国外数学问题
世界数学难题——费马大定理
世界数学难题——费马大定理费马大定理简介:当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。
这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。
虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1995年成功证明。
证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。
而安德鲁•怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。
[编辑本段]理论发展1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。
关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。
”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。
数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。
但数学家对一般情况在首二百年内仍一筹莫展。
1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。
四色问题又称四色猜想,是世界近代三大数学难题之一
四色问题又称四色猜想,是世界近代三大数学难题之一。
四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。
”(右图)这里所指的相邻区域,是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点,就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。
”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。
汉密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年汉密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。
如为正规地图,否则为非正规地图(右图)。
一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
世界十大难题
世界十大难题1、NP完全问题(NP-C问题)NP完全问题(NP-C问题),是世界七大数学难题之一。
NP的英文全称是Non-deterministicPolynomial的问题,即多项式复杂程度的非确定性问题。
简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。
NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题。
而如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NP完全问题(Non-deterministicPolynomialcompleteproblem)。
NP完全问题也叫做NPC问题。
2、霍奇猜想霍奇猜想是代数几何的一个重大的悬而未决的问题。
由威廉·瓦伦斯·道格拉斯·霍奇提出,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想,属于世界七大数学难题之一。
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
3、庞加莱猜想庞加莱猜想(Poincaréconjecture)是法国数学家庞加莱提出的一个猜想,其中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。
2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。
1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想:“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。
”简单地说,一个闭的三维流形就是一个有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。
4、黎曼假设黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。
世界十大数学难题
世界十大数学难题数学世界十大难题:1、科拉兹猜想科拉兹猜想又称为奇偶归一猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
2、哥德巴赫猜想哥德巴赫猜想是数学界中存在最久的未解问题之一。
它可以表述为:任一大于2的偶数,都可表示成两个素数之和。
例如,4 = 2 + 2;12 = 5 + 7;14 = 3 + 11 = 7 + 7。
也就是说,每个大于等于4的偶数都是哥德巴赫数,可表示成两个素数之和的数。
3、孪生素数猜想这个猜想是最初发源于德国数学家希尔·伯特,他在1900年国际数学家大会上提出:存在无穷多个素数p,使得p + 2是素数。
其中,素数对(p, p + 2)称为孪生素数。
在1849年,法国数学家阿尔方·德·波利尼亚克提出了孪生素数猜想:对所有自然数k,存在无穷多个素数对(p, p + 2k)。
k = 1的情况就是孪生素数猜想。
4、黎曼猜想黎曼猜想由德国数学家波恩哈德·黎曼于1859年提出。
它是数学界一个重要而又著名的未解决的问题,素有“猜想界皇冠”之称,多年来它吸引了许多出色的数学家为之绞尽脑汁。
对于每个s,此函数给出一个无穷大的和,这需要一些基本演算才能求出s的最简单值。
例如,如果s = 2,则(s)是众所周知的级数1 + 1/4 + 1/9 + 1/16 +…,奇怪是谁,加起来恰好是² / 6。
当s是一个复数(一个看起来像a +b的复数)时,使用虚数查找是很棘手的。
5、贝赫和斯维纳通-戴尔猜想贝赫和斯维纳通-戴尔猜想表述为:对有理数域上的任一椭圆曲线,其L函数在1的化零阶等于此曲线上有理点构成的Abel群的秩。
设E是定义在代数数域K上的椭圆曲线,E(K)是E上的有理点的集合,已经知道E(K)是有限生成交换群。
记L(s,E)是E的L函数,则生成上图的贝赫和斯维纳通-戴尔猜想公式。
数学史上的三大几何问题
数学史上的三大几何问题一、立方倍积关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。
”由此可见这神是很喜欢数学的。
居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。
结果被一个学者指出了错误:「稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。
」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。
人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。
」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。
由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。
而由于这一个传说,立方倍积问题也就被称为提洛斯问题。
数学史上的三大几何问题二、化圆为方方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。
