求最小公倍数和最大公因数的方法及练习

合集下载

(完整版)求最大公因数、最小公倍数练习题

(完整版)求最大公因数、最小公倍数练习题

一、基本概念:公因数:两个或多个数都有的因数叫做公因数公倍数:两个或多个数都有的倍数叫做公倍数最大公因数:两个或多个数都有的因数里最大的叫做最大公因数最小公倍数:两个或多个数都有的倍数里最小的叫做最小公倍数(没有最大公倍数)公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。

12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。

一般地我们用(a,b)表示a,b这两个自然数的最大公约数,如(12,30)=6。

如果(a,b)=1,则a,b两个数是互质数。

2、公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:12的倍数有12,24,36,48,60,72,… 18的倍数有18,36,72,90,…12和18的公倍数有:36,72…其中36是12和 18的最小公倍数。

一般地,我们用[a,b]表示自然数,a,b的最小公倍数,如[12,18]=36。

求最大公因数、最小公倍数习题一、用短除法求几个数的最大公因数12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60 42、105和56 24、36和48二、用短除法求几个数的最小公倍数。

25和30 24和3039和78 60和84 18和20126和60 45和75 12和24 12和14 45和6076和80 36和60 27和72 42、105和56 24、36和48六、用短除法求几个数的最大公因数与最小公倍数。

45和60 36和60 27和72 76和806、12和247、21和498、12和36八、写出下列各数的最大公因数和最小公倍数15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是最小公倍数是7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是29和87的最大公因数是最小公倍数是;30和15的最大公因数是最小公倍数是13、26和52的最大公因数是最小公倍数是2、3和7的最大公因数是最小公倍数是16、32和64的最大公因数是最小公倍数是7、9和11的最大公因数是最小公倍数是九. 求下面每组数的最大公约数和最小公倍数。

求最大公因数和最小公倍数的方法

求最大公因数和最小公倍数的方法

求最大公因数和最小公倍数的方法:一、 特殊情况:1、倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

(如;6和12的最大公因数是6,最小公倍数是12。

)2、互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

(如,5和7的最大公因数时1,最小公倍数是5×7=35)二、一般情况:1求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。

①列举法:如,求18和27的最大公因数先找出两个数的所有因数 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27再找出两个数的公因数: 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27 1、3、9最后找出最大公因数: 9②单列举法:如,求18和27的最大公因数先找出其中一个数的因数:18的因数有:1、2、3、6、9、18再找这些因数中那些又是另一个数的因数:1、3、9又是27的因数最后找出最大公因数: 9③短除法:3 18 273 6 9 除到商是互质数为止,最后把所有的除数相乘2 3 3×3=9④除法算式法:用这两个数同时除以公因数,除到最大公因数为止。

18 ÷9就是18和27的最大公因数 272、求最小公倍数:列举法、单列举法、大数翻倍法、分解质因数法或短除法。

①列举法:如,求18和12的最小公倍数先按从小到大的顺序找出这两个数的倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48再找出两个数的最小公倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48②单列举法:如,求18和12的最小公倍数先找出一个数的倍数: 18的倍数有:18、36、54、72再按从小到大的顺序找这些倍数中那个又是另一个数的倍数,找出最小公倍数: 36 ③大数翻倍法:如,求18和12的最小公倍数把较大的数翻倍(2倍开始),每次翻倍后看结果是不是另一个数的倍数,直到找到最小公倍数为止。

找最大公因数和最小公倍数的方法(修)

找最大公因数和最小公倍数的方法(修)

1.观察法(1)当两个数互质(互质数就是两个数只有公因数1)时,最大公因数就是1。

(2)当两个数中的一个是另一个的倍数时,最大公因数就是其中较小的那个数。

2.列举法方法1:先列出两个数的因数,再找出两个数的公因数,最后找出两个数的最大公因数。

例如:用列举法找8和6的最大公因数8的因数有1、2、4、86的因数有1、2、3、68和6的最大因数数是2。

方法2:先列出较小数的因数,再从大到小依次找其中哪些是较大数的因数,最后找它们的最大公因数。

例如:用列举法找8和6的最大公因数6的因数有1、2、3、6,从大到小依次检测,6、3都不是8的因数,2是8的因数,所以 8和6的最大因数数是2。

3.分解质因数法用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的质因数,把相同的质因数相乘,所得的积就是这两个数的最大公因数。

