中国石油大学高等数学第九章第五节

合集下载

高数第九章习题答案

高数第九章习题答案


∂z ∂z ∂z ∂z , 仍旧是复合函数,即 = f u′ ( u, v ), = f v′( u, v ), 而u = ϕ ( x , y ), v = ψ ( x , y ), ∂u ∂v ∂u ∂v
x ). y
( 2) z = f ( x ,
x (记(1))
z = f (或f ′ )
x (记( 2)) y
x→0 y = x→0
x2 y2 = 1. x 2 y 2 + ( x − y)2
若动点P ( x , y )沿y = 2 x趋于(0,0),则: lim
x2 y2 不存在. x 2 y 2 + ( x − y)2
x→0 y = 2 x→0
4x4 x2 y2 = lim = 0. x 2 y 2 + ( x − y ) 2 x→0 4 x 4 + x 2
证法 1:利用复合函数、隐函数的求导公式。
由F ( x , y , t ) = 0可知,t是x , y的函数:t = t ( x , y ).
∂z ∂ y ln( 1+ xy ) x xy = e [ln(1 + xy ) + y ⋅ ] = (1 + xy ) y [ln(1 + xy ) + ]. ∂y ∂y 1 + xy 1 + xy
(8) u = arctan( x − y )
z
解:
∂u z ( x − y ) z −1 ∂u − z ( x − y ) z −1 ∂u ( x − y ) z ln( x − y ) ; ; ; = = = ∂x 1 + ( x − y ) 2 z ∂y 1 + ( x − y ) 2 z ∂z 1 + ( x − y)2z

中国石油大学高等数学高数期末考试试卷及答案-(2)

中国石油大学高等数学高数期末考试试卷及答案-(2)

A卷2010—2011学年第一学期《高等数学(2-1)》期末试卷专业班级姓名学号开课系室基础数学系考试日期 2011年1月4日1.请在试卷正面答题,反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共四道大题,满分100分;试卷本请勿撕开,否则作废; 4. 本试卷正文共6页。

一.填空题(共5小题,每小题4分,共计20分) 1.已知,1)(0-='x f 则=---→)()2(lim000x x f x x f xx 1 .2.定积分=-++⎰-1122]13cos 3tan sin [dx x x x x 2π .3.函数xy xe -=的图形的拐点是 )2,2(2-e .4. 设,arcsin )(C x dx x xf +=⎰则=⎰dx x f )(1 C x +--232)1(31.5.曲线)0()1ln(>+=x x e x y 的渐近线方程为e x y 1+= .二.选择题(共4小题,每小题4分,共计16分)1.设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数x x f x g )()(=( D ) .A. 在0=x 处左极限不存在;B. 在0=x 处右极限不存在;C. 有跳跃间断点0=x ;D. 有可去间断点0=x .2.设,)(,sin )(43sin 02x x x g dt t x f x+==⎰当0→x 时,)(x f 是)(x g 的( B ).A. 等价无穷小;B. 同阶但非等价无穷小;C. 高阶无穷小;D. 低阶无穷小. 3. 下列广义积分发散的是( A ).A.⎰+∞+021dx x x; B.⎰--11211dxx;C.⎰-b adx x b 32)(1; D.⎰∞+edx x x 2ln 1.4.方程x x y y cos =+''的待定特解的形式可设为=*y ( B ). A.x b ax cos )(+; B. x d cx x x b ax x sin )(cos )(+++;C. x b ax x cos )(+;D. x d cx x b ax sin )(cos )(+++.三.计算题(共8小题,每小题6分,共计48分)1. 求极限)2(1lim22n n n n n +++∞→ .解:若将区间[0,1]等分,则每个小区间长n x 1=∆,再将n n n 1112⋅=中的一个因子n 1分配到每一项,从而可以将所求极限转化为定积分的表达式。

中国石油大学高等数学精品课件

中国石油大学高等数学精品课件

= ∫ x 1+ 4x2 dx
0
1 = 12
(
3 1 + 4x2 2
)
1
1 5 5 −1 = 12
(
)
0
例3 解
x = acos t, (第Ι象限). 求I = ∫ xyds, L: 椭圆 L y = bsin t,
I = ∫ a cos t ⋅ b sin t ( − a sin t ) 2 + ( b cos t ) 2 dt
∆si 表示小弧段的长度 . i = 1,2,L , n.
近似 取 (ξ i ,ηi ) ∈ ∆si , ∆M i ≈ ρ (ξ i ,ηi ) ⋅ ∆si . 求和 取极限
M ≈ ∑ ρ (ξ i ,η i ) ⋅ ∆si .
i =1 n
近似值
M = lim ∑ ρ (ξ i ,η i ) ⋅ ∆si .
x = a cos t , 由于积分曲线L 解 :由于积分曲线L 参数方程 可得 : y = a sin t , I=

L
xyds =
π
(a cos t )(a sin t ) (− a sin t )2 + (a cos t )2 d t ∫
2 0
π
= ∫2
0
(a cos t )(a sin t )adt
2

e

2
L
x ds = ∫ x
2 1
e
2
dy 2 1 + ( ) dx dx
2 e 2
1
e
=∫ x
1
1 x 1 2 x 1+ − dx = ∫ x + dx. 1 2 2x 2 2x

中国石油大学高等数学高数期末考试试卷及答案-(14)

中国石油大学高等数学高数期末考试试卷及答案-(14)