有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。
由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是(1/2)(2πr)(r)=πr2与已知圆的面积相等。
由这个直角三角形不难作出同面积的正方形来。
但是如何作这直角三角形的边。
即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。
我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。
实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方根。
我们假设圆的半径为单位1,那么正方形的边长就是根号π。
直到1882年,化圆为方的问题才最终有了合理的答案。
数学故事推荐
四色猜想世界近代三大数学难题之一。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年哈密尔顿逝世为止,问题也没有能够解决数学家哀思录发疯了的数学家康托尔(G.Cantor,1845-1918),德国数学家。
康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础。
从而解决17世纪牛顿与莱布尼茨创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西、魏尔斯特拉斯等人进行的微积分理论严格化所建立的极限理论。
克隆尼克,康托尔的老师,对康托尔表现了无微不至的关怀。
他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久。
他甚至在柏林大学的学生面前公开攻击康托尔。
横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位。
使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折。
法国数学家彭加勒:我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西。
集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了。
德国数学家魏尔)认为,康托尔关于基数的等级观点是雾上之雾。
菲利克斯.克莱因不赞成集合论的思想。
数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交。
世界50个经典的数学难题
世界50个经典的数学难题第01题阿基米德分牛问题太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷* * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of th e Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
世界七大数学难题与Hilbert的23个问题
世界七大数学难题与Hilbert的23个问题继上文《数学家的猜想错误》提到的七大数学难题和大卫·希尔伯特23个数学难题,今天我们就来详细了解下。
世界七大数学难题,这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。
千年大奖问题美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。
其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。
我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东做了证明的封顶工作。
)“千年大奖问题”公布以来,在世界数学界产生了强烈反响。
这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。
认识和研究“千年大奖问题”已成为世界数学界的热点。
不少国家的数学家正在组织联合攻关。
可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程。
01庞加莱猜想1904年,法国数学家亨利·庞加莱(HenriPoincaré)在提出这个猜想:'任何一个单连通的,封闭的三维流形一定同胚于一个三维的球面。
'换一种简单的说法就是:一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。
懵逼中为了大家便于理解庞加莱猜想,有人给出了一个十分形象的例子:假如在一个完全封闭(足够结实)的球形房子里,有一个气球(皮是无限薄的),现在我们将气球不断吹大,到最后,气球的表面和整个房子的墙壁是完全贴住,没有缝隙。
面对这个看似十分简单的猜想,无数位数学家前仆后继,绞尽脑汁,甚至是倾其一生都没能证明这个猜想。
世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公
世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公世界七大数学难题:1、P/NP问题(P versus NP)2、霍奇猜想(The Hodge Conjecture)3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。
4、黎曼猜想(The Riemann Hypothesis)5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)所谓世界七大数学难题,其实是美国克雷数学研究所于2000年5月24日公布的七大数学难题。
也被称为千年奖谜题。
根据克莱数学研究所制定的规则,所有难题的解答都必须在数学期刊上发表,并经过各方验证。
只要他们通过两年的验证期,每解决一个问题的求解者将获得100万美元的奖金。
这些问题与德国数学家大卫·希尔伯特在1900年提出的23个历史数学问题遥相呼应。
一百年过去了,很多问题都解决了。
千年奖谜题的解决很可能带来密码学、航空航天、通信等领域的突破。
一:P/NP问题P/NP问题是世界上最难的数学题之一。
在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。
P/NP问题中包含了复杂度类P 与NP的关系。
1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。
复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。
世界十大数学难题
难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三: 庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口难题"之六:纳维叶-斯托克斯(Navier—Stokes)方程的存在性与光滑性难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton—Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题"之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元.以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人.你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的.然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的.不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
