高了手机电池的使用效率,延长了电池的使用寿命,充分保证了锂离子电池充电过程的安全性,实现了智能充电。
仿真实物制作为锂电池充电器的研发提供了依据。
关键词:单片机;传感器;锂离子电池;智能充电ABSTRACTIn recent years, portable electronic devices are becoming lightweight and smaller, and one of the main reasons is the widespread use of lithium-ion batteries. With the rapid development of lithium batteries in various markets, the problems of charging and protection come along. The charging device of common lithium-ion battery has such problems as single charging mode, unclear indication of charging process and lack of protection function. In view of the above problems, this design has carried on the corresponding research and the practice.This topic is based on the design of a single chip AT89C51 lithium-ion battery intelligent charging and protection system. We chose the highly efficient and simple hardware design , the stable and reliable software design. The hardware includes MCU module, charging control module, charging protection module, signal acquisition module, sound and light alarm module and so on. Combined with the charging chip MAX1898, C51 programming language software design, the system has the detection of lithium battery charging status, automatically switching the charging mode according to the various stage, display charging progress, charger short-circuit protection, automatic shutdown after full charge and other functions. Through the Proteus simulation , the effect is good, the utility model improves the service efficiency of the mobile phone battery, prolongs the service life of the battery, ensures the safety of the charging process of the lithium ion battery, and realizes the intelligent charging. The production of the simulated object provides the basis for the research and development of lithium battery charger.Key words: SCM;sensor;lithium-ion battery;intelligent charging目录摘要 (I)ABSTRACT (II)1 前言 (1)1.1 研究背景和意义 (1)1.2 国内外研究现状 (1)1.3 本文研究内容 (2)2 锂离子电池充电原理及特性 (4)2.1 锂电池的结构及特点 (4)2.2 锂电池的充电原理 (5)2.3 锂电池的充电特性 (6)2.3.1 锂电池的工作电压 (6)2.3.2 锂电池的充电电流 (7)2.3.3 锂电池的最佳工作温度 (7)2.3.4 锂电池的循环使用寿命 (7)2.4 锂电池的充电方式 (7)2.4.1 线性充电方式 (8)2.4.2 开关充电方式 (8)2.4.3 脉冲充电方式 (8)2.5 锂电池充电时应注意的安全问题 (9)3 硬件设计 (10)3.1 系统硬件总体设计 (10)3.2 单片机最小系统 (10)3.3 