A卷2009—2010学年第一学期《高等数学(2-1)》期末试卷专业班级姓名学号开课系室基础数学系考试日期 2010年1月11日注意事项1.请在试卷正面答题,反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共五道大题,满分100分;试卷本请勿撕开,否则作废.一.填空题(共5小题,每小题4分,共计20分)1.21lim()xx x e x →-=.2.()()1200511xx x x e e dx --+-=⎰ .3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==.4. 设()x f 可导,且1()()xtf t dt f x =⎰,1)0(=f ,则()=x f . 5.微分方程044=+'+''y y y 的通解为 .二.选择题(共4小题,每小题4分,共计16分)1.设常数0>k ,则函数k e x x x f +-=ln )(在),0(∞+内零点的个数为( ).(A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程43cos2y y x ''+=的特解形式为( ).(A )cos2y A x *=; (B )cos2y Ax x *=;(C )cos2sin2y Ax x Bx x *=+; (D )x A y 2sin *=. 3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B )若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D )若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数. 4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点.三.计算题(共5小题,每小题6分,共计30分) 1.计算定积分230x x e dx-.2.计算不定积分dx x xx ⎰5cos sin .3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程.4. 设20()cos()xF x x t dt=-⎰,求)(x F '.5.设n n n n n x nn )2()3)(2)(1( +++=,求nn x ∞→lim .四.应用题(共3小题,每小题9分,共计27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x 旋转一周所生成的旋转体的体积.3. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'一.填空题(每小题4分,5题共20分):1. 21lim()xx x e x →-=21e .2.()()1200511x x x x e e dx --+-=⎰e 4.3.设函数()y y x =由方程21x yt e dt x +-=⎰确定,则0x dydx==1-e .4. 设()x f 可导,且1()()x tf t dt f x =⎰,1)0(=f ,则()=x f 221x e.5.微分方程044=+'+''y y y 的通解为xe x C C y 221)(-+=.二.选择题(每小题4分,4题共16分):1.设常数0>k ,则函数ke x x xf +-=ln )( 在),0(∞+内零点的个数为( B ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程x y y 2cos 34=+''的特解形式为 ( C )(A )cos2y A x *=; (B )cos2y Ax x *=; (C )cos2sin2y Ax x Bx x *=+; (D )x A y 2sin *= 3.下列结论不一定成立的是 ( A )(A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B) 若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D) 若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( C ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(每小题6分,5题共30分): 1.计算定积分⎰-232dxe x x .解:⎰⎰⎰----===202020322121,2tt x tde dt te dx ex t x 则设 -------2⎥⎦⎤⎢⎣⎡--=⎰--200221dt e te t t -------2 2223210221----=--=e e e t --------22.计算不定积分dx x x x ⎰5cos sin .解:⎥⎦⎤⎢⎣⎡-==⎰⎰⎰x dx x x x xd dx x x x 4445cos cos 41)cos 1(41cos sin --------3C x x x x x d x x x +--=+-=⎰tan 41tan 121cos 4tan )1(tan 41cos 43424 -----------3 3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 解:切点为)),12((a a -π-------22π==t dx dy k 2)c o s 1(s i n π=-=t ta ta 1= -------2切线方程为)12(--=-πa x a y 即ax y )22(π-+=. -------24. 设 ⎰-=xdtt x x F 02)cos()(,则=')(x F )cos()12(cos 222x x x x x ---.5.设n n n n n x nn )2()3)(2)(1( +++=,求nn x ∞→lim .解:)1l n (1ln 1∑=+=n i n n i n x ---------2 ⎰∑+=+==∞→∞→101)1ln(1)1ln(lim ln lim dxx n n i x n i n n n --------------2=12ln 211)1ln(1010-=+-+⎰dx x x x x ------------2故 nn x ∞→lim =e e 412ln 2=- 四.应用题(每小题9分,3题共27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.解:设切点为),00y x (,则过原点的切线方程为xx y 2210-=,由于点),00y x (在切线上,带入切线方程,解得切点为2,400==y x .-----3 过原点和点)2,4(的切线方程为22xy =-----------------------------3面积dyy y s )222(22⎰-+==322-------------------3或 322)2221(2212042=--+=⎰⎰dx x x xdx s2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x 旋转一周所生成的旋转体的体积.解: 法一:21V V V -=[][]⎰⎰⎰---=-----=102212122)1(12)2()11(2dyy ydyy dy y πππ -------6)314(201)1(31423-=⎥⎦⎤⎢⎣⎡--=ππππy --------3 法二:V =⎰---12)2)(2(2dxx x x x π⎰⎰----=101022)2(22)2(2dxx x dx x x x ππ ------------------ 5[]⎰--+--=102234222)22(ππdx x x x x x ππππππππ322134213234141201)2(3222232-=-+=-⎥⎦⎤⎢⎣⎡⨯⨯+-=x x ------------- 43. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.解:.ln ln ln 1)(0ln )(a aa t a a a t f t -==-='得由 --------------- 30)(l n 1ln ln )(2e e a a a a a t ==-='得唯一驻点又由------------3.)(,0)(,;0)(,的极小值点为于是时当时当a t e a a t e a a t e a e e e =<'<>'>-----2故.11ln 1)(,)(e e e e t a t e a e e -=-==最小值为的最小值点为--------------1五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'证明:设()()F x f x x =-,()F x 在[0,1]上连续在(0,1)可导,因(0)=(1)=0f f ,有(0)(0)00,(1)(1)11F f F f =-==-=-,--------------- 2又由1()=12f ,知11111()=()-=1-=22222F f ,在1[1]2,上()F x 用零点定理,根据11(1)()=-022F F <,--------------- 2可知在1(1)2,内至少存在一点η,使得1()=0(,1)(0,1)2F ηη∈⊂,,(0)=()=0F F η由ROLLE 中值定理得 至少存在一点(0,)(0,1)ξη∈⊂使得()=0F ξ'即()1=0f ξ'-,证毕. --------------3。

