初中数学八年级专题复习专题09 二次根式的概念与性质
二次根式知识点
二次根式知识点二次根式是初中数学中一个重要的知识点。
在学习二次根式之前,我们首先来了解一下根式的定义。
一、根式的概念根式是代表求根运算的一种表示方法。
其中,被开方数叫做被开方数,开方的次数叫做指数,开方的运算叫做根号运算。
开方的基本性质有三个:非负性、唯一性、封闭性。
1. 非负性:对于任意的实数a,当a≥0时,a的平方根存在且唯一。
2. 唯一性:对于任意的实数a,其平方根是唯一的。
3. 封闭性:平方根的运算封闭在非负实数集合内。
二、二次根式的定义二次根式是指指数为2的根式,也即平方根。
如果a≥0,那么二次根式√a就是等于非负实数b的平方根。
例如,√9 = 3,√16 = 4,√25 = 5等。
三、二次根式的化简在计算二次根式时,有时需要对二次根式进行化简。
化简的目的是为了得到最简形式的二次根式。
二次根式的化简原则如下:1. 提出因式:如果二次根式中有完全平方因子,可以将其提出根号外部。
2. 合并同类项:如果根式中有相同的根号,则可以将其合并并进行运算。
3. 分解质因数:如果根式中的被开方数可以分解为质因数的乘积,那么可以在根号内部进行分解。
化简二次根式的过程需要掌握一定的分解质因数的技巧,并且需要熟练掌握平方数的求法。
四、二次根式的运算规则在二次根式的运算过程中,需要掌握以下几个基本的运算规则。
1. 加减运算:二次根式之间可以进行加减运算,但要求被开方数、指数相同。
2. 乘法运算:二次根式之间可以进行乘法运算,运算后仍然是二次根式。
3. 除法运算:二次根式之间可以进行除法运算,运算后仍然是二次根式。
4. 有理化:如果二次根式中含有分母,可以通过有理化的方法将其变为无理数的形式。
掌握了这些运算规则,我们可以在计算中利用它们进行简化和优化,使得计算更加方便和高效。
五、二次根式的应用二次根式在数学中有广泛应用,在解决实际问题时也经常会用到。
1. 几何应用:在几何中,二次根式常常用来表示长度、距离等概念。
初二数学经典讲义 二次根式(基础)知识讲解
《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a .(3a ,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a 必须取非负数;a,2=a (0a ≥).相同点:被开方数都是非负数,当a2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b ≥>商的算术平方根化简公式:0,0)a b =≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).≠. 2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【高清课堂:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】已知0a <,化简二次根式3a b -的正确结果是( ).A.a ab --B. a ab -C. a abD.a ab -【答案】A.3.下列二次根式中属于最简二次根式的是( ).1448ab44a +【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.下列计算错误的是( ).A. 14772⨯=B. 60523÷=C. 9258a a a +=D. 3223-= 【答案】 D.【解析】选项A : 14714727772⨯=⨯=⨯⨯= 故正确;选项B :605605123423÷=÷==⨯=,故正确;选项C925358a a a a a +=+=故正确;选项D :32222-= 故错误.【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题. 举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)⋅. 【答案与解析】201020102010=(32)32)(32)(32)32)32)132)3 2.⋅⋅⎡⎤=⋅⋅⎣⎦=⋅=原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6 已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)1313331=3x x x xx x x =+∴->∴=--++==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【高清课堂:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11+==-(+)=-=3--ab ab a bb a b a ab∴+原式.。
八年级二次根式章节知识点
八年级二次根式章节知识点二次根式是初中数学必须要学习的内容之一,八年级二次根式章节是初中二年级学习的数学知识点。
一、什么是二次根式?二次根式就是形如√a(a≥0)的数,其中√是开方符号,a称为二次根式的被开方数。
例如√4、√9、√16就是三个已知的二次根式。
二、二次根式的化简1. 同类项的加减在同类项的前面加上正数或减去负数即可。
例如:2√3+3√3-√3=4√3。
2. 恒等式(1)a√b×c√d=ac√bd。
例如:2√3×3√5=6√15。
(2)√a×√a=a。
例如:√3×√3=3。
(3)a√b÷c√d=a÷c√bd。
例如:(2√3)÷(4√5)=(√15)÷10。
3. 其他方法方法一:分解被开方数,拆分为因子的乘积,排列组合,约分。
例如:√75=√(3×5×5)=5√3。
方法二:有理化,将分母为根式的分式转换为分子、分母均为整数的分式。
例如:1÷√6=√6÷(√6×√6)=√6÷6。
三、二次根式的运算1. 二次根式的加减运算(1)化简后合并同类项。
(2)是将不同的二次根式转换为同类项来进行合并,例如√3+√6+2√3=3√3+√6。
2. 二次根式的乘法运算使用方法一:同类项乘法公式(规律)a√b×c√d=ac√bd。
方法二:分解被开方数,拆分为因子的乘积,排列组合,约分。
例如:(2√5)×(3√6)=6√30,(2√5)×(3√6)=2×3×√30=6√30。
3. 二次根式的除法运算使用方法二:有理化,将分母为根式的分式转换为分子、分母均为整数的分式。
例如:(√3+√2)÷(√3-√2)=(3+2√6)÷(3-2√6)。
四、二次根式的应用二次根式作为一种常见的数学形式,在初中时就可以运用到各个领域。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
八年级数学二次根式常考必考知识点总结
二次根式是指形如√a的表示形式,其中a为一个非负实数。
在八年级数学中,二次根式是一个非常重要且常考的知识点。
下面是对八年级数学二次根式常考必考知识点的总结:1.二次根式的定义:√a表示一个非负实数x,使得x的平方等于a。
其中,a被称为被开方数,x被称为开方根。
2.二次根式的性质:-非负实数的二次根式是唯一确定的。
-如果a≥0,则√a≥0。
-如果a≥0,则(√a)²=a。
3.二次根式的化简:-如果被开方数是一个完全平方数,则可以直接得出其简化形式,如√4=2-如果被开方数可以分解为两个完全平方数的乘积,则可以使用分解法简化,如√12=√(4×3)=2√3-如果被开方数是一个分数,则可以使用有理化方法简化,如√(1/4)=1/√4=1/24.二次根式的运算:-二次根式可以进行加减运算,只要被开方数相同,可以直接相加或相减。
如√2+√2=2√2-二次根式可以进行乘法运算,使用分配律进行展开相乘,然后根据二次根式的性质进行简化。
如(√2+√3)(√2-√3)=2-3=-1-二次根式可以进行除法运算,使用有理化方法进行化简,然后根据二次根式的性质进行简化。
如(√5)/(√2)=(√5)/(√2)×(√2)/(√2)=(√10)/25.二次根式的混合运算:-二次根式可以与整数、分数和其他二次根式进行混合运算。
-混合运算的步骤是先进行内部运算(例如,括号中的运算),然后进行外部运算(例如,开方)。
