湖北省武汉市武昌区部分学校2014届高三五月适应性考试数学(文)试题(四)(扫描解析版答案)
湖北省武汉市2014届高三5月模拟考试数学(文科类)试题
武汉市2014届高中毕业生五月模拟考试文 科 数 学2014.5.8一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={0,1,2},则集合},|{A y A x y x B ∈∈-=中元素的个数是A .1B .3C .5D .9 2.命题“若α=4π,则tan α=1”的逆否命题是 A .若α≠4π,则tan α≠1 B .若α=4π,则tan α≠1C .若tan α≠1,则α≠4πD .若tan α≠1,则α=4π3.函数-x )的定义域为A .(0,1)B .[0,1)C .(0,1]D .[0,1]4.总体有编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5A 5.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n6.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定7.执行右面的程序框图,如果输入的4N =,那么输出的S =A .1111234+++B .1111232432+++⨯⨯⨯C .111112345++++D .111112324325432++++⨯⨯⨯⨯⨯⨯8.若存在正数x 使2()1x x a -<成立,则a 的取值范围是A .(,)-∞+∞ B.(2,)-+∞ C.(0,)+∞ D.(1,)-+∞9.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A.4 B1 C.6- D10.设a >0,b >0,下列命题中正确的是A .若2a +2a =2b +3b ,则a >bB .若2a +2a =2b +3b ,则a <bC .若2a -2a =2b -3b ,则a >bD .若2a -2a =2b -3b ,则a <b二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.11.若复数i +=1z (i 为虚数单位) z -是z 的共轭复数,则2z +z -²的虚部为 .12.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为 .13.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .14.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 m 3.15.如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则→AP ·→AC = . 16.在区间]3,3[-上随机取一个数x ,使得1|2||1|≥--+x x 成立的概率为____.17.已知真命题:若A 为⊙O 内一定点,B 为⊙O 上一动点,线段AB 的垂直平分线交直线OB 于点P ,则点P 的轨迹是以O 、A 为焦点,OB 长为长轴长的椭圆.类比此命题,也有另一个真命题:若A 为⊙O 外一定点,B 为⊙O 上一动点,线段AB 的垂直平分线交直线OB 于点P ,则点P 的轨迹是 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知函数f (x )=sin(x -π6)+cos(x -π3),g (x )=2sin 2x2.(Ⅰ)若α是第一象限角,且f (α)=335,求g (α)的值;(Ⅱ)求使f (x )≥g (x )成立的x 的取值集合.19.(本小题满分12分)已知等差数列{}n a 满足:3577,26a a a =+=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令112-=n n a b )(*N n ∈,求数列}{n b 的前n 项和T n .20.(本小题满分13分)如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(Ⅰ)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE ; (Ⅱ)当棱锥A ′-PBCD 的体积最大时,求PA 的长.21.(本小题满分14分)已知函数f(x)=(2x2-4ax)ln x+x2(a>0).(Ⅰ)求f(x)的单调区间;(Ⅱ)若对任意的x∈[1,+∞),不等式(2x-4a)ln x>-x恒成立,求a的取值范围.22.(本小题满分14分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程;(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.武汉市2014届高中毕业生五月模拟考试 数学(文科)试题参考答案及评分标准一、选择题1.C 2.C 3.B 4.D 5.D 6.B 7.B 8.D 9.A 10.A二、填空题11.0 12.78 1314.18+9π 15.18 16.1317.以O 、A 为焦点,OB 长为实轴长的双曲线三、解答题18.(本小题满分12分) 解:(Ⅰ)f (x )=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=1-cos x . 