中国石油大学高等数学练习册答案

中国石油大学高等数学练习册答案

第七章 空间解析几何与向量代数7.11.),,(z y x --; ),,(z y x -; ),,(z y x ---;2.)0,0,(0x ; )0,,(00y x ; 0z z =;3.)914,0,0(; 4.26+; 5.)2,1,0(-; 7.21.)3,1,5(--;2.)1,0,0(±;3.(1))4,1,9(; (2) )13,11,4(--; 4.)17,17,18(-.7.31.(1)15-; (2)1-; (3)9;2.1511arccos ;3.22;2=; ;21cos ;22cos ,21cos =-=-=γβα ;3;43,32πγπβπα=== 5.22; 6.332; 7.23-; 8.3πγ=或32π; 9.b a =或0=⋅b a ; 10.38; 11.)1,0,0(-或)0,22,22(; 12.μλ2=.7.4 1.(1))5,7,3(--; (2))15,21,9(--; 2.29; 3.)32,32,31(-±; 4.230. 7.51.(1))3,2,6(-; 7; (2))(322y x z +=;(3)2224y z x =+; (4)122222=++z y x ; (5)19422=+z x ; x ; (6)1422=-y x ; y ; (7)y a z =-(或y z a =-); z ;2.21)1()1()3(222=-+++-z y x ;3.9116)34()1()32(222=+++++z y x ; 7.61.016--322=z y ;2.⎩⎨⎧==+0222z a y x ; ⎪⎩⎪⎨⎧==0sin x b z a y ; 3.⎩⎨⎧==+-082222z y x x ; 4.⎪⎪⎪⎩⎪⎪⎪⎨⎧===,,,t z t y t x sin 3cos 223cos 223 5.ax y x ≤+22; )0(2a x ax a z ≤≤-≤; 7.71.(1)1; (2)3π; (3)2; (4)1; (5) 270±; (6) 1867; 2. B;3.0325617=---z y x ;4.032=+-+z y x ;5.(1)03=+y x ; (2)029=--z y ;6.214arccos ;7.03-2=-z y x ; 8.0122283=±++z y x ;9.7236±=++z y x ;7.81.⎪⎩⎪⎨⎧+=+==;3112-1t z t y t x ,, 2.0;3. C;4. C;5.)32,32,35(-;6.13431+=-=-z y x ; 7.065111416=+++-z y x ;8.0237=---z y x ;9.⎩⎨⎧=+-=--+;14,0117373117z y x z y x 10.25; 11.4273; 7.9略。

中国石油大学(华东)高数(2-1)课件

中国石油大学(华东)高数(2-1)课件

lim[ f ( x )]n [lim f ( x )]n . sin x 求 lim . x x
y
解 当x 时, 1 为无穷小, x
sin x x
而 sin x是有界函数. sin x lim 0. 1.4 无穷小与无穷大 P51---P57 x x
例2 解
1 2 n 求 lim( 2 2 2 ). n n n n
1.4 无穷小与无穷大 P51---P57
作用(2):用等价无穷小求某些极限。 tan2 2 x 例3 求 lim . x 0 1 cos x 1 2 当x 0时, 1 cos x ~ x , tan 2 x ~ 2 x . 解 2 ( 2 x )2 原式 lim 8. x 0 1 x2 2 注意:若未定式的分子或分母为若干个因子的乘 积,则可对其中的任意一个或几个无穷小因子作 等价无穷小代换,而不会改变原式的极限.
1.4 无穷小与无穷大 P51---P57
极限四则运算法则的证明:
定理
设 lim f ( x ) A, lim g ( x ) B , 则 (1) lim[ f ( x ) g ( x )] A B; ( 2) lim[ f ( x ) g ( x )] A B; f ( x) A ( 3) lim , 其中B 0. g( x ) B
设 o().
o( ) o( ) lim (1+ ) 1, lim lim ~ .
1.4 无穷小与无穷大 P51---P57
作用(1):用等价无穷小可给出函数的近似表达式。 1 2 举例: 当x 0时, sin x ~ x , 1 cos x ~ x . 2 sin x x o( x ), 1 y x2

