实数复习(1)

合集下载

九年级数学复习——实数

九年级数学复习——实数

初中数学知识复习 第一讲:实数 一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0,a=-b 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

实数复习

实数复习
= 1.3
1 。 3

; 求:
20、 已知 x、 y 互为倒数, c、 d 互为相反数, a 的绝对值为 3, z 的算术平方根是 5, 4×(c+d)+xy+
z 的值。 a
21、已知 a 是小于 3 5 的整数,且 2 a a 2 ,那么 a 的所有可能值是__________
22、若 2b1 5 和 3 a 1 都是 5 的立方根,则 a + b = 【拓展提高】 1、已知 m 是 13 的整数部分,n 是 13 的小数部分,计算 m-n=_________________. 2、已知一块长方形地长与宽的比是 3:2,面积为 3174 平方米,则这块地的长为_______________.
7、已知 y=
1 x2 x2 1 4 ,则 (3 2 ) x y =____________. x 1
8、已知 x、y、z 满足关系式
3x y z 2 2x y z x y 2002 2002 x y
______________________.
(4) 2 的算术平方根是
; 36 的平方根是 ;

3
27 =
; 3 27 的平方 ;如果 a 的平
根是 ; 64 的立方根是 方根是±3,则 a= 。
16 的平方根是
2、 若 1 x 4 ,则化简 ( x 4) 2 ( x 1) 2 的结果是__________________ 3、 大于- 2 小于 5 的所有整数的和是 。
4.有如下命题:①负数没有立方根; ②一个实数的立方根不是正数就是负数;③一个正数或负数的 立方根与这个数同号; ④如果一个数的立方根是这个数本身,那么这个数是 1 或 0. 是无理数; ⑥0.101001000100001 5.

实数专题复习一

实数专题复习一

实数专题复习一一.选择题1. 数 032032032.8是( )A 、有限小数B 、有理数C 、无理数D 、不能确定 2.下列说法错误的是 ( )A B 、无限小数都是无理数 C 、正数、负数统称有理数 D 、实数与数轴上的点一一对应 3.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 4.当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、-0.25D 、1 5.如下图,线段2=AB 、5=CD ,那么,线段EF 的长度为( )A 、7B 、11C 、13D 、15 6、2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( )A 、3B 、7C 、3或7D 、1或77.若2(a +与|b +1|互为相反数,则的值为b-a=( )A.11 D.1-8.下列运算中错误的有( )个 ①416= ②4936=±76 ③332-=- ④3)3(2=- ⑤±332=A .4B .3C .2D .19.已知n 为 ( )A 、2B 、3C 、4D 、5 10. 若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a <3D. a ≤3 11.32-的绝对值是 ( )A.+B.23- D.32- 12. 下列计算中,正确的是( ). A. 532=+B. 3332=+C.3935153515==⨯=⨯÷ D. 231)32)(31(-=-=-+21x A OC B 二.填空题1.请写出两个介于大于-1而小于0的无理数2.平方根等于本身的实数是3.16的算术平方根是 ;1的立方根是4.若一正数的平方根是12-a 与2+-a ,这个数为5.一个正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。

6.如图,在网格图中的小正方形边长为1,则图中的ABC ∆的面积等 。

实数(复习)

实数(复习)
3
【实践创新】 1、下列说法正确的是( A、 16 的平方根是 4
C、 任何数都有平方根 2、若 3 m 3 5 ,则 m 3、若 x x 0 ,则 x 的取值范围是
) B、 6 表示 6 的算术平方根的相反数 D、 a 2 一定没有平方根 ; 3 4 x 4 x ,则 x 的取值范围是
D.
4个
。设面积为5的正方形的边长为 x , ,
1 的立方根是 27
22.求下列各式中的 x(10 分,每小题 5 分) (1) 4 x 2 121 (2) ( x 2) 3 125
, -
5 2 的相反数是
, 2 3 =

长春学校
七年级
学科导学案
课型:复习课
编写人 L
审查人:T 、 P
a
b
0
c
0.064 的立方根表示为
3、已知 5 11 的小数部分为 m , 5 11 的小数部分为 n ,则 m n
长春学校
七年级
学科导学案
课型:复习课
编写人 L
审查人:T 、 P
时间:
课题
实数 复习与小结(二)
知识与能力:进一步巩固实数的相关概念,能熟练求一个数的平方根、立方 根等,会进行实数范围内的相关计算。 过程与方法:通过互为逆运算的方法,理解并类比数学思想方法。 情感态度与价值观:感受平方根在现实世界中的客观存在,增强数学知识的 应用意识。 实数的相关运算。 无理数、实数的相关概念的理解与运用。
长春学校
七年级
学科导学案
课型:复习课
课题
实数 复习与小结(一)
知识与能力:建立起本章知识的框架图,形成这一章的完整知识体系。 过程与方法:利用习题在巩固练习、变式训练,增强度学生分析问题、解决 问题的实践能力,拓展学生的思维。 情感态度与价值观:提高学生的归纳和概括能力,形成反思自己学习过程的 意识。 1、平方根、立方根的概念和求法。2、无理数、实数的概念,实数的分类, 相反思、绝对值的求法,实数的运算及大小比较。3 无理数、实数的相关概念的理解与运用。