世界数学难题哥尼斯堡七桥问题
世界数学难题——哥尼斯堡七桥问题请你做下面的游戏:一笔画出如图1的图形来。
规则:笔不离开纸面,每根线都只能画一次。
这就是古老的民间游戏——一笔画。
你能画出来吗?如果你画出来了,那么请你再看图2能不能一笔画出来?虽然你动了脑筋,但我相信你肯定不能一笔画出来!为什么我的语气这么肯定?我们来分析一下图2。
我们把图2看成是由点和线组成的一种集合。
图里直线的交点叫做顶点,连结顶点的线叫做边。
这个图是联通的,即任何二个顶点之间都有边。
很显然,图中的顶点有两类:一类是有偶数条边联它的,另一类是有奇数条边联它的。
一个顶点如果有偶数条边联它的,这点就称为偶点;如果有奇数条边联它的,就称它为奇点。
我们知道,能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
图2有六个奇点,四个偶点,当然不能一笔画出来了。
为什么能一笔画的图形只有上述两类呢?有关这个问题的讨论,要追溯到二百年前的一个著名问题:哥尼斯堡七桥问题。
十八世纪东普鲁士哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河,它有两个支流,在城市中心汇成大河,中间是岛区,河上有7座桥,将河中的两个岛和河岸连结,如图3所示。
由于岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。
渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只许通过一次,最后仍回到起始地点。
这就是七桥问题,一个著名的图论问题。
图3这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。
因此,一群大学生就写信给当时年仅20岁的大数学家欧拉。
欧拉从千百人次的失败,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥,并很快证明了这样的猜想是正确的。
欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成4个点,7座桥表示成7条连接这4个点的线,如图4所示。
图4 图5于是“七桥问题”就等价于图5中所画图形的一笔画问题了。
世界十大数学难题
世界十大数学难题这十大数学难题被认为是历史上最有挑战性、最有价值的数学拙计,迄今为止尚未被解决。
今天,我们将讨论它们中的几个。
1.达哥拉斯猜想毕达哥拉斯猜想是由古希腊数学家毕达哥拉斯在公元前300年提出的一个数论问题,最初被命名为“最大公约数问题”。
它挑战着数学家们去证明所有质数之间是否存在着某种关系。
毕达哥拉斯猜想给出的答案否定了这种关系,据称至今仍未能解决。
2.尔登和温斯顿猜想奥尔登和温斯顿猜想是由两位英国数学家,威廉奥尔登和查尔斯温斯顿,在1823年提出的猜想。
它提出了一种算法,可用来检测任何一个整数是否是质数,并且它没有被解决过。
该猜想的解决可能会帮助计算机科学家在编码安全的时候,检测一个可能的质数。
3.曼猜想黎曼猜想是由德国数学家克劳德黎曼在19公元前1900年提出的一个问题,它挑战了数学家们的智慧。
该猜想详细地描述了自然数的结构,以及这些数之间是否存在着任何规律性。
至今仍未被解决,若能证明其有归纳性就将可以解决许多数学问题。
4.摩拉比猜想汉摩拉比猜想是由保罗汉摩拉比在1859年提出的,该猜想指出,如果一个质数可以表示为两个质数之和,则可以称这两个质数为汉摩拉比素数。
该猜想触及到许多数论主题,尤其是研究质数的分布情况,但是直到今天仍未能确定它的正确性,所以仍然是个开放的问题。
5.特利猜想坎特利猜想是由威廉坎特利在1637年提出的,它的努力是要证明所有的奇数都可以由三个质数之和来表示,而且在金融市场中它可能会产生一些重要的影响。
即使在现代,这个猜想也不是非常容易解决,尽管已经有人证明它是正确的,但仍然存在着许多疑问。
6.号猜想称号猜想是由荷兰数学家尤多称号于1772年提出的,称号猜想证明了一些奇怪的数学结论,例如,乘积的某些数字可以表示成两个整数的平方和。
该猜想已被证明是错误的,但它也给数学界带来了许多有趣的探索,并激发了许多有价值的论文。
7.斯健身猜想高斯健身猜想是由德国数学家克劳德高斯在1832年提出的,它主要关注唯一剩余定理(CRT)中的数学科学研究,该猜想指出,某些分解的整数不具有完全的唯一解决方案。
世界七大数学难题
世界七大数学难题1、费尔马大定理费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。
终于在1994年被安德鲁·怀尔斯攻克。
古希腊的丢番图写过一本著名的"算术",经历中世纪的愚昧黑暗到文艺复兴的时候,"算术"的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在"算术"的关于勾股数问题的页边上,写下猜想:x^n+y^n=z^n是不可能的(这里n大于2;x,y,z,n都是非零整数)。
此猜想后来就称为费尔马大定理。
费尔马还写道"我对此有绝妙的证明,但此页边太窄写不下"。
一般公认,他当时不可能有正确的证明。
猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。
1847年,库木尔创立"代数数论"这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。
其惊人的魅力,曾在最后时刻挽救自杀青年于不死。
他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。
无数人耗尽心力,空留浩叹。
最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。
1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在"谷山丰-志村五朗猜想"之中。
童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。
终于在1993年6月23日剑桥大学牛顿研究所的"世纪演讲"最后,宣布证明了费尔马大定理。
世界数学难题、趣味数学、幻方
世界数学难题——哥尼斯堡七桥问题18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。
将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题………… 这就是哥尼斯堡七桥问题,一个著名的图论问题。
1727年在欧拉20岁的时候,被俄国请去在圣彼得堡(原列宁格勒)的科学院做研究。
他的德国朋友告诉了他这个曾经令许多人困惑的问题。
欧拉并没有跑到哥尼斯堡去走走。
他把这个难题化成了这样的问题来看:把二岸和小岛缩成一点,桥化为边,于是“七桥问题”就等价于下图中所画图形的一笔画问题了,这个图如果能够一笔画成的话,对应的“七桥问题”也就解决了。
经过研究,欧拉发现了一笔画的规律。
他认为,能一笔画的图形必须是连通图。
连通图就是指一个图形各部分总是有边相连的,这道题中的图就是连通图。
但是,不是所有的连通图都可以一笔画的。
能否一笔画是由图的奇、偶点的数目来决定的。
那么什么叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点;与偶数(双数)条边相连的点叫做偶点。
如下图中的①、④为奇点,②、③为偶点。
1.凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