充电电路 (11)3.3.1 MCU的选择 (11)3.3.2 充电电路设计 (12)3.4 A/D采集电路 (13)3.5 液晶显示电路 (13)3.6 保护电路 (14)3.7 报警电路 (14)4 软件设计 (16)4.1 Keil (16)4.2 主程序设计 (16)4.3 子程序设计 (17)4.3.1 信号采集模块 (17)4.3.2 短路保护模块 (17)4.3.3 LCD液晶显示模块 (18)4.3.4 定时器中断模块 (19)4.3.5 报警模块 (19)5 系统的仿真与制作 (21)5.1 系统仿真 (21)5.2 PCB板的设计 (21)5.3 电路板制作 (22)5.4 系统的调试 (23)6 结论 (25)参考文献 (26)致谢 (27)附录一:电路原理图 (28)附录二:PCB图 (29)附录三:实物图 (30)附录四:元器件清单 (31)附录五:主要源程序 (32)1前言1.1研究背景和意义近年来,便携式电子产品的迅猛发展,加快了电池技术更新换代的速度。
基于单片机的锂电池组保护设计
本设计的功能如下:
(1)电压检测功能:利用分压电路将采集到的电压经过AD转换器以高低电平的形式传给单片机,并通过液晶显示屏实时显示出来;
1. 系统设计说明
本设计主要针对锂电池组在电池的过充电、过放电这几方面来考虑和设计保护方案的,我们此次锂电池保护主要用单片机SCT89C52和AD转换模块通过汇编程序来控制继电器的开断负载,从而来实现的过放保护,并且通过液晶显示屏显示实时电压值,通过程序还实现了出现异常现象时蜂鸣器发出报警信号;针对过充保护本设计主要增加了稳压器。本设计利用Altium Designer软件画出电路原理图,利用仿真软件Proteus结果分析,最后对系统的实物图进行调试。
通过分析以及设计过程的说明,所以本论文我主要从以下方面进行叙述:第一部分主要对保护部分的软件和硬件进行介绍;第二部分主要是对单片机驱动蜂鸣器部分进行说明;第三部分是对电路中的键盘输入模块进行说明;第四部分对系统的原理图以及仿真和调试说明分析;
本人主要负责的系统是另外一部分也就是保护的主要部分,本部分的主要功能是由单片机STC89C52来实现的,保护模块是用一个继电器的开断来实现的。如果电路的电压值较低时低于电压阈值就会发生断路,将锂电池和负载断开,不再使电池进一步放电。而且在电路的负载部分串联一个LED指示灯,当负载部分从主电路断开后指示灯便会闪烁显示负载已断开,有利于电池工作状态的判断
由上表分析可知基于单片机的保护是最为经济、性价比高的保护电路,所以我们在此次设计中结合各个方面综合考虑后选择利用单片机来实现锂电池保护
单片机 dcdc 恒流充电 电路
单片机dcdc恒流充电电路是指利用单片机控制的DC-DC转换器,实现对锂电池等充电电池的恒流充电。
本文将分析单片机dcdc恒流充电电路的设计原理和实现方法,以及相关注意事项。
一、设计原理1.1 恒流充电原理恒流充电是指在充电过程中,通过控制电流大小使充电电流保持恒定不变。
充电电流恒定可以更好地控制充电过程,避免由于充电电流波动引起的过充或欠充现象,从而提高充电效率和延长电池寿命。
1.2 DC-DC转换器原理DC-DC转换器是一种能够将输入直流电压转换为输出直流电压的电子器件。
通过控制开关管的通断频率和工作周期,可以实现对输出电压的精确调节,从而实现对电池的恒流充电。
二、实现方法2.1 单片机控制单片机通过内部的模拟数字转换器(ADC)采集电池电压和充电电流,经过A/D转换后将电压和电流值传输给单片机。
单片机根据设定的恒流值,利用脉宽调制(PWM)技术控制DC-DC转换器的输出电流,实现对电池的恒流充电。
2.2 DC-DC转换器选择合适的DC-DC转换器芯片,根据电池的额定电压和充电电流设计相关元器件,如电感、电容和二极管等,以达到输出恒流的目的。
考虑转换效率和热量散热等因素,合理布局PCB板,降低电路温升,提高充电效率。
2.3 控制算法采用PID控制算法对充电电流进行精确调节,控制输出电流保持恒定。
通过不断调整PWM占空比,使得充电电流跟踪设定值,实现稳定的恒流充电效果。
三、注意事项3.1 温度监测保护在恒流充电过程中,需要对充电电路的温度进行监测,当温度过高时及时降低充电电流或者停止充电,避免因温度过高而损坏电池或充电电路。
3.2 过充保护当电池充满电后,需要及时停止充电,防止过充损坏电池。
单片机需要监测电池电压,并根据设定的过充阈值,及时停止充电。
3.3 过流保护在充电过程中,如果出现充电电流超出设计范围的情况,需要及时停止充电,避免损坏充电电路和电池。
单片机需要通过监测充电电流并进行限制来实现过流保护。
基于单片机的锂离子电池充电器设计
基于单片机控制的锂电池充电器设计
输 出欠 压 保 护
<22V
表 2智 能 充 电器 功 能 指 示 灯 状 态
功 能 上电/等 待 充 电 准 备
充 电 充 满 过 温
红灯 关 关 常亮 关 闪烁
绿灯 常亮 5s闪 烁
关 常亮
关
电 压 异 常
红 绿 灯 间 隔 交 替 闪烁
2 实验结果
·18()· 屯 子 世 界