第六章 实数复习一-教师用卷

第六章 实数复习一-教师用卷

第六章实数复习一班级: 姓名: 学号:一、全章知识梳理1. 算术平方根、平方根和立方根: 算术平方根平方根立方根定义 x 2=a (x >0), x 叫a 的算术平方根x 2=a, x 叫a 的平方根x 3=a, x 叫a 的立方根符号性质正数有两个平方根,它们互为相反数 0的平方根是0 负数没有平方根为任意数正数的立方根是正数.负数的立方根为负数. 0的立方根是0.2. 开方与乘方互为逆运算3. 被开方数的小数点向右或者向左移动2n (3n )位,它的算术平方根(立方根)的小数点就相应地向右或者向左移动n 位.4.实数 (1) 分类①按符号分类 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数零负有理数负实数负无理数①按属性分类⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 (2)实数的连续性.实数和数轴上的点是一一对应关系. (3 实数的有序性任何两个实数都可以比较大小,常用方法:估算法、平方法、作差比较法等(4)实数的稠密性任何两个实数之间,都有无数多个实数. (5)实数四则运算的封闭性任何两个实数进行加、减、乘、除的结果都是实数. 数系扩充后原有的运算法则、运算律仍然成立. 二、全章知识结构三、典型习题1. 下列说法中,正确的有( )①只有正数才有平方根;②a 一定有立方根;③√−a 没有意义;④√−a 3=−√a 3;⑤只有正数才有立方根.A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】本题考查平方根和立方根的性质.利用平方根与立方根的性质,对各个选项一一判断即可. 【解答】解:非负数都有平方根,所以①是错误的; 任何数的立方根都只有一个,所以②是正确的; a >0时,√−a 没意义,所以所以③是错误的;√−a 3=−√a 3,所以④是正确的.所以正确的有2个. 故选B .2. 下列各式成立的是A. √(−2)2=−2B. √52=−5C. √x 2=xD. √(−6)2=6【答案】D 【解析】 【分析】本题主要考查算术平方根,根据算术平方根的性质可逐项计算,进而判断求解.【解答】解:A.√(−2)2=2,故错误;B.√52=5,故错误;C.√x2=x(x≥0),故错误;D.√(−6)2=6,故正确;故选D.3.在以下数0.3,0,π−3,π,0.123456…(小数部分由相继的正整数组成),20.1001001001…中,其中无理数的个数是()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题考查无理数的概念.无理数就是无限不循环小数.根据无理数的定义求解即可.【解答】解:无理数有:π−3,,0.123456…(小数部分由相继的正整数组成),共有3个.故选B.4.如图所示,数轴上表示2,√5的点分别为C,B,点C是AB的中点,则点A表示的数是()A. −√5B. 2−√5C. 4−√5D. √5−2【答案】C【解析】【分析】本题主要考查了数轴上两点之间中点的计算方法.首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,√5的对应点分别为C,B,∴CB=√5−2,∵点C是AB的中点,则设点A表示的数是x,则x=4−√5,∴点A表示的数是4−√5.故选C.5.有资料表明,一粒废旧的纽扣电池大约会污染60万升水.某校七年级(1)班有50名学生,若每名学生都丢弃一粒纽扣电池,污染的水大约为A. 3×103万升B. 3×102万升C. 6×105万升D. 3×107万升【答案】A【解析】【分析】本题主要考查了科学计数法的应用,根据题意,一个纽扣电池会污染60万升水,则50个学生会每人丢弃一颗纽扣电池会污染50×60万升水,再用科学技术法表示即可,属于基础题;【解答】解:根据题意50个学生会每人丢弃一颗纽扣电池会污染50×60万升水,50×60=3000=3×103(万升),故选A.6.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于−1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“−”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

初一-实数复习(1)(教师版)

初一-实数复习(1)(教师版)

… … 有理数集合 无理数集合 OACB 题型2:实数的分类【例2-4】实数可分为正实数,零和__负实数__.正实数又可分为_正有理数_和_正无理数__,负实数又可分为_负有理数_和_负无理数__. 【例2-5】下列说法正确的是( D )A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【例2-6】 把下列各数分别填在相应的集合里:,722 1415926.3,7,8-,32,6.0,0,36,3π,⋅⋅⋅313113111.0。

举一反三 把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.6,6,0,1.101 001 000 1… 整数:{ -6,-|-3|,0 ,…}, 负分数:{ -23,-0.4 ,…}, 无理数:{ π,6,1.101 001 000 1… ,…}.知识点三:实数与数轴实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。

实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。

【例3-1】把无理数5在数轴上表示出来。

分析:类比2的表示方法,我们需要构造出长度为5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5。

解:如图所示,,1,2==AB OA 由勾股定理可知:5=OB ,以原点O 为圆心,以OB 长度为半径画弧,与数轴的正半轴交于点C ,则点C 就表示5。

【例3-2】下列结论正确的是( D ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数D.数轴上任意两点之间还有无数个点【例3-3】比较下列各组实数的大小:(1)4,15 (2)π,1416.3 (3)23,23-- (4)33,22举一反三 若将三个数-3,7,17表示在数轴上,其中能被如图所示的墨迹覆盖的数是_____7_____.举一反三 如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是____π______.三、课堂练习一、选择题1.下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对D .是近似值,无法在数轴上表示准确22.下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数 3.如果一个数的立方根等于它本身,那么这个数是( )A .±1B .0和1C .0和-1D .0和±14.估计的大小应在( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间5.-27的立方根与的算术平方根的和是( )A .0B .6C .6或-12D .0或66.实数和的大小关系是( )A .B .C .D .7.一个正方体水晶砖,体积为100cm 3,它的棱长大约在( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间8.如图,在数轴上表示实数的点可能是( )A .P 点B .Q 点C .M 点D .N 点二、填空题9.__无限不循环小数____叫无理数,__有理数和无理数___统称实数. 10.___实数___与数轴上的点一一对应. 11.把下列各数填入相应的集合:-1、、π、-3.14、、、、. (1)有理数集合{ -1、-3.14、 、 };(2)无理数集合{、π、、 }; 768176.2、227226.2<<226.27<<2276.2<<76.222<<153926-22-7.0&97.0&326-22-②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。