例如:用分解质因数的方法找下面12和18的最大公因数12=2×2×318=2×3×312和18相同的质因数是2×3,所以12和18的最大公因数是2×3=6 。

4.短除法。

用短除法求二个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商(只有公因数1)为止。

然后把最后所有的除数连乘,就得到了二个数最大公因数。

例如:用短除法找48和36的最大公因数1.观察法(1)当两个数互质(互质数就是两个数只有公因数1)时,最小公倍数就是这两个数的乘积。

(2)当两个数中的一个是另一个的倍数时,最小公倍数就是其中较大的那个数。

2.列举法方法1:先分别写各自的倍数,再找它们的公倍数,然后在公倍数里找它们的最小公倍数。

例如:用列举法找出6和8的最小公倍数。

6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。

方法2:先列较大数的倍数,再从小打大依次找其中哪些是较小数的倍数,最后找它们的最小公倍数。

求最大公因数和最小公倍数的方法

求最大公因数和最小公倍数的方法

最大公因数
一、列举法:就是把几个数的所有因数都写出来,通过对比、观察、找出公因数——最大公因数。

二、分解质因数法:就是将几个数各自分解成质因数的形式,把公因数相乘得出最大公因数。

求几个数的最小公倍数,常用的方法有:
(1)求几个数的最小公倍数,先看这几个数有没有公约数(不一定是全部已知数的公约数,其中任何两个数的公约数也可以),如果有的话,就用它们的公约数去连续除,一直除到每两个数都是互质数为止,然后把所有的除数和最后的商连乘起来,积就是这几个数的最小公倍数。

最大公因数和最小公倍数计算练习

最大公因数和最小公倍数计算练习

最大公因数和最小公倍数练习
一、用短除法求几个数的最大公因数
12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60
42、105和56 24、36和48
二、用短除法求几个数的最小公倍数
25和30 24和30 39和78 60和84
18和20 126和60 45和75 12和24
12和14 45和60 76和80 36和60
27和72 42、105和56 24、36和48
三、用短除法求几个数的最大公因数与最小公倍数。

45和60 36和60 27和72 76和80
四、填空
15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是
9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是
30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是
最小公倍数是
7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是
1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是
10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是
26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;
30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是。

五年级下册数学:找最大公因数和最小公倍数的几种方法

五年级下册数学:找最大公因数和最小公倍数的几种方法

找最大公因数和最小公倍数的几种方法(质数又叫做素数,公因数又叫做公约数)一、找最小公倍数的方法1、列举法方法1、先分别写各自的(倍数),再找它们的(公倍数),然后在公倍数里找它们的(最小公数)。

方法2:先找较大数的(倍数),再找其中哪些是(较小)的倍数,最后找它们的(最小公倍数)…2这种方法是分解质因数后,找出二个数相同的(质因数),,及二个数各自独有的(质因数),然后把二个数相同的(质因数,只取一个。

)和二个数各自独有的(质因数),全部乘进去,所得的积就是这两个数的最小公倍数。

60和42的最小公倍数=2×3 ×2×5×7=420 。

3、短除法。

用短除法求两个数的最小公倍数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

把所有的(除数)和最后的两个(商)连乘起来,就得到这两个数的(最小公倍数)。

4、特殊方法(观察法)1)两个数具有倍数关系的,它们的最小公倍数就是其中(较大)的数。

'2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最小公倍数是二个数的(乘积)。

二、找最大公因数的方法1、列举法。

先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)2、分解质因数法。

用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的(质因数),把相同的(质因数)相乘,所得的积就是这两个数的最大公因数。