由f (α)=335,得sin α=35.又α是第一象限角,所以cos α>0,从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(Ⅱ)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin(x +π6)≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.19.(本小题满分12分)解:(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n . (Ⅱ)由(Ⅰ),知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以12n n T b b b =+++ =111111(1-+++-)4223n n+1⋅- =11(1-)=4n+1⋅n4(n+1),即数列{}n b 的前n 项和n T =n4(n+1).20.(本小题满分13分)解:(Ⅰ)如图,设F 为A ′B 的中点,连结PF ,FE .则有EF ∥BC ,EF =12BC ,PD ∥BC ,PD =12BC ,∴DE ∥PF ,又A ′P =PB ,∴PF ⊥A ′B , 故A ′B ⊥DE .(Ⅱ)令PA =x (0<x <2),则A ′P =PD =x ,BP =2-x .因为A ′P ⊥PD ,且平面A ′PD ⊥平面PBCD , 故A ′P ⊥平面PBCD .∴V A ′-PBCD =13Sh =16(2-x )(2+x )x =16(4x -x 3).令f (x )=16(4x -x 3),由f ′(x )=16(4-3x 2)=0,得x =233.当x ∈(0,233)时,f ′(x )>0,f (x )单调递增;当x ∈(233,2)时,f ′(x )<0,f (x )单调递减.∴当x =233时,f (x )取得最大值,故当V A ′-PBCD 最大时,PA =233.21.(本小题满分14分) 解:(Ⅰ)求导数,得f ′(x )=(4x -4a )ln x +2x 2-4axx +2x =4(x -a )(ln x +1)(x >0),令f ′(x )=0,解得x =a ,或x =1e.①当0<a <1e时,x 变化时,f ′(x ),f (x )的变化情况如下表:此时f (x )的单调递增区间为(0,a ),(1e ,+∞);单调递减区间为(a ,1e).②当a =1e 时,f ′(x )≥0,此时f (x )的单调递增区间为(0,+∞),没有单调递减区间.③当a >1e时,x 变化时,f ′(x ),f (x )的变化情况如下表:此时f (x )的单调递增区间为(0,1e ),(a ,+∞);单调递减区间为(1e ,a ).(Ⅱ)由(2x -4a )ln x >-x (x ≥1),得(2x 2-4ax )ln x +x 2>0,即f (x )>0对x ≥1恒成立. 由(Ⅰ)可知,当0<a ≤1e时,f (x )在[1,+∞)上单调递增,则f (x )min =f (1)>0恒成立;当1e<a ≤1时,f (x )在[1,+∞)上单调递增,则f (x )min =f (1)=1>0恒成立; 当a >1时,f (x )在(1,a )上单调递减,在(a ,+∞)上单调递增,则f (x )min =f (a )>0,即(2a 2-4a 2)ln a +a 2>0,解得1<a <e . 综上可知,a 的取值范围为(0,e).22.(本小题满分14分)解:(Ⅰ)解法1:设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =. (Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A ,B ,C ,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根, 所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.。
湖北省武汉市武昌区高三5月调考文科数学试题含答案
武昌区 高三年级五月调研考试文科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合}|{2x x x A ≤=,}1,0,1{-=B ,则集合B A I 的子集共有( C ) A .2个 B .3个 C .4个 D .8个 2.若复数i)i)(1(2m m ++是实数,则实数=m ( B )A .1B .1-C .2D .2-3.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤,1,1,2y y x x y 则y x z 2+=的最大值是( C )A .25-B .0C .35D .25 4.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( D ) A .32 B .52 C .53D .109 5.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a by a x 的一个焦点,且双曲线的一条渐近线方程为03=+y x ,则该双曲线的方程为( B )A .1322=-y xB .1322=-y x C .12622=-y x D .16222=-y x6.