2018年4月2日高中数学试卷

合集下载

【高三数学试题精选】2018年4月高三数学理科二模试题(济南人教B版有答案)

【高三数学试题精选】2018年4月高三数学理科二模试题(济南人教B版有答案)

2018年4月高三数学理科二模试题(济南人教B版有答案)
5
启用前绝密
高三巩固训练
理科数学
本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页考试时间12 B -1 c 0 D 2
11 已知的外接圆半径为1,圆心为,且
,则的值为
A B
c D
12 若椭圆()和椭圆()
的焦点相同且给出如下四个结论
① 椭圆和椭圆一定没有共点;② ;
③ ;④
其中,所有正确结论的序号是
A ①③ B①③④ c①②④ D ②③④
第Ⅱ卷(非选择题共90分)
二、填空题(本大题共4个小题,每小题4分,共16分)
13不等式组表示平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为
14已知某几何体的三视图如图所示,则该几何体的体积为
15 设,则二项式的展开式中的常数项为
16如图,F1,F2是双曲线c (a>0,b>0)的左、右焦点,过F1的直线与双曲线的左、右两支分别交于A,B两点.若 | AB | | BF2 | | AF2 |=3 4 5,则双曲线的离心率为
三、解答题(本大题共6小题,共74分)
17(本题满分12分)已知函数的最小正周期。

2018届高三4月联考数学试题(有答案,有附加题)

2018届高三4月联考数学试题(有答案,有附加题)