人教版七下数学《第6章 实数》章节复习资料【1】

人教版七下数学《第6章 实数》章节复习资料【1】

人教版七下数学《第6章实数》章节复习资料【1】一.选择题(共10小题)1.的算术平方根是()A.2 B.±2 C.D.±2.的平方根是()A.±3 B.3 C.±9 D.93.(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.4.的算术平方根是()A.2 B.±2 C.D.5.如果一个有理数的平方根和立方根相同,那么这个数是()A.±1 B.0 C.1 D.0和16.若+|y+3|=0,则的值为()A.B.﹣C.D.﹣7.若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或18.下列运算正确的是()A.﹣=13 B.=﹣6 C.﹣=﹣5 D.=±39.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣D.010.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点二.填空题(共10小题)11.的平方根是.12.若两个连续整数x、y满足x<+1<y,则x+y的值是.13.实数﹣2的整数部分是.14.若2a+1=5,则(2a+1)2的平方根是.15.实数a在数轴的位置如图所示,则|a﹣1|=.16.若a<<b,且a、b是两个连续的整数,则a b=.17.若x2=16,则x=;若x3=﹣8,则x=;的平方根是.18.已知:(x2+y2+1)2﹣4=0,则x2+y2=.19.若一个数的立方根就是它本身,则这个数是.20.如果=1.732,=5.477,那么0.0003的平方根是.三.解答题(共10小题)21.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.22.计算:|﹣3|﹣×+(﹣2)2.23.求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.24.若x、y都是实数,且y=++8,求x+3y的立方根.25.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.26.已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.27.已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.28.已知实数a、b、c在数轴上的位置如图,a、b到原点的距离相等,化简:﹣|a+b|++|b﹣c|.29.计算:=,=,=,=,=,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案与试题解析一.选择题(共10小题)1.(2015•日照)的算术平方根是()A.2 B.±2 C.D.±【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.2.(2014•东营)的平方根是()A.±3 B.3 C.±9 D.9【解答】解:∵,9的平方根是±3,故选:A.3.(2016•怀化)(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.【解答】解:∵(﹣2)2=4,∴4的平方根是:±2.故选:C.4.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【解答】解:=2,2的算术平方根是.故选:C.5.(2015•深圳模拟)如果一个有理数的平方根和立方根相同,那么这个数是()A.±1 B.0 C.1 D.0和1【解答】解:0的平方根和立方根相同.故选:B.6.(2015•蓬溪县校级模拟)若+|y+3|=0,则的值为()A.B.﹣C.D.﹣【解答】解:∵+|y+3|=0,∴2x+1=0,y+3=0,解得x=﹣,y=﹣3,∴原式==.故选C.7.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1【解答】解:∵2m﹣4与3m﹣1是同一个正数的平方根,∴2m﹣4+3m﹣1=0,或2m﹣4=3m﹣1,解得:m=1或﹣3.故选D.8.(2016•赵县模拟)下列运算正确的是()A.﹣=13 B.=﹣6 C.﹣=﹣5 D.=±3【解答】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.9.(2016•宜昌)下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣D.0【解答】解:是无理数.故选B.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.二.填空题(共10小题)11.(2015•庆阳)的平方根是±2.【解答】解:的平方根是±2.故答案为:±212.(2015•自贡)若两个连续整数x、y满足x<+1<y,则x+y的值是7.【解答】解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.13.(2015•百色)实数﹣2的整数部分是3.【解答】解:∵5<<6,∴﹣2的整数部分是:3.故答案为:3.14.(2015•会宁县一模)若2a+1=5,则(2a+1)2的平方根是±5.【解答】解:∵2a+1=5,∴(2a+1)2=25.∵25的平方根是±5.∴(2a+1)2的平方根是±5.故答案为±5.15.(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=1﹣a.【解答】解:∵a<﹣1,∴a﹣1<0,原式=|a﹣1|=﹣(a﹣1)=﹣a+1=1﹣a.故答案为:1﹣a.16.(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=8.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.17.(2016春•秦皇岛期末)若x2=16,则x=±4;若x3=﹣8,则x=﹣2;的平方根是.【解答】解:若x2=16,则x=±4;若x3=﹣8,则x=﹣2;=3,3的平方根是±.故答案为:±4;﹣2;±.18.(2015秋•定州市期中)已知:(x2+y2+1)2﹣4=0,则x2+y2=1.【解答】解:∵(x2+y2+1)2﹣4=0,∴(x2+y2+1)2=4,∵x2+y2+1>0,∴x2+y2+1=2,∴x2+y2=1.故答案为:1.19.(2015春•霸州市期末)若一个数的立方根就是它本身,则这个数是1,﹣1,0.【解答】解:∵立方根是它本身有3个,分别是±1,0.故答案±1,0.20.(2016春•绵阳期中)如果=1.732,=5.477,那么0.0003的平方根是=±0.01732.【解答】解:∵0.0003=,∴±=±=±=±0.01732.三.解答题(共10小题)21.(2016春•河东区期末)一个正数x的平方根是2a﹣3与5﹣a,求a和x的值.【解答】解:∵一个正数的x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得:a=﹣2,∴2a﹣3=﹣7,∴x=(﹣7)2=49.22.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.23.(2016春•滑县期中)求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.【解答】解(1)4x2=16,x2=4x=±2;(2)(x﹣3)3=﹣,x﹣3=﹣x=.24.(2016秋•林甸县期末)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.25.(2016春•黄冈期中)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N 的值.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.26.(2015春•无棣县期中)已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.【解答】解:由题意,有,解得.∴±==±3.故a+b的平方根为±3.27.(2015秋•抚州期末)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.28.(2016春•高安市期中)已知实数a、b、c在数轴上的位置如图所示,a、b 到原点的距离相等,化简:﹣|a+b |++|b﹣c|.【解答】解:由题意得:c<b<0<a,且|a|=|b|,则a+b=0,c﹣a<0,b﹣c>0,则原式=a﹣0+a﹣c+b﹣c=2a+b﹣2c.29.(2016春•南陵县期中)计算:=3,=0.7,=0,=6,=,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.【解答】解:=3,=0.7,=0,=6,=,(1)=|a|;(2)原式=|3.14﹣π|=π﹣3.14.故答案为:3;0.7;0;6;30.(2014春•嘉祥县期末)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.第11页请解答:(1)如果的小数部分为a ,的整数部分为b ,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.第12页。