已知2cos sin =-αα,),0(πα∈,则=αtan ( A )A .1-B .1C .3-D .3 7.执行如图所示的程序框图,若输出k 的值为8, 则判断框内可填入的条件是( B )A .?43≤SB .?1211≤S C .?2425≤SD .?120137≤S 8.设2log 3=a ,2ln =b ,215-=c ,则( C )A .c b a <<B .a c b <<C .b a c <<D .a b c << 9.下面是关于公差0>d 的等差数列}{n a 的四个命题:p 1:数列}{n a 是递增数列; p 2:数列}{n na 是递增数列; p 3:数列}{na n是递增数列; p 4:数列}3{nd a n +是递增数列. 其中的真命题为( D )A .1p ,2pB .3p ,4pC .2p ,3pD .1p ,4p10.某几何体的三视图如图所示,则该几何体的表面积为( B) A .54 B .60 C .66 D .7211.动点A (x ,y )在圆122=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间0=t 时,点A 的坐标是)23,21(,则当120≤≤t 时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是( D )A .]1,0[B .]7,1[C .]12,7[D .]1,0[和]12,7[12.已知椭圆Γ:)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为k (k >0)的直线与Γ相交于A ,B 两点.若FB AF 3=,则=k ( B ) A .1 B .2 C .3 D .2 二、填空题:本大题共4小题,每小题5分.13.已知点)2,1(-P ,线段PQ 的中点M 的坐标为)1,1(-.若向量PQ 与向量a =(λ,1)共线,则λ= . 答案:32-14.已知数列{a n }是等差数列,若11+a ,33+a ,55+a 构成公比为q 的等比数列,则=q . 答案:115.已知直三棱柱111C B A ABC -的各顶点都在同一球面上.若21===AA AC AB ,=∠BACο90=,则该球的体积等于 .答案:π3416.函数1cos sin )(++-=x x x x f 在]47,43[ππ上的最大值为 . 答案:2+π三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且B a A b cos 3sin =.正视图侧视图俯视图(Ⅰ)求B ;(Ⅱ)若3=b ,A C sin 2sin =,求a ,c .解:(Ⅰ)由b sin A =3a cos B 及正弦定理,得sin B sin A =3sin A cos B .在△ABC 中,sin A ≠0,∴sin B =3cos B ,∴tan B =3.∵0<B <π,∴B =π3.……………………………………………………………6分(Ⅱ)由sin C =2sin A 及正弦定理,得c =2a . ①由余弦定理b 2=a 2+c 2-2ac cos B ,得32=a 2+c 2-2ac cos π3,即a 2+c 2-ac =9. ②解①②,得a =3,c =23. (12)分 18.(本小题满分12分)某工厂36名工人的年龄数据如下表:(Ⅰ)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(Ⅱ)计算(Ⅰ)中样本的平均值x 和方差2s ;(Ⅲ)求这36名工人中年龄在),(s x s x +-内的人数所占的百分比.解:(Ⅰ)根据系统抽样的方法,抽取容量为9的样本,应分为9组,每组4人.由题意可知,抽取的样本编号依次为:2,6,10,14,18,22,26,30,34, 对应样本的年龄数据依次为:44,40,36,43,36,37,44,43,37.……4分 (Ⅱ)由(Ⅰ),得x -=44+40+36+43+36+37+44+43+379=40,s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009.…………………………………………8分 (Ⅲ)由(Ⅱ),得x -=40,s =103,∴x --s =3623,x -+s =4313, 由表可知,这36名工人中年龄在(x --s ,x -+s )内共有23人,所占的百分比为2336×100﹪≈63.89﹪.…………………………………………………………………12分19.(本小题满分12分)如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 为PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22==AC AB .(Ⅰ)求证://QG 平面PBC ; (Ⅱ)求G 到平面PAC 的距离. 解:(Ⅰ)如图,连结OG 并延长交AC 于M ,连结QM ,QO . ∵G 为△AOC 的重心,∴M 为AC 的中点. ∵O 为AB 的中点,∴OM ∥BC .∵OM ⊄平面PBC ,BC ⊂平面PBC ,∴OM ∥平面PBC . 同理QM ∥平面PBC .又OM ⊂平面QMO ,QM ⊂平面QMO ,OM ∩QM =M , ∴平面QMO ∥平面PBC . ∵QG ⊂平面QMO ,∴QG ∥平面PBC . (6)分(Ⅱ)∵AB 是圆O 的直径,∴BC ⊥AC .