-在混合运算中,注意运算顺序和运算法则的正确应用,避免出错。
6.二次根式的应用:-二次根式经常出现在几何问题中,如计算边长、面积和体积。
-二次根式也经常出现在实际生活中的计算中,如物体的质量和长度的计算。
以上是八年级数学中关于二次根式的常考必考知识点的总结。
掌握这些知识点,可以帮助学生正确理解和运用二次根式,提高解题能力和数学思维能力。
同时,通过反复练习相关题目,也能够加深对二次根式的理解和掌握。
初二数学下册二次根式基础知识点
初二数学下册二次根式基础知识点
一、二次根式概念
1、二次根式是由有限个幂次相加,其幂次均为二次的代数表达式。
表
达式的形式一般为ax² + bx + c(a≠0),其中a、b、c是实数的称为二
次根式,x是未知数,叫做二次根式的自变量,其系数a、b、c分别叫
做常数项系数、一次项系数和常数项系数。
2、方程式ax² + bx + c = 0是所有二次根式共同拥有的方程式,称为二
次方程式。
通过解二次方程组,可以求出给定的二次根式的两个根,
从而实现了对二次根式的完全解析。
二、二次根式的解析解
1、对于ax² + bx + c = 0(a ≠ 0),可以用求根公式进行解析式求解,
即设D = b² - 4ac,则 x12= [-b + √D]/ 2a,x2= [-b-√D]/ 2a,分别是二次
方程式的两个实根。
2、若a= 0,b ≠ 0,则方程式实际上是一次方程式,解析式为x = -c/b,即为方程式的实根。
3、若a= 0,b= 0,c ≠ 0,此时方程式不存在实根,其所有实数均无法
使方程式成立。
三、二次根式的应用
1、实际运算:二次根式可以用来计算不同函数类型的函数值,如幂函数、指数函数、三角函数等,以及可以用来分析经济问题的利润曲线、
成本曲线等。
2、代数应用:二次根式可以用来解决复杂一元二次不定方程,解组合
问题,解联立方程等,起到了重要的作用。
比如求两条抛物线的焦点,利用二次根式的求根公式即可。
3、几何应用:二次根式可以用来处理任意给定的椭圆或抛物线等曲线,计算其焦点、准线等等。
二次根式知识点归纳
二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
二次根式的认识
二次根式的认识在数学中,二次根式是指形如√a的数,其中a是一个非负实数。
二次根式是数学中的一个重要概念,它在解方程、计算和几何等领域中具有广泛的应用。
本文将深入探讨二次根式的定义、性质和应用,帮助读者更好地认识和理解二次根式。
一、二次根式的定义二次根式的定义相对简单,就是非负实数的平方根。
其表示形式为√a,其中a ≥ 0,并且√表示根号符号。
例如,√4 = 2,因为2的平方等于4。
同样地,√9 = 3,因为3的平方等于9。
在这些例子中,4和9都是非负实数。
二、二次根式的性质二次根式具有以下几个重要的性质:1. 二次根式的运算规则:二次根式具有与平方根相似的运算规则。
例如,√a * √b = √(ab),√a / √b = √(a/b)。
这些运算规则在化简和计算二次根式时非常有用。
2. 二次根式的化简:有时,二次根式可以通过化简来简化其表达形式。
例如,√9 = 3,因为9是一个完全平方数。
类似地,√16 = 4,√25 = 5。
通过将二次根式转化为它们的平方形式,可以使计算更加方便。
3. 二次根式的加减运算:对于相同根的二次根式,可以进行加减运算。
例如,√2 + √2 =2√2,√3 - √3 = 0。
注意,根号下的数字必须相同才能进行此类运算。
4. 二次根式的大小比较:对于非负实数a和b,如果a < b,则√a <√b。
这意味着二次根式的大小顺序与根号下的数字的大小顺序相同。
三、二次根式的应用二次根式在数学中有广泛的应用,下面列举几个常见的应用场景:1. 解方程:二次根式可以用于解关于二次根式的方程。
例如,方程√(x+2) = 4的解为x = 18。
2. 几何问题:二次根式可以用于计算几何图形的边长、面积和体积。
例如,在计算正方形的对角线长、圆的半径和球的体积时,常常会涉及到二次根式的计算。
3. 物理学中的运动问题:二次根式可以用于描述自由落体运动、弹射运动等物理过程中的速度、加速度和位移等量。
二次根式的概念与性质
二次根式的概念与性质二次根式是数学中一个重要的概念,它在代数学和几何学中都有广泛的应用。
本文将介绍二次根式的概念、计算方法以及其性质。
通过对二次根式的深入理解,读者将能够更好地应用它解决实际问题。
一、二次根式的概念在代数学中,二次根式是指一个被平方的数的根。
普遍形式下,二次根式可以表示为√a,其中a为一个非负实数。
二次根式可以分为有理二次根式和无理二次根式两类。
当a为有理数的平方时,二次根式是一个有理数;当a为无理数的平方时,二次根式是一个无理数。
二、二次根式的计算计算二次根式时,可以运用以下几种常见方法:1. 提取因式法当二次根式的被开方数具有完全平方因式时,可以利用提取因式法进行计算。
例如:√16 = √(4×4) = 42. 合并同类项法当二次根式的被开方数可以分解为多个相同的完全平方数时,可以利用合并同类项法进行计算。
例如:√12 = √(4×3) = 2√33. 分解因式法当二次根式的被开方数不能直接提取完全平方因式时,可以利用分解因式法进行计算。
例如:√20 = √(4×5) = √4×√5 = 2√5三、二次根式的性质二次根式具有以下几个性质:1. 乘法性质:对于任意非负实数a和b,有√(ab) = √a × √b。
2. 除法性质:对于任意非负实数a和b(b≠0),有√(a/b) = √a / √b。
3. 加法性质:对于任意非负实数a和b,如果√a和√b是二次根式,且它们的被开方数和指数相等,那么√a + √b也是一个二次根式。
例如:√2 + √2 = 2√24. 减法性质:对于任意非负实数a和b,如果√a和√b是二次根式,且它们的被开方数和指数相等,那么√a - √b也是一个二次根式。
例如:√5 - √25. 乘方性质:对于任意非负实数a和整数n(n为奇数),有(√a)^n = a^(n/2)。
例如:(√2)^3 = 2^(3/2)= 2√2四、应用举例二次根式在几何学中有广泛的应用。
二次根式的有关概念和性质
专题01二次根式的概念和性质(知识点考点串编)【思维导图】例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是()个A .3个B .4个C .5个D .6个练习2.(2021·河北·结果相同的是( ).◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
A .321-+B .321+-C .321++D .321--练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a-C .32a-D .23a -例.(2021·n 的最小值是( )A .2B .4C .6D .8练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B.1C .7D .±1练习3.(2021·全国·n 的值是( )A .B .1C .2D .5例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C.x >2D .x ≠2练习1.(2022·全国·九年级专题练习)函数y =x 的取值范围是( )A .x ≥2B .x >﹣2C .x ≤2D .x <2练习2.(2022·全国·九年级专题练习)函数y 中自变量x 的取值范围是()◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的概念
二次根式的概念二次根式是数学中重要的概念之一,它涉及到平方根的运算和性质。
在本文中,我们将详细介绍二次根式的定义、性质以及在实际问题中的应用。
1. 定义二次根式是指形如√a的数,其中a为非负实数。
√a表示a的平方根,即一个数的平方等于a。
例如,√9等于3,因为3的平方等于9。