实数章节复习(含知识点)

实数章节复习(含知识点)

实数章节复习 一、归纳总结 1.平方根 平方根的定义:一般地,如果 ,那么这个数叫作a 的平方根 平方根的性质: ①正数有且有 个平方根,他们互为 ;0的平方根是 ;负数 平方根。

②()2a = (0a ≥) ③2a a ⎧==⎨⎩ a 的平方根的表示: 2.算术平方根 一般地,如果一个 的平方等于a ,即 ,那么这个 叫做a 的算术平方根。

a 的算术平方根记为 ,a 叫作 算术平方根具有 性:即(1)被开方数是 (2)a 0 3.立方根 定义:一般地,如果 ,就说 性质:①正数有一个 的立方根,0的立方根是 ,负数有一个 的立方根。

②33a = ;()33a = ③33a a -=- 表示:a 的立方根是 4.平方根等于其本身的数是 算术平方根等于其本身的数是 立方根等于其本身的数是 5.实数的概念:有理数和无理数的统称。

6.实数的分类:考室号: 座位号: 姓名: 班级:7.无理数:无限不循环小数。

包括:① ② ③ 二、典例精析 例1:16的平方根是 ,16的算术平方根是 16的平方根是 ,16的算术平方根是例2.553y x x =-+-+,则xy =例3:如果一个数的平方根是1a +和27a -,求这个数。

例3.用平方根定义解方程(1)24250x -= (2)216(2)49x +=例4.已知11的小数部分是m ,411-的小数部分是n ,则m n +=例5.已知3 1.732,30 5.477,(1)300≈≈≈ ;(2)0.3≈例6.已知3333 1.442,30 3.107,300 6.694≈≈≈,那么30.3≈ ;33000≈例7. 数在数轴上的位置如图:化简()2a b b c -+-变式:已知 ,,a b c 位置如图所示:化简()22a a b c a b c --+-+-【当堂测评】1.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 12.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3. 下列各数中,不是无理数的是 ( )A. 7B. 0.5C. 2πD. 0.151151115…(两个5之间依次多一个1) 4.在数轴上表示3-的点离原点的距离是 。

中考数学总复习第1课 实数

中考数学总复习第1课 实数
2.在做实数运算题时,要先理清运算顺序再计算,在计 算的过程中要注意各项符号的处理.
【精选考题 6】 (2013·浙江衢州) 4-23÷|-2|×(-7+ 5).
点评:(1)本题考查实数的运算,难度较小. (2)熟练掌握实数的运算法则是解题的关键.
解析: 4-23÷|-2|×(-7+5) =2-8÷2×(-2) =2+8=10.

【解析】 原式=3×9.42-3×9.42=0.
【答案】 0
考点剖析
考点一 实数的分类
知识清单
正整数 自然数 整数 0
负整数
有理数
正分数 有限小数或无
实数
分数 负分数 限循环小数
正无理数 无理数 负无理数 无限不循环小数
根据需要,我们也可以按符号进行分类,如:
正实数
实数 零
负实数
考点点拨
1.实数的概念及分类常以选择题和填空题的形式出现,题目 难度一般较小.对于实数的分类,应用较多的为按正、负 分类,在分类讨论及探索性问题中也常常涉及实数分类的 知识.
真题体验
1.(2013·浙江金华)在数 0,2,-3,-1.2 中,属于负整
数的是
()
A.0
B.2
C.-3
D.-1.2
【解析】 本题易错选 D,需注意读题,本题题干中要选
的是负整数,所以应满足两个条件:(1)负数:(2)整数,只
有-3 符合,故选 C.
【答案】 C
2.(2013·浙江宁波)-5 的绝对值为
值永远是非负的,绝对值的非负性往往也是题中的隐 含条件.数轴上 a,b 所表示的两个点之间的距离即为 |a-b|.
【精选考题 3】 (2013·浙江舟山)-2 的相反数是 ( )

实数复习试题1

实数复习试题1

实数复习课堂练习 一、填空题1.在数轴上离原点距离是_________; 2.2)32(-的算术平方根是 ; 3.若实数0≤x ,化简332x x -= ; 4.若03=-++b b a ,则=-+a a ab b ; 5.若52a ==,且0<ab ,则=+b a ;6. 25的平方根是 ,0.04的算术平方根是 ,94的平方根是 ()23-的算术平方根是 ,2的平方根是 ,2)32(-的算术平方根是 7.若x y -+2与x y +-1互为相反数,则x = ,y =; 8.7x -的负的平方根为-2,x 的值为 9. 37-的相反数是 ;32-= ; 38-= . 10.|2-| =________,|3-π|=________,5352-+-=________;11.满足21-<x <15-的整数x 是 ; 1217。