由(Ⅰ),知OM ∥BC ,∴OM ⊥AC .∵PA ⊥平面ABC ,OM ⊂平面ABC ,∴PA ⊥OM . 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A ,∴OM ⊥平面PAC ,∴GM 就是G 到平面PAC 的距离. 由已知可得,OA =OC =AC =1,∴△AOC 为正三角形,∴OM =32. 又G 为△AOC 的重心,∴GM =13OM =36.故G 到平面PAC 的距离为36.…………………………………………………12分 20.(本小题满分12分)在平面直角坐标系xOy 中,点)3,0(A ,直线l :42-=x y .设圆C 的半径为1,圆心在l 上.(Ⅰ)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(Ⅱ)若圆C 上存在点M ,使||2||MO MA =,求圆心C 的横坐标a 的取值范围. 解:(Ⅰ)由题设,圆心C 是直线y =2x -4与直线y =x -1的交点,由⎩⎪⎨⎪⎧y =2x -4,y =x -1.解得C (3,2),于是切线的斜率必存在. 设过A (0,3)的圆C 的切线方程为y =kx +3,即kx -y +3=0,由题意,|3k +1|k 2+1=1,解得k =0,或k =-34.故所求切线方程为y =3,或y =-34x +3,即y =3,或3x +4y -12=0.……4分(Ⅱ)∵圆C 的圆心在直线y =2x -4上,∴圆C 的方程为(x -a )2+[y -(2a -4)]2=1.设点M (x ,y ),由|MA |=2|MO |,得x 2+(y -3)2=2x 2+y 2, 化简,得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,∴点M 在以D (0,-1)为圆心,2为半径的圆上. 由题意,点M (x ,y )在圆C 上,∴圆C 和圆D 有公共点,则2-1≤|CD |≤2+1,∴1≤(a -0) 2+[(2a -4)-(-1)]2≤3,即1≤5a 2-12a +9≤3. 由5a 2-12a +8≥0,得x ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 故圆心C 的横坐标a 的取值范围为[0,125].…………………………………12分 21.(本小题满分12分)已知函数xkx x f e ln )(+=(k 为常数,Λ71828.2e =是自然对数的底数),曲线)(x f y =在点))1(,1(f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)设)()()(2x f x x x g '+=,其中)(x f '为)(x f 的导函数.证明:0>∀x ,2e 1)(-+<x g . 解:(Ⅰ)由f (x )=ln x +k e x ,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞). 由已知,得f ′(1)=1-ke=0,∴k =1. (4)分(Ⅱ)由(Ⅰ),得g (x )=(x 2+x )·1-x -x ln x x e x =x +1ex (1-x -x ln x ),x ∈(0,+∞).设h (x )=1-x -x ln x ,则h ′(x )=-ln x -2,x ∈(0,+∞).令h ′(x )=0,得x =e -2.当0<x <e -2时,h ′(x )>0,∴h (x )在(0,e -2)上是增函数;当x >e -2时,h ′(x )<0,∴h (x )在(e -2,+∞)上是减函数.故h (x )在(0,+∞)上的最大值为h (e -2)=1+e -2,即h (x )≤1+e -2. 设φ(x )=e x -(x +1),则φ′(x )=e x -1>0,x ∈(0,+∞), ∴φ(x )在(0,+∞)上是增函数,∴φ(x )>φ(0)=0,即e x -(x +1)>0,∴0<x +1e x <1.∴g (x )=x +1ex h (x )<1+e -2. 因此,对任意x >0,g (x )<1+e -2.……………………………………………12分22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E ,已知3==BD AC .(Ⅰ)求AD AB ⋅的值; (Ⅱ)求线段AE 的长. 解:(Ⅰ)∵AC 切⊙O ′于A ,∴∠CAB =∠ADB , 同理∠ACB =∠DAB ,∴△ACB ∽△DAB ,∴AC AD =ABBD ,即AC ·BD =AB ·AD .A BCDE OO ′∵AC =BD =3,∴AB ·AD =9.…………………………………………………5分 (Ⅱ)∵AD 切⊙O 于A ,∴∠AED =∠BAD ,又∠ADE =∠BDA ,∴△EAD ∽△ABD ,∴AE AB =ADBD ,即AE ·BD =AB ·AD .由(Ⅰ)可知,AC ·BD =AB ·AD ,∴AE =AC =3. (10)分 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 215,23(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为θρcos 32=.(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明它表示什么曲线;(Ⅱ)若P 是直线l 上的一点,Q 是曲线C 上的一点,当||PQ 取得最小值时,求P 的直角坐标.