例如下图都是偶点,画的线路可以是:①→③→⑤→⑦→②→④→⑥→⑦→①2.凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点终点。
例如下图的线路是:①→②→③→①→④3.其他情况的图都不能一笔画出。
聪明的博友们,想必你们已经知道哥尼斯堡七桥问题的答案了吧!留一道作业:下面的五环标志可否一笔画成?如何画?数学长联前几天在网上发现一个数学长联,写的非常好,可以说是对数学的一个简单概括,并且还加了注释,对了解古今数学的发展很有帮助,现转载如下:宏著传中外,但以立言,心灵独得。
20个有趣的数学问题
20个有趣的数学问题数学作为一门基础学科,其独特的魅力和无穷的奥秘一直吸引着无数学者和爱好者。
以下是一些有趣的数学问题,涵盖了不同领域和主题,让我们一起探索数学的奇妙世界。
1. 素数之谜:素数是只有两个正因数(1和本身)的自然数。
为什么素数的分布似乎遵循一个无规律的模式?是否有无穷多的素数?2. 分形之美:分形是具有无限精细结构的图形。
诸如科赫雪花、谢尔宾斯基垫等分形为何在视觉上如此吸引人?它们在数学上有哪些有趣的应用?3. 不可思议的数列:像斐波那契数列、卢卡斯数列等神奇的数列,它们背后的数学原理是什么?这些数列在自然界和艺术中有哪些表现?4. 概率与人生:概率论如何解释生活中的随机事件?例如,为什么足球比赛中的点球得分率不是100%?概率论如何帮助我们做出更好的决策?5. 无穷大的奇妙世界:无穷大在数学中有哪些表现形式?例如,实数集是无限大的,但可数无限和不可数无限有何不同?6. 拓扑学的魔法:拓扑学研究的是物体在变形过程中保持不变的属性。
例如,为什么一个甜甜圈和一个咖啡杯在拓扑上是等价的?7. 分形几何学:分形几何是如何揭示自然和人造对象的复杂结构的?分形几何有哪些应用,如艺术、生物学和物理学?8. 无限递归与自我相似:有些对象是自身的子对象或组成对象的组分的模式。
无限递归和自我相似在数学中有哪些例子?它们为什么有趣?9. 混沌理论与蝴蝶效应:混沌理论解释了为什么一些看似微小的变化会导致巨大的结果。
蝴蝶效应是什么?混沌理论在自然界和人类社会中有哪些应用?10. 几何学中的最短路径:在几何学中,最短路径是从一点到另一点的最直线路径。
例如,欧几里得几何中的直线段是最短路径。
但在弯曲空间中呢?黎曼几何和广义相对论如何解释最短路径?11. 无理数和超越数之谜:无理数和超越数是无限不循环的小数。
它们在数学中有哪些应用和特性?为什么它们比有理数更加神秘和有趣?12. 黄金比例与美学:黄金比例是一个特定的比率(大约等于1.618),被广泛用于艺术、建筑和设计等领域。
世界数学难题——费马大定理
世界数学难题——费马大定理费马大定理简介:当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。
这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。
虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1995年成功证明。
证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。
而安德鲁•怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。
[编辑本段]理论发展1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。
关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。
”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。
数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。
但数学家对一般情况在首二百年内仍一筹莫展。
1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。
希尔伯特23个问题与21世纪七大数学难题
希尔伯特23个问题与21世纪七大数学难题2009-12-31 12:41:40希尔伯特23个问题及解决情况1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。
在这具有历史意义的演讲中,首先他提出许多重要的思想:正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。
正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。
希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。
” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。
只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。
”他阐述了重大问题所具有的特点,好的问题应具有以下三个特征:清晰性和易懂性;虽困难但又给人以希望;意义深远。
同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。
就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。
编号问题推动发展的领域解决的情况1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。
即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。
2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。
数学的相容性问题至今未解决。
3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生M.Dehn 给出了肯定的解答。
4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。
七大千年数学难题
七大千年数学难题1900年,德国数学家希尔伯特在巴黎举行的国际数学家大会上提出了23个数学问题,认为这些是人类在20世纪里应该努力去解决的问题。
一百年之后,美国克莱数学研究所相对应地提出了七大数学难题,并对每个问题设立百万美元巨奖征集答案。
克莱研究所提出的七大难题分别为:(1)庞加莱猜想(已证明) 庞加莱是在1904年发表的一组论文中提出这一猜想的:“单连通的三维闭流形同胚于三维球面。
”它后来被推广为:“任何与n维球面同伦的n维闭流形必定同胚于n维球面。
”(2)P与NP问题(没什么进展) P 问题的P 是Polynomial Time(多项式时间)的头一个字母。
某决定性(非概率)算法计算一个问题所花的时间t是问题尺度n的多项式函数t=P(n),我们就称之为“多项式时间决定法”。
而能用这个算法解的问题就是P 问题;反之,就叫做“非多项式时间决定性算法”,这类的问题就是“NP 问题”,NP 是Non deterministic Polynomial time (非决定性多项式时间)的缩写。
由定义来说,P 问题是NP 问题的一部份。
但是否NP 问题里面有些不属于P 问题等级的东西呢,或者NP 问题终究也成为P 问题,这就是相当著名的PNP 问题。
一般认为,NP 问题里面有不属于P 问题等级的东西。
(3)黎曼假设(暂无希望) Zeta 函数ζ (s)(s属于C)的全部非平凡零点都在复平面的直线Re(z)=1/2上。
(4)杨,米尔理论(太难,几乎没人做) 杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们碰到的困难是这个粒子的质量的问题。