2018届高三联考数 学2018.04.一、填空题:本大题共14小题,每小题5分,共70分.1.若i z 231-=,)(12R a ai z ∈+=,21z z ⋅为实数,则=a _____.2.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取40辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在h km /70以下的汽车有_____.3.已知命题411:>a p ,01,:2>++∈∀ax ax R x q ,则p 成立是q 成立的_____.(选“充分必要”,“充分不必要”,“既不充分也不必要”填空).4.从甲、乙、丙、丁4个人中随机选取两人,则甲、乙两人中有且只有一个被选取的概率是_____.5.执行如图所示的程序框图,输出的S 值为____.6.设y x ,满足⎪⎩⎪⎨⎧≤-≤+-≥+-02023201y y x y x ,则y x z 43+-=的最大值是_____.7.若)(x f 是周期为2的奇函数,当)1,0(∈x 时,308)(2+-=x x x f ,则=)10(f _____.8.正方形铁片的边长为cm 8,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为4π的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积为____.9.已知函数)cos()(ϕω+=x A x f 的图象如图所示,32)2(-=πf ,则=)0(f ____.10.平面直角坐标系xOy 中,双曲线)0,0(1:22221>>b a by a x C =-的渐近线与抛物线)0(2:22>p py x C =交于点B A O ,,,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为____.11.已知点)2,1(),0,3(---B A ,若圆)0()2(222>r r y x =+-上恰有两点N M ,,使得MAB ∆和NAB ∆的面积均为4,则r 的取值范围是____.12.设E D ,分别为线段AC AB ,的中点,且0=⋅CD BE ,记α为AB 与AC 的夹角,则α2cos 的最小值为____.13.已知函数x a a x e e x x x x f --++--=4ln 32)(2,其中e 为自然对数的底数,若存在实数0x 使3)(0=x f 成立,则实数a 的值为____.14.若方程0|12|2=---t x x 有四个不同的实数根4321,,,x x x x ,且4321x x x x <<<,则)()(22314x x x x -+-的取值范围是____.二、解答题:本大题共6小题,共90分.15.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知b c a 222=-,且C A C A sin cos 3cos sin =.(1)求b 的值; (2)若4π=B ,S 为ABC ∆的面积,求C A S cos cos 28+的取值范围.16.如图,在正三棱柱111C B A ABC -中,点D 在棱BC 上,D C AD 1⊥,点F E ,分别是111,B A BB 的中点.(1)求证:D 为BC 的中点; (2)求证:∥EF 平面1ADC .17.科学研究证实,二氧化碳等温空气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响,环境部门对A 市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A 市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少%10.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m 万吨)0(>m .(1)求A 市2019年的碳排放总量(用含m 的式子表示); (2)若A 市永远不需要采取紧急限排措施,求m 的取值范围.18.已知椭圆)0(1:2222>>b a by a x C =+的左顶点,右焦点分别为F A ,,右准线为m .(1)若直线m 上不存在点Q ,使AFQ ∆为等腰三角形,求椭圆离心率的取值范围;(2)在(1)的条件下,当e 取最大值时,A 点坐标为)0,2(-,设N M B ,,是椭圆上的三点,且ON OM OB 5453+=,求:以线段MN 的中点为圆心,过F A ,两点的圆的方程.19.设函数x ax x f ln 121)(2--=,其中R a ∈. (1)若0=a ,求过点)1,0(-且与曲线)(x f y =相切的直线方程;(2)若函数)(x f 有两个零点21,x x . ①求a 的取值范围;②求证:0)()(21<x f x f '+'.20.设+⊆N M ,正项数列}{n a 的前n 项的积为n T ,且M k ∈∀,当k n >时,k n k n k n T T T T =-+都成立.(1)若}1{=M ,31=a ,332=a ,求数列}{n a 的前n 项和; (2)若}4,3{=M ,21=a ,求数列}{n a 的通项公式.附加题21B .选修4-2:矩阵与变换(本题满分10分)已知矩阵1 1a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的特征向量是121α⎡⎤=⎢⎥⎣⎦. (1)求矩阵A ; (2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l的方程.21C .选修4-4:坐标系与参数方程(本题满分10分)圆C :2cos ρ=(4πθ-),与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.22.(本小题满分10分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数i,i,2,2,--其中i 是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响). (1)求事件A “在一次试验中,得到的数为虚数”的概率()P A 与事件B “在四次试验中,至少有两次得到虚数” 的概率()P B ;(2)在两次试验中,记两次得到的数分别为,a b ,求随机变量a b ξ=⋅的分布列与数学期望.E ξ23.(本小题满分10分)已知数列{}n a 满足123012323C C C C 222n n n n na +++=++++…*C 2nn nn n ++∈N ,. (1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并证明.联考数学试题Ⅰ一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.若132z i =-,21()z ai a R +∈=,12·z z 为实数,则a = ▲ .232.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取40辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h 以下的汽车有 ▲ 辆. 163.已知命题11:>4p a ,命题210q x R ax ax +∀∈+>:,,则p 成立是q 成立的 ▲ 条件(选“充分必要”,“充分不必要”,“必要不充分”,“既不充分也不必要”填空). 充分不必要4.从甲、乙、丙、丁4个人中随机选取两人,则甲、乙两人中有且只有一个被选取的概率为▲ .235.执行如图所示的程序框图,输出的S 值为 ▲ .456.设,x y 满足约束条件10232020x y x y y -+≥⎧⎪-+≤⎨⎪-≤⎩,则34z x y =-+的最大值是 ▲ .57.已知()f x 是周期为2的奇函数且当()0,1x ∈时()2830f x x x =-+,则()10f= ▲ .24- 8.正方形铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为4π的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积为▲ .π79.已知函数()()f x Acos x ωϕ=+的图象如图所示,2()23f π=-,则(0)f = ▲ .2310.平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B ,若O A B ∆的垂心为2C 的焦点,则1C 的离心率为▲ .3211.已知点3,0()1),2(A B ---,,若圆()222(2)0x y r r +=->上恰有两点M N ,,使得MAB∆和NAB ∆的面积均为4,则r 的取值范围是 ▲ .292(,)2212.设D ,E 分别为线段AB ,AC 的中点,且BE ―→·CD ―→=0,记α为AB ―→与AC ―→的夹角,cos 2α 的最小值为 ▲ .72513.已知函数2()23ln 4x aa x f x x x x ee --=--++,其中e 为自然对数的底数,若存在实数0x 使0()3f x =成立,则实数a 的值为 ▲ . 1ln 2-14. 若方程2|21|0x x t ---=有四个不同的实数根1234,,,x x x x ,且1234x x x x <<<,则41322()()x x x x -+-的取值范围是 ▲ . (8,45]二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,内角A B C 、、的对边分别为a b c 、、,已知222a c b -=,且3sinAcosC cosAsinC = .(1)求边b 的值;(2)若4B π=,S 为ABC ∆的面积,求82cos S AcosC +的取值范围.解:(1)由正弦定理sin sin a c A C = ,余弦定理222222cos ,cos 22a b c b c a C A ab bc+-+-== sin cos 3cos sin A C A C =可等价变形为222222322a b c b c a a c ab bc+-+-⋅=⋅化简得2222b a c -= ……………………3分222a c b -= 4b ∴=或0(b =舍)……………………6分若求范围: (2)由正弦定理sin sin b c B C =得114sin 4sin sin 82sin sin 22sin4S bc A A C A C π==⋅⋅=382cos 82cos()82cos(2)4S AcosC A C A π=-=-∴+……………………10分在ABC ∆中,由3040202A A C A Cπππ⎧<<⎪⎪⎪<<⎪⎨⎪<<⎪⎪⎪>⎩ 得3(,)82A ππ∈ 32(0,)44A ππ∴-∈,32cos(2)(,1)42A π∴-∈ 82cos (8,82)S AcosC ∈∴+……………………14分若求定值:由sin cos 3cos sin A C A C =得tan 3tan A C = 故2tan tan 4tan tan tan()11tan tan 13tan A C CB AC A C C+=-+=-=-=-- 解得27tan 3C ±=2220a c b -=>27tan 3C +∴=故tan 27A =+ 由正弦定理sin sin b c B C =得114sin 4sin sin 82sin sin 22sin4S bc A A C A C π==⋅⋅=382cos 82cos()82cos(2)8(sin 2cos 2)4S AcosC A C A A A π∴+=-=-=- 2222sin 2cos 22tan 1tan 8()8sin cos tan 1A A A A A A A --+==⋅++ 解得82cos 47S AcosC +=……………………14分16.(本小题满分14分)如图,在正三棱柱111C B A ABC -中,点D 在棱BC 上,D C AD 1⊥,点E ,F分别是1BB ,11B A 的中点. (1)求证:D 为BC 的中点; (2)求证://EF 平面1ADC .解:(1) 正三棱柱111C B A ABC -,∴⊥C C 1平面ABC ,又⊂AD 平面ABC ,∴AD C C ⊥1,又D C AD 1⊥,111C C C D C = ∴⊥AD 平面11B BCC ,………………………………………………………3分 又 正三棱柱111C B A ABC -,∴平面ABC ⊥平面11B BCC ,∴⊥AD BC ,D 为BC 的中点.………6分(2) 连接B A 1,连接C A 1交1AC 于点G ,连接DG 矩形11ACC A ,∴G 为C A 1的中点, 又由(1)得D 为BC 的中点,∴△BC A 1中,B A DG 1//…………………9分 又 点E ,F 分别是1BB ,11B A 的中点,∴△B B A 11中,B A EF 1//,∴DG EF //,……12分 又⊄EF 平面1ADC ,⊂DG 平面1ADC ∴//EF 平面1ADC .………14分17.(本小题满分14分)AA 1BCB 1C 1DEF AA 1BCB 1C 1DEF G科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响.环境部门对A 市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A 市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m 万吨(m >0).(Ⅰ)求A 市2019年的碳排放总量(用含m 的式子表示); (Ⅱ)若A 市永远不需要采取紧急限排措施,求m 的取值范围. 解:设2018年的碳排放总量为1a ,2019年的碳排放总量为2a ,… (Ⅰ)由已知,14000.9a m =⨯+,220.9(4000.9)4000.90.9a m m m m =⨯⨯++=⨯++=324 1.9m +. (4分)(Ⅱ)230.9(4000.90.9)a m m m =⨯⨯+++324000.90.90.9m m m =⨯+++,…124000.90.90.90.9n n n n a m m m m --=⨯+++⋅⋅⋅+10.94000.94000.910(10.9)10.9nnn n m m -=⨯+=⋅+--(40010)0.910n m m =-⋅+.(8分) 由已知有*,550n n N a ∀∈≤(1)当400100m -=即40m =时,显然满足题意;(9分)(2)当400100m ->即40m <时,由指数函数的性质可得:(40010)0.910550m m -⨯+≤,解得190m ≤.综合得40m <;(11分)(3)当400100m -<即40m >时,由指数函数的性质可得:10550m ≤,解得55m ≤,综合得4055m <≤.(13分) 综上可得所求范围是(0,55]m ∈. (14分)18.