2. 性质(1)对于任意非负实数a和b,有以下性质:a) √a * √b = √(a * b)b) √(a / b) = √a / √bc) (√a)^2 = a(2)二次根式与有理数的关系:a) 如果a是一个完全平方数,即a = b^2,其中b为有理数,则√a是一个有理数。
b) 如果a不是一个完全平方数,则√a是一个无理数。
(3)二次根式的化简:a) 如果a可以因式分解为完全平方数的乘积,则可以将二次根式化简为一个有理数。
b) 如果a不可因式分解为完全平方数的乘积,则二次根式无法化简。
3. 应用二次根式在实际问题中具有广泛的应用。
以下是一些常见的应用示例:(1)几何问题:二次根式可以用于计算直角三角形的斜边长度。
例如,在一个边长为a的正方形中,对角线的长度可以表示为√(2a^2)。
(2)物理问题:二次根式可以用于计算物体的速度、加速度等。
例如,在自由落体运动中,物体下落的距离可以表示为h = 1/2 * g * t^2,其中h为下落距离,g为重力加速度,t为时间。
(3)金融问题:二次根式可以用于计算利息、久期等金融指标。
例如,复利计算公式中涉及到年利率的开平方运算。
总结:二次根式作为数学的一个重要概念,涉及到平方根的运算和性质。
通过了解二次根式的定义和性质,我们可以更好地理解和应用它们。
在几何、物理、金融等实际问题中,二次根式都有广泛的应用,帮助我们解决复杂的计算和分析。
因此,对于二次根式的学习和掌握是数学学习的关键之一。
以上是对二次根式概念的详细介绍,希望对您有所帮助。
通过深入学习和练习,相信您会更加熟练地运用二次根式,并在解决实际问题中发挥其重要作用。
二次根式的有关概念和性质
专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
(完整word版)人教版初二二次根式知识点,推荐文档
二次根式详解【知识回顾】1. 二次根式:式子..a ( a > 0)叫做二次根式。
2. 最简二次根式:必须同时满足下列条件: ⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母;⑶分母中不含根式。
3. 同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4. 二次根式的性质:a ( a > 0)0 ( a =0);a ( a v 0)5. 二次根式的运算:(1) 因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的 算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式, ?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2) 二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3) 二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商) 仍作积(商)的被开方数并将运算结果化为最简二次根式.(4) 有理数的加法交换律、结合律,乘法交换律及结合律, 多项式的乘法公式,都适用于二次根式的运算.{Vab =4a •b (a >0 b >0);?乘法对加法的分配律以及1、概念与性质例 1 下列各式 1) 5,2)兀,3) . X 2—2,4)忆5).. ( 3)2,6) .R,7) a 2其中是二次根式的是 _________ 序号). 例2、求下列二次根式中字母的取值范围x 51(1) 3 x ; ( 2)(2009 龙岩)已知数 a , b ,若(a b)2 =b — a ,贝V ()2、二次根式的化简与计算例1.将』{「根号外的a 移到根号内,得()A.: I ; B.—叮」;C. — ,;■; D. j >例2.把(a — b ) •• — a —b 化成最简二次根式斤 I-(3^2 - M)(辺 4 2间例3、计算:■'1【典型例题】2a 1 ,v(x-2)2A .y v1 8x 4、已知:8x 1x y2的值。
八年级二次根式知识点总结
八年级二次根式知识点总结在八年级数学教学中,二次根式是一个非常重要的知识点。
本文将对八年级二次根式的相关内容做出总结。
一、二次根式的定义二次根式是指形如√a(其中a≥0)的数学表达式。
其中,a被称为二次根式的被开方数,√a被称为二次根式的根号。
二次根式可以被写成分数形式,如a/b。
二、二次根式的简化二次根式可以通过简化变成更简单的形式。
简化二次根式的方法有以下两种:1. 化简平方因数法。
通过分解因数,将被开方数分解成平方数与非平方数的积,再把非平方因数提出根号,最后简化出来。
例如:√48=√16×3=4√3。
2. 分离根式法。
对于含有有理数和根号的表达式,可以将其中根式部分提出来进行简化。
例如:√128+√32=√64×2+√16×2=8√2+4√2=12√2。
三、二次根式的计算在二次根式计算中,需要掌握以下几种运算法则:1. 二次根式的加减运算。
在进行二次根式的加减运算时,必须要保证分母相同。
如果分母不同,则需要通过乘以一个适当的有理数将分母进行化简,使得分母相同。
例如:√5+√20=√5+√4×5=√5+2√5=3√5。
2. 二次根式的乘法。
二次根式的乘法运算可以使用分配律进行转化,乘号两边的数分别做乘法,最后化简即可。
例如:(√2-√3)(√2+√3)=2-3= -1。
3. 二次根式的除法。
二次根式的除法运算可以转化为乘法运算。
即如下式:例如:(√18/√2)×(1/√3)=√9=3。
四、二次根式的应用1. 几何意义:二次根式可以用于计算正方形、长方形等几何图形的对角线长。
例如:正方形的对角线长为√2l,其中l为正方形边长。
2. 物理意义:二次根式可以应用于运动学、波动学等方面的物理问题的求解中。
例如:自由落体运动中下落高度h与时间t的关系式为h=gt²/2,其中g为重力加速度,t为时间。
如果我们希望计算自由落体运动中1秒后物体下落的高度,可以使用二次根式进行计算。
二次根式的性质与计算
二次根式的性质与计算二次根式是数学中一个重要的概念,它涉及到了根号以及平方等运算,具有一些特殊的性质和计算规律。
本文将介绍二次根式的一些基本性质和计算方法,帮助读者更好地理解和应用这个概念。
一、二次根式的定义二次根式是指形如√a的数,其中a是一个非负实数。
在二次根式中,根号下的数被称为被开方数。
被开方数的值必须大于等于零,否则二次根式就没有意义。
二、二次根式的性质1. 二次根式的值:对于二次根式√a,它的值是满足b^2 = a的非负实数b。
例如,√9的值是3,因为3^2等于9。
2. 二次根式的性质:(a) 任意非负实数a和b,有以下性质成立:a)√(a*b) = √a * √b;b)√(a/b) = √a / √b。
(b) 对于任意的非负实数a和b,有以下性质成立:a) √(a + b) ≠ √a + √b;b) √(a - b) ≠ √a - √b。
(c) 对于任意非负实数a,有以下性质成立:a) √(a^2) = |a|。
3. 二次根式的化简:当被开方数是特殊形式时,我们可以通过化简来简化二次根式的计算。
常见的化简规则包括:(a) 约分:如果被开方数能够被某个因数整除,那么可以将该因数提出到根号外。
(b) 分解因式:将被开方数分解成多个因数的乘积,然后将相同的因数提出到根号外。
(c) 完全平方数:如果被开方数是一个完全平方数,那么可以直接将其开方并化简。
三、二次根式的基本计算方法1. 二次根式的加减法:当两个二次根式相加或相减时,如果它们的被开方数相同,那么可以直接将系数相加或相减,并保持根号下的数不变。
例如,√3 + √3 =2√3,√5 - √2 = √5 - √2。
2. 二次根式的乘法:当两个二次根式相乘时,可以将它们的被开方数相乘,并保持根号下的数不变。
例如,√3 * √5 = √15,√2 * √2 = 2。
3. 二次根式的除法:当两个二次根式相除时,可以将它们的被开方数相除,并保持根号下的数不变。
二次根式的定义和基本性质
二次根式的定义和基本性质二次根式,也称为平方根,是数学中常见的一种运算。
它的定义和基本性质在代数学和几何学中有着广泛的应用。
本文将介绍二次根式的定义,并探讨其基本性质。