二、选择题:13( )A .正数B .非负数C .负数D .非正数 14.设x =(-2,yxy 等于( ) A .3 B .-3 C .9 D .-915.已知一个正方体的表面积为6a ,那么它的边长是( )A .aB .C .D .±a 16.下列各数中,立方根一定是负数的是( )A .-aB .-a 2C .-a 2-1D .-a 2+1 17.若一个数的立方根与它的平方根完全相同,则这个数是( )A .1B .-1C .-1或1D .018.下列命题中正确的是( )A .有限小数不是有理数B .无限小数是无理数C .数轴上的点与有理数一一对应D .数轴上的点与实数一一对应19.下列计算正确的是( )A .191654=B .414212=0.05=D .()--=--=4977 20.一个自然数的一个平方根是m -,那么紧跟它后面的一个自然数的平方根是( )A .1+mB .12+mC .1+±mD .12+±m21.-532π四个数中,最大的数是( )A .53 BCD .-2π22.若x 是有理数,则x 是 ( ) A 、0 B 、正实数 C 、完全平方数 D 、以上都不对23.若812=x ,则x 的值是( ) A .3 B .9 C .3± D .81±24.若15+x 有意义,则x 能取的最小整数是( ) A .1- B .0 C .1 D .2 三、解答题: 25.计算(1)3809.0-- (2)16813⋅- (3)2)2(2-+-(4)()2333125216-++-26.解下列方程(1)()823=-x (2)09)1(162=--x(3)801)305(2=--x27.若210x -+=,求20012002x y +的值。

实数复习1

实数复习1

《实数》检测题一一.选择题:(48分)1. 9的平方根是()A.3 B.-3 C. ±3 D. 812. 下列各数中,不是无理数的是()A 7B 0.5C 2πD 0.151151115…)51(个之间依次多两个13. 下列说法正确的是()π是 A. 有理数只是有限小数B.无理数是无限小数 C. 无限小数是无理数 D.3分数4. 和数轴上的点一一对应的是()A 整数B 有理数C 无理数 D 实数5. 下列说法正确的是()A.064-的立方根是0.4 B.9.0±-的平方根是3C.16的立方根是316D.0.01的立方根是0.0000016. 若a和a-都有意义,则a的值是()A.0a D.0≠=aa B.0≥≤a C.07. 边长为1的正方形的对角线长是()A. 整数B. 分数C. 有理数D. 不是有理数8.38-=() A.2 B.-2 C.±2 D.不存在9.若2a a=-,则实数a在数轴上的对应点一定在()A.原点左侧 B.原点右侧 C.原点或原点左侧D.原点或原点右侧二. 填空题:(32分)13. 9的算术平方根是;3的平方根是; 0的平方根是;2的平方根是 .1的立方根是 , 9的立方根是 .14. –1的立方根是 ,2715. 2的相反数是 , 倒数是 , -36的绝对值是 .16. 比较大小:3 2; 6 2.35.(填“>”或“<”) 17. =-2)4( ;=-33)6( ; 2)196(= . 18. 37-的相反数是 ; 32-=19.若215b +和31a -都是5的立方根,则a = ,b =三. 解答题:(20分)21.求下列各数的平方根和算术平方根:① 1; ②0.0004③ 256 ④812522. 求下列各数的立方根:①21627;②610--.23.求下列各式的值:①44.1; ②3027.0-; ④649;⑤44.1-21.1; ⑦)32(2+附加题:(20分) 24.若03)2(12=-+-+-z y x ,求z y x ++的值。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。

二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。

三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。

四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。

五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。

第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。

二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。

三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。

四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。

五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。

第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。

二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。

(易错题精选)初中数学实数知识点总复习含答案解析(1)

(易错题精选)初中数学实数知识点总复习含答案解析(1)

(易错题精选)初中数学实数知识点总复习含答案解析(1)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 即2的整数部分.3.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( )A .②④B .②③C .①④D .①③【答案】D【解析】【分析】 先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.6.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE =5 ∵A 点表示的数是1- ∴E 点表示的数是51-【点睛】掌握勾股定理;熟悉圆弧中半径不变性.7.4的算术平方根为( )A .2±B .2C .2±D .2【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.16的算术平方根是( )A .±4B .-4C .4D .±8【答案】C【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】 24=16Q ,16∴的算术平方根是4.所以C 选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.10.如图所示,数轴上表示3、13的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A .13B .13C .13D 13 【答案】C【解析】点C 是AB 的中点,设A 表示的数是c 1333c =-,解得:13C . 点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.14.1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是164±=±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.下列说法:①36的平方根是6; ②±9的平方根是3; 164±; ④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9.其中正确的说法是( )A .0B .1C .3D .5 【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;16=4164±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .2或12B .1或﹣1C .12或1D .2或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.实数)A3<<B.3<C3<<<<D3【答案】D【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.在实数范围内,下列判断正确的是()A.若2t ,则m=n B.若22a b>,则a>bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.。

初中数学实数知识点总复习含答案解析(1)

初中数学实数知识点总复习含答案解析(1)

初中数学实数知识点总复习含答案解析(1) 一、选择题1.1?0,?-,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】4==,013是有理数.∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.2.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.3.若a 、b 分别是6-13的整数部分和小数部分,那么2a-b 的值是( ) A .3-3 B .4-13 C .13 D .4+13【答案】C【解析】根据无理数的估算,可知3<13<4,因此可知-4<-13<-3,即2<6-13<3,所以可得a 为2,b 为6-13-2=4-13,因此可得2a-b=4-(4-13)=13.故选C.4.已知,x y 为实数且110x y ++-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b >0>a ,且 |a|>|b|, ∴()2a a b a a b b -+=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.6.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.7.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .8.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】== ∵3.52=12.25,42=16,12.25<13.5<16,∴3.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.13.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.14.计算|1+3|+|3﹣2|=()A.23﹣1 B.1﹣23C.﹣1 D.3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.15.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.8<2.9,③段上.故选C考点:实数与数轴的关系16.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.17.)A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C【解析】【详解】解:由36<38<49,即可得67,故选C.18.估计值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:=<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.。