)3、短除法。

用短除法求二个数的最大公因数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

然后把最后所有的(除数)连乘,就得到了二个数最大公因数。

2 3最后所有的除数有2、2、2.所以16和24的最大公因数是2×2×2=8@4、观察法1)两个数具有倍数关系的,它们的最大公因数就是其中(较小)的数。

2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最大公因数就是(1).。

人教版五年级下册数学《最大公因数和最小公倍数》知识点和精选练习题

人教版五年级下册数学《最大公因数和最小公倍数》知识点和精选练习题

人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。

,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。

3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除。

(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除)。

因此,36,24,48的最大公因数是2×2×3=12。

(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。

②互质的两个数最大公因数是1。

(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。

二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。

化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。

③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。

解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b ,最小公倍数是其中的较大数α。

B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。

(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小.( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1。

五年级下册数学:找最大公因数和最小公倍数的几种方法

五年级下册数学:找最大公因数和最小公倍数的几种方法

找最大公因数和最小公倍数的几种方法(质数又叫做素数,公因数又叫做公约数)一、找最小公倍数的方法1、列举法方法1、先分别写各自的(倍数),再找它们的(公倍数),然后在公倍数里找它 们的(最小公数)。

方法2: 先找较大数的(倍数),再找其中哪些是(较小)的倍数,最后找它们 的(最小公倍数)这种方法是分解质因数后,找出二个数相同的(质因数) ,及二个数各自 独有的(质因数),然后把二个数相同的(质因数,只取一个。

)和二个数各自 独有的(质因数),全部乘进去,所得的积就是这两个数的最小公倍数。

6862、60 禾口 42的最小公倍数=2X 3 X 2X 5X 7=420。

3、短除法。

用短除法求两个数的最小公倍数,一般用这两个数除以它们的(公因数)一直除到所得的两个商(只有公因数 1)为止。

把所有的(除数)和最后的两个4、特殊方法(观察法)1)两个数具有倍数关系的,它们的最小公倍数就是其中(较大)的数。

2)两个数是互质数的(互质数就是两个数只有公因数 1),它们的最小公倍数是 二个数的(乘积)。

2 1为 18和24的最小公倍数是 2X 3X 3X 4=72(商)连乘起来,就得到这两个数的 (最小公倍二、找最大公因数的方法1、列举法先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)2、分解质因数法。

用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的(质因数),把相同的(质因数)相乘,所得的积就是这两个数的最大公因数。

3、短除法。

用短除法求二个数的最大公因数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

然后把最后所有的(除数)连乘,就得到了二个数最大公因数。

例题9:用短除法求16和24的最大公因数:2 16 24 .2 8 12 .2 4 62 3最后所有的除数有2、2、2.所以16和24的最大公因数是2^2X2=84、观察法1)两个数具有倍数关系的,它们的最大公因数就是其中(较小)的数。

找最大公因数和最小公倍数的几种方法

找最大公因数和最小公倍数的几种方法

找最大公因数和最小公倍数的几种方法最大公因数和最小公倍数是数学中常见的概念,它们分别用于求两个或多个数之间的共同约数和共同倍数。

下面我将为你介绍最大公因数和最小公倍数的几种计算方法。

一、最大公因数的计算方法:1.1质因数分解法:最大公因数可以通过将给定的两个或多个数分解质因数,找出它们的共同质因数,然后将这些质因数相乘得到最大公因数。

例如,求30和45的最大公因数:30=2×3×545=3×3×5它们的共同质因数是3和5,相乘得到最大公因数为151.2辗转相除法:辗转相除法又称为欧几里德算法,通过反复用两个数的较小数去除较大数,将余数作为新的两个数进行除法运算,直到余数为0,此时较小的那个数就是最大公因数。

例如,求56和72的最大公因数:72÷56=1余1656÷16=3余816÷8=2余0因此,最大公因数为81.3短除法:短除法是一种直观简便的方法,它通过反复用一个数去除另一个数,将余数作为新的两个数进行除法运算,直到余数为0,此时最后一次相除的除数就是最大公因数。