中国石油大学(华东)高数历届试题

中国石油大学(华东)高数历届试题

2006—2007学年第二学期 《本科高等数学(下)》期中试卷一、填空题(每小题5分, 共40分) 1.设向量,2,23k j i b k j i a +-=-+=则)()(b a b a322-⋅⨯= _______________.2.已知向量}2,3,4{-=a ,向量u 与三个坐标轴正向构成相等的锐角,则 a 在u轴上的投影等于__________________.3.已知空间三角形三顶点),2,0,0(),0,1,2(),1,1,1(C B A -则ABC Δ的面积等于______________;过三点的平面方程是:__________________________.4.直线⎩⎨⎧=+--=-+072,0532:z y x z y L .在平面083:=++-z y x π内的投影直线方程是: ____________________________________.5. 由曲线 ⎪⎩⎪⎨⎧==+0122322z y x 绕y 轴旋转一周所得旋转曲面在点)2,3,0(处指向外侧的单位法向量是____________________________.6.设z y x z y x 32)32sin(2-+=-+,则y zx z ∂∂+∂∂=__________________________.7. 设函数)(u f 可微,且21)0(='f , 则)4(22y x f z -=在点(1,2)处的全微分 )2,1(d z =_________________________________________.8. 曲面 22yx z += 平行于平面 042=-+z y x 的切平面方程.是:___________________.二、(7分) 设平面区域D 由1,==xy x y 和2=x 所围成,若二重积分 1d d 22=⎰⎰D y x yAx ,则常数=A ____________________________. 解题过程是:三、(8分) 设),(y x f 是连续函数,在直角坐标系下将二次积分⎰⎰-223210d ),(d y y xy x f y 交换积分次序,应是______________________________________.解题过程是:四、(7分) 设函数181261),,(222z y x z y x u +++=,若单位向量}1,1,1{31=n ,则方向导数)3,2,1(nu ∂∂等于_____________________;该函数在点(1,2,3)的梯度是____________________;该函数在点(1,2,3)处方向导数的最大值等于________________.解题过程是:五、(8分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y ∂∂+=∂∂.(I )验证()()0f u f u u '''+=;(II )若(1)0,(1)1f f '==,求函数()f u 的表达式.解题过程是:六、(7分) 设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1D xyx y x y +++⎰⎰解题过程是:七、(8分) 设空间区域Ω,是由曲线⎪⎩⎪⎨⎧==0,2x z y 绕oz 轴旋转一周而成的曲面与平面4,1==z z 所围成的区域,计算三重积分⎰⎰⎰+Ωz y x y x d d d )(22.解题过程是:八、(8分) 做一个长方体的箱子,其容积为 29m 3, 箱子的盖及侧面的造价为8元/m 2, 箱子的底造价为1元/m 2, 试求造价最低的箱子的长宽高(取米为长度单位). 解题过程是:九、(7分) 设函数),(y x f 在点(0,0)的某个邻域内连续,且1)(),(lim22220=+-→→y x xy y x f y x ,试问点(0,0)是不是),(y x f 的极值点?证明你的结论. 解题过程是:A 卷2006—2007学年第二学期《本科高等数学(下)》期末考试试卷一、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1.设三向量c b a ,,满足关系式c a b a ⋅=⋅,则( ).(A )必有c b ,0 ==或者a ; (B )必有0===c b a ;(C )当0≠a 时,必有c b =; (D )必有)(c b a -⊥.2. 已知2,2==b a,且2=⋅b a ,则=⨯b a ( ).(A )2 ; (B )22; (C )22; (D )1 .3. 设曲面)0,0(:2222>≥=++a z S a z y x ,S 1是S 在第一卦限中的部分,则有( ). (A )⎰⎰⎰⎰=S S S x S x 1d 4d ; (B )⎰⎰⎰⎰=S SSx S y 1d 4d ;(C )⎰⎰⎰⎰=S SS x S z 1d 4d ; (D )⎰⎰⎰⎰=S S Sxyz S xyz 1d 4d . 4. 曲面632222=++z y x 在点)1,1,1(--处的切平面方程是:( ).(A )632=+-z y x ; (B )632=-+z y x ; (C )632=++z y x ; (D )632=--z y x . 5. 判别级数∑⋅∞=1!3n nn n n 的敛散性,正确结果是:( ). (A )条件收敛; (B )发散;(C )绝对收敛; (D )可能收敛,也可能发散.6. 平面0633=--y x 的位置是( ).(A )平行于XOY 平面; (B )平行于Z 轴,但不通过Z 轴; (C )垂直于Z 轴 ; (D )通过Z 轴 . 二、填空题(本题共4小题,每小题5分,满分20分). 1. 已知e x yz =,则____________________d =z.2. 函数zx yz xy u ++=在点)3,2,1(=P 处沿向量OP 的方向导数是____________,函数u 在点P 处的方向导数取最大值的方向是_____________,该点处方向导数的最大值是____________.3. 已知曲线1:22=+y x L ,则⎰+=Ls y x ________________d )(2.4. 设函数展开傅立叶级数为:∑∞=≤≤-=02)(,cos n n x nx a xππ,则___________2=a .三、解答下列各题(本题共7小题,每小题7分,满分49分).1. 求幂级数∑∞=+01n n n x 收敛域及其和函数.解题过程是:2. 计算二重积分⎰⎰≤++42222d d y x yx yx e.解题过程是:3. 已知函数),(y x f z =的全微分y y x x z d 2d 2d -=,并且2)1,1(=f . 求),(y x f z =在椭圆域}14|),{(22≤+=yx y x D 上的最大值和最小值.解题过程是:4. 设Ω是由y x z 22+=,4=z 所围成的有界闭区域,计算三重积分⎰⎰⎰++Ωzy x z y x d d d )(22.解题过程是:5. 设L AB 为从点)0,1(-A 沿曲线x y 21-=到点)0,1(B 一段曲线,计算⎰++L AByx yy x x 22d d .解题过程是:6. 设∑是上半球面y x z 221--=的下侧,计算曲面积分⎰⎰++-+∑yx z y xy x z z y x z y z x d d )2(d d )(d d 2322.解题过程是:7. 将函数 61)(2--=x x x f 展开成关于1-x 的幂级数 .解题过程是:四、证明题(7分). 证明不等式: ⎰⎰≤+≤Dx y 2d )sin (cos 122σ,其中D 是正方形区域:10,10≤≤≤≤y x .2007—2008学年第二学期 《本科高等数学(下)》期中试卷一 填空题(本题共5小题,每小题4分,满分20分)1 向量32a i j k →→→→=++在向量245b i j k →→→→=++上的投影Pr bj a = .2 函数u =在点)2,2,1(-M 处的梯度=M gradu __________.3 曲面1222=+-zx yz xy 上点(1,1,1)M 处的切平面方程为 .4 函数sinu yxy x =在点(,)11的全微分(1,1)du =.5 函数2(,)z xf x y =有连续的二阶偏导数,则y x z ∂∂∂2= . 二、选择题(本题共4小题,每小题4分,满分16分).1.直线34273x y z++==--与平面4223x y z --=的位置关系是( ) (A )平行,但直线不在平面上; (B ) 直线在平面上;(C ) 垂直相交; (D ) 相交但不垂直. 2.函数00(,)(,)f x y x y 在点处偏导数存在是(,)f x y 在该点可微的( ) (A) 充分非必要条件; (B) 必要非充分条件 ; (C) 充要条件; (D) 非充分非必要条件.3.设有两平面区域2221:D x y R +≤,2222:,0,0;D x y R x y +≤≥≥ 则以下结论正确的是( )(A )124D D xdxdy xdxdy=⎰⎰⎰⎰; (B )12224D D x dxdy x dxdy=⎰⎰⎰⎰;(C )124D D ydxdy ydxdy=⎰⎰⎰⎰; (D )124D D xydxdy xydxdy=⎰⎰⎰⎰.4. 若函数00(,)(,)f x y x y 在点处不可微,则函数00(,)(,)f x y x y 在点处是( )(A) 沿任何方向的方向导数不存在; (B)两个偏导数都不存在; (C) 不能取得极值; (D) 有可能取得极值. 三、画图题(本题共2小题,每小题3分,满分6分)1.写出函数(,)f x y =的定义域,并画出定义域的图形.2.画出由平面1,0,2y z z y ===及曲面2y x =所围空间立体的图形.四、解答题(本题共7小题,每小题7分,满分49分)1.设(),z z x y =是由方程()2223x z f y z -=-所确定的隐函数,其中f 可微,求23z zyx x y ∂∂+∂∂ .解:2 .考察函数221sin (,)(0,0)(,)0(,)(0,0)xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点 (0,0)的连续性和可微性. 解:3.在曲面z xy =上求一点,使在该点处的法线与平面3290x y z +++=垂直,并写出该法线方程. 解:4.抛物面22z x y =+被平面4x y z ++=截成一个椭圆,求原点到这椭圆的最长与最短距离.解:5.计算1130dy x dx⎰.解:6.计算二重积分21D y x dxdy+-⎰⎰,其中D 是由直线1,1,0,1x x y y =-===围成的平面区域. 解:7.计算由球面2221x y z ++=,柱面220x y x +-=所围立体的体积. 解:五、证明题(9分)试证明:11201()(1)()2x ydx dy f z dz z f z dz=-⎰⎰⎰⎰A卷2007—2008学年第二学期《本科高等数学(下)》试卷(理工类)一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面0:1=-∏z y 与平面0:2=+∏y x 的夹角为 .2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为 .3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dVΩ⎰⎰⎰在柱面坐标系下化为三次积分为 .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰______________________________________.6.将函数)0(1)(π≤≤+=x x x f 展开成余弦级数为__________________________________.二、单项选择题:7~12小题,每小题3分,共18分。