人教版七年级数学下册第六章第三节实数复习试题一(含答案) (89)

人教版七年级数学下册第六章第三节实数复习试题一(含答案) (89)

人教版七年级数学下册第六章第三节实数复习试题一(含答案) 一般情况下2424m n m n ++=+不成立,但有些数可以使得它成立,例如0m n ==.我们称使得2424m n m n ++=+成立的一对数m ,n 为“相伴数对”,记为(m ,n ).(1)试说明(1,-4)是相伴数对;(2)若(x ,4)是相伴数对,求x 的值.【答案】(1)见详解;(2)x=-1【解析】【分析】(1)根据定义即可判断;(2)根据定义列出方程即可求出答案.【详解】解:(1)由题意可知:m=1,n=-4,141242-∴+=- ; ∴(1,-4)是相伴数对;(2)由题意可知:4+4246x x += 解得:x=-1.【点睛】本题考查等式的性质,解题的关键是正确理解相伴数对的定义,本题属于基础题型.82.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【答案】(1)202021-;(2)2020312-;(3)201101554-. 【解析】【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (54)-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.83.阅读下列材料:小明为了计算1+2+22+……+22018+22019的值,采用以下方法:设S=1+2+22+……+22018+22019①则2S=2+22+……+22019+22020②②-①得,2S-S=S=22020-1请仿照小明的方法解决以下问题:(1)1+2+22+……+29=;(2)3+32+……+310=;(3)求1+a+a 2+……+a n 的和(a >0,n 是正整数,请写出计算过程).【答案】(1)S=210-1;(2)11332-;(3)111n a a +--,见解析 【解析】【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+210,然后把两式相减计算出S即可;(2)利用题中的方法设S=3+32+33+34+…+310,两边乘以3得到3S=3+32+33+34+35+…+311,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【详解】解:(1)令S=1+2+22+……+29①,则2S=2+22+……+210②,②-①得,2S-S=S=210﹣1,即S=210-1.故答案为:210﹣1.(2)令S=3+32+……+310,①则3S=32+33+……+311,②②-①得,3S﹣S=2S=311﹣3,∴S=11 33 2-故答案为:11332-(3)令S=1+a+a2+……+a n,①则aS=a+a2+……+a n+1,②②-①得,aS﹣S=(a﹣1)S=a n+1﹣1,∴S=111naa+--.即1+a+a2+……+a n=111naa+--.【点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.84.计算:))0-+--.2131【答案】【解析】【分析】根据二次根式、绝对值和零指数幂的性质化简,然后再进行计算.【详解】解:原式231=-+-=.【点睛】本题考查了实数的混合运算,熟练掌握二次根式、绝对值和零指数幂的性质是解题关键.85.观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25②×396=693×;(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明;(3)若(2)中a ,b 表示一个两位数,例如a =11,b =22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a ,b ),并写出a +b 的取值范围.【答案】(1)①275,572;②63,36;(2)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a ),证明见解析;(3)22≤a +b ≤99【解析】【分析】(1)观察几行等式发现规律,根据规律求解即可;(2)根据两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数、个位上的数、十位上的数,即可写出等式;(3)通过观察可知,a 、b 都是个位与十位数字相等的两位数,且c a b +=,则ab bca acb ba =,由此规律写出只含a 、b 的规律的式子,再由2299c ≤≤得+a b 的取值范围.【详解】解:(1)观察可知:若两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数字、个位上的数字、十位上的数字,这样的两位数与三位数的积,则等于这个三位数与两位数各自交换个位数字与十位数字所得的三位数与两位数的积,∴①5227557225⨯⨯=②6339669336⨯⨯=.故答案为:①275、572;②63、36.(2)()()()()1010010=1001010a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦ 验证:等式左边()()()()=1011011111010a b b a a b b a ++=++等式右边()()()()=1101110111010a b b a a b b a ++=++左边=右边.答:表示“数字对称等式”一般规律的式子为:()()()()1010010=1001010a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦;(3)规律:若11a m =,11b n =,(m 、n 均为1至8的自然数),且2299a b ≤+≤,则()()()()10010000100=10000100100a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦.+a b 的取值范围为:2299a b ≤+≤.