例如,求64和96的最大公因数:96÷64=1余3264÷32=2余0因此,最大公因数为32二、最小公倍数的计算方法:2.1质因数分解法:最小公倍数可以通过将给定的两个或多个数分解质因数,找出它们的所有质因数,并将每个质因数的最大次数相乘得到最小公倍数。

例如,求6和10的最小公倍数:6=2×310=2×5它们的所有质因数是2、3和5,它们的最大次数分别是1、1和1,因此最小公倍数为2×3×5=30。

2.2公式法:最小公倍数可以通过两个数的乘积除以它们的最大公因数来计算。

例如,求12和15的最小公倍数:最大公因数为3,乘积为12×15=180最小公倍数=乘积÷最大公因数=180÷3=602.3短除法:短除法也可以用于计算最小公倍数。

最大公因数与最小公倍数

最大公因数与最小公倍数

最大公因数和最小公倍数例1、求240和450的最大公因数和最小公倍数。

练习:试一试,求36、48和64的最大公因数和最小公倍数。

例2、把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余。

可以裁成多少块?例3、有三根铁丝,一根长18米,一根长24米,一根长30米。

现在要把它们截成同样长的小段。

每段最长可以有几米?一共可以截成多少段?例4、把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的同样大小的正方体木块,锯后不许有剩余,能锯成多少块?练习:用96朵红玫瑰花和72朵白玫瑰花做花束。

若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?例5、有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数至少是几?练习:1、有一个自然数,被8除余6,被7除余5,被6除余4,这个自然数最小是几?2、有一批机器零件。

每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。

这些零件总数在300至400之间。

这批零件共有多少个?例6、用某数去除369余9,去除507余3,求这个数最大是几?例7、一条街道为AC,在AC中的B处转弯。

AB长630米,BC长560米。

在这条街道一侧等距离装路灯。

A、B、C三点必须各装一盏路灯,这条街最少装多少盏路灯?例8、38支钢笔,41只计算器,平均奖给四、五年级评比的优秀学生,结果钢笔多出2支,计算器差1只。

问:评出的优秀学生最多有几人?练习、动物园的饲养员给三群猴子分花生,如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20粒。

那么把花生同时分给三群猴子,平均每只猴子可得多少粒?例9、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。

练习、两个数的最大公因数是6,最小公倍数是144,这两个数各是多少?有几组这样的数?例10、甲.乙.丙三人到图书馆借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果3月5日他们三人在图书馆相遇,那么下一次到图书馆是几月几日?例11、公路上一排电线杆,共25根。

求最大公因数和最小公倍数的方法

求最大公因数和最小公倍数的方法

求最大公因数和最小公倍数的方法
一、求最大公因数的方法。

1. 辗转相除法。

辗转相除法,又称欧几里得算法,是求最大公因数的一种常用方法。

具体步骤如下:
(1)用较大数除以较小数,得到余数;
(2)用较小数除以余数,再得到新的余数;
(3)继续用新的余数去除上一步的余数,直到余数为0;
(4)此时,除数就是最大公因数。

2. 素因数分解法。

素因数分解法是将两个数分别进行素因数分解,然后将它们共有的素因数相乘,即可得到最大公因数。

二、求最小公倍数的方法。

1. 素因数分解法。

求最小公倍数的一种常用方法是素因数分解法。

具体步骤如下:(1)将两个数分别进行素因数分解;
(2)将它们的素因数分别列出来;
(3)将它们共有的素因数和非共有的素因数分别相乘,即可得
到最小公倍数。

2. 最大公因数和最小公倍数的关系。

最大公因数和最小公倍数之间有着重要的数学关系,即两个数
的最大公因数与最小公倍数的乘积等于这两个数的乘积。

这一性质
在实际问题中有着重要的应用,可以帮助我们更好地理解和运用最
大公因数和最小公倍数。

三、总结。

通过本文的介绍,我们了解了求最大公因数和最小公倍数的几种常用方法,包括辗转相除法、素因数分解法等。

这些方法在实际问题中有着重要的应用,可以帮助我们更好地理解和运用最大公因数和最小公倍数。

希望本文能够对大家有所帮助,更好地掌握这一数学概念。

求最大公因数和最小公倍数的方法(简单实用)