在此之前,我们先来了解一下二次根式的定义。
二次根式的定义:二次根式是指一个数的平方根,如√x表示x的平方根,其中x为一个非负实数。
当x小于0时,√x是一个虚数。
在计算平方根时,我们通常提取其中的正根,即非负实数解。
基本性质:1. 非负数的平方根:对于非负实数a,它的平方根√a是一个非负实数。
例如,√9 = 3,因为3的平方等于9。
2. 平方根的乘法:对于非负实数a和b,有以下运算规则:√(a * b) = √a * √b例如,√(4 * 9) = √4 * √9 = 2 * 3 = 63. 平方根的除法:对于非负实数a和b(b不等于0),有以下运算规则:√(a / b) = √a / √b例如,√(25 / 4) = √25 / √4 = 5 / 2 = 2.54. 平方根的加法与减法:对于非负实数a和b,有以下运算规则:√a ± √b 通常不能进行化简,可以合并成一个复合根。
例如,√2 + √3 无法化简,但可以合并为一个复合根√(2 + 3) = √55. 平方根的乘方:对于非负实数a和正整数n,有以下运算规则:(√a)^n = a^(1/n)例如,(√9)^2 = 9^(1/2) = 36. 平方根的传递性:对于非负实数a和b,如果a小于b,则√a小于√b。
例如,√4小于√9,因为4小于9。
通过以上基本性质,我们可以在实际问题中用到二次根式。
例如,在几何学中,可以通过求解平方根来计算物体的边长或面积;在代数学中,平方根可以用来求解方程的解等。
需要注意的是,对于负数的平方根,我们引入了虚数单位i。
虚数单位i定义为√(-1),它满足i^2 = -1。
负数的平方根被称为虚数,属于复数的一种。
虚数在物理学和电气工程等领域有着重要的应用。
初中数学知识点归纳二次根式
初中数学知识点归纳二次根式二次根式是初中数学中的一个重要知识点,它是一个数的平方根,或者可以表示成形如√a的形式,其中a是一个正整数。
在学习二次根式的过程中,我们需要掌握二次根式的化简、计算与运算等基本技巧。
下面我将详细介绍二次根式的相关知识点。
1.二次根式的定义与性质二次根式可以表示成√a的形式,其中a是一个正整数。
二次根式有以下基本性质:(1)√a=b,其中b是一个正数,那么a=b²;(2)√a=b,其中b是一个正数,那么b²=a,即b是a的一个正平方根;(3)0<√a<√b,其中a<b。
2.二次根式的化简化简二次根式是指将一个二次根式以最简形式表达出来。
(1)对于根号中的数,可以找出完全平方数因式,然后求出根号中被平方的数的平方根。
(2)对于根号外的系数,可以利用乘方运算法则进行整理。
3.二次根式的运算二次根式之间的运算包括加法、减法、乘法和除法。
(1)加减法:二次根式的加减法可以转化为同类项相加减的问题,将根号内的数进行化简和整理即可。
(2)乘法:乘法运算可以通过合并同类项、运用公式进行展开、化简来求解。
(3)除法:除法运算需要利用有理化技巧,将二次根式的被除数和除数分别乘以一个适当的有理化因子,使得分子没有根号。
4.二次根式的应用二次根式在初中数学中常常与勾股定理、平方差公式等知识点相结合,应用于解决各种几何问题。
(1)使用二次根式计算直角三角形的边长:根据勾股定理,可以利用二次根式计算直角三角形的边长。
(2)使用二次根式计算面积:利用二次根式可以计算各类面积,如矩形、正方形、圆等。
5.二次根式的估算在实际生活和解题过程中,我们常常需要对二次根式进行估算。
可以利用四舍五入和近似计算的方法对二次根式进行估算,得到一个较为接近的结果。
以上就是关于初中数学中二次根式的相关知识点的归纳。
通过学习和掌握这些知识,可以更好地理解和运用二次根式,提高数学解题的能力。
专题09 二次根式的概念与性质
专题09 二次根式的概念与性质阅读与思考0)a≥叫做二次根式,二次根式的性质是二次根式运算、化简求值的基础,主要有:1≥a、a2一样都是非负数.2.2=a(a≥0).解二次根式问题的基本途径——通过平方,去掉根号有理化.3()()a aaa a≥⎧⎪==⎨-≤⎪⎩揭示了与绝对值的内在一致性.4a b=(a≥0,b≥0).例题与求解【例1】设x,y都是有理数,且满足方程11402332x yπππ⎛⎫⎛⎫+++--=⎪ ⎪⎝⎭⎝⎭,那么x y-的值是____________.解题思路:将等式整理成有理数、无理数两部分,运用有理数和无理数的性质解题.【例2】当1≤x≤2___________.解题思路:a≥0的隐含制约.【例3】若a>0,b>0=的值.解题思路:对已知条件变形,求a,b的值或探求a,b的关系.【例4】若实数x,y,m满足关系式:199y x=--m的值.解题思路:观察发现(x-199+y)与(199-x-y)互为相反数,由二次根式的定义、性质探索解题的突破口.【例5】已知152a b c+-=-,求a+b+c的值.解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式才能确定未知量的值呢?考虑从配方的角度试一试.【例6】在△ABC中,AB,BC,AC学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上:_________.(2)我们把上述求△ABC面积的方法叫作构图法.若△ABC,(a>0),请利用图2中的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.(3)若△ABC(m>0,n>0,且m≠n)试运用构图法求出这个三角形的面积.解题思路:本题主要考查三角形的面积、勾股定理等知识,不规则三角形的面积,可通过构造直角三角形、正方形等特殊图形求得.能力训练A级1有意义.则x的取值范围是_____________.2.阅读下面一题的解答过程,请判断是否正确?若不正确,请写出正确的解答.已知a解:原式=(11a a aa-=-3.已知正数a,b,有下列命题:(1)若a=1,b=1≤1;(2)若a=12,b=52≤32;图2 图1(3)若a =2,b =3≤52;(4)若a =1,b =5≤3.根据以上命题所提供的信息,请猜想:若a =6,b =7≤________.4.已知实数a ,b ,c 满足21124a b c c --+=,则a (b +c )的值为_______.5的最小值是( ).A .0B .1C .1D .不存在 6.下列四组根式中是同类二次根式的一组是( ).A B .3和3C D72的结果是( ) .A .6x -6B .-6x +6C .-4D .48.设a 是一个无理数,且a ,b 满足a b -a -b +l =0,则b 是一个( ). A .小于0的有理数 B .大于0的有理数 C .小于0的无理数 D .大于0的无理数9=,其中ab ≠010.已知66a ,b ,求ab 的值.B 级1.已知x ,y 为实数,y =13x -,则5x +6y =_________.2.已知实数a 满足1999a a -=,则a -19992=___________.3.正数m ,n 满足m +--+4n =3_______.4.若a ,b 满足5b =7,则s =3b 的取值范围是________.5.已知整数x ,y +50,那么整数对(x ,y )的个数是( )A .0B .1C .2D .36.已知1a a -=1,那么代数式1a a+的值为( )A B C D .7=x ,y ,a 是两两不同的实数.则代数式22223x xy y x xy y+--+的值为( ) . A .3 B .13 C .2 D .5382= ) . A .3 B .4 C .5 D .69.设a ,b ,c 是实数,若a +b +c =+14,求 ()()()a b c b c a c a b +++++的值.10.已知ax 3=by 3=cz 3,1x+1y +1z =1=11.已知在等式ax bs cx d+=+中,a ,b ,c ,d 都是有理数,x 是无理数.求:(1)当a ,b ,c ,d 满足什么条件时,s 是有理数, (2)当a ,b ,c ,d 满足什么条件时,s 是无理数.。
八年级秋季班-第1讲:二次根式的概念及性质