(本小题满分16分)已知椭圆2222:1x y C a b+=(0)a b >>的左顶点,右焦点分别为,A F ,右准线为m .(1)若直线m 上不存在点Q ,使AFQ ∆为等腰三角形,求椭圆离心率的取值范围;(2)在(1)的条件下,当e 取最大值时,A 点坐标为(2,0)-,设B 、M 、N 是椭圆上的三点,且3455OB OM ON =+,求:以线段MN 的中点为圆心,过,A F 两点的圆方程.解: (1)设直线m 与x 轴的交点是Q ,依题意FQ FA ≥,即2a c a c c -≥+,22a a c c≥+,12a c c a ≥+,112e e ≥+,2210e e +-≤102e <≤…………………………………………4分 (2)当12e =且(2,0)A -时, (1,0)F ,故2,1a c ==, …………………………………………5分所以3b =,椭圆方程是:22143x y += …………………………………………6分 设1122()()M x y N x y ,,, ,则2211143x y +=,2222143x y +=. 由3455OB OM ON =+,得 12123434(,)5555B x x y y ++. 因为B 是椭圆C 上一点,所以2212123434()()5555+=143x x y y ++ …………………8分 即222222112212123434()()()()2()14354355543x y x y x xy y ++++⋅⋅+=1212043x x y y += ………① …………………10分 因为圆过,A F 两点, 所以线段MN 的中点的坐标为121 (,)22y y +- …………11分 又2222212121212121111()(2)[3(1)3(1)2]24444y y y y y y x x y y +=++=-+-+………② …………12分 由①和②得222212121212111313121()[3(1)3(1)3()][2()](2)24442444416y y x x x x x x +=-+-+-=-+=⋅-=所以圆心坐标为121(,)24-±…………14分 (少一解扣一分) 故所求圆方程为 2212157()()2416x y ++±= ………………16分 19.(本小题满分16分)设函数21()1ln 2f x ax x =--,其中a R ∈ . (1)若0a =,求过点(0,1)-且与曲线()y f x =相切的直线方程; (2)若函数()f x 有两个零点1x ,2x ,① 求a 的取值范围;② 求证:12'()'()0f x f x +<.解(1)当a =0时,f (x )=-1-ln x ,f ′(x )=-1x .设切点为T (x 0,-1-ln x 0),则切线方程为:y +1+ln x 0=-1x 0( x -x 0). …………………… 2分因为切线过点(0,-1),所以 -1+1+ln x 0=-1x 0(0-x 0),解得x 0=e .所以所求切线方程为y =-1e x -1. …………………… 4分 (2)①f ′(x )=ax -1x =ax 2-1x ,x >0.(i) 若a ≤0,则f ′(x )<0,所以函数f (x )在(0,+∞)上单调递减,从而函数f (x )在(0,+∞)上至多有1个零点,不合题意. …………………… 5分(ii)若a >0,由f ′(x )=0,解得x =1a.当0<x <1a 时, f ′(x )<0,函数f (x )单调递减;当x >1a时, f ′(x )>0,f (x )单调递增,所以f (x )min =f (1a )=12-ln 1a -1=-12-ln 1a.要使函数f (x )有两个零点,首先 -12-ln 1a<0,解得0<a <e . …………… 7分当0<a <e 时,1a >1e>1e .因为f (1e )=a 2e 2>0,故f (1e )·f (1a)<0.又函数f (x )在(0,1a )上单调递减,且其图像在(0,1a)上不间断,所以函数f (x )在区间(0,1a)内恰有1个零点. …………………… 9分考察函数g (x )=x -1-ln x ,则g′(x )=1-1x =x -1x .当x ∈(0,1)时,g′(x )<0,函数g (x )在(0,1)上单调递减;当x ∈(1,+∞)时,g′(x )>0,函数g (x )在(1,+∞)上单调递增,所以g (x )≥g (1)=0,故f (2a )=2a -1-ln 2a ≥0.因为2a -1a =2-a a >0,故2a >1a .因为f (1a )·f (2a )≤0,且f (x )在(1a ,+∞)上单调递增,其图像在(1a,+∞)上不间断,所以函数f (x )在区间(1a ,2a ] 上恰有1个零点,即在(1a,+∞)上恰有1个零点.综上所述,a 的取值范围是(0,e). …………………… 11分②由x 1,x 2是函数f (x )的两个零点(不妨设x 1<x 2),得 ⎩⎨⎧12ax 12-1-ln x 1=0,12ax 22-1-ln x 2=0,两式相减,得 12a (x 12-x 22)-ln x 1x 2=0,即12a (x 1+x 2) (x 1-x 2)-ln x 1x 2=0,所以a (x 1+x 2)=2ln x 1x2x 1-x 2. …………………… 13分f ′(x 1)+f ′(x 2)<0等价于ax 1-1x 1+ax 2-1x 2<0,即a (x 1+x 2)-1x 1-1x 2<0,即2ln x 1x2x 1-x 2-1x 1-1x 2<0,即2ln x 1x 2+x 2x 1-x 1x 2>0. 设h (x )=2ln x +1x -x ,x ∈(0,1).则h ′(x )=2x -1x 2-1=2x -1-x 2x 2=-(x -1)2x 2<0, 所以函数h (x )在(0,1)单调递减,所以h (x )>h (1)=0.因为x 1x 2∈(0,1),所以2ln x 1x 2+x 2x 1-x 1x 2>0,即f ′(x 1)+f ′(x 2)<0成立. …………………… 16分20.(本小题满分16分)设M ⊂≠*N ,正项数列{}n a 的前项积为n T ,且k M ∀∈,当n k >时,n k n k n k T T T T +-=都成立. (1)若{1}M =,13a =,233a =,求数列{}n a 的前n 项和;(2)若}4{3M =,,12a =,求数列{}n a 的通项公式. 解:(1)当n ≥2时,因为M ={1},所以T n +1T n -1=T n T 1,可得a n +1=a n a 12,故a n +1a n=a 12=3(n ≥2).又a 1=3,a 2=33,则{a n }是公比为3的等比数列,…………2分故{a n }的前n 项和为3(1-3n )1-3=32·3n -32.…………4分(2)当n >k 时,因为T n +k T n -k =T n T k ,所以T n +1+k T n +1-k =T n +1T k ,所以T n +k T n -kT n +1+k T n +1-k=T n T kT n +1T k,即a n +1+k a n +1-k =a n +1,…………6分 因为M ={3,4},所以取k =3,当n >3时,有a n +4a n -2=a n +12; 取k =4,当n >4时,有a n +5a n -3=a n +12.…………8分 由a n +5a n -3=a n +12知,数列a 2,a 6,a 10,a 14,a 18,a 22,…,a 4n -2,…,是等比数列,设公比为q .………① 由a n +4a n -2=a n +12 知,数列a 2,a 5,a 8,a 11,a 14,a 17,…,a 3n -1,…,是等比数列,设公比为q 1,………② 数列a 3,a 6,a 9,a 12,a 15,a 18,…,a 3n ,…,成等比数列,设公比为q 2,………③ 数列a 4,a 7,a 10,a 13,a 16,a 19,a 22,…,a 3n +1,…,成等比数列,设公比为q 3,…④由①②得,a 14a 2=q 3,且a 14a 2=q 14,所以q 1=q 34;由①③得,a 18a 6=q 3,且a 18a 6=q 24,所以q 2=q 34;由①④得,a 22a 10=q 3,且a 22a 10=q 34,所以q 3=q 34;所以q 1=q 2=q 3=q 34.…………12分由①③得,a 6=a 2q ,a 6=a 3q 2,所以a 3a 2=qq 2=q 14,由①④得,a 10=a 2q 2,a 10=a 4q 32,所以a 4a 2=q 2q 32=q 12,所以a 2,a 3,a 4是公比为q 14的等比数列,所以{a n }(n ≥2)是公比为q 14的等比数列. 因为当n =4,k =3时,T 7T 1=T 42T 32;当n =5,k =4时,T 9T 1=T 52T 42, 所以(q 14)7=2a 24,且(q 14)10=2a 26,所以q 14=2,a 2=22.…………14分又a 1=2,所以{a n }(n ∈N *)是公比为q 14的等比数列.故数列{a n }的通项公式是a n =2n -1·2.…………16分21A .选修4-1:几何证明选讲如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,210CD =,3AB BC ==,求BD 以及AC 的长.解:由切割线定理得:2DB DA DC ⋅=, ………………………2分2()DB DB BA DC +=, 04032=-+DB DB ,5=DB . …………6分A B C D ∠=∠,∴ DBC ∆∽DCA ∆, …………………………………8分∴BC DBCA DC = ,得5106=⋅=DB DC BC AC . ……………………………10分21B .选修4-2:矩阵与变换(本题满分10分)已知矩阵1 1a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的特征向量是121α⎡⎤=⎢⎥⎣⎦. (1)求矩阵A ; (2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l的方程.OABCD解:(1)12211 12a b a A b α+⎡⎤⎡⎤==⎢⎥⎢⎥-+⎣⎡⎤⎢⎦⎣⎥-⎣⎦⎦,1242λλαλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦2422a b +=⎧∴⎨-+=⎩ 解得24a b =⎧⎨=⎩ 故12 14A ⎡⎤=⎢⎥-⎣⎦…………4分 (2)设直线:4m x y -=上的任意一点(,)x y 在矩阵A 对应的变换作用下得到点(',')x y则 '122'4 14x x x y y y x y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, '2'4x x y y x y =+⎧∴⎨=-+⎩ 2''3''6x y x x y y -⎧=⎪⎪∴⎨+⎪=⎪⎩4x y -= ∴''8x y -= ∴直线l 的方程为80x y --=…………10分21C .选修4-4:坐标系与参数方程(本题满分10分)圆C :2cos ρ=(4πθ-),与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.解:圆C :θρθρπθρρsin 2cos 24cos 22+=⎪⎭⎫⎝⎛-= 所以02222=--+y x y x …………………4分所以圆心⎪⎪⎭⎫⎝⎛22,22C ,与极轴交于()0,2A …………………6分直线CA 的直角坐标方程为2=+y x …………………8分即直线CA 的极坐标方程为14cos =⎪⎭⎫⎝⎛-πθρ. …………………10分 21D .选修4-5:不等式选讲(本题满分10分) 证明:n n12131211222-<++++ (n ≥2,*n N ∈). 证明:n n n )1(13212111131211222-++⨯+⨯+<++++………5分nn 11131212111--++-+-+= n12-=. ………10分 22.(本小题满分10分)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数i,i,2,2,--其中i 是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响). (1)求事件A “在一次试验中,得到的数为虚数”的概率()P A 与事件B “在四次试验中,至少有两次得到虚数” 的概率()P B ;(2)在两次试验中,记两次得到的数分别为,a b ,求随机变量a b ξ=⋅的分布列与数学期望.E ξ23.(本小题满分10分)已知数列{}n a 满足123012323C C C C 222n n n n na +++=++++…*C 2n n nn n ++∈N ,. (1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并证明. 23.(本小题满分10分)解:(1)12a =,24a =,38a =. …… 3分 (2)猜想:2n n a =. 证明:①当1n =,2,3时,由上知结论成立; …… 5分 ②假设n k =时结论成立, 则有123012323C C C C C 22222k k k k k k k k kk a ++++=+++++=.则1n k =+时,12311112131111231C C C C C2222k+k k k+k+k+k k k+a ++++++++=+++++. 由111C C C k k kn nn +++=+得 102132112233123C C C C C C C 222k k k k k k k ka ++++++++++=++++11111C C C 22k k -k+k+k k+k k+k+k k+++++ 0121112311231C C C C C 222222k k+k k k k k k k+k+k k+-+++++=++++++, 12110231111121C C C C 12(C )22222k k+k k k k k k+k+k k k k a -++++++-=++++++ 121102311111121C C C C C 12(C )22222k k k+kk k k k -k+k k+k k k k+-+++++++-=++++++. 又111111(21)!(22)(21)!(21)!(1)12C C !(1)!(1)!(1)!(1)!(1)!2k+k+k+k k+k k k k k k =k k k k k k k ++++++++===+++++ 12110231111111211C C C C C 12(C )222222k k k+kk k k k -k+k k+k k k k k -++++++++-+=+++++++, 于是11122k k k a a ++=+.所以112k k a ++=, 故1n k =+时结论也成立.由①②得,2n n a =*n ∈N ,. …… 10分。