【点睛】本题考查数字变化规律问题,能观察多组数据找出数字间的运算规律是解题关键,从特殊到一般总结出普遍规律是解题难点.86.计算:|﹣4|﹣2cos60°+)0﹣(﹣3)2.【答案】-5【解析】【分析】先将各项化简,再把各项相加即可.【详解】原式4119=-+-5=-【点睛】本题考查了实数的混合运算,掌握实数混合运算的法则是解题的关键.87.计算:20191--【答案】-1【解析】【分析】根据实数的计算对原式进行化简即可求解.【详解】 解:原式1=-+1=-.【点睛】本题主要考查了实数的计算,熟练掌握二次根式的化简,绝对值的计算以及有理数的乘方计算是解决本题的关键.88.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数m ',记22()1111m m F m '+=为“双子数”m 的“双11数”.例如,1313m =,3131m '=,则2131323131(1313)81111F ⨯+⨯==. (1)计算2424的“双11数”(2424)F =______;(2)若“双子数”m 的“双11数”的()F m 是一个完全平方数,求()F m 的值;(3)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b ≤<≤,19c ≤≤,19d ≤≤,c d ≠且a 、b 、c 、d 都为整数,若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()2()(432)0F p F q a b d c +-+++=,令(,)101p q G p q -=,求(,)G p q 的值. 【答案】(1)12;(2)4或16或36;;(3)51或17.【解析】【分析】(1)直接根据“双子数”m 的“双11数”的计算方法即可得出结论;(2)设出四位数,进而得出F (m )=2(x +y ),再求出0<x +y ≤18,再根据F (m )是一个完全平方数,求出x +y ,即可得出结论;(3)先根据“双11数”F (p )能被17整除,进而判断出p 为8989,求出F (q )=2(c +d ),再根据F (p )+2F (q )﹣(4a +3b +2d +c )=0,得出d 2532c -=,进而求出c ,d ,即可得出结论.【详解】(1)由题意知,2424的“双11数”F (2424)()224244242224242424211111111+⨯+⨯===12. 故答案为:12;(2)设“双子数”m 的个位数字和十位数字分别为x ,y ,(0≤x ≤9,0<y ≤9)则数字m 为1000y +100x +10y +x =1010y +101x ,∴“双子数”m '为1010x +101y ,∴F (m )()()()210101012101010121111111111111111y x x y x y ++++===2(x +y ).∵0≤x ≤9,0<y ≤9,∴0<x +y ≤18.∵F (m )是一个完全平方数,∴2(x +y )是一个完全平方数,∴x+y=2或x+y=8或x+y=18,∴F(m)=2×2=4或16或36,即:F(m)的值为4或16或36;(3)∵“双子数”p,p abab=,∴F(p)=2(a+b).∵“双11数”F(p)能被17整除,∴a+b是17的倍数.∵1≤a<b≤9,∴3≤a+b<18,∴a+b=17,∴a=8,b=9,∴“双子数”p为8989,F(p)=34.∵“双子数”q,q cdcd=,∴F(q)=2(c+d).∵F(p)+2F(q)﹣(4a+3b+2d+c)=0,∴34+2×2(c+d)﹣(4×8+3×9+2d+c)=0,∴3c+2d=25,∴d2532c-=,∵1≤c≤9,1≤d≤9,c≠d,c、d都为整数,∴c为奇数,1≤c<9,当c=1时,d=11,不符合题意,舍去,当c=3时,d=8,∴“双子数”q 为3838,∴G (p ,q )898938385151101101101p q --====51, 当c =5时,d =5,不符合题意,舍去,当c =7时,d =2,∴“双子数”q 为7272,∴G (p ,q )898972721717101101101p q --====17, ∴G (p ,q )的值为51或17.【点睛】本题是新定义题目,主要考查了完全平方数,整除问题,理解和运用新定义是解答本题的关键.89.已知,x y 为有理数,定义一种新运算∆,其意义是x ∆()1y xy x y =++-,试根据这种运算完成下列各题(1)求①2∆3;②(4∆3)∆(-2)(2)任意选择两个有理数,分别代替x 与y ,并比较y x 和y x 两个运算的结果,你有何发现;(3)根据以上方法,探索()b c a b a c a ++与的关系,并用等式把它们表示出来.【答案】(1)①10;②-21;(2)x △y=y △x ;(3)a △b+a △c -a △(b+c) =a -1【解析】【分析】(1)①根据新运算法则计算即可;②先算4∆3的结果,再用结果和-2进行计算.(2)将x,y代入新运算计算即可.(3)分别对两个式子进行计算,得出结果作差即可.【详解】(1)①2∆3=2×3+(2+3)-1=10;②4∆3=4×3+(4+3)-1=18,18∆(-2)=18⋅(-2 )+(18-2)-1=-21.(2)因为x△y=xy +(x+y)-1,y△x=yx +(y+x)-1,发现有x△y=y△x(3)因为a△b+a△c= ab + (a +b) -1+ac + (a +c) -1 = ab +ac+2a +a +b +c - 2 ,a△(b+c) = a(b +c) +a + (b +c) -1 = ab +ac +a +b +c -1所以有a△b+a△c-a△(b+c) =a-1【点睛】本题考查新定义的运算下的代数计算,关键在于理解题意,熟练运用代数计算方法.9020082009-⨯(0.25)4【答案】6-【解析】【分析】先利用乘法结合律计算乘法,最后算减法即可.【详解】原式20082008(0.25)44-⨯⨯2008⨯-⨯)4][(0.2542008-⨯(1)4--⨯=214=6-【点睛】本题主要考查乘法运算律在实数运算中的应用,掌握乘法结合律是解题的关键.。