解:(Ⅰ)由ρ=23cos θ,得ρ2=23ρcos θ,从而有x 2+y 2=23x ,∴(x -3)2+y 2=3.∴曲线C 是圆心为(3,0),半径为3的圆.…………………………………5分 (Ⅱ)由题设条件知,|PQ |+|QC |≥|PC |,当且仅当P ,Q ,C 三点共线时,等号成立,即|PQ |≥|PC |-3,∴|PQ |min =|PC |min -3. 设P (-32t ,-5+12t ),又C (3,0), 则|PC |=(-32t -3)2+(-5+12t )2=t 2-2t +28=(t -1)2+27. 当t =1时,|PC |取得最小值,从而|PQ |也取得最小值, 此时,点P 的直角坐标为(-32,-92).………………………………………10分 24.(本小题满分10分)选修4-5:不等式选讲已知0>a ,0>b ,函数||||)(b x a x x f ++-=的最小值为2.(Ⅰ)求b a +的值;(Ⅱ)证明:22>+a a 与22>+b b 不可能同时成立. 解:(Ⅰ)∵a >0,b >0,∴f (x )=|x -a |+|x +b |≥|(x -a )-(x +b )|=|-a -b |=|a +b |=a +b , ∴f (x )min =a +b .由题设条件知f (x )min =2, ∴a +b =2.…………………………………………………………………………5分 (Ⅱ)由(Ⅰ)及基本不等式,得2ab ≤a +b =2,∴ab ≤1. 假设a 2+a >2与b 2+b >2同时成立, 则由a 2+a >2及a >0,得a >1.同理b >1,∴ab >1,这与ab ≤1矛盾.故a2+a>2与b2+b>2不可能同时成立.……………………………………10分。
湖北省黄冈中学2014届高三5月模拟考试 数学文试题 Word版含答案
湖北省黄冈中学2014届高三五月模拟考试数学(文史类)本试题卷共6页,共22题.满分150分.考试用时120分钟.★祝考试顺利★命题:潘际栋 审稿:曹燕 校对:肖海东注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|2014},{|01}M x x N x x =<=<<,则下列关系中正确的是( )A .MN R =B .{|01}M N x x =<<C .N M ∈D .MN φ=2.已知命题p :,x R $ 使1sin 2x x <成立. 则p Ø为( ) A .,x R $ 使1sin 2x x =成立 B .,x R " 1sin 2x x <均成立 C .,x R $ 使1sin 2x x ³成立 D .,x R " 1sin 2x x ³均成立 3.若函数f (x )=sin ωx +3cos ωx ,x ∈R ,又f (x 1)=-2,f (x 2)=0,且|x 1-x 2|的最小值为3π4,则正数ω的值为( ) A.13B.23C.43D.324.在函数()y f x =的图象上有点列(,)n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可以为 ( )A .()21f x x =+B .2()4f x x =C .3()log f x x =D . 3()()4xf x =5.如图,已知P 是边长为2的正三角形的边BC 上的动点,则()AP AB AC ⋅+( )A .最大值为8 B.是定值6 C.最小值为2 D.与P 的位置有关6.按下图所示的程序框图运算:若输出k =2,则输入x 的取值范围是( )A .(20,25]B .(30,32]C .(28,57]D .(30,57]7.当实数,x y 满足不等式0022x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有2ax y +≤成立,则实数a 的取值集合是( )A .(0,1]B .(,1]-∞C .(1,1]-D .(1,2)8.已知F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,E 是双曲线的右顶点,过点F且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲 线的离心率e 的取值范围为( ) A .(1,2) B .() C . (1,3) D. 9.若函数2()2ln f x x x =-在其定义域的一个子区间(1,1)k k -+内存在最小值,则实数k 的取值范围是( ).A .[1,)+∞B .3[1,)2 C .[1,2) D .3[,2)210.在等腰梯形ABCD 中,,E F 分别是底边,AB CD 的中点,把四边形AEFD 沿直线EF 折起,所在的平面为α,且α⊥平面BEFC ,P ∈α,设,PB PC 与α所成的角分别为1212,(,θθθθ均不为0).若12θθ=,则点P 的轨迹为( )A .直线B .圆C .椭圆D .抛物线二、填空题:本大题共7小题,考生共需作答5小题,每小题5分,共35分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. 11.已知m R ∈,复数112m i i +-+的实部和虚部相等,则m = . 12.已知向量(2,3)=a ,(2,1)=-b ,则a 在b 方向上的投影等于 .13.