求最大公因数和最小公倍数的方法(简单实用)

求最大公因数和最小公倍数的方法(简单实用)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March求最大公因数和最小公倍数的方法:一、 特殊情况:1、倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

(如;6和12的最大公因数是6,最小公倍数是12。

)2、互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

(如,5和7的最大公因数时1,最小公倍数是5×7=35)二、一般情况:1求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。

①列举法:如,求18和27的最大公因数先找出两个数的所有因数 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27再找出两个数的公因数: 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27 1、3、9最后找出最大公因数: 9②单列举法:如,求18和27的最大公因数先找出其中一个数的因数:18的因数有:1、2、3、6、9、18再找这些因数中那些又是另一个数的因数:1、3、9又是27的因数最后找出最大公因数: 9③短除法:3 18 273 6 9 除到商是互质数为止,最后把所有的除数相乘2 3 3×3=9④除法算式法:用这两个数同时除以公因数,除到最大公因数为止。

18 ÷ 9就是18和27的最大公因数 272、求最小公倍数:列举法、单列举法、大数翻倍法、分解质因数法或短除法。

①列举法:如,求18和12的最小公倍数先按从小到大的顺序找出这两个数的倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48再找出两个数的最小公倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48②单列举法:如,求18和12的最小公倍数先找出一个数的倍数: 18的倍数有:18、36、54、72再按从小到大的顺序找这些倍数中那个又是另一个数的倍数,找出最小公倍数: 36 ③大数翻倍法:如,求18和12的最小公倍数把较大的数翻倍(2倍开始),每次翻倍后看结果是不是另一个数的倍数,直到找到最小公倍数为止。

最大公因数和最小公倍数练习_课件

最大公因数和最小公倍数练习_课件

找出每组数的最大公因数. 6和 9 20和30 10和6 13和5
5和15
3和 5 7和10
21和7
8和9 12和24
11和33
12和1
60和12
4和15
14和21
9和12
我总结 几个数公有的倍数,叫做这几个数的公倍数,其中最小 的一个,叫做这几个数的最小公倍数. (1)、枚举法
(2).分解质因数 (3)、短除法
8.有两根长度分别是24米和20米的木料,现 在要把它们锯成一样长的短木且都没有剩余, 每根短木最长多少米,一共可以锯成多少段? 9.1路车和路车早上6时同时从起始站发车,1路 车每10分钟发一辆车,2路车每隔8分钟发一辆 车。这两路车第二次同时发车的时间是多少?
1路 2路 6:00 6:00
10.在一张长60厘米的纸条上,从左端起,先 每隔3厘米画一个红点,再从左端起,每隔4厘 米画一个红点。纸条的两个端点都不画。最后, 纸条上共有多少个红点? 11.有一批作业,无论是平均分给10个人、12 个人,还是15个人,都剩余4本,这批作业本 至少有多少本?
求下面每组数的最小公倍数。
12和36 8和2 12和4 3和9 28和14 5和10 35和5 4和8
如果较大数是较小数的倍数,那么较大数就是这两 个数的最小公倍数。
5和7 2和13
8和3 4和9
9和10 6和7
1和5 8和9
如果两个数是互质数,那么它们的最小公倍数就这两个数的乘积。
1.把下面两根彩带剪成长度一样的短彩带 且没有多余,每根短彩带最长是多少厘米?
45cm
30cm
2.分别用边长6厘米和4厘米的正方形纸片铺 下面的长方形。
哪种纸片能将长方形正好铺满?