6.4第6章《实数》复习

6.4第6章《实数》复习

0
a 0 a 0
a 0
(a 0)
a a
3
a a为任何数 a
3
a为任何数
2
3
1.已知a o, 求 a a 的值
3
有限小数及无限循环小数
整数
分数
有理数
实 数
正整数 0 负整数 正分数 负分数
无理数
无限不循环小数
一般有三种情况
正无理数 负无理数
(1)、
这就是说,如果x = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
2
3.平方根的性质:
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
3.立方根的定义:
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的 三次方根.记作 3 .a 其中a是被开方数,3是根指数,符号 3 ”读做“三次根号”. “
2、 “
”, “
3
”开不尽的数
(3)、 类似于0.0100100010 0001
课堂检测
1、判断下列说法是否正确:

1.实数不是有理数就是无理数。 (
2.无限小数都是无理数。
3.无理数都是无限小数。




4.带根号的数都是无理数。



5.两个无理数之积一定是无理数。(
6.所有的有理数都可以在数轴上表示,反过来, 数轴上所有的点都表示有理数。( )
2、把下列各数分别填入相应的集合内:
3
2,
1 , 4
7,
,
0,
4 , 9 3 0.3737737773
5 1 , , 4 2

第十三章%20%20实数复习[1]

第十三章%20%20实数复习[1]

第十三章 实数复习教学目标:1.理解算术平方根、平方根、立方根的概念,并会表示。

2.会估算并会比较无理数数的大小。

3.能熟练、灵活地实行求一个数的立方根的运算。

自主学习:1、什么叫做一个数的平方根、立方根?2、正数、0、负数的平方根、立方根有什么规律?3、怎样求出一个数的平方根、立方根?数a 的平方根、立方根怎样表示?一、填空题1.(-0。

7)2的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.492.若 -3a =387,则a 的值是( ) A.87 B.-87 C.±87 D.-512343 3.有以下说法: 其中准确的说法的个数是( )(1) 无理数就是开方开不尽的数. (2) 无理数就是无限不循环小数.(3) 无理数包括正无理数,零,负无理数.(4) 无理数都能够用数轴上的点来表示.A.1B.2C.3D.44.若2a =25,b =3,则a+b=( )A.-8B.±8C.±2D. ±8或±25.在,中14,25,0,14.3,161,2,3,12,25----π其中_________________是整数,______________是无理数,____________________是有理数. 6.25-的相反数是____________,绝对值是_________________.=±0201.1教案1.2.学生阅读教材,归纳知识点。

3.教师检查知识点4.根据学生练习题实行实行点评。

巩固案1、a 的立方根是 ,-a 的立方根是 ;若x 3=a , 则x= 33a = ;33)(a -= ;-33a = ;)(33a =2、每一个数a 都只有 个立方根;即正数只有 个立方根;负数只有 个立方根;零只有 个立方根,就是 本身。

3、2的立方等于 ,8的立方根是 ;(-3)3= ,-27的立方根是 .。

4、0.064的立方根是 ; 的立方根是-4; 的立方根是32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
A
B
D
C
B
C
D
类型三:直角三角形的判定方法的应用
3.如图所示,AD=4, CD=3,∠ADC=90°,AB=13, BC=12,求该图形的面积。
C
D A
BБайду номын сангаас
类型四:与折叠有关的计算
4.如图,将一个边长分别为4、8的长方形纸片ABCD折 叠,使C点与A点重合,则EB的长是________.
A
F
D
B E
2、直角三角形的判定判定方法 : a2+b2=c2 如果△ABC的三边长分别是a,b,c,且满足____________, 那么△ABC 是直角三角形。
该定理在应用时,要注意处理好如下几个要点: ①已知的条件: 某三角形的三条边的长度. ②满足的条件: 最大边的平方= 最小边的平方+中间边的平方 ③得到的结论: 直角 是直角三角形 这个三角形____________,并且最大边的所对的角是___
归类解析
类型一:利用勾股定理求面积
1.如图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD的面积和周长。 (2)求∠ADC的度数。
类型二:在直角三角形中,已知两边求第三边
2.已知△ABC中,AB=17,AC=10,BC边上的高AD=8, 则边BC的长为( ) A.21或9 B.15 C.6 D.以上答案都不对
C
类型五:与实际生活有关的计算
5.如图,铁路上A,B两点相距25km,C,D为两村庄, DA⊥AB于A,CB⊥AB于B,已知DA=15km, CB=10km,现在要在铁路AB上建一个土特产品 收购站E,使得C,D两村到E站的距离相等, 则E站应建在离A站多少km处?
D C
A
E
B
类型六:与展开图有关的计算
任务二 考点梳理
考点一:利用勾股定理求面积
求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.
考点二: 应用勾股定理在等腰三角形中求底边上的高 2、如图所示,等腰△ABC中,AB=AC, AD是底边上的高,若AB=5cm,BC=6cm. 求:(1) AD的长.(2) △ABC的面积.
第五章 复 习 (1)
【学习目标】
理解和记住勾股定理和直角三角形的判定方法
【学习重点】
勾股定理和直角三角形的判定方法
任务一: 回顾本章第二节、第四节所学知识, 回答下列问题: 1、勾股定理 斜边的平方 直角三角形两直角边的平方和等于__________。 也就是说: 如果直角三角形的两直角边为a、b,斜边为c , a2+b2=c2 那么__________。 公式的变形: a2 = c2- b2, b2= c2-a2 勾股定理的主要作用是: 已知直角三角形的两边求第三边。
6、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上, 求从顶点A到顶点C’的最短距离.
【强化训练】: 如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁 爬行,要从A点爬到B点,则最少要爬行_________cm.
B
A
诊断评价
1.分别以下列四组数为一个三角形的边长:(1)3、4、5 (2)5、12、13(3)8、15、17(4)4、5、6, 其中能够成直角三角形的有_________ . 2.在直角三角形中,若两直角边的长分别为1cm,2cm , 则斜边长为________. 3.边长为2的正三角形的高是_______. 4.已知直角三角形的两边长为3、2, 则另一条边长的平方是_________. 5.已知直角三角形两直角边长分别为5和12, 求斜边上的高.
达标测评:
1.设直角三角形的三条边长为连续自然数, 则这个直角三角形的面积是_____. 2.直角三角形的两直角边分别为5cm,12cm, 其中斜边上的高为( ). 30 60 A.6cm B.8.5cm C. cm D. cm 13 13

3.等腰△ABC的腰长为10,底边长为12,求△ABC 的面积。
④如果不满足条件,就说明_______________________ 这个三角形不是直角三角形.
3、勾股数组
把能够成为直角三角形三角形三条边长的三个正整数 一般地,______________________________________ 被称为勾股数组。
注意:①勾股数必须是正整数,不能是分数或小数。 ②一组勾股数扩大相同的正整数倍后,仍是_______。
相关文档
最新文档