中国石油大学(华东)高数练习册参考答案

中国石油大学(华东)高数练习册参考答案

参考答案第一章函数与极限1.11.2.3. 4.5.6. B;7. D;8. A;9. B; 10. C;11.12.奇函数; 13. ;16. 1.1.21. B;2.略;3. (1)0; (2) (3)0; (4)1; (5)2;(6)不存在;4. 2;5. 1;6. B;7.8.证明略;反之不成立。

反例:.1.31. D;2. b; 1; 1;3.不存在;4.5. 当时,当时,不存在;6.不存在;7. (1)2; (2); (3)(4) (5)8. 9.1.41. D;2. C;3. B;4. B;5. (1)否; (2)否; (3)否;6.不存在;7. (1)4; (2)(3)1; (4)1;(5)1; (6)1;(7)当时,当时,当时,(8)8. -4; 9. 2; 10. 11.1.51. A;2. C;3. A;4.(1),跳跃间断点; (2)连续;(3),跳跃间断点;5.(1)(2)(3)(4) 6.-2.1.61. C;2.B;3.提示:设4.提示:设5.提示:使用介值性质;6.提示:设7.提示:设.第一章自测题一、1.D; 2.C; 3.C; 4.A; 5.A;二、 1.2; 2.2; 3.;4. 5.2;三、1. 2.1; 3. 4.1;5.6. 7.不存在;8.当时,当时,四、,跳跃间断点;,无穷间断点;五、略;六、,可去间断点;,无穷间断点;七、2; 八、九、0.分2.11. ;2. ;3.D;4.D;5.(1); (2)-;6. ;7.连续,不可导;8.9.可导, 10.提示:用导数的定义证明;11.2个.提示:讨论点.2.21. 2.1; 3.1;4.1;5. (1) (2)(3)(4)(5) (6)0;(7)(8)(9) (10) (11)6. 7.8.9. (1)(2)10.11. .2.31. (1)(2)2. 3.4.5.6.7.8.略。

2.41. 2. 3. 0;4.5.(1)(2)(3)6. (1)(2)7.8. (1) (2)9. 10. 11. 12..2.51. 2. 0; 3.必要4.(1) (2)5.B;6.A;7.D;8.B;9. 10.11.12. .第二章自测题一、1. 2.充要; 3. 5;4.5.二、1.D; 2.C; 3.A; 4.D;三、 1.2.3.4.5.6.8.9.10.四、(1)(2).第三章微分中值定理与导数的应用3.11.否;是2.是;3.4.B;5.D;6.C;7.提示:构造辅助函数;8.9.提示:构造辅助函数;10.提示:构造辅助函数;11.提示:构造辅助函数,分和两种情况分别讨论;12.略;13.提示:构造辅助函数.3.21. 2. 3.4.5. 6. 7.9. 10. 11.12. ; 13.14.15.连续。

中国石油大学(华东)09高数2-1A答案

中国石油大学(华东)09高数2-1A答案

22 2
3
2.设平面图形 D 由 x2 + y2 ≤ 2x 与 y ≥ x 所确定,试求 D 绕直线 x = 2 旋转一周所生成的
旋转体的体积.
解: 法一:V = V1 − V2
y
y= x
[ ] ∫ ∫ =
1
π 2 − (1 −
2
1 − y 2 ) dy −
1
π
(2

y)2
dy
0
0
[ ] ∫ = 2π 1 1 − y 2 − ( y − 1)2 dy 0
0
02
20
∫ =

1 2
te−t
2 −
0
2 0
e
−t
dt
-------2
= −e −2 − 1 e −t 2 = 1 − 3 e −2 2 022
--------2
∫ 2.计算不定积分 x sin xdx .
cos5 x
∫ ∫ ∫ 解:
x sin cos5
x x
dx
=
1 4
1 xd (cos4
2009—2010 学年第一学期 《高等数学》(工科)期末试卷-A 卷答案
一.填空题(每小题 4 分,5 题共 20 分):
1
1
1. lim(ex − x) x2 = e2 . x→0
∫ ( )( ) 2. 1 x 1+ x2005 ex − e−x dx = 4 .
−1
e
∫ 3.设函数 y = y(x) 由方程
(A) y∗ = Acos 2x ;
(B) y∗ = Ax cos 2x ;
(C) y∗ = Ax cos 2x + Bx sin 2x ; (D) y* = Asin 2x

中国石油大学高等数学上册教材

中国石油大学高等数学上册教材

中国石油大学高等数学上册教材一、引言高等数学作为理工科学生的一门重要基础课程,对于培养学生的数学思维和解决实际问题的能力具有重要作用。

中国石油大学的高等数学上册教材是学生学习这门课程的重要教材之一。

本文将对该教材的内容进行评述,旨在帮助学生更好地理解和掌握高等数学的知识。

二、教材内容梳理1. 微分学部分在微分学部分,教材首先介绍了函数的概念和性质,包括函数的定义、画图和性质分析等。

接着,教材详细讲解了极限和连续的概念,以及求导的基本方法和相关定理。

教材还介绍了微分中值定理和应用题,帮助学生理解微分的意义和应用。

2. 积分学部分在积分学部分,教材从定积分的概念出发,介绍了定积分的性质和计算方法。

教材详细讲解了反常积分的概念和性质,以及积分中值定理和应用题,帮助学生深入理解积分的计算和应用。

3. 微分方程部分在微分方程部分,教材首先介绍了常微分方程的基本概念和解法,包括一阶常微分方程、二阶常系数齐次线性微分方程等。

教材还介绍了高阶常系数齐次线性微分方程和常系数非齐次线性微分方程的解法。

此外,教材还涉及一些常见微分方程的应用,例如振动问题和电路问题等。

4. 空间解析几何部分在空间解析几何部分,教材首先介绍了空间点、空间直线和空间平面的基本概念和性质。

教材详细讲解了空间几何体的方程和性质,包括球面、圆锥面和圆柱面等。

教材还介绍了直线与平面、平面与平面之间的关系和相交情况。

三、教材特点分析1. 理论与实践相结合该教材在讲解数学理论的同时,注重将数学与实际问题相结合,通过大量的例题和应用题,帮助学生理解数学知识在实际问题中的应用。

2. 逻辑性强教材内容逻辑性强,从基础概念出发,逐步展开,层层深入。

每个知识点都通过定义、性质、公式和例题进行讲解,使学生能够系统地学习和掌握知识。

3. 形象化表达教材中的图示和图表丰富多样,有助于学生理解和记忆抽象的数学概念和规律。

四、教学建议1. 阅读教材学生应该认真阅读教材的内容,理解每个知识点的定义和性质,掌握基本的计算方法和解题思路。

中国石油大学高等数学高数期末考试试卷及答案-(12)