他们从数学上所推导的结果是,这个粒子具有电荷但没有质量。
然而,困难的是如果这一有电荷的粒子是没有质量的,那麼为什麼没有任何实验证据呢,而如果假定该粒子有质量,规范对称性就会被破坏。
一般物理学家是相信有质量,因此如何填补这个漏洞就是相当具挑战性的数学问题。
(5)纳维叶,斯托克斯(Navier-Stokes)方程(流体力学基本方程组)的存在性与光滑性(离解决相差很远)(6)波奇和斯温纳顿,戴雅猜想(比费玛大定理难100倍) y^2=x^3+ax+b的有理数解问题。
2000~2021年间国内外数学问题提出的比较研究——基于CiteSpace软件的可视化分析
2000~2021年间国内外数学问题提出的比较探究——基于CiteSpace软件的可视化分析专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!2000~2021年间国内外数学问题提出的比较探究——基于CiteSpace软件的可视化分析2000~2021年间国内外数学问题提出的比较探究——基于CiteSpace软件的可视化分析引言数学是一门基础学科,其进步对于人类社会的进步和科技的进步具有不行轻忽的作用。
数与运算一致性国外研究现状
数与运算一致性国外研究现状数学学习对于孩子的发展至关重要。
数学的最基本的概念之一就是数和运算的一致性,一致性是指孩子们在完成数学问题时,可以用相同的步骤重复计算获得正确的结果。
研究表明,数和运算的一致性是计算能力发展的关键因素。
因此,在国外也正在开展许多相关研究。
近年来,国外研究者主要集中在以下几个方面:一是研究孩子们学习数学时的一致性知识结构和发展过程,二是探讨数学一致性的认知和情感因素,三是探索认知及情感因素如何影响孩子们学习运算的一致性。
首先,孩子们在学习数学时会形成相应的数学知识结构。
有研究发现,儿童幼儿在学习数学时会根据情景、对象或解决问题的目的,产生和形成不同的概念领域,并在各部分形成相应的知识结构和发展过程。
例如,在学习十进制系统时,儿童会注意到十个数字的构成方式和位数的概念,并发展出结构化的数字表示法。
在此基础上,他们可以正确地使用不同的运算符或解决问题,从而达到数学一致性。
其次,研究表明,孩子们判断数学一致性时,不仅受到认知因素的影响,而且还受到情感因素的影响。
研究发现,儿童在学习数学时,会有避免和接受的情感偏好。
在一些情况下,他们会避免解决困难的数学问题,从而影响他们的一致性。
例如,当儿童面对学习新的概念时,他们可能会感到困惑和害怕,从而放弃学习以及学习的一致性。
此外,研究者们发现,孩子们的态度和能力会影响学习数学一致性的能力。
有一些研究表明,孩子们的自信程度对学习数学一致性有很大影响。
凡是对自身具有自信心的孩子,他们更有可能在学习数学运算时表现出较高的一致性。
此外,孩子们的思维能力也会影响学习数学的一致性。
儿童有良好的思维能力,在推理和解决运算问题时,他们更容易理解和记忆概念,从而有助于他们表现出更高一致性。
最后,研究发现,学习环境也会影响孩子们学习数学一致性的能力。
教师在指导孩子学习数学时,可以正确地引导他们引入运算,并创造良好的学习氛围。
比如,教师可以为孩子们提供丰富的数学例题,让他们认真研究每一个例子,并与他们交流,从而对孩子们的一致性有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Useful Identities and Inequalities in Geometry ThreadRegular Notation for a , with sides:Let the area be .Letbe any point in. Let the cevians throughandintersectat.Let the semiperimeter , inradius, and circumradius be respectively.Let the heights protruding from be respectively, which meet at the orthocenter . Let the feet ofthe perpendiculars from toberespectively.Let the medians protruding from be respectively, which meet at the centroid. Let themidpoints ofberespectively.Let the angle bisectors protruding from be respectively, which meet at the incenter . Let the feet ofthe perpendiculars from toberespectively.Let the centers of the excircles tangent toberespectively, and the excircles be tangent toat. Let the radii of the excircles tangent toberespectively.Result 1. Common methods of obtaining the area of a triangle(Heron's Theorem)Result 2. Highly common lengths associated with a triangle in terms of(Apollonius' Theorem)Result 3. Highly common radii associated with a triangle in terms ofResult 4. Symmetric sums ofin terms ofResult 5. Symmetric sums of in terms ofResult 6. Symmetric sums of in terms of.This leads to the inequalities and .Angle Bisector Theorem:where is the angle bisector ofIf is the orthic triangle of thenwhere are the excentresStewart's Theorem:Ptolemy's Theorem: If is a quadrilateral then .Equality occurs if and only if is cyclic.Result 43 :Result 45 :Result 46 :Result 47 :Result 48 :Result 49 :Result 51 :is acute-angledis obtuseis right-angledResult 52 :Law of tangents :Result 53.Result 54.Let be the sides of a triangle ABC. Let be any reals and let be any point. Prove that.1. If , then2. If and is the circumcenter, then it's Weitzenbock.3. If and is the circumcenter then .Result 55.Result 56., which amazingly coincides with Result 6a.Result 57.Result 58. Brahmagupta's FormulaIn cyclic quadrilateral with sides ,(produces Heron's Formula as )Result 59. Bretschneider's FormulaIn any quadrilateral with sides and opposite angles ,(produces Brahmagupta's Formula when is cyclic )Result 60. Euler's InequalityResult 61. Gerretsen's Inequality (often teamed up with Euler)Result 62. Blundon's Inequality (not usually necessary, but useful when Gerretsen is not strong enough)Result 63. Law of CosinesResult 64. Law of SinesResult 66. More methods of finding the area of a triangleResult 67.Result 68.Result 69.Result 70.Result 71.Result 72.Result 72.Result 73.Result 74.