若函数()(0x f x a x a a =-->且1)a ≠有两个零点,则实数a 的取值范围是 . 14. 右边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是 .15.过抛物线2:2C x y =的焦点F 的直线l 交抛物线C 于,A B 两点,若抛物线C 在点B 处的切线斜率为1,则线段AF = .16.路灯距地平面为8m ,一个身高为1.75m 的人以57m/s 的速率,从路灯在地面上的射影点C 处,沿某直线离开路灯,那么人影长度的变化速率v 为 m/s . 17.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数.如:6=123++;28=124714++++;496=1248163162124248++++++++.已经证明:若21n-是质数,则12(21)n n--是完全数,n *∈N .请写出一个四位完全数 ;又623=⨯,所以6的所有正约数之和可表示为(12)(13)+⋅+;22827=⨯,所以28的所有正约数之和可表示为2(122)(17)++⋅+;按此规律,请写出所给的四位数的所有正约数之和可表示..为 .(请参照6与28的形式给出) 三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知函数2()cos 2cos 1f x x x x =-+ (1)求函数)(x f 的最小正周期及单调递增区间;P60俯视图BDF EP(2)在ABC ∆中,若(22Af =,1b =,2c =,求a 的值.19.(本小题满分12分)一个四棱锥的三视图和直观图如图所示,其中俯视图中060DAB ∠=.E 为侧棱PD 的中点. (1)求证:PB //平面AEC ;(2)若F 为侧棱PA 上的一点,且PFFAλ=, 则λ为何值时, PA ⊥平面BDF ?并求此时几何体F —BDC 的体积.20. (本小题满分13分)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若12log n n n b a a =⋅,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.21.(本题满分14分)已知函数2()2,f x x x =+()e x g x x =. (1)求()()f x g x -的极值;(2)当(2,0)x ∈-时,()1()f x ag x +≥恒成立,求实数a 的取值范围. 22.(本题满分14分)已知抛物线21:2(0)C y px p =>的焦点F 以及椭圆22222:1(0)y x C a b a b+=>>的上、下焦点及左、右顶点均在圆22:1O x y +=上. (1)求抛物线1C 和椭圆2C 的标准方程;(2)过点F 的直线交抛物线1C 于,A B 两不同点,交y 轴于点N ,已知12,NA AF NB BF λλ==,求12λλ+的值;(3)直线l 交椭圆2C 于,P Q 两不同点,,P Q 在x 轴的射影分别为','P Q ,''10OP OQ OP OQ ⋅+⋅+=,若点S 满足OS OP OQ =+,证明:点S 在椭圆2C 上.2014年届湖北省黄冈中学五月模拟试题参考答案1.【答案】B 【解析】{|2013}{|01}{|01}MN x x x x x x =<<<=<<2. 【答案】D【解析】原命题为特称命题,故其否定为全称命题,即:p ⌝,sin 2xx x ∀∈≥R . 3.答案:B解析:因为f (x )=2sin(ωx +π3),|x 1-x 2|的最小值为344T π=,故3T π=,所以ω=23.4.【答案】 D【解析】对于函数f (x )=⎝⎛⎭⎫34x 上的点列(x n ,y n ),有y n=3()4nx ,由于{x n }是等差数列,所以x n +1-x n =d ,因此1n ny y +=113()334()()344()4n n n n x x x d x ++-==,这是一个与n 无关的常数,故{y n }是等比数列.故选D. 5.【答案】B【解析】设BC 的中点为D ,,AP AD 的夹角为θ,则有()2AP AB AC AP AD ⋅+=⋅22||(||cos )2||6AD AP AD θ=⋅==。
武汉市2014届高中毕业生五月供题理数详解
武汉市2014届高中毕业生五月模拟考试(理科数学) 五月供题11、解析:简单题()(1)111222a i a i i a a z i i ++-+-===++,112,122a a+-==- 2、解析:简单题考查基本概念3、解析:简单题,考查简单随机抽样中的随机数表法,第一个数字65(舍去),08,02,14,07,02(舍去)014、解析:简单题,定积分与二项式展开式综合考察,2232211(32)()|4a x x dx x x =-=-=⎰,二项式展开式为2613164(4)(),3,1280k k k k T C x x k T x --+=-==-5、解析:简单题,将集合运算与程序框图的阅读结合起来,{0,1,2,3,4,5,6},{3,1,1,3,5,7,9}A B ==--,因此(){3,1,7,9}U C A B ⋂=--6、解析:简单题,正弦定理与正弦和角公式,1sin sin sin sin sin cos sin 2A B C C B A B +=因此(大边对大角)15sin(),(2666A C A C A CB