(完整版)求最大公因数与最小公倍数的习题

(完整版)求最大公因数与最小公倍数的习题

求最大公因数、最小公倍数、约分、通分练习题一、求几个数的最大公因数12和30 24和3639和78 72和8436和60 45和6045和75 45和6042、105和56 24、36和48二、给下面的分数约分3624 75452718 2416 2035 80165117 108三、求几个数的最小公倍数。

25和30 24和30 39和7860和84 18和20126和60 45和7512和24 45和6076和80 36和60 27和7242、105和56 24、36和48四、将下列各组分数通分。

12785和352143和6597和95153913和5432和六、用短除法求几个数的最大公因数与最小公倍数。

45和60 36和60 27和72 76和80 6、12和24 7、21和49 8、12和36七. 填空题。

1. 都是自然数,如果b a =10 , 的最大公约数是( ),最小公倍数是( )。

2. 甲=2×3×3 ,乙=2×3×5 ,甲和乙的最大公约数是( )×( )=( ),甲和乙的最小公倍数是( )×( )×( )×( )=( )。

3. 所有自然数的公约数为( )。

4. 如果m 和n 是互质数,那么它们的最大公约数是( ),最小公倍数是( )。

5. 在4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。

277185和3310229和15752和21472和5110172和3241和97103和5432和。

最大公因数和最小公倍数举例

最大公因数和最小公倍数举例

最大公因数和最小公倍数举例最大公因数和最小公倍数是数学中的两个重要概念,下面将分别对它们进行解释,并给出10个具体的例子。

一、最大公因数最大公因数又称为最大公约数,是指两个或多个整数中能够整除它们的最大正整数。

计算最大公因数的方法有很多,常见的有质因数分解法、辗转相除法等。

例子1:求出30和45的最大公因数。

解答:首先进行质因数分解,30=2×3×5,45=3×3×5。

最大公因数是3×5=15。

例子2:求出24和36的最大公因数。

解答:24=2×2×2×3,36=2×2×3×3。

最大公因数是2×2×3=12。

例子3:求出14和21的最大公因数。

解答:14=2×7,21=3×7。

最大公因数是7。

例子4:求出72和120的最大公因数。

解答:72=2×2×2×3×3,120=2×2×2×3×5。

最大公因数是2×2×2×3=24。

例子5:求出80和100的最大公因数。

解答:80=2×2×2×5,100=2×2×5×5。

最大公因数是2×2×5=20。

例子6:求出16和64的最大公因数。

解答:16=2×2×2×2,64=2×2×2×2×2×2。

最大公因数是2×2×2×2=16。

例子7:求出45和75的最大公因数。

解答:45=3×3×5,75=3×5×5。

最大公因数是3×5=15。

例子8:求出18和27的最大公因数。

解答:18=2×3×3,27=3×3×3。

最大公因数和最小公倍数典型例题和专项练习

最大公因数和最小公倍数典型例题和专项练习

最大公因数和最小公倍数典型例题和专项练习最大公因数和最小公倍数是数学中的基本概念,经常在实际问题中应用。

下面是一些典型例题和专项练。

典型例题】例1、有三根铁丝,分别长18米、24米、30米。

现在要把它们截成同样长的小段。

每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截成多少段。

解答:(18、24、30)=6,(18+24+30)÷6=12段。

答:每段最长可以有6米,一共可以截成12段。

例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解答:(36、60)=12,(60÷12)×(36÷12)=15个。

答:正方形的边长可以是12厘米,能截15个正方形。

例3、用96朵红玫瑰花和72朵白玫瑰花做花束。

若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。

解答:(1)最多可以做多少个花束(96、72)=24,(2)每个花束里有几朵红玫瑰花96÷24=4朵,(3)每个花束里有几朵白玫瑰花72÷24=3朵,(4)每个花束里最少有几朵花4+3=7朵。