2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)

2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)

2018年普通高等学校招生全国统一考试数学试题理(全国卷2)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(理科)(新课标ⅱ)

2018年全国统一高考数学试卷(理科)(新课标ⅱ)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)=()A.i B. C. D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案2018年普通高等学校招生全国统一考试二卷文科数学本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。

第I卷参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)。

如果事件A、B相互独立,那么P(A·B)=P(A)·P (B)。

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率为:Pn(k)=C(n,k)Pk(1-P)^(n-k)。

球的表面积公式:2S=4πR,其中R表示球的半径。

球的体积公式:V=4/3πR^3,其中R表示球的半径。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|x<4},N={x|x-2x-3<0},则集合M∩N=A。

{x|x3} C。

{x|-1<x<2} D。

{x|2<x<3}2.函数y=1/x(x≠-5)的反函数是A。

y=-5(x≠0) B。

y=x+5(x∈R) C。

y=5/x(x≠0) D。

y=x-5(x∈R)3.曲线y=x^2-3x+1在点(1,-1)处的切线方程为A。

y=3x-4 B。

y=-3x+2 C。

y=-4x+34.已知圆C与圆(x-1)^2+y^2=1关于直线y=-x对称,则圆C的方程为A。

(x+1)^2+y^2=1 B。

x+y=1 C。

x+(y+1)^2=1 D。

x+(y-1)^2=15.已知函数y=tan(2x+θ)的图象过点(-π/12,),则θ可以是A。

-π/12 B。

π/6 C。

π/12 D。

5π/126.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A。

75° B。

60° C。

45° D。

30°7.函数y=-e^x的图象A。

与y=e^x的图象关于y轴对称 B。

4月2018届高三第二次全国大联考(新课标Ⅰ卷)理数卷(参考答案)

4月2018届高三第二次全国大联考(新课标Ⅰ卷)理数卷(参考答案)

又 AC MB M ,∴ SM 平面 ABC ,∴ SM BC .(5 分)
(II)由题意将该三棱锥平铺为一个矩形 ABCS ,具体如下图所示:
理科数学 第 2 页(共 6 页)
原创精品资源学科网独家享有版权,侵权必究!
2
在矩形 ABCS 中,过 S 作 SO AC 于点 O ,并延长交 AB 于点 E .
所以能在犯错误的概率不超过 0.025 的前提下认为是否喜欢盲拧与性别有关.(4 分)学%科网
X0 1 2 3
7 21 7 1
P
24 40 40 120
故 E X 0 7 1 21 2 7 3 1 9 .(12 分)
24 40 40 120 10
19.(本小题满分 12 分)

(
1 e2
)

1

e2
,即
1

x

x
ln
x

1

e2
;(8
分)
设 q(x) x ln(x 1) ,x 0 ,则 q(x)

x
x 1
0
,所以当 x∈(0,+∞)时,q (x)单调递增,所以 q (x) > 0 ,
故当
x∈(0,+∞)时, q(x)

x
ln(x 1)

0 ,且 ln(x 1)
192k2 36 ,解得 k 11 , 11
∴直线 l 的方程为 y 11 x 3 或 y 11 x 3 .(12 分)
11 2
11 2
(II)要证:
f (x) ln(x 1)
2 ex

2 ex2

2018年高考全国卷2理科数学真题(附含答案解析)

2018年高考全国卷2理科数学真题(附含答案解析)

word 格式整理版2018 年普通高等学校招生全国统一考试理科数学本试卷共23 题,共 150 分,共 5 页。

一、选择题:本题共12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A.B.C.D.2.已知集合 A={( x, y)| x 2 +y 2 ≤ 3, x∈ Z, y∈Z},则 A 中元素的个数为A.9B.8C.5D.43. 函数 f ( x) =e 2 -e-x/x 2 的图像大致为A.B.C.word 格式整理版D.4.已知向量a,b 满足∣ a∣ =1, a· b=-1, 则 a·( 2a-b ) =A.4B.3C.2D.05.双曲线 x 2 /a 2 -y 2 /b 2 =1( a﹥ 0, b﹥0)的离心率为,则其渐进线方程为A.y= ±xB.y=±xC.y= ±D.y=±6.在中, cos=, BC=1,AC=5,则 AB=A.4B.C.D.27.为计算 s=1- + - +⋯ +-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30=7+23,在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.B.C.D.9. 在长方体ABCD-A1B1 C1D1中, AB=BC=1,AA1=则异面直线AD1与 DB1所成角的余弦值为word 格式整理版A. B.10. 若 f ( x) =cosx-sinx在[-a,a]是减函数,则a 的最大值是A.B.C.D.π11. 已知 f (x)是定义域为( - ∞, +∞)的奇函数,满足 f ( 1-x ) =f ( 1+x)。

若 f (1) =2,则 f ( 1)+ f ( 2) + f ( 3) +⋯ +f ( 50) =A.-50B.0C.2D.5012. 已知 F1,F2是椭圆 C:=1 ( a>b>0)的左、右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为的直线上,△ PF1F2为等腰三角形,∠F1F2P=120°,则 C 的离心率为A..B.C.D.二、填空题:本题共4 小题,每小题5 分,共 20 分。

【新课标II卷】2018年高考数学试题(理)(Word全部解析版)

【新课标II卷】2018年高考数学试题(理)(Word全部解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+【解析】54341441)21)(21()21)(21(2121ii i i i i i i +-=+-+=+-++=-+ 【D 】 2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【解析】如右图所示,符合条件的整点个数为9个 【A 】3.函数()2e e x xf x x --=的图像大致为【解析】设x x e e x g --=)(,2)(x x q =,则)(x g 为奇函数,)(x q 为偶函数且不过x =0点。