(credits to luisgeometra)Result 75. Triangle Inequality, and cyclic versions hold as usual, with equality holding if and only if , or in other words the triangle is degenerate as the segment . As such, the symbol is more popular.Result 76. Polygon InequalityLet there be an -sided polygon with side lengths represented by the sequence . Let. Then it holds that for each .Equality holds if and only if the polygon is degenerate as the segment . Once again, the symbol is more popular.This is the Triangle Inequality when .Result 77 : (Pedoe's Inequality)Let , , be the side-lengths of a triangle with area , and , , be the side-lengths of a triangle with area ,then :Result 78 : (Euler's Formula)Result 79 : (Remarkable Distances)Where is Nagel's point and is Gergonne's point.Result 80 : (Useful Identities)Result 81 : (Geometric Identities for every point)For any point in the plane :Result 82 : (Trigonometric Identity)Result 83 : (Useful Inequality, stronger than Gerretsen's one)Result 84 : (Other Inequalities with , , )(Walker's Inequality : for an acute-angled triangle)Result 85. Reciprocal IdentitiesResult 86. Pythagorean IdentitiesResult 87. Quotient IdentitiesResult 88. Co-function Transformation IdentitiesResult 89. Reflection IdentitiesResult 90. Period Identities (best constants obviously),Result 91. Even-odd IdentitiesResult 92. Sum IdentitiesResult 93. Difference IdentitiesResult 94. Double Angle IdentitiesResult 95. Half-angle Identities(credits to luisgeometra) Result 96. Product-to-sum IdentitiesResult 97. Sum-to-Product Identities_____________________________________________________________________________A final few symmetric sums (the first uses WakeUp's post)Result 98. ExradiiResult 99._____________________________________________________________________________Let such that:So it is easy to convert all symmetric sums of into symmetric sums of . Result 100.In a cyclic quadrilateral , .Result 101.For any -sided polygon, the sum of the interior angles is .For any regular -sided polygon, each interior angle is .For any convex polygon, the sum of the exterior angles is .Result 102.For any regular -sided polygon with side length , the inradius is .For any regular -sided polygon with side length , the circumradius is .Result 103. Ceva's TheoremFollowing regular notation, ._____________________________________________________________________________Constantin PM-ed me some interesting identities, the best of which are:Result 104.Result 105.Result 106.Result 107. How sides are split by common concurrent cevians,,,Let the symmedians intersect sides respectively at respectively.,The angle bisector case is not included because it is ugly and unused.Result 108. Ravi Transformation.In words, the sides of an arbitrary triangle can be converted into where .Conversely, an arbitrary triple forms the triple of a triangle. This is very important.Let .Result 109..In very basic cases we use , in more complex