二次根式是以实数中所学内容为基础,对开平方、开立方等运算进行扩展,基本要求是知道二次根式的取值范围、掌握二次根式的求值,二次根式中题目类型多变,方法多种多样.重点是掌握二次根式的概念、性质,难点是通过性质进行化简和求值.1、二次根式的概念(1)代数式a (0a )叫做二次根式,读作“根号a ”,其中a 是被开方数. (2)二次根式有意义的条件是被开方数是非负数.二次根式的概念及性质知识结构模块一:二次根式的概念知识精讲内容分析【例1】下列各式中,二次根式的个数有 ( )1.2;2xy ;22m n +;3x;21030x x −+;6x .A .2个B .3个C .4个D .5个【难度】★ 【答案】B .【解析】 1.2、22m n +、21030x x −+是二次根式,2xy 、3x、6x 不一定是二次 根式,当0x <时就不是.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.【例2】添加什么条件时,下列式子是二次根式?(1)4x −;(2)11||x −; (3)23x y ; (4)1||4x −. 【难度】★【答案】(1)4x ≥;(2)11x −<<;(3)0y ≥;(4)14x ≥或14x ≤−.【解析】(1)由40x −≥,得4x ≥; (2)由10x −>,得11x −<<; (3)由230x y ≥,得0y ≥;(4)由104x −≥,得14x ≥或14x ≤−. 【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【例3】对于a 下列说法中正确的是()A . 对于任意实数a ,它表示的是a 的算术平方根B . 对于任意的正实数a ,它表示的是a 的算术平方根C . 对于任意的正实数a ,它表示的是a 的平方根D . 对于任意的非负实数a ,它表示的是a 的算术平方根 【难度】★ 【答案】D .【解析】(0)a a ≥表示a 的算术平方根. 【总结】本题考查算术平方根的概念.例题解析【例4A .02xx ≥− B .0x ≥ C .2x ≠ D .2x > 【难度】★ 【答案】D .【解析】由0x ≥,20x−>,得0x ≥,2x >,∴2x >.【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例5】求使下列二次根式有意义的实数x 的取值范围.(1(2.【难度】★★【答案】(1)1x ≥或0x <;(2)12x ≥−且1x ≠. 【解析】(1)由110x −+≥,得1x ≥或0x <; (2)由21010x x +≥⎧⎨−≠⎩,得12x≥−且1x ≠. 【总结】二次根式有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例6】实数x 、y满足,xy y=的值.【难度】★★ 【答案】3.【解析】由0x 0x ≥,得x =y =;∴3xy ==.【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例72|313|0x y −−=,求2017()x y +的值. 【难度】★★ 【答案】-1.【解析】由题意得:2203130x x y −=⎧⎨−−=⎩,解得:23x y =⎧⎨=−⎩,∴20172017()(1)-1x y +=−=.【总结】考查非负数相加和为零的模型,则这几个式子都为零.【例8】如果代数式有意义,那么在平面直角坐标系中()P m n ,的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 【难度】★★ 【答案】C . 【解析】0mn ≠,∴0m ≠且0n ≠,0m ∴−>,0m ∴<.0mn >又, 0n ∴<.故点P 在第三象限. 【总结】二次根式的被开方数为非负数.【例9】如果2y =+xy 的值. 【难度】★★ 【答案】6.【解析】33x x ≥≤∵,, 3x ∴=,2y ∴=, 6xy ∴=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零.【例10】 已1()2x y z x y z +=++,求、、的值.【难度】★★★【答案】1x =, 2y =,3z =.【解析】由题意得:x y z =++,∴0x y z −+−−=, 即)))2221110++=,∴1x =, 2y =,3z =.【总结】本题主要考查利用配方将原式化为几个非负数和为零的形式.【例11】 若222222()ab bc a b c ab bc ac −=−=−++−−−的值. 【难度】★★★ 【答案】30. 【解析】2a b −=2b c −=∴4a c −=.∴ =原式222222222a b c ab bc ac ++−−−=()()()222a b b c a c −+−+−=((222224+−+=7716+−=30.【总结】本题主要考查三项完全平方式的运用以及二次根式的计算.【例12】 若z=,求z的值. 【难度】★★★【答案】3358. 【解析】 20160x y −+≥, ∴2016x y +≥.又20160x y −−≥, ∴2016x y +≤, ∴2016x y +=.∴0.即35230125302x y z x y z +−−=⎧⎨+−=⎩()(), 解得:220143358x y z =⎧⎪=⎨⎪=⎩.【总结】本题先根据二次根式有意义的条件,得出2016x y +=,又考查当两个非负数的和为零时,则这两个式子必然都等于零.1、二次根式的性质 (1)二次根式的性质:性质1:2(0)a a a =≥;性质2:2()(0)a a a =≥;性质3:ab a b =⨯(0a ≥,0b ≥);性质4:a ab b=(0a ≥,0b >). (2)2a 与a 的关系:2(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪−<⎩.【例13】 计算下列各式的值:(1)23; (2)2(3)−;(3)2(3)−−; (4)2(3)−;(5)21()5−; (6)221(0)x x x −+<.【难度】★【答案】(1) 3; (2) 3; (3) -3; (4)3; (5)15−;(6)1x −+.【解析】根据二次根式性质2即可得出结果. 【总结】考查二次根式性质2的运用.知识精讲模块二:二次根式的性质例题解析(10)a >; (2(30)a <;(400a b ><,).【难度】★【答案】(1)22)23)2ab c −4)a . 【解析】(1)原式2=(2)原式2 (3)原式2ab c =−;(4) 00a b >>,,∴0a b −>,∴原式=()a bb a −−−=.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例15】 化简:(1;(2(3)20a a <();(45)x <<.【难度】★★【答案】(1)21a +;(2)()()00(0)0a b a b a b a b ab ++>⎧⎪+=⎨⎪−−+<⎩;(3)3a −;(4)3.【解析】(121a =+; (2()()00(0)0a b a b a b a b a ba b ++>⎧⎪+=+=⎨⎪−−+<⎩;(3)()223a a a a −=−−=−; (4253x x −=+−=.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.(10)x >;(22.. 【难度】★★【答案】(1)()()10111x x x x −<<⎧⎪⎨−≥⎪⎩; (2)1x −.【解析】(1()()101111x x x x x −<<⎧⎪−=⎨−≥=⎪⎩; (2)20x −≥,∴2x ≥.∴原式=122x x x −−−+−=1221x x x x −−++−=−.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例17】 把下列各式中根号外面的因式移到根号内,并使原式的值不变.(1(2);(3)2−(4)(1)x −【难度】★★【答案】(1 (23)4)【解析】(1(2)==(3)2−(4)(1)x −= 【总结】把式子移入根号中,要保持式子的正负值不变化,同时注意题目中的隐含条件的发掘.