所以,由复合函数的奇偶性知函数)(x f 为奇函数,排除A 。

2)1(1>-=-ee f 所以 【B 】4. 己知向量a , b 满足|a | = l ,a•b =-l,则a •(2a -b )= A. 4 B. 3 C. 2 D. 0【解析】a •(2a -b )=2a 2-a•b =2|a|2-(-1)=2+1=3 【B 】5. 双曲线12222=-by a x (a >0,b >0)的离心率为3则其渐近线方程为A. x y 2±=B. x y 3±=C. x y 22±= D.x y 23±= 【解析】3==ace ,223b a a c +==,2223b a a += 所以a b 2= 所以渐近线方程为x aby 2±=±= 【A 】6. 在△ABC 中,552cos=C ,BC = l, AC = 5,则AB = A. 24 B.30 C.29 D. 52【解析】53155212cos 2cos 22-=-⎪⎪⎭⎫ ⎝⎛=-=C C C BC AC BC AC AB cos 222⋅-+==)53(1521522-⨯⨯⨯-+=24【A 】7. 为计算10019914131211-++-+-= S ,设计了右侧的程序框图,则在空白框中应填入 A. 1+=i i B. 2+=i i C. 3+=i i D. 4+=i i 【解析】奇数项为正,偶数项为负,规律是差2个。

2018年高考数学试卷真题附标准答案(理科)

2018年高考数学试卷真题附标准答案(理科)

2018年高考数学试卷真题附标准答案(理科)2018年高考试卷理科数学卷本试卷分选择题和非选择题两部分。

全卷共5页,满分150分,考试时间120分钟。

第I 卷(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式:球的表面积公式棱柱的体积公式24S R π= V Sh =球的体积公式其中S 表示棱柱的底面积,h 表示棱柱的高 343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =++棱锥的体积公式其中12,S S 分别表示棱台的上、下底面积,13V Sh =h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高如果事件,A B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)设函数,0,(),0,x x f x x x ?≥?=?-A .– 3B .±3C .– 1D .±12. (原创)复数226(12)a a a a i --++-为纯虚数的充要条件是( )A.2a =-B.3a =C.32a a ==-或D. 34a a ==-或3. (原创)甲,乙两人分别独立参加某高校自主招生考试,若甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望E ξ是( ) A.43 B.119 C.1 D.894. (改编)右面的程序框图输出的结果为() .62A .126B .254C .510D5. (改编)已知直线l ⊥平面α,直线m ?平面β,下面有三个命题:①//l m αβ?⊥;②//l m αβ⊥?;③//l m αβ?⊥ 其中假命题的个数为().3A .2B .1C .0D6. (改编)已知函数f (x )的图象如右图所示,则f (x )的解析式可能是()A .()x x x f ln 22-=B .()x x x f ln 2-=C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=7. (原创)等差数列{}n a 的前n 项和为n S ,且满足548213510Sa a -+=,则下列数中恒为常数的是( )A.8aB. 9SC. 17aD. 17S8. (改编)已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C的一条渐近线的垂线,垂足为H ,若2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为() A .2 B .3 C .2D . 3(第6题)9. (原创)已知,x y 满足不等式00224x y x y t x y ≥??≥?+≤??+≤?,且目标函数96z x y =+最大值的变化范围[]20,22,则t 的取值范围( )A.[]2,4B.[]4,6C.[]5,8D. []6,7 10. (改编)若函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

湖北省武汉市2018届高中毕业生四月调研测试理科数学试题(精编含解析)

湖北省武汉市2018届高中毕业生四月调研测试理科数学试题(精编含解析)

∴S△PEF= 解方程①可得 x=2k, ∴A(2+2 ,3+2 ),B(2﹣2 ,3﹣2 ), ∴直线 AB 方程为 y=x+1,|AB|=8,
原点 O 到直线 AB 的距离 d= ,
∴S△OAB=

∴△PEF 与△OAB 的面积之比为 . 故答案为:C
【点睛】本题主要考查直线和抛物线的位置关系,考查三角形的面积,意在考查学生对这些知识的掌握水
A.
B.
【答案】D
【解析】
C.
D.
【分析】 画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.
【详解】令


,作出可行域,如图所示:
表示可行域上的动点到定点
距离的平方,然后减去 ,故其最小值为
定点
到直线 AB 的距离的平方减去 。
AB:
定点
到直线 AB 的距离:
∴ 故选: 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次 确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等, 最后结合图形确定目标函数最值取法、值域范围.
15. 已知

【答案】 【解析】 【分析】
为奇函数,
,则不等式
的解集为_________.
令 g(x)= ,
,根据函数的单调性求出 g(x)>g(0),从而求出不等式的解集即可.
【详解】∵y=f(x)﹣1 为奇函数,
∴f(0)﹣1=0,即 f(0)=1,
令 g(x)= ,

则 g′(x)=
>0,
故 g(x)在 f(x)>cosx,
【答案】 【解析】 【分析】

2018年高考湖南卷数学(理)试卷及答案

2018年高考湖南卷数学(理)试卷及答案

2018年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法 3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12π B .6π C .4π D .3π 4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2 B .0 C .53 D .525.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .06. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A.⎤⎦B.⎤⎦C.1⎡⎤⎣⎦D.1⎡⎤⎣⎦7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 B.2 D.28.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等A .2B .1C .83 D .43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆 ()ϕ为参数的右顶点,则常数a 的值为 .10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 12 .11.如图2O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .必做题(12-16题) 12.若209,Tx dx T =⎰则常数的值为 .13.执行如图3所示的程序框图,如果输入1,2,a b a ==则输出的的值为 9 .14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。

安徽省淮北市2018届高三第二次4月模拟考试数学理试题

安徽省淮北市2018届高三第二次4月模拟考试数学理试题

淮北市2018届高三第二次模拟考试数学理科 试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{A x y ==,集合(){}lg 8B x y x ==-,则A B =I ( )A .{}2x x ≤ B .{}2x x < C .{}3x x ≤ D .{}3x x < 2.复数23ii+的共轭复数是(),a bi a b +∈R ,i 是虚数单位,则ab 的值是( ) A .6 B .5 C .-1 D .-63.命题p :若向量0a b ⋅<r r ,则a r 与b r的夹角为钝角;命题q :若cos cos 1αβ⋅=,则()sin 0αβ+=.下列命题为真命题的是( )A .pB .q ⌝C .p q ∧D .p q ∨ 4.已知等比数列{}n a 中,52a =,688a a =,则2018201620142012a a a a -=-( )A .2B .4C .6D .85.如图所示的程序框图所描述的算法称为欧几里得辗转相除法,若输入91m =,56n =,则输出m 的值为( )A .0B .3C .7D .146.设不等式组0x y x y y ⎧-≤⎪⎪+≥-⎨⎪≤⎪⎩M,函数y =x 轴所围成的区域为N ,向M 内随机投一个点,则该点落在N 内的概率为( )A .4π B .8π C .16π D .2π7.某几何体的三视图如图所示,则该几何体的体积是( )A .11B .9C .7D .5 8.把函数sin 46y x π⎛⎫=-⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()f x 的图象,已知函数()()211,1213321,12f x x ag x x x a x ππ⎧-≤≤⎪⎪=⎨⎪--<≤⎪⎩,则当函数()g x 有4个零点时a 的取值集合为( ) A .51713,,1,123121212ππππ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭U U B .51713,,1,123121212ππππ⎡⎫⎡⎫⎡⎫--⎪⎪⎪⎢⎢⎢⎣⎭⎣⎭⎣⎭U U C .51713,,1231212πππ⎡⎫⎡⎫--⎪⎪⎢⎢⎣⎭⎣⎭U D .51,,112312ππ⎡⎫⎡⎫--⎪⎪⎢⎢⎣⎭⎣⎭U 9.若直线()00x ky k +=≠与函数()()()22112sin 21xxx f x --=+图象交于不同的两点,A B ,且点()9,3C ,若点(),D m n 满足DA DB CD +=u u u r u u u r u u u r,则m n +=( )A .kB .2C .4D .610.在平面四边形ABCD 中,2AD AB ==,CD CB ==且A D A B ⊥,现将ABD ∆沿着对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 内的过程中,直线A C '与平面BCD 所成角最大时的正弦值为( ) AC .12 D.211.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,分别过,A B 作准线的垂线,垂足分别为11,A B 两点,以11A B 为直径的圆C 过点()2,3M -,则圆C 的方程为( ) A .()()22122x y ++-= B .()()221117x y +++= C .()()22115x y ++-= D .()()221226x y +++=12.已知函数()3sin 4cos 1f x x x =++,实常数,,p q r 使得()()2018pf x qf x r ++=对任意的实数x ∈R 恒成立,则cos p r q +的值为( ) A .-1009 B .0 C .1009 D .2018第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC ∆中,三顶点的坐标分别为()3,A t ,(),1B t -,()3,1C --,ABC ∆为以B 为直角顶点的直角三角形,则t = .14.已知随机变量X 的分布列如下表,又随机变量23Y X =+,则Y 的均值是 .15.已知22cos a xdx ππ=⎰,则二项式6x ⎛+ ⎝展开式中的常数项是 .16.设数列{}n a 的各项均为正数,前n 项和为n S ,对于任意的2,,,n n n n N a S a +∈成等差数列,设数列{}n b 的前n 项和为n T ,且()2ln nnnx b a=,若对任意的实数(]1,x e ∈(e 是自然对数的底)和任意正整数n ,总有()n T r r N +<∈.则r 的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在ABC ∆中,2AB =,23sin 2cos 20B B --=,且点D 在线段BC 上.(Ⅰ)若34ADC π∠=,求AD 长; (Ⅱ)若2BD DC =,sin sin BADCAD∠=∠ABD ∆的面积.18. 在多面体ABCDEF 中,AF AD ⊥,四边形ABEF 为矩形,四边形ABCD 为直角梯形,90DAB ∠=︒,AB CD ∥,2AD AF CD ===,4AB =. (Ⅰ)求证:平面ACE ⊥平面BCE ; (Ⅱ)求二面角C AF D --的余弦值.19. 大豆,古称菽,原产中国,在中国已有五千年栽培历史。