πππ+=+=+==舍去),,7、解析:根据三视图知几何体位半个圆柱+一个长方体(与圆柱的截面重合),因此几何体体积为168π+8、解析:简单题,实际问题结合二次函数,由于生产900KG 需要的时间为900x,此次生产的总利润为2900311100(51)270000()90000450000y x x x x x=⋅+-=-+⋅+(11110x≤≤),令21,()27000090000450000t y t t t x ==-++结合二次函数性质,当max 1,6,6t x y ==即 9、解析:中等题:考察双曲线渐近线性质,结合题目已知,假设焦点在x 轴上,可知渐近线方程为by x a=因此要保证有两个交点,需有渐近线的倾斜角22313060,33b b a a θ<≤<≤<≤即2e <≤10、解析:难题,分段函数,首先分类讨论,画出图像,注意各个特殊点能否取到,同时数形结合,考虑直线的平移,由于作图(注意图中的分段函数部分【除了蓝色部分】都为曲线,为了方便我画成了直线,但不影响判断)此题只要注意选项中的特殊点即可11、解析:画出可行域,知当经过(3,-1)点时,动点M 与原点连线斜率最小min 13k =-12、解析:10个人中无限制选取3人,有310120C =,只有男同学的选取方法有344C =,只有女同学的选取方法有3620C =,因此男女同学都有的选取方法为96,概率为9641205= 13、解析:AC 与BD 相交于O 点,则有22218AP AC AP AO AP ⋅=⋅==考察向量数量积的几何意义14、解析:考察类比推理,12PC PD PF PF ⋅=⋅15、解析:考察了切割线定理,弦切角,以及三角形全等和平行四边形的判断2()4AE EB ED EB EB BD EB =⋅=⋅+⇒=,EAB ACB ABC AE BC ∠=∠=∠⇒103BF BD BF AE ED =⇒=,又8,,3AEB BCA AE BC FC BC BF ∆≅∆==-= 16、解析:cos 44x ρθ==极坐标方程化为直角坐标方程,则将x 带入曲线参数方程,由于交点很坐标都为4,因此24,2,828,16t y t y AB ====-=-=t 或者,。
湖北省武汉武昌区2014届高三元月调考数学文试题
湖北武昌区2014届高三上学期期末学业质量调研数学(文)试题本试题卷共22题。
满分1 50分,考试用时1 20分钟。
★祝考试顺利★注意事项: 1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卡指定位置。
认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卡上的指定位置o 2.选择题的作答:选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.非选择题的作答:用黑色墨水的签字笔直接答在答题卡上的每题所对应的答题区域内。
答在试题卷上或答题卡指定区域外无效。
4.考试结束,监考人员将答题卡收回,考生自己保管好试题卷,评讲时带来。
一、选择题:本大题共1 0小题,每小题5芬,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A={x|x>3),B={|24},x x A B -≤≤ 则=A .[—2,+∞)B .(3,+∞)C .[-2,4]D .(3,4]2.已知i 是虚数单位,则23ii+-A .1122i - B .7122i -C .1122i + D .7122i + 3.…0,0x y >>”是“xy>0”成立的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知某几何体的三视图如图所示,则该几何体的体积是 A .1 440 B .1 200 C .960 D .720 5.如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积s 是时间t 的函数,这个函数的大致图象是6.如果执行下面的程序框图,那么输出的S=A .2 450B .2 500C .2 550D .2 6527.设a ,b 是两条不同的直线,,αβ是两个不同的平面,则 A .若//,//,//a b a b αα则 B .若//,//,//a a αβαβ则C .若//,,a b a b αα⊥⊥则D .若//,,a ααβαβ⊥⊥则8.函数()2sin()(0,)22f x x ππωϕωϕ-=+><<的部分图象 如图所示,则,ωϕ的值分别是 A .2,3π- B .2,6π-C .4,6π-D .4,3π 9.过双曲线M :2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线肘的两条渐近线分别相交于B 、C ,.且|AB|=|BC|,则双曲线M 的离心率是ABC .3D .210.已知函数(),(1,1)||1xf x x x =∈--,有下列结论:. ①(1,1),()()0x f x f x ∀∈--+=等式恒成立; ②[0,),()|m f x m ∀∈+∞=方程|有两个不等实根;③121212,(1,1),()();x x x f x f x ∀∈-≠≠若x 则一定有④存在无数个实数k ,使得函数g (x )()(1,1)f x kx =--在上有3个零点.其中正确结论的个数为 A .1 B .2 C .3 D .4二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分. 11.某公司300名员工201 2年年薪情况的频率分布直方图如图所示,由图可知,员工中年薪在1.4—1.6万元的共有 人. 12.同时掷两枚质地均匀的骰子,则 (I )向上的点数相同的概率为 ; (Ⅱ)向上的点数之和小于5的概率为 。