(100)ab bc ><,;(20)a b << 【难度】★★【答案】(1)−;(2)22a b −.【解析】(1)原式=a c ac ⋅==−; (2)原式=2222a b a b −=−.【总结】考查二次根式的化简,注意被开方出来的结果一定非负.【例19】 已0+=,求()x x y +的值. 【难度】★★ 【答案】9.【解析】由题意得:203280x y x y −=⎧⎨+−=⎩, ∴21x y =⎧⎨=⎩.∴()()2219x x y +=+=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零.【例20】 已知x y 、是实数,且1|1|21y y y −<−,求的值. 【难度】★★ 【答案】1−.【解析】由题意得:1x =,12y <;∴|1|1111y yy y −−==−−−. 【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,再利用去绝对值的知识就可以解决.【例21】 已知125x x −−,求x 的取值范围. 【难度】★★ 【答案】14x ≤≤.【解析】由题意得:1425x x x −−−=−;零点分段法分类讨论即可.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例22】 如7x y −=−成立,求xy 的值. 【难度】★★ 【答案】30.【解析】由题意得:3x =,10y =,∴30xy =.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,再利用去绝对值的知识就可以解决.【例23】 已知2x =+的值.【难度】★★.【解析】=又∵2x =,∴42420x −=+=<.∴原式=()()41411x x x x −=−==−−−【总结】考查二次根式的化简求值,注意被开方出来的结果一定非负.【例24】 已知2441310x x x x −−+=+,求的个位数字. 【难度】★★ 【答案】7. 【解析】∵1130x x−+=, ∴113x x+=. ∴2222112132167x x x x ⎛⎫+=+−=−= ⎪⎝⎭,∴()2422421121672x x x x ⎛⎫+=+−=− ⎪⎝⎭,∴个位数字为7.【总结】本题考查了完全平方公式的变形及计算.【例25】 (1)在△ABC 中,a b c 、、0=,求最大边c 的取值范围;(2)已知实数x y 、,满足2()x y +22x y +的平方根. 【难度】★★【答案】(1)814c ≤<;(2)±【解析】(1)根据题意,即为60a −+=,由此60a −=,80b −=,解得:6a =, 8b =,根据三角形三边关系,且c 为最大边,可知b c a b ≤<+,即814c ≤<.(2)由题意得:2()0x y +=,∴053160x y x y +=⎧⎨−−=⎩,解得:22x y =⎧⎨=−⎩,∴±【总结】考查非负数相加和为零的模型,则这几个式子都为零,然后根据三角形三边关系即可确定取值范围.【例26】 已知:1141r a b c r r ≥=−==+,,,试比较a 、b 、c 的大小. 【难度】★★★ 【答案】a b c <<. 【解析】由题意得:22a =−=,∵4r ≥, 1≤<,∴a b <;又∵1b c ===, ∴b c <,∴a b c <<.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例27】 已=b 的式子表示).【难度】★★★【答案】21b b −.21−=∴()211b y b−+=,∴原式114y ++()()22214111b bb b bbbbb−++−−==.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例28】 化简:2222222222(20)a b a a b a b a b a b −+−−−−>>. 【难度】★★★ 【答案】a b +. 【解析】原式=()()222222222abaa b a a b b−+−+−−−=()()222222a b aa b b−+−−−=2222a b a a b b −+−−−,又∵20a b >>,∴原式=2222a b a a b b −+−−+=a b +.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例29】 已知:m =1465−,求43224882467m m m m m m −−++−+的值.【难度】★★★ 【答案】8.【解析】由题意得:35m =−;∴35m −=,∴2(3)5m −=,∴264m m =−, 把264m m =−代入原式,合并同类项得:原式=8.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题1】 下列计算中正确的是( ).A .2(2)2=B .22(2)2=C .22(2)2−=−D .211()42−=−【难度】★ 【答案】A .【解析】根据二次根式性质1即可得出结果. 【总结】考查二次根式的性质1.随堂检测【习题2】 判断下列哪些二次根式是二次根式? (1)4;(2)1a +;(3)2a ;(4)211a +;(5)223x x −+;(6)22(0)x x x −<.【难度】★【答案】(1)是; (2)不是 ; (3)是; (4)是; (5)是;(6)是. 【解析】二次根式有意义的条件,即被开方数为非负数即可. 【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【习题3】 当添加什么条件时,下列二次根式有意义?(1)43x −; (2)121a −−;(3)2a ;(4)143x−−;(5)22x x −+−;(6)21xx +. 【难度】★ 【答案】(1)43x ≤;(2)12a <; (3)a 为任意实数;(4)43x >;(5)2x =; (6)0x ≥.【解析】(1)由430x −≥得:43x ≤; (2)由1021a −≥−得:12a <; (3)a 为任意实数; (4)由1043x −≥−得:43x >; (5)2x =; (6)0x ≥.【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【习题4】 化简:(1)24()9−;(2)22((2))a −;(32441x x −+12x ≥();(42(3)a −【难度】★★【答案】(1)49; (2)24a ; (3)21x −; (4)()()()3330333a a a a a a −>⎧⎪−==⎨⎪−<⎩.【解析】(144 99−=;(2)224a=;(32121x x=−=−;(4()()()3330333a aa aa a−>⎧⎪−==⎨⎪−<⎩.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【习题5】化简下列二次根式:(100)x y≥≥,;(2(3(0)a a<.【难度】★★【答案】(1)5(2) 3.14π−;(3)2a−.【解析】(15==(2 3.14 3.14π=−=−π;(32a a a a=−−=−.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【习题6】已知2+a,小数部分是b,那么(2b a+的值是多少?【难度】★★【答案】5.<23<,∴425<+,∴4a=,242b=+=,∴(()2524(52b a=+−++=.【总结】对于一个无理数的小数部分,没有办法完整写出来,只能用一种整体思想相应的表示出来.【习题7】 已知3x = 【难度】★★ 【答案】1.代入3x , 原式.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题8】 222(2)023y x xy y +=−+,求的值. 【难度】★★ 【答案】40.【解析】∵3020x y −=⎧⎨+=⎩, ∴32x y =⎧⎨=−⎩.∴代入得:2223x xy y −+=()()2223332240⨯−⨯⨯−+−=.