2018年全国2卷数学试卷及参考答案(可编辑修改word版)

2018年全国2卷数学试卷及参考答案(可编辑修改word版)

2018 年普通高等学校招生全国统一考试理科数学一、选择题:本题共12 小题,每小题5 分,共60 分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1 + 2i=()1 - 2iA.-4-3i5 5B.-4+3i5 5C.-3-4i5 5D.-3+4i5 52.已知集合A ={(x,y )x2+y 2≤3,x ∈Z ,y ∈Z},则A 中元素的个数为()A.9 B.8 C.5 D.43.函数f (x)= e x -e-xx2的图象大致是()4.已知向量a ,b 满足,a =1 ,a ⋅b =-1 ,则a ⋅(2a -b)=()A.4 B.3 C.2 D.0.双曲线x222= 1(a>0 ,b>0)的离心力为,则其渐近线方程为()a b- y25323029 A. y = ± 2x B. y = ± 3x C. y = ± 2x2D. y = ± 3x26. 在△ABC 中, cosC = 5 , BC = 1 , AC = 5 ,则 AB =()25A . 4B .C .D . 27.为计算 S = 1 - 1 + 1 - 1 + ⋅ ⋅ ⋅ + 1 - 1,设计了右侧的程序框2 3 4 99 100 图,则在空白框中应填入( )A. i = i + 1B. i = i + 2C. i = i + 3D. i = i + 48. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过 30 的素数中,随机选取两个不同的数, 其和等于 30 的概率是( )A.112B.114C.1 15D.1189. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 1 , AA 1 =,则异面直线 AD 1 与 DB 1 所成角的余弦值为53+ ⎨ ⎩( )A.1 5B.6C.5D.210. 若f ( x ) = cos x - sin x 在[- a ,a ] 是减函数,则 a 的最大值是( )3 A.B .C .D .42411.已知 f ( x ) 是定义域为(-∞ ,+ ∞) 的奇函数,满足 f (1 - x ) = f (1 + x ) .若 f (1) = 2 ,则f (1) + f (2) + f (3) + ⋅ ⋅ ⋅ + f (50) = ( )A . -50B. 0C. 2D. 50x 212. 已知 F 1 , F 2 是椭圆C : 2 2 2 = 1(a >b >0) 的左、右焦点交点, A 是C 的左顶点,点 P 在过 A 且斜率为a b3 的直线上, △PF F 为等腰三角形, ∠F F P = 120︒ ,则C 的离心率为()61 21 2A.23B.12C.13D.14二、填空题,本题共 4 小题,每小题 5 分,共 20 分.13. 曲线y = 2 l n ( x + 1) 在点(0 ,0) 处的切线方程为 .⎧x + 2 y - 5≥0 14. 若 x ,y 满足约束条件⎪x - 2 y + 3≥0 ,则z = x + y 的最大值为 .⎪x - 5≤015.已知sin + cos = 1 , cos + sin = 0 ,则sin (+ ) =.y1516.已知圆锥的顶点为 S ,母线 SA , SB 所成角的余弦值为 7, SA 与圆锥底面所成角为 45︒ .若△SAB8的面积为5 ,则该圆锥的侧面积为.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。

2018年4月2日高中数学试卷

2018年4月2日高中数学试卷

2018年4月2日高中数学试卷一、单项选择题(共12题;共60分)1.记集合和集合表示的平面区域别离为,假设在区域内任取一点,那么点M落在区域内的概率为()A. B. C. D.2.若tan160°=a,那么sin2000°等于()A. B. C. D. ﹣3.sin600°=()A. B. C. D.4.前后抛掷质地均匀的硬币两次,那么“一次正面向上,一次反面向上”的概率为()A. B. C. D.5.口袋中装有大小、材质都相同的6个小球,其中有3个红球、2个黄球和1个白球,从中随机摸出1个球,那么摸到红球或白球的概率是()A. B. C. D.6.函数知足,则的值为()A. B. C. D.7.设两个变量x与y之间具有线性相关关系,相关系数为r,回归方程为y=a+bx,那么必有()A. b与r符号相同B. a与r符号相同C. b与r 符号相反D. a与r符号相反8.有关线性回归的说法,不正确的选项是()A. 具有相关关系的两个变量不必然是因果关系B. 散点图能直观地反映数据的相关程度C. 回归直线最能代表线性相关的两个变量之间的关系D. 任一组数据都有回归方程9.从标有数字1,2,6的号签中,任意抽取两张,抽出后将上面数字相乘,在10次实验中,标有1的号签被抽中4次,那么结果“12”显现的频率为( )A.B.C. D.10.以下命题:①若f(x)是概念在[-1,1]上的偶函数,且在[-1,0]上是增函数,,则;②假设锐角知足,则;③若,则对恒成立;④要取得函数的图象,只需将的图象向右平移个单位。