图 5主 运 行 程 序 部 分 锂 电池没有接时 ,单片机没有检测到锂 电池 电压B+时, 单片机PA4 送出低 电平 ,Q9截止 ,Q6,Q7截 止,输 出电压就和锂 电池断开了。当锂
ELECTRONICS W ORLD ·
电池接上时 ,单片机检测 到锂 电池 电压B+,单片机PA4送 出高电平 ,Q9
本 充 电器 硬件 包含 : 电源 变 换AC/DC部分 、 电压 测 量 部分 、 电流 测 量 部分 、温 度测 量 部分 、输 出 电子 开关控 制 部分 、 显示 部分 等 。 图1是本 充 电器 的方 案系 统结 构 图。
图 3输 出 电 子 开关 框 图
图1方案 系统结构 图 1.2 电压 、 电流 、温 度测 量
本系 统 所 使用 的MCU内部 集成 12位 ADC模 块 ,本 设计 采 用 10 位 精度 ,采 样0~5V电压 其精 度 可 以达到 10mV,可 以满 足 要求 ,图 2为 原理 图。
图4初 始 化 和 温 度 检 测 部 分
一
。 t
』= — Байду номын сангаас
一
二_
图 2电压 、 电 流 、 温 度 测 量 电 路 图 单 片机 的PAO口是输 出 电压采 样脚 ,PA3口是输 出 电流采 样脚 , PA2口是散 热器温度 采样脚 ,PA5是风扇 控制脚 ,PA4是输 出电子开 关 控 制脚 ,PA6是 红色指示灯控 制脚 ,PA7是绿色 指示灯控制脚 。 1.3 输 出 电子开 关 由 于 电 动摩 托 车 、 电动 自行 车 用 的 锂 电池 组 的 电压 都 较 高 , 在 28 ̄72V之 间 ,充 电器输 出都 有 几千 uF的 电解 电容 ,如 果 没有 输 出 电 子开 关 ,用 户在 把 充 电器插 头插 到 锂 电池时 ,会 产 生较 大 的火 花 ,存 在 安全 隐 患 ,用户 体 验也 不好 ,所 以充 电器输 出必须 增加 电 子开关 ,具 体线 路 图 见 图3。
单片机系统的锂电池充电及保护技术
单片机系统的锂电池充电及保护技术作者:郭辉来源:《现代盐化工》2020年第05期摘要:作为锂电池实践与应用中的主要组成部分,锂电池的充电及保护方面的研究显得尤为重要。
以单片机系统控制为主要切入点,并结合其在实际应用过程中的操作情况,探讨该项技术的应用价值。
通过对现有的保护、充电技术进行分析和比较,设计出更具实际应用效果的锂电池充电及保护系统。
以单片机为核心载体,满足锂电池组的短路保护等需求。
在充电过程中,还可借助单片机来确保充电均衡,简化充电电源,使单片机系统性价比更高。
关键词:单片机系统;锂电池;充电及保护技术锂电池作为新兴产品,相较于传统电池具有轻便、续航力持久、电率低和节能环保等多重优点[1]。
为了贴合国家所倡导的绿色环保发展理念,近年来锂电池得到了广泛的应用和快速的推广。
除了在原有的电力储能行业发光发热以外,在移动通信、交通动力和新能源储备等系统中也得到了广泛的应用,因此,如何提升锂电池的充电及保护技术也受到了越来越多的关注,运用单片机系统提升保护力的技术也越发完善。
本研究以单片机系统的应用为出发点,对充电保护系统进行进一步的研究与阐述。
1 应用单片机系统完成锂电池充电及保护的优势单片机系统下的锂电池技术主要分为充电和保护两个方面[2]。
在充电过程中,惯常应用的是先恒流后恒压的策略,以电路为参考点,可以应用多电路并联和单路电流搭配均衡电路两种方式来充电,实际测验可以得知,这两种充电方式各有利弊[3]。
单路电流搭配均衡电路的充电方式效率更高,但需要投入的成本较高,而多电路并联的充电方式虽然资金投入较少,但在由恒流向恒压转变的过程中所处的聚恒电路不能关闭,造成电流持续处于流通的状态,在电压数值为4.2 V时,电路中的电流较大,最终会导致充电效率过低的现象出现。
锂电池的保护方法更具多样性,分别为单片机控制、锂电池管理芯片控制和分立元件控制3种方法[4],其具体比较如表1所示。
從表1中可以得知,采用单片机系统控制锂电池的保护方法,具有操作复杂程度低、投入成本低、产生能耗较小等优点。
基于单片机控制的锂电池充电和保护
基于单片机控制的锂电池充电和保护
李洪;戴永军;李向锋
【期刊名称】《通信对抗》
【年(卷),期】2004(000)004
【摘要】用单片机来实现锂电池串联组的过电压、欠电压、过流和短路保护;在充电时用同一单片机来实现均衡充电,简化充电电源,使整个系统的性价比大大提高。
【总页数】3页(P54-56)
【作者】李洪;戴永军;李向锋
【作者单位】浙江嘉科电子有限公司嘉兴314001;中国电子科技集团公司第三十六研究所嘉兴314001
【正文语种】中文
【中图分类】TP273
【相关文献】
1.基于52单片机控制的锂电池充电器硬件设计 [J], 王晔;马斋爱拜
2.基于单片机控制的锂电池充电和保护系统 [J], 李洪;戴永军;李向锋
3.基于单片机控制的锂电池充电器设计 [J], 金龙;陈炜;叶宝图
4.单片机系统的锂电池充电及保护技术 [J], 郭辉
5.单片机系统的锂电池充电及保护技术 [J], 郭辉
因版权原因,仅展示原文概要,查看原文内容请购买。