【总结】本题主要考查当两个非负数的和为零时,则说明这两个非负数均为零.【习题9】 已知非零实数x 、y 满足条件24224x y x −++=−,求x y +的值. 【难度】★★ 【答案】1.【解析】∵()230x y −≥,∴30x −≥,即3x ≥,∴240x −>,∴24224x y x −++=−,即20y +=,∴2030y x +=⎧⎨−=⎩, 解得:32x y =⎧⎨=−⎩.∴3(2)1x y +=+−=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,另一方面考查了非负数和为零的基本模型.【习题10】 =a x y 、、是两两不同的实数,则22223x xy y x xy y +−−+值等于 __________.【难度】★★★【答案】13.【解析】由题意知: ()()()()()()01020304a x a a y a x a a y −≥⎧⎪−≥⎪⎨−≥⎪⎪−≥⎩, 解得:0a x y =⎧⎨=−⎩. ∴22222222223313x xy y y y y x xy y y y y+−−−==−+++.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题11】 a x y 、、的值. 【难度】★★★【答案】617x y a ===,,或325x y a ===,,.【解析】由题意得:(1)a x y xy−=+−∵a −x y +−1)式矛盾,为无理数,∴6x y axy +=⎧⎨=⎩,=∴x y >.∴617x y a ===,,或325x y a ===,,.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【作业1】 判断下列式子哪些是二次根式?(1)2x; (2)2x; (3)1(1)x x −<; (4)244b b −+; (5)321a +; (6)222a +.【难度】★【答案】(1)不是; (2)不是; (3)不是; (4)是; (5)不是; (6)是. 【解析】根据二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数,即可判断出来.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.【作业2】 将x 移到根号内,不改变原来的式子的值:(1)21(1)x x x −>;(2)21(2)(2)44x x x x −>−+. 【难度】★ 【答案】(1)222x x −;(2)1. 【解析】(1)()22212221x x x x x x =−−−=;(2)()()2221(2)44212x x x x x −−−−==+.【总结】把式子移入根号中,要保持式子的正负值不变化,同时注意题目中的隐含条件的发掘.【作业3】 若1(11)x −+−有意义,则x 的取值范围是______. 【难度】★【答案】10x x ≥−≠且. 【解析】∵11(11)11x x −+−=+−,∴1010110x x x x +≥⎧≥−⎧⎪⎨⎨≠+−≠⎪⎩⎩,解得:. 【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零;③零没有零次幂.课后作业【作业4】计算:201520162)2).【难度】★★2. 【解析】))2015201520162)2)222⎡⎤=−⎣⎦2.【总结】当碰到次数较大的时候,想到去用公式,本题运用平方差公式和二次根式的计算即可.【作业5】 化简:(10)y <; (2)【难度】★★【答案】(1)(2【解析】(1)原式=(136y ⨯−=; (2)原式()()00xx ==>⎪<⎪⎩,∴. 【总结】考查二次根式的被开方数的非负性和二次根式的性质3、性质4,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【作业6】 已知x 为非零实数,且112221x x x a x−++=,则=________.【难度】★★ 【答案】22a −. 【解析】∵1122x xa −+=, a =, ∴212x a x++=, ∴212x a x +=−,∴22112x x a x x+=+=−.【总结】本题考查完全平方公式的变形和二次根式的综合.【作业7】 若代数式3|2|0a a b −−,求的立方根. 【难度】★★【解析】由题意得:2,4a b ==,∴3a b −==【总结】本题主要考查当几个非负数的和为零时,则这两个式子必然都等于零的基本模型,还考查了去绝对值的知识.【作业8】 m 2 【难度】★★ 【答案】2.【解析】由题意得:1m =12m m==−=. 【总结】考查根号中套根号类型的式子,注意观查,部分可转化为一个数字的平方,同时对于一个无理数的小数部分,没有办法完整写出来,只能用一种整体思想相应的表示出来.【作业9】 已知a b c 、、为有理数,且等式a ++=29991001a b c ++求的值. 【难度】★★★ 【答案】2000.=a +=∴011a b c ===,,, ∴2999100199910012000a b c ++=+=.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【作业10】已知14(01)a a a +=<<的值. 【难度】★★★【答案】【解析】212422a a=+−=−=,∵01a<<0<= 【总结】本题考查完全公式的变形和无理数、二次根式的综合.【作业11】 已知2|8|(41)0x y y −+−+=的值.【难度】★★★【答案】1.【解析】由题意得:80410830x y y z x −=⎧⎪−=⎨⎪−=⎩,解得:21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩132122=+−=. 【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,还考查了去绝对值的知识.【作业12】 化简:(1(2.【难度】★★★【答案】(12;(2+. 【解析】(12==;(2.【总结】本题主要考查复合二次根式的化简,注意观察,部分可转化为一个数字的平方,即=,由此可进行化简计算,注意观察根号中数字的因数,分解即可得到相关计算结果,同时根据二次根式性质进行相关变形计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题09 二次根式的概念与性质阅读与思考0)a≥叫做二次根式,二次根式的性质是二次根式运算、化简求值的基础,主要有:1≥a、a2一样都是非负数.2.2=a(a≥0).解二次根式问题的基本途径——通过平方,去掉根号有理化.3()()a aaa a≥⎧⎪==⎨-≤⎪⎩揭示了与绝对值的内在一致性.4a b=(a≥0,b≥0).5=(a≥0,b>0).给出了二次根式乘除法运算的法则.6.若a>b>0>0,反之亦然,这是比较二次根式大小的基础.运用二次根式性质解题应注意:(1)每一性质成立的条件,即等式中字母的取值范围;(2)要学会性质的“正用”与“逆用”,既能够从等式的左边变形到等式的右边,也能够从等式的右边变形到等式的左边.例题与求解【例1】设x,y都是有理数,且满足方程11402332x yπππ⎛⎫⎛⎫+++--=⎪ ⎪⎝⎭⎝⎭,那么x y-的值是____________.(“希望杯”邀请赛试题)解题思路:将等式整理成有理数、无理数两部分,运用有理数和无理数的性质解题.【例2】当1≤x≤2___________.解题思路:a≥0的隐含制约.【例3】若a>0,b>0=+的值.(天津市竞赛试题)解题思路:对已知条件变形,求a,b的值或探求a,b的关系.【例4】若实数x,y,m满足关系式:9199y y+-m的值.(北京市竞赛试题)解题思路:观察发现(x-199+y)与(199-x-y)互为相反数,由二次根式的定义、性质探索解题的突破口.【例5】已知152a b c+--,求a+b+c的值.(山东省竞赛试题)解题思路:题设条件是一个含三个未知量的等式,三个未知量,一个等式才能确定未知量的值呢?考虑从配方的角度试一试.