cases we use , and in some equally or more complex cases we use (usually in problems with Gergonne or Nagel).Let the Gergonne cevians be , and the Nagel cevians be .Result 110. More cevians lengths.Result 111. Side lengths of common cevian triangles(Orthic Triangle)(Medial Triangle)(Intouch Triangle)(Extouch Triangle)I did not include the Incentral Triangle because it is very ugly.Note these are all easily derived using the Cosine Law and then simplified using manipulation and additional identities. Result 112. Klamkin's InequalityLet there be arbitrary . For an arbitrary :Extension of result 111.Let , and be the classical elements of - the orthic triangle of an acute-angled triangle .Then :Also, note that is the incenter of and a.s.o.Let , , be the classical elements of - the triangle formed by the centers of excircles ( represents the center of excircle w.r.t. vertex a.s.o.)Then :Also, note that is the orthocenter of and a.s.o.In addition, the following beautiful identity holds:where and represent the areas of triangles and respectively. This equality points out the followinginteresting implication: Weitzenbock's inequality Hadwiger-Finsler's inequality (the converse implication being obvious)These two triangles play a very important role in creating geometric inequalities and identities as well. Specifically, one can obtain inequalities that hold in any triangle by applying an inequality which is valid in any or acute triangle to- since the latter triangle is obviously acute-angled. Similarly, we can derive an inequality for an acute-angledtriangle from one holding in any triangle by applying the latter to the orthic triangle i.e. . Of course, one can use the converse transformations of the aforementioned ones when solving geometric/trigonometric inequalities. Thus, when dealing with an inequality in any triangle, we can transform it into one restricted to an acute-angled triangle byusing the substitutions : (in other words, the formerinequality - in any triangle - has been applied to , thus obtaining the one confined to an acute triangle). A similar reasoning applies to the transformation acute-angled triangle any triangle.Here is a simple way of obtaining a really nice identity. It is well known that in any triangle the following identity is true :. Now we want to derive a new identity from it, by applying the previous identity to .Thus, one gets: which is equivalent to the following one:(this identity allows us to obtain many other inequalities with andbecause if we have a lower/upper bound of then we easily obtain an upper/lower bound ofand vice versa.)Result 113. A triangle whose sides are , and exists. We shall use the following notations for itsclassical elements, namely : , , , , , , , (and the cyclic versions as well)Then :Result 114.By using the above identities and the obvious equality we can derive the following amazing identity which points out the fact that the sum can be expressed onlyin terms of , , , and :Result 115.Result 116.Result 117.Result 118..In other words, the equationhas the roots .Result 119.Equalizing the first two identities and doing the same with the last two one obtains:where: . Furthermore, by using Result 115 we can also derivethe following identities : .Result 120.Result 121.Result 122.Result 123.Yeah two of the double-angle sums are "ok", but really, forget the rest.Result 124.Result 125. (derived by Constantin)Result 