例4、公共汽车站有三路汽车通往不同的地方。

第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。

三路汽车在同一时间发车以后,最少过多少分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。

求最小公倍数和最大公因数的技巧

求最小公倍数和最大公因数的技巧

求最小公倍数和最大公因数的技巧要求最小公倍数和最大公因数的技巧是在数学中非常常见且有用的。

这两个概念经常在解决实际问题时使用,如化简分数、约束时间和物品的数量以及计算两个数之间的距离等等。

本文将详细介绍求解最小公倍数和最大公因数的技巧。

一、求解最小公倍数的技巧1.因数分解法:将两个数分别进行因数分解,然后将它们的公共因数和非公共因数相乘即可得到最小公倍数。

例如,要求解12和16的最小公倍数,将它们分别因数分解为2x2x3和2x2x2x2,可以看出它们的公共因数为2x2=4,而非公共因数为3和2x2=4、所以12和16的最小公倍数为4x3x2x2=482.素数幂法:将两个数进行素因数分解,然后将它们的素因数按最高指数相乘即可得到最小公倍数。

例如,要求解18和24的最小公倍数,将它们分别进行素因数分解为2x3x3和2x2x2x3,可以看出它们的素因数为2x2x2x3x3=72、所以18和24的最小公倍数为723.列表法:将两个数的倍数列出,然后找出它们的共同倍数中最小的一个。

例如,要求解4和6的最小公倍数,它们的倍数分别为4,8,12,16,20,24...和6,12,18,24,30,36...可以看出它们的共同倍数为12和24,最小的共同倍数为12、所以4和6的最小公倍数为121.辗转相除法(欧几里得算法):这是一种用于求解最大公因数的常用方法。

两个数的最大公因数等于其中较小的数与两数的差的最大公因数。

例如,要求解24和36的最大公因数,24和36的差为12,然后求解12和24的最大公因数,12和24的差为12,再求解12和12的最大公因数,得到的结果为12、所以24和36的最大公因数为122.更相减损法:这是另一种用于求解最大公因数的方法。

两个数的最大公因数等于它们的差与较小数的最大公因数。

例如,要求解24和36的最大公因数,将36减去24得到12,然后求解12和24的最大公因数,将24减去12得到12,再求解12和12的最大公因数,得到的结果为12、所以24和36的最大公因数为123.素数幂法:将两个数进行素因数分解,然后将它们的共同素因数按最小指数相乘即可得到最大公因数。