其中真命题的个数有()A. 1B. 2C. 3D. 411.以下函数中,周期为π,且在上为减函数的是()A. y=sinB. y=cosC. y=sinD. y=cos12.抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,那么以下每对事件是互斥事件但不是对立事件的是( )A. A与BB. B与C C. A与D D. C与D二、填空题(共4题;共35分)13.=________.14.别离从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,那么这两数之积为偶数的概率是________15.在边长为2的正三角形ABC内任取一点P,那么使点P到三个极点的距离至少有一个小于1的概率是________16.某赛季甲,乙两名篮球运动员每场竞赛得分可用茎叶图表示如下:(1)求甲运动员成绩的中位数________ ;(2)估量乙运动员在一场竞赛中得分落在区间[10,40]内的概率________ .17.持续抛掷两颗骰子,设第一颗向上点数为m,第二颗向上点数为n.(Ⅰ)求m﹣n=3的概率________;(Ⅱ)求m•n为偶数,且|m﹣n|<3的概率 ________三、解答题(共3题;共36分)18.下表是某厂的产量x与本钱y的一组数据:(Ⅰ)依照表中数据,求出回归直线的方程= x (其中= ,= ﹣)(Ⅱ)估量产量为8千件时的本钱.19.为了参加2021贵州省高中篮球竞赛,某中学决定从四个篮球较强的班级的篮球队员当选出12人组成男子篮球队,代表该地域参赛,四个篮球较强的班级篮球队员人数如下表:(Ⅰ)现采取分层抽样的方式从这四个班中抽取运动员,求应别离从这四个班抽出的队员人数;(Ⅱ)该中学篮球队奋力拼搏,取得冠军.假设要从高三年级抽出的队员当选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.20.某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目.每名学生最多项选择修一个模块,的学生选修过《几何证明选讲》,的学生选修过《数学史》,假设各人的选择彼此之间没有阻碍.(Ⅰ)任选一名学生,求该生没有选修过任何一个模块的概率;(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率.答案解析部份一、单项选择题1.【答案】A【考点】几何概型【解析】【分析】如下图,集合A表示的平面区域的面积为,集合B表示的平面区域(阴影部份)的面积为,因此点M落在区域内的概率为.应选A。

2018年4月学高中数学考试卷精编

2018年4月学高中数学考试卷精编
2018 年 4 月高中学业水平考试试题
数学
2018 年 4 月 一、选择题(本大题共 18 小题,每小题 3 分,共 54 分。每小题列出的四个备选项中只有一个是符合题
目要求的,不选、多选、错选均不等分)
1. 已知集合 P = x|0 ≤ x < 1 ,Q = x|2 ≤ x ≤ 3 ,记 M = P ∪ Q,则
D. an - bn + 1
() () ()
10. 不等式 2x - 1 - x + 1 < 1 的解集是
A.
x-3
<
x
<
1 3
B. x-31 < x < 3
D. xx < -31 或 x > 3
11. 用列表法将函数 f x 表示为:
C.
xx < -3 或
x
>
1 3
()
x
1
2
3
f x
-1
0
1
25. (11 分 ) 如图,在直角坐标系 xOy 中,已知点 A2,0 ,B 1, 3 ,直线 x = t0 < t < 2 ,将 △OAB
分成两部分,记左侧部分的多边形为 Ω,设 Ω 各边长的平方和为 f t ,Ω 各边长的倒数和为 gt . (Ⅰ)分别求函数 f t 和 gt 的解析式; (Ⅱ)是否存在区间 a,b ,使得函数 f t 和 gt 在该区间上均单调递减?若存在,求 b - a 的最大 值,若不存在,说明理由.
() ()
6. 如图,在正方体 ABCD - A1B1C1D1 中,直线 A1C 与平面 ABCD 所成角的余弦值是
()
A.
1 3
B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年4月2日高中数学试卷一、单选题(共12题;共60分)1.记集合和集合表示的平面区域分别为,若在区域内任取一点,则点M落在区域内的概率为()A. B. C. D.2.若tan160°=a,则sin2000°等于()A. B. C. D. ﹣3.sin600°=()A. B. C. D.4.先后抛掷质地均匀的硬币两次,则“一次正面向上,一次反面向上”的概率为()A. B. C. D.5.口袋中装有大小、材质都相同的6个小球,其中有3个红球、2个黄球和1个白球,从中随机摸出1个球,那么摸到红球或白球的概率是()A. B. C. D.6.函数满足,则的值为()A. B. C. D.7.设两个变量x与y之间具有线性相关关系,相关系数为r,回归方程为y=a+bx,那么必有()A. b与r符号相同B. a与r符号相同C. b与r符号相反D. a与r符号相反8.有关线性回归的说法,不正确的是()A. 具有相关关系的两个变量不一定是因果关系B. 散点图能直观地反映数据的相关程度C. 回归直线最能代表线性相关的两个变量之间的关系D. 任一组数据都有回归方程9.从标有数字1,2,6的号签中,任意抽取两张,抽出后将上面数字相乘,在10次试验中,标有1的号签被抽中4次,那么结果“12”出现的频率为( )A. B. C. D.10.下列命题:①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,,则;②若锐角满足,则;③若,则对恒成立;④要得到函数的图象,只需将的图象向右平移个单位。

其中真命题的个数有()A. 1B. 2C. 3D. 411.下列函数中,周期为π,且在上为减函数的是()A. y=sinB. y=cosC. y=sinD. y=cos12.抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A. A与BB. B与CC. A与DD. C与D二、填空题(共4题;共35分)13.=________.14.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是________15.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________16.某赛季甲,乙两名篮球运动员每场比赛得分可用茎叶图表示如下:(1)求甲运动员成绩的中位数________ ;(2)估计乙运动员在一场比赛中得分落在区间[10,40]内的概率________ .17.连续抛掷两颗骰子,设第一颗向上点数为m,第二颗向上点数为n.(Ⅰ)求m﹣n=3的概率________;(Ⅱ)求m•n为偶数,且|m﹣n|<3的概率________三、解答题(共3题;共36分)18.下表是某厂的产量x与成本y的一组数据:(Ⅰ)根据表中数据,求出回归直线的方程= x (其中= ,= ﹣)(Ⅱ)预计产量为8千件时的成本.19.为了参加2012贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出12人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.20.某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目.每名学生至多选修一个模块,的学生选修过《几何证明选讲》,的学生选修过《数学史》,假设各人的选择相互之间没有影响.(Ⅰ)任选一名学生,求该生没有选修过任何一个模块的概率;(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率.答案解析部分一、单选题1.【答案】A【考点】几何概型【解析】【分析】如图所示,集合A表示的平面区域的面积为,集合B表示的平面区域(阴影部分)的面积为,所以点M落在区域内的概率为.故选A。

2.【答案】B【考点】同角三角函数间的基本关系,运用诱导公式化简求值【解析】【解答】解:tan160°=tan(180°﹣20°)=﹣tan20°=a<0,得到a<0,tan20°=﹣a∴cos20°= = = ,∴sin20°= =则sin2000°=sin(11×180°+20°)=﹣sin20°= .故选B.【分析】先根据诱导公式把已知条件化简得到tan20°的值,然后根据同角三角函数间的基本关系,求出cos20°的值,进而求出sin20°的值,则把所求的式子也利用诱导公式化简后,将﹣sin20°的值代入即可求出值.3.【答案】B【考点】运用诱导公式化简求值【解析】【解答】解:∵sin600°=sin(720°﹣120°)=sin(﹣120°)=﹣sin120°=﹣,∴sin600°=﹣.故选:B.【分析】600°=720°﹣120°,利用诱导公式即可求得sin600°的值.4.【答案】B【考点】列举法计算基本事件数及事件发生的概率【解析】【解答】解:先后抛掷质地均匀的硬币两次,则“一次正面向上,一次反面向上”的概率为:p= .故选:B.【分析】利用相互独立事件概率乘法公式、互斥事件概率加法公式求解.5.【答案】D【考点】古典概型及其概率计算公式【解析】【解答】解:根据题意,口袋中有6个球,其中3个红球、2个黄球和1个白球,则红球和白球共有4个,故从中随机摸出1个球,那么摸到红球或白球的概率是= ;故选D.【分析】根据题意,易得口袋中有6个球,其中红球和白球共有4个,由古典概型公式,计算可得答案.6.【答案】A【考点】三角函数的化简求值【解析】【分析】根据f(|x|)=f(x),得到三角函数是一个偶函数,函数的图形关于y轴对称,三角函数要变化成一个余弦函数才能够是偶函数,得到角度要等于的结果,根据所给的范围得到结果.【解答】∵f(|x|)=f(x),∴三角函数是一个偶函数,∴函数的图形关于y轴对称,∴+=+2kπ,∈(0,π)∴=故选A.【点评】本题根据函数的图形确定函数的解析式,本题解题的关键是从所给的条件中看出三角函数是一个偶函数,进而得到结果.7.【答案】A【考点】变量间的相关关系【解析】【解答】解:∵相关系数r为正,表示正相关,回归直线方程上升,r为负,表示负相关,回归直线方程下降,∴b与r的符号相同.故选:A.【分析】根据相关系数知相关系数的性质:|r|≤1,且|r|越接近1,相关程度越大;且|r|越接近0,相关程度越小.r为正,表示正相关,回归直线方程上升.8.【答案】D【考点】两个变量的线性相关【解析】【解答】具有相关关系的两个变量不一定是因果关系,故A正确,散点图能直观的反映数据的相关程度,故B正确,回归直线最能代表线性相关的两个变量之间的关系,故C正确并不是任一组数据都有回归方程,例如当一组数据的线性相关系数很小时,这组数据就不会有回归方程.故D 不正确故选D.【分析】具有相关关系的两个变量不一定是因果关系,散点图能直观的反映数据的相关程度,回归直线最能代表线性相关的两个变量之间的关系,并不是任一组数据都有回归方程。