【例6】在△ABC中,AB,BC,AC学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上:_________.(2)我们把上述求△ABC面积的方法叫作构图法.若△ABC,(a>0),请利用图2中的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.(3)若△ABC(m>0,n>0,且m≠n)试运用构图法求出这个三角形的面积.(咸宁市中考试题)解题思路:本题主要考查三角形的面积、勾股定理等知识,不规则三角形的面积,可通过构造直角三角形、正方形等特殊图形求得.能力训练A 级1有意义.则x 的取值范围是_____________.(“希望杯”邀请赛试题)2.阅读下面一题的解答过程,请判断是否正确?若不正确,请写出正确的解答. 已知a解:原式=(11aa a a-=- 3.已知正数a ,b ,有下列命题:(1)若a =1,b =1≤1;(2)若a=12,b =52≤32;(3)若a =2,b =3≤52;(4)若a =1,b =5≤3.根据以上命题所提供的信息,请猜想:若a =6,b =7≤________.(黄冈市竞赛试题)4.已知实数a ,b ,c 满足211024a b c c --+=,则a (b +c )的值为_______.图2图15的最小值是().A.0 B.1C.1 D.不存在6.下列四组根式中是同类二次根式的一组是().A B.3和3C D(“希望杯”邀请赛试题)72的结果是().A.6x-6 B.-6x+6 C.-4 D.4(江苏省竞赛试题)8.设a是一个无理数,且a,b满足a b-a-b+l=0,则b是一个().A.小于0的有理数B.大于0的有理数C.小于0的无理数D.大于0的无理数(武汉市竞赛试题)9=,其中ab≠0(山东省中考试颗)10.已知66a,b,求ab的值.(浙江省竞赛试题)11.设a,b,c为两两不等的有理数.(北京市竞赛试题)12.设x ,y y =,求y 的最大值.(上海市竞赛试题)B 级1.已知x ,y 为实数,y ,则5x +6y =_________.2.已知实数a 满足1999a a -=,则a -19992=___________.3.正数m ,n 满足m +--+4n =3_______.(北京市竞赛试题)4.若a ,b 满足5b =7,则s =3b 的取值范围是________.(全国初中数学联赛试题)5.已知整数x ,y +50,那么整数对(x ,y )的个数是( )A .0B .1C .2D .3(江苏省竞赛试题)6.已知1a a -=1,那么代数式1a a+的值为( )A .2 B .-2C D . (重庆市中考试题)7=x ,y ,a 是两两不同的实数.则代数式22223x xy y x xy y +--+的值为( ) .A .3B .13 C .2 D .5382= ) . A .3 B .4 C .5 D .69.设a ,b ,c 是实数,若a +b +c =+14,求 ()()()a b c b c a c a b +++++的值. (北京市竞赛试题)10.已知ax 3=by 3=cz 3,1x+1y +1z =1=11.已知在等式ax bs cx d+=+中,a ,b ,c ,d 都是有理数,x 是无理数.求:(1)当a ,b ,c ,d 满足什么条件时,s 是有理数, (2)当a ,b ,c ,d 满足什么条件时,s 是无理数.(“希望杯”邀请赛试题)12.设s ⋅⋅⋅,求不超过s 的最大整数[s].13.如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,ED ⊥BD ,连结AC ,EC ,已知AB =5,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件是AC +CE 的值最小?(3)根据(2专题09 二次根式的概念与性质40111123118:(x+y - 4)+(1)=0 23321032x yx y x yπ⎧+-=⎪⎪+-⎨⎪+-=⎪⎩例提示得)211,12,110,11=2x =≤≤><∴-例原式原式32:2150=0,0,025b a b a b=-=>>=例提示得即因得19901994:19919901990,352=020123=0x y x y x y x y x y x y m m x y m -+≥+≥⎧⎧∴+=⎨⎨--≥+≤⎩⎩=+--⎧=⎨+-⎩例提示由二次根式定义得即由非负数及其性质得解得))22211)2302:++=例520提示将等式整理配方得()(2376133132224.11(),S 24222221432ABCABCSa a ABC a a a a a a aa a a =⨯---==⨯-⨯⨯-⨯⨯-⨯⨯=例和的直角三角形的斜边如图所示位置不唯一(恩施自治州中考试题)(3)构造△ABC 如图b 所示,mn n m n m n m n m S ABC 52221232142143=⨯⨯-⨯⨯-⨯⨯-⨯=∆.A 级1.⎩⎨⎧≠+-≥--,034,0232x x x ⎩⎨⎧≠≠≤≥∴,13,15x x x x 或或15<≥∴x x x 或. 2. 不正确,正确的答案是()a a -⋅-13.2213⎪⎭⎫⎝⎛ 4.161- 5.B 6.D 7.D 8.B 9.75 10.23117-11. 提示:设法证明()+-21b a ()()22211111⎪⎭⎫ ⎝⎛-+-+-=-+-a c c b b a a c c b12.∵y x x ,100,116+-都为整数,100,116+-∴x x 必为整数.设(),,,100,11622为正整数n m n m n x m x <=+=-得()(),21610011622=---=-x x n m 即()()m n n m -+=216=4×54=2×108.当108=+n m 时,y 的值最大,最大值为108.B 级1.-162.2000 提示:由02000≥-a 得2000≥a3.4011- 4.314521-≤≤s 提示:19314,19521s b s a -=+= 5.D 6.D 提示:由a a+=11得0>a 7.B 8.C 9.6610.提示:令k cz by ax ===333,则3331,1,1kcz k b y k a x === 11.(1)当,0≠==d c a 时,dbs =是有理数;当≠c 时,()dcx c ad b c a d cx c ad b d cx c a d cx b ax s +-+=+-++=++=,其中c a 是有理数,d cx +是无理数,c ad b -是有理数;要使s 为有理数,只有0=-cadb ,即ad bc =.综上知,当000≠≠==cd c a 或且且ad bc =时,s是有理数.(2)当0,0≠=d c 时,且s a ,0≠是无理数;当0≠c 时,dcx c adb c a d cx b ax s +-+=++=, 其中c a 是有理数,d cx +是无理数,c ad b -是有理数,所以,当0≠-cad b ,即s ad bc ,≠为无理数.综上知,当0,0,0≠≠=d a c 或s ad bc c ,,0时≠≠是无理数.12. ∵()()222222112121111++-++=+++n n n n n n n n ()221111121+++⋅+⨯-⎪⎭⎫ ⎝⎛+=n n n n n n 11111111112+-+=+-+=⎪⎭⎫ ⎝⎛+-+=n n n n n n nn 200012000200011999113121121111-=-+++-++-+=∴ S .[]1999=∴S 13.(1)AC+CE=()182522++-+x x .(2)当A,C,E 三点共线时,AC 十CE 的值最小.(3)如图,作BD=12,过点B 作A B ⊥BD ,过点D 作DE ⊥BD ,且使AB=2,DE=3,连结AE 交BD 于点C ,设BC=x ,则CD =12-x,AE 的长即为()912422+-++x x 的最小值,过点A 作AF//BD 交ED 的延长线于点F ,则DF=AB=2,EF=ED+DF=5,AF=BD = 8 , AE=22EF AF + =22512+ =13,即原式的最小值为13.。