126. Hadwiger-Finsler Inequality - implied by Pedoe's InequalityThe reverse side is .Result 127. Weitzenböck's inequality - implied by Hadwiger-Finsler InequalityResult 128.Inside the -sided convex polygon , there exists an arbitrary point , and sides . Thedistance from to side , extended if necessary, is . Then .A couple of unknown results to accompany Stewart's TheoremResult 129.Let three cevians concur at a point inside . Then(Gergonne's Theorem), CVH (Van Aubel's Theorem)Result 130.Let the internal bisector of meet the circumcircle of again at . Then. CVH.Result 131.Let the radius of Euler's circle (the 9-point circle) be . .Let the center of the 9-point circle be . Note that since Feuerbach's Theorem states that the 9-point circle is externallytangent to the excircles and internally tangent to the incircle, the remarkable distances between and each of can be easily calculated.Result 132. Generalization of Angle Bisector TheoremResult 133. Trigonometric Ceva's Theoremfollowing Regular Notation. The converse holds as well.Result 134. Erdös-Mordell InequalityIf is a point inside triangle and are the lengths of the perpendiculars from from to sides andrespectively, then.Equality holds if and only if is equilateral and is the center.Specifically,Alternate, Trigonometric InterpretationLet the foot of the perpendiculars and be denoted by and respectively. ThenWe also have thatSimilarly, andAdding these inequalities gives usEquality holds if and only if and which essentially means that triangle isequilateral and lies at the center.Result 135Let in triangle . Then, as BigSams said:some other nice ones:This can be useful for both solving and creating problems quickly. These can be used for a quick proof of Gerretsen's Inequality, for example.Edit: Some results the opposite way also:Result 136. Carnot's TheoremThe perpendiculars from three points to concur if and only ifResult 137.Let be arbitrary points. .Result 138.Given arbitrary points ,with equality if and only if is a parallelogram.Result 139. Euler's Theorem for Pedal Triangles.Let be the projections of a point onto , respectively, where is a triangle. Thenwhere denote as usual the circumcenter of circumradius of .Result 140. (Emmerich's Inequality)In any non-acute the following inequality holds: .Result 141. Advanced identities with multiple consequences (OWN)Comment. These five identities, although not looking aesthetically pleasing, are a valuable source of obtaining a large amount of geometrical inequalities. Specifically, if the angles of a triangle fulfill one of the following conditions:OR OR OR- where is an appropriately chosen angle - then each of the above products are either positive or negative, depending on the condition used (obviously, this follows from the monotonicity of the trigonometric functions).E1.A well known particular case is obtained for i.e. in any non-obtuse the following inequality holds:.E2.This inequality is a consequence of the identity 141.2E3.This inequality is a consequence of the identity 141.4Result 142. For any positive real numbers , , there exists atriangle with sides of lengths , , the area of which is equal to . Also, ifdenotes the measure of the angle opposite to side of length then: and.Result 143. Different ways of expressing in terms of other elements.21 / 21Result 144. Nice upper bound for .In anyit holds that:, with equality iff . Result 145.。