求最大公因数、最小公倍数练习题

求最大公因数、最小公倍数练习题

一.根本概念:公因数:两个或多个数都有的因数叫做公因数公倍数:两个或多个数都有的倍数叫做公倍数最大公因数:两个或多个数都有的因数里最大的叫做最大公因数最小公倍数:两个或多个数都有的倍数里最小的叫做最小公倍数(没有最大公倍数)公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;个中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30.12和30的公约数有1,2,3,6,个中6是12和30的最大公约数.一般地我们用(a,b)暗示a,b这两个天然数的最大公约数,如(12,30)=6.假如(a,b)=1,则a,b两个数是互质数. 2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;个中最小的一个,叫做这几个数的最小公倍数.例如:12的倍数有12,24,36,48,60,72,…18的倍数有18,36,72,90,…12和18的公倍数有:36,72…个中36是12和18的最小公倍数.一般地,我们用[a,b]暗示天然数,a,b的最小公倍数,如[12,18]=36.求最大公因数.最小公倍数习题一.用短除法求几个数的最大公因数12和30 24和3639和78 72和84 36和6045和60 45和7545和6042.105和5624.36和48二.用短除法求几个数的最小公倍数.25和30 24和30 39和78 60和84 18和20126和60 45和75 12和24 12和14 45和6076和8036和6027和7242.105和5624.36和48六.用短除法求几个数的最大公因数与最小公倍数.45和60 36和60 27和72 76和806.12和247.21和498.12和36八.写出下列各数的最大公因数和最小公倍数15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是30和60的最大公因数是最小公倍数是;13和91的最大公因数是最小公倍数是7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是29和87的最大公因数是最小公倍数是;30和15的最大公因数是最小公倍数是13.26和52的最大公因数是最小公倍数是2.3和7的最大公因数是最小公倍数是16.32和64的最大公因数是最小公倍数是7.9和11的最大公因数是最小公倍数是九. 求下面每组数的最大公约数和最小公倍数.(三个数的只求最小公倍数)45和60 36和60 27和7276和8042.105和56 24.36和48三. 动头脑,想一想:黉舍买来40支圆珠笔和50本演习本,平均奖给四年级三勤学生,成果圆珠笔多4支,演习本多2本,四年级有若干名三勤学生,他们各得到什么奖品?四.填空:1.假如天然数A除以天然数B商是17,那么A与B的最大公因数是(),最小公倍数是().2.最小质数与最小合数的最大公因数是(),最小公倍数是().3.能被5.7.16整除的最小天然数是().4.(1)(7.8)最大公因数(),[7,8 ]最小公倍数()(2)(25,15)最大公因数(),[25.15 ]最小公倍数()(3)(140,35)最大公因数(),[140,35 ]最小公倍数()(4)(24,36)最大公因数(),[24.36 ]最小公倍数()(5)(3,4,5)最大公因数(),[3,4,5 ]最小公倍数()(6)(4,8,16)最大公因数(),[4,8,16 ]最小公倍数()五.写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最小倍数是;(2) 9和3的最大公因数是;最小公倍数是;(3) 9和18的最大公因数是;最小公倍数是;(4) 11和44的最大公因数是;最小公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最小公倍数是;(7) 已知A=2×2×3×5,B=2×3×7,那么A.B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A.B的最大公因数是;最小公倍数是.(9).在17.18.15.20和30五个数中,能被2整除的数是;能被3整除的数是;能被5整除的数是;能同时被2.3整除的数是;能同时被3.5整除的数是;能同时被2.5整除的数是;能同时被2.3.5整除的数是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理求最小公倍数和最小公因数的方法及练习
第一步:情境导入
第二步:查漏练习
3.写出下列每组数的最大公因数。

12和810和1520和30
4.
8和
5.
1.
2.
(1
(2)特征:一个数的倍数的个数是的,因此两个数的公倍数的个数也是无限的,只有最小公倍数,没有最大公倍数。

3.公因数和最大公因数
(1)概念:几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做它们的最大公因数。

用符号(,)。

(2)特征:一个数的因数的个数是有限的,因此两个数的公因数的个数也是有限的,最小的公因数是1。

4.素数:一个数,如果只有1和它本身两个因数的数叫做素数。

合数:除了1和它本身外还有另外的因数叫做合数。

,8)
5.
(1
(2
(3
①1
②倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

举例:15和5,[15,5]=15,(15,5)=5
③素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

举例:[3,7]=21,(3,7)=1
④一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。

[5,8]=40,(5,
8)=1
⑤相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

[9,8]=72,(9,8)=1
⑥两个合数,公有的质因数和各自独有的质因数的乘积就是它们的最小公倍数。

举例:6和8都是合数,6的质因数有2、3;8的质因数有:2、2、2;
6
1.24
2.20
A、
3.
10
4.一个既是12的因数,又是18的因数,这个数最大是()。

A、12
B、18
C、6
D、8
5.是3的倍数又是5的倍数中,最小一个偶数是()。

A、15
B、30
C、20
D、60
6.两个自然数a、b的最大公因数是1,它们的最小公倍数是()。

7.写出每组数的最大公因数和最小公倍数
13和39 6和13 5和715和1412和189和15
第五步:拓展延伸
1.A÷B=8(AB均为非0的自然数),A、B的最大公因数是(),最小公倍数是()。

2.A=B+1(或A-B=1)(AB均为非0的自然数),A、B的最大公因数是(),最小公倍数是()。

3.;如
4.A(),最
5.B
1.
32
2.A
3.
4.在
5.
6.两个数最小公倍数是180,最大公因数是30,其中一个数是90,另一个数是()。

相关文档
最新文档