湖北省黄冈中学2014届高三5月模拟考试 数学文试题 Word版含答案
湖北省黄冈中学2014届高三五月模拟考试数学(文史类)本试题卷共6页,共22题.满分150分.考试用时120分钟.★祝考试顺利★命题:潘际栋 审稿:曹燕 校对:肖海东注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|2014},{|01}M x x N x x =<=<<,则下列关系中正确的是( )A .MN R =B .{|01}M N x x =<<C .N M ∈D .MN φ=2.已知命题p :,x R 使1sin 2xx 成立. 则p 为( ) A .,x R 使1sin 2x x 成立 B .,x R 1sin 2x x 均成立C .,xR 使1sin 2xx 成立 D .,x R 1sin 2x x 均成立 3.若函数f (x )=sin ωx +3cos ωx ,x ∈R ,又f (x 1)=-2,f (x 2)=0,且|x 1-x 2|的最小值为 3π4,则正数ω的值为( ) A.13B.23C.43D.324.在函数()y f x =的图象上有点列(,)n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可以为 ( )A .()21f x x =+B .2()4f x x = C .3()log f x x =D . 3()()4xf x =5.如图,已知P 是边长为2的正三角形的边BC 上的动点,则()AP AB AC ⋅+( )A .最大值为8 B.是定值6 C.最小值为2 D.与P 的位置有关6.按下图所示的程序框图运算:若输出k =2,则输入x 的取值范围是( )A .(20,25]B .(30,32]C .(28,57]D .(30,57]7.当实数,x y 满足不等式0022x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有2ax y +≤成立,则实数a 的取值集合是( )A .(0,1]B .(,1]-∞C .(1,1]-D .(1,2)8.已知F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,E 是双曲线的右顶点,过点F且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲 线的离心率e 的取值范围为( )A .(1,2)B . (1,2)C . (1,3)D .(1,3)9.若函数2()2ln f x x x =-在其定义域的一个子区间(1,1)k k -+内存在最小值,则实数k 的取值范围是( ).A .[1,)+∞B .3[1,)2 C .[1,2) D .3[,2)210.在等腰梯形ABCD 中,,E F 分别是底边,AB CD 的中点,把四边形AEFD 沿直线EF 折起,所在的平面为α,且α⊥平面BEFC ,P ∈α,设,PB PC 与α所成的角分别为1212,(,θθθθ均不为0).若12θθ=,则点P 的轨迹为( )A .直线B .圆C .椭圆D .抛物线二、填空题:本大题共7小题,考生共需作答5小题,每小题5分,共35分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. 开始输入xk =0x =2x +1k =k +1 x >115?.结束否是输出k11.已知m R ∈,复数112m i i +-+的实部和虚部相等,则m = . 12.已知向量(2,3)=a ,(2,1)=-b ,则a 在b 方向上的投影等于 .13.若函数()(0xf x a x a a =-->且1)a ≠有两个零点,则实数a 的取值范围是 . 14. 右边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是 .15.过抛物线2:2C x y =的焦点F 的直线l 交抛物线C 于,A B 两点,若抛物线C 在点B 处的切线斜率为1,则线段AF = .16.路灯距地平面为8m ,一个身高为1.75m 的人以57m/s 的速率,从路灯在地面上的射影点C 处,沿某直线离开路灯,那么人影长度的变化速率v 为 m/s . 17.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数.如:6=123++;28=124714++++;496=1248163162124248++++++++.已经证明:若21n-是质数,则12(21)n n --是完全数,n *∈N .请写出一个四位完全数 ;又623=⨯,所以6的所有正约数之和可表示为(12)(13)+⋅+;22827=⨯,所以28的所有正约数之和可表示为2(122)(17)++⋅+;按此规律,请写出所给的四位数的所有正约数之和可表示..为 .(请参照6与28的形式给出) 三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知函数2()3cos 2cos 1f x x x x =-+(1)求函数)(x f 的最小正周期及单调递增区间;(2)在ABC ∆中,若()22A f =,1b =,2c =