中国石油大学高等数学高数期末考试试卷及答案-(12)

A卷2008—2009学年第一学期《高等数学》期末考试试卷(理工科类)专业班级姓名学号开课系室数学学院基础数学系考试日期 2009年1月5日说明:1本试卷正文共6页。

2 封面及题目所在页背面及附页为草稿纸。

3 答案必须写在题后的横线上,计算题解题过程写在题下空白处,写在草稿纸上无效。

一、填空题(本题共5小题,每小题4分,共20分).(1)1)(cos lim xx x → =________________.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为_________________. (3)已知xxxe e f -=')(,且0)1(=f , 则=)(x f _____________ .(4)曲线132+=x x y 的斜渐近线方程为 ______________. (5)微分方程522(1)1'-=++y y x x 的通解为___________________.二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( ).(A)21,x x 都是极值点.(B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点.(D) ())(,11x f x 是拐点,2x 是极值点.(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( (A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .x y y y x '''+-=(D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( ).(A) (())().f x dx f x '=⎰ (B)()().=⎰df x f x(C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→.2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .3. 计算不定积分.4.计算定积分⎰++3011dxxx.四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256x y y y xe'''-+=.2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R,水的密度为ρ,计算桶的一端面上所受的压力.图4-13. (本题8分)设()f x在[,]a b上有连续的导数,()()0f a f b==,且2()1baf x dx=⎰,试求()()baxf x f x dx'⎰.4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A; (2) 求D 绕直线e x =旋转一周所得旋转体的体积V .五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.一、填空题(本题共5小题,每小题4分,共20分).(1) 10)(cos lim x x x →(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且0)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _________.9131-=x y(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点.(B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点. (D) ())(,11x f x 是拐点,2x 是极值点.(3)函数212e ee xxxy C C x -=++满足的一个微分方程是( (A )23e .x y y y x '''--= (B )23e .xy y y '''--=(C )23e .xy y y x '''+-=(D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B)()().=⎰df x f x(C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→-------1分=x x x x x ln 1ln lim1+-→-------2分 = x x x x x x ln 1ln lim1+-→ -------1分= 211ln 1ln 1lim 1=+++→x x x -------2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,s i n )()(t t t x t y dx dy =''= ----------------------------(3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''=---------------------(6分)4. 计算不定积分.222 =2arctan 2 =2C =----------------+---------⎰分分(分4.计算定积分⎰++3011dx x x.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x --------- --------------- (3分)35)1(323323=++-=x ----------------------------------------- ---------------------(6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分所以所求通解C 分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图220322203*********RRRP g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰分)分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222bb aab ab b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(3) 求D 的面积A;(4) 求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y = ----1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线x e y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为.3121e V π= ----2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dy e e V y 2102)(⎰-=π, ----1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ ----1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1x e x ≥+. 解法一:2112xe e x x x ξ=++≥+解法二:设() 1.x f x e x =--则(0)0.f =------------------------1分 因为() 1.x f x e '=-------------------------—————— 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥=------------------------2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥=------------------------2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。

中国石油大学高等数学习题集(期末题库)

中国石油大学高等数学习题集(期末题库)

习题一一、填空题1.设,3)1ln()(x x x f -++=则此函数的定义域是___________.2. 极限.23151lim2=+--+→xx xx x ________________. 3. 设f(x)=arcsinx,φ(x)=lnx,则)]([x f φ的定义域是_______________.4. 设(),,10111cos1)(⎪⎩⎪⎨⎧=≠--=x x x x x f a在1=x 处连续,则a 的值为_______________.5 当x x →0时,f(x)是比g(x)高阶的无穷小,则当x x →0时, 无穷小 f(x)+g(x) 与无穷小g(x)的关系是_______________.6. ().1,0._______________41lim20≠>=-→a a xa x x 7. f(x)=arcsin(2x-1)的定义域是_____________.8. ()x xx f πsin ln =的一个可去间断点=x ______________. 9. xx x arcsin lim 0→的值等于_______________.10. ()3arctan )(2-=x x f 的定义域是______________.11. 若当()()x x x x γα,,0时→是等价无穷小,()x β是比()x α高阶的 无穷小,则当0x x →时,函数()()()()x x x x βγβα--的极限是___________.12. 设)(x f 的定义域是],2,1[则⎪⎭⎫⎝⎛+11x f 的定义域是_____________. 13. ()1ln 2--=x x x f 的一个无穷间断点=_____________.14. ()24ln )(x x f -=在区间_____________是连续的。

15. ()23+-=x xx f 的定义域是_____________.16. 极限=+∞→xxx x x x lim ___________________17. ()3)(-=x x x f _的定义域是_____________.18. 极限=--+→2223lim 32x x x ____________________.19. ()xx x 613ln lim0+→的值等于_________________. 20. ()3arccos -=x x f 的定义域是__________________21. 设()()f x x x x ==arcsin ,ln ϕ,则()[]ϕf x 的定义域是_____________. 22. 要使函数()f x x xx=+--11在x=0处连续,则须定义f(0)的值为_____________ 23. 极限lim sinn n n x →∞-=221____________________.24. ()()f x x x =+-ln 22的定义域是_________________________. 25.函数y x =lnarcsin 的连续区间为_______________________. 26. xxx 52arctan lim 0→的值等于____________________.27 . lim n nn n →∞++⎛⎝ ⎫⎭⎪213的值等于________________.28. 若()321lim e ax xx =-→,则a=_____________29. =+-→xx x 210)1(lim _________________.选择题1. ⎪⎩⎪⎨⎧≥<--=1,21,11)(2x x x x x x f 则1=x 是)(x f 的(A)连续点; (B)可去间断点; (C) 跳跃间断点; (D)无穷间断点. 答: ()2. 当0x x →时A x f -)(为无穷小是 A x f x x =→)(lim 0的(A )充分但非必要条件 (B )必要但非充分条件(C )充分必要条件 (D )既非充分条件,也非必要条件 答: ()3. 设f x x x ()sin ,,=-∞<<+∞,则此函数是 (A)奇函数, (B)既不是奇函数也不是偶函数,(C)周期为2π的周期函数 (D) 周期为π的周期函数. 答: () 4. 极限.cos 22limxxx -→的结果是(A)1 (B)2 (C)2 (D)极限不存在. 答: ( ) 5. 设()f x x x x ()sin ,=++-∞<<+∞112,则此函数是(A)有界函数 (B)奇函数 (C)偶函数 (D)周期函数 答:( )6. 函数xx f -=11arctan )(当x →1时的极限值是 (A)π2(B)-π2 (C)0 (D)不存在.答:( )7. 的是时当x x x x sin ,0.2-→(A)高阶无穷小 (B)同价无穷小,但不是等价无穷小(C)低价无穷小 (D)等价无穷 答: ( )8. xx x x 11lim 20-++→等于 (A )1 (B )21(C )2 (D )0 答: ( )极限[]x x x cos 1cos lim -++∞→的结果是 (A )无穷大 (B )0 (C )21- (D )不存在,也不是无穷大 答: ( ) 10.设()xx eex f 11321++=,则0=x 是)(x f 的:(A )可去间断点 (B )跳跃间断点 (C )无穷间断点 (D )振荡 间断点 答: ( )11.函数f(x)在点0x 连续是)(lim 0x f x x →存在的(A )充分条件 (B )必要条件(C )充要条件 (D )即非充分又非必要条件 答: ( )12. ()x ee xf xx sin )(-+=在其定义域 ()+∞∞-,上是(A )有界函数 (B )周期函数 (C )偶函数 (D )奇函数 答: ( )13. 设()11cot2-+=x arc x x f ,则1=x 是)(x f 的: (A )可去间断点 (B )跳跃间断点 (C )无穷间断点 (D )振荡 间断点 答: ( ) 14. 极限()x x x x -+∞→2lim的结果是(A) 0; (B) 1/2;(C) 无穷大, (D )不存在. 答: ( )15. ()()23sin x x f =在定义域()-∞+∞,上为(A )周期是3π的函数; (B )周期是π/3的函数; (C )周期是2π/3的函数; (D )不是周期函数. 答: ( )16. 若当0x x →时()()x x βα,都是无穷小,则当0x x →时, 下列表示式哪一个不一定是无穷小: (A )()()x x βα+; (B )()()x x 22βα+;(C )()()[]x x βα+1ln ; (D )()()x x 22βα. 答: ( )17.“数列极限存在”是“数列有界”的(A )充分必要条件; (B )充分但非必要条件; (C )必要但非充分条件;(D )既非充分条件,也非必要条件。

大学物理课后习题详解(第九章)中国石油大学

大学物理课后习题详解(第九章)中国石油大学

习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。

知道智慧树答案高等数学下中国石油大学华东版课后作业答案.docx

知道智慧树答案高等数学下中国石油大学华东版课后作业答案.docx

知道智慧树答案高等数学下中国石油大学华东版课后作业答案问:我们要幸福就要有欲望,而这种欲望表现为什么?()答:痛苦问:团队角色中扮演团队的智囊、智多星的是()答:创新者问:戏曲中打功具有哪些形式的美?()答:夸张美装饰美问:在经典版越剧《红楼梦》中扮演林黛玉的是著名演员答:王文娟问:诱变育种强调利用化学因素诱发生物体产生突变,从而培育成新品种。

()答:错误问:体质指数(BMI)计算公式为答:BMI=体重(公斤)/[身高(米)]2问:在FCWS前車碰撞系統中,使用光流法來偵測車輛,會面臨計算複雜度高的問題。

答:对问:《素问·上古天真论》说:“女子,四七,筋骨坚,发长极,身体盛壮”,“丈夫,四八,筋骨隆盛,肌肉满壮”。

就是说,女子28岁左右,男子32岁左右,是一生_____最旺盛的时期,也是生育的最佳时期。

答:肾气问:《素问·上古天真论》说:“女子,四七,筋骨坚,发长极,身体盛壮”,“丈夫,四八,筋骨隆盛,肌肉满壮”。

就是说,女子28岁左右,男子32岁左右,是一生_____最旺盛的时期,也是生育的最佳时期。

答:肾气问:《素问·上古天真论》说:“女子,四七,筋骨坚,发长极,身体盛壮”,“丈夫,四八,筋骨隆盛,肌肉满壮”。

就是说,女子28岁左右,男子32岁左右,是一生_____最旺盛的时期,也是生育的最佳时期。

答:肾气问:最早用到物理学这个词的人物是:()答:亚里士多德问:努尔哈赤建国标志满族初步形成答:正确问:如何认识依法治国与以德治国的关系?(20.0分)答:参考答案要点:对一个国家的治理来说,法治和德治,从来都是相辅相成、相互促进的。

两者缺一不可,也不可偏废。

法治是政治建设,属于政治文明;德治是思想建设,属于精神文明。

两者范畴不同,但其地位和功能都是非常重要的。

我们可从以下几个方面来具体认识两者的关系。

(1)依法治国与以德治国相互联系法治和德治都属于上层建筑的范畴,建立于和服务于共同的经济基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 x 1 2 x 1 dx 1 x dx . 2 2x 2 2x
e


例5 求I yds ,
L
y2 4 x
其中L : y 2 4 x , 从(1,2)到(1,2)一段.

y 2 I y 1 ( ) dy 0. 2 2
L
3.推广
函数 f ( x, y, z )在空间曲线弧 Γ上第一类 曲线积分为


f ( x , y , z )ds lim f ( i ,i , i ) si .
0
i 1
n
注意:
(1). 若 L (或 )是分段光滑的 ( L L1 L2 ),

L1 L2
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
( 2). 函数f ( x , y )在闭曲线L上对弧长的 曲线积分记为 f ( x, y )ds.
L
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
之间的一段弧。
xx 解: L : 2 y x
1
(0 x 1)
1
L
0
y ds
0
x 2 1 ( x 2 )'2 dx
x 1 4 x 2 dx
1 12

3 1 4x2 2

1
1 5 5 1 12


Hale Waihona Puke 0例3解
x a cos t , 求 I xyds, L : 椭圆 (第象限). L y b sin t ,
s i
取 i ( i ), i ( i ), ( i , i ) s i
t i 1

ti
( t ) 2 ( t ) 2 dt
( i ) 2 ( i ) 2 t i , i t i
由积分中值定理

i 1
n
f ( i , i )s i
2

x
1 e

2
L
x ds x
2 1
e
2
dy 2 1 ( ) dx dx
2 e 2
1
e
4 2 e e 1 1 x x x 1 3 2 x dx 1 x x dx 1 2 2 4 2 2 2x 1 1 e4 e2 3 . 2 4 2 4
ab(a 2 ab b 2 ) . 3(a b)
1 2 1 1 例4:计算 x ds, 其中L是曲线 y x ln x上自点 (1, ) L 4 2 4 1 2 1 dy x 1 与点(e, e )之间一段弧 . 4 2 d x 2 2 x 解 x x ; 1 2 1 L: (1 x e ) y x ln x , 4 2
现在构件的各点处的线密度是变量,就不能直接用上 述方法来计算,我们可以用下面方法来计算。
计算步骤: (1)分割:用L上的点 M 1 , M 2 , , M n1将L 分割为n个小段, 取其 中一小段M i 1 M i 来 分析;
i ,i 处的线密度 小,就可以用 M i 1 M i小段上任意一点
I a cos t b sin t ( a sin t ) 2 ( b cos t ) 2 dt
2 0
ab sin t cos t a 2 sin2 t b 2 cos 2 tdt
2 0
ab

2 0
1 2 2 2 2 2 (a b ) sin t b d sin t 2
L
f ( i , i ) si . L f ( x , y )ds lim 0 i 1
积分弧段
n
积分和式
曲线形构件的质量 M ( x , y )ds.
L
2.存在条件: 当 f ( x , y )在光滑曲线弧L上连续时,
第一类曲线积分 f ( x, y )ds 存在.


L
L
f ( x , y )ds
d
b
a
( 2) L : x ( y )
dy f [ x , y( x )] 1 dx . dx c y d.
2
f ( x , y )ds f [ ( y ), y ] 1 2 ( y )dy. (c d ) c
z f ( x, y)
S柱面面积 f ( x , y )ds.
L
9.5.2第一类曲线积分的计算
定理
设 f ( x , y )在曲线弧L上有定义且连续 ,
x ( t ), L的参数方程为 ( t )其中 y ( t ), ( t ), ( t )在[ , ]上具有一阶连续导数 ,且
9.5 对弧长的曲线积分
问题的提出
线密度 ( x, y )
y
B
L M n 1
( i , i ) M i M2 M i 1 M1
实例:曲线形构件的质量 匀质之质量 M s. 分割
曲线上插入分点: M1 , M 2 ,, M n1
A
o
x
M 0 M1 , M1 M 2 ,, M i 1 M i ,, M n1 M n
i , i 代替小段的线密度,故 得小段的质量近似值为 :
( 2)近似替代:在线密度连 续变化的前题下,只要 小段很
M i i ,i si
M i , i si
n
( si 表示小段的长度 )
(3) 求和:整个构件质量近似值为
i 1
lim ( i , i )si (4) 取极限:M 0
( )
y
B
曲线的弧长的计算公式 : 直角坐标系下, L : y f ( x ), a x b, s ds
L b 2 a
L M n 1
( i ,i ) M i M2 M i 1 M1
A
o b dy 2 1 dx 1 y dx a dx
x
x x( t ), 参数方程, L: t , y y( t ), s ds
L


x(t ) y(t ) dt
2 2
2 2 2 例1计算积分 xyds , L : x y a L
y
x a L
在第一象限部分 .
O
x a cos t , 解 :由于积分曲线L 参数方程 可得: y a sin t ,
si 表示小弧段的长度 . i 1,2,, n.
近似 取 ( i ,i ) si , M i ( i ,i ) si .
近似值
求和
取极限
M ( i ,i ) si .
i 1
n
M lim ( i ,i ) si .
0
0
i 1
lim f ( i , i )s i lim f [ ( i ), ( i )] ( i ) 2 ( i ) 2 t i
0
即 f ( x , y )ds
L


2 2 f [ ( t ), ( t )] ( t ) ( t )dt
i 1
n
精确值
求曲线型物体的质量: 设曲线型物件是非均匀的,它的线密度是变量, 且曲线型物件所占的位置在xoy面内的一段曲线弧L
上,它的端点为A、B,在L上任一点 (x,y)处,线密度
为 ( x , y ) ,现要计算这物件的质量M。 :(如图P152 10-1)
求曲线型物体的质量: 若构件的线密度为常量,则构件的质量为 M l。
i 1 n
B
L M n 1
( i ,i ) M i M2 M i 1 M1
A
o
x
如果当各小弧段的长度的最大值 0时, 这和的极限存在, 则称此极限为函数 f ( x , y ) 在曲线弧L上对弧长的曲线积分或 第一类曲 线积分, 记作 f ( x , y )ds , 即
被积函数
2
或由对称性 I

2 0
2 2 I xyds a cos t a sin t a sin t a cos t dt L
2
0

a cos t a sin t adt

2 0
a
3

a sin t dsint . 2
3
例2 计算
L
yds,其中L是抛物线y x 2上点O(0,0)与B(1, 1)
L L L
( 2) kf ( x , y )ds k f ( x , y )ds ( k为常数).
L L
( 3) f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L L1 L2
( L L1 L2 ).
( 4)
AB
f ( x , y )ds f ( x , y )ds

L
f ( x , y )ds
d
c
dx f [ x( y ), y ] 1 dy dy .
推广: 空间曲线 : x (t ), y (t ), z (t ). ( t ) 2 2 2 f ( x , y , z ) ds f [ ( t ), ( t ), ( t )] ( t ) ( t ) ( t )dt
相关文档
最新文档