9.【答案】B【考点】概率的意义【解析】【解答】标有1的号签出现4次,另外6次应抽到标有2,6的号签,所以乘积12出现6次,频率为.故答案为:B.【分析】用试验总次数减去1号被抽中的次数,即为抽中两数字之积为12 的次数,利用频率公式求出结果。

10.【答案】A【考点】函数单调性的性质,函数奇偶性的性质,诱导公式一,二倍角的余弦,函数y=Asin(ωx+φ)的图象变换【解析】【解答】①若是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,所以在[0,1]上是减函数,所以当,,所以,所以错误;②若锐角,满足,即成立;③若,错误;④要得到函数,错误,应向右平移个单位。

【分析】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,函数单调性的性质,偶函数,二倍角公式,是对函数性质特别是单调性比较综合的考查,熟练掌握各种基本初等函数的性质是解答本题的关键.11.【答案】A【考点】运用诱导公式化简求值【解析】【解答】周期是π的函数只有A,B,因为y=sin=cos2x,其在上为减函数,故选A。

【分析】简单题,研究三角函数的性质,一般的,要先化简,在结合函数图象加以讨论。

12.【答案】C【考点】互斥事件与对立事件【解析】【解答】A与B互斥且对立;B与C有可能同时发生,即出现6,从而不互斥;A与D 不会同时发生,从而A与D互斥,又因为还可能出现2,故A与D不对立;C与D有可能同时发生,从而不互斥,故选C.【分析】A与B不可能同时发生,且必有一个事件发生;3的2倍是6,B和D可能同时发生;A和D不可能同时发生,可能落地时向上的点数是2,所以A和D不可能同时发生,也可能都不发生;6是3的倍数,所以C和D可能同时发生。

根据互斥事件和对立事件的定义可以得到正确选项。

互斥事件不一定是对立事件,对立事件必是互斥事件。

二、填空题13.【答案】【考点】诱导公式的作用,两角和与差的正切函数【解析】【解答】解:∵45°=2×22.5°,∴tan45°=1即tan(2×22.5°)=1,根据二倍角的正弦公式得:=1,可得= .故答案为:【分析】根据45°=2×22.5°,利用二倍角的正切公式算出=1,即可得到的值为.14.【答案】【考点】等可能事件的概率【解析】【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.15.【答案】【考点】几何概型【解析】【解答】解:满足条件的正三角形ABC如下图所示:其中正三角形ABC的面积S三角形=×4=满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域如图中阴影部分所示则S阴影=π则使点P到三个顶点的距离至少有一个小于1的概率是故答案为:.【分析】本题考查的知识点几何概型,我们可以求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到正方形的顶点A、B、C的距离均不小于1的图形的面积,然后代入几何概型公式即可得到答案.16.【答案】解:(1)从上到下即是数据从小到大的排列,共13次;最中间的一次成绩,即第7次为36,即中位数是36;(2)设乙运动员在一场比赛中得分落在区间[10,40]内的概率为p,则其概率为.(1)36;(2).【考点】茎叶图,概率的意义【解析】【分析】(1)求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.(2)乙运动员共比赛11次,其中9次在区间[10,40]内,故其概率就可以求出.三、解答题17.【答案】解:(Ⅰ)根据表中数据,计算= ×(2+3+4+5)=4,= ×(7+8+9+12)=9,= = =1.1,= ﹣=9﹣1.1×4=4.6,则回归直线的方程为=1.1x+4.6;(Ⅱ)当x=8时,=1.1×8+4.6=13.4,预计产量为8千件时的成本为13.4万元【考点】线性回归方程【解析】【分析】(Ⅰ)根据表中数据计算、,求出回归系数,写出回归直线的方程;(Ⅱ)利用回归方程计算x=8时的值即可.18.【答案】解:(Ⅰ)抛掷两颗骰子所出现的不同结果数是6×6=36,事件“抛掷两颗骰子,所得两颗骰子的点数为m﹣n=3”所包含的基本事件有(4,1),(5,2),(6,3)共3个,故m﹣n=3的概率P==,(Ⅱ)m•n 为偶数,且|m﹣n|<3的基本事件有(1,2),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),(4,4),(4,5),(4,6),(5,4),(5,6),(6,4),(6,5),(6,6)共17个,故m•n为偶数,且|m﹣n|<3的概率P=.【考点】列举法计算基本事件数及事件发生的概率【解析】【分析】抛两枚骰子共有36种结果,(Ⅰ)m﹣n=3的基本事件有3个,(Ⅱ)m•n为偶数,且|m﹣n|<3的基本事件有17个,由古典概型计算概率公式可得答案.19.【答案】解:(Ⅰ)由题意可得,每个个体被抽到的概率等于,故应从高三(7)班中抽出人,应从高三(17)班中抽出人,应从高二(31)班中抽出人,应从高二(32)班中抽出人.(II)从高三年级抽出的队员共有4+2=6人,从中选出两位队员作为冠军的代表发言,所有的选法有=15种,而选出的两名队员来自同一班的选法有+ =7种,则这两名队员来自同一班的概率等于【考点】分层抽样方法,列举法计算基本事件数及事件发生的概率【解析】【分析】(1)先求出每个个体被抽到的概率,再用各个班的篮球队员人数乘以此概率,即得分别从这四个班抽出的队员人数.(II)所有的选法有=15种,而选出的两名队员来自同一班的选法有+ =7种,由此求得选出的两名队员来自同一班的概率.20.【答案】解:(Ⅰ)∵的学生选修过《几何证明选讲》,的学生选修过《数学史》,每名学生至多选修一个模块,设该生参加过《几何证明选讲》的选修为事件A,参加过《数学史》的选修为事件B,该生没有选修过任何一个模块的概率为P,则P=1﹣P(A+B)=1﹣(+)=∴该生没有选修过任何一个模块的概率为(Ⅱ)至少有3人选修过《几何证明选讲》的概率为∴至少有3人选修过《几何证明选讲》的概率为.【考点】互斥事件的概率加法公式【解析】【分析】(Ⅰ)根据的学生选修过《几何证明选讲》,的学生选修过《数学史》,每名学生至多选修一个模块,根据互斥事件的概率公式得到该生没有选修过任何一个模块的概率.(II)至少有3人选修过《几何证明选讲》,包括两种情况一是有3人修过,二是有4人修过,这两种情况是互斥的,根据独立重复试验和互斥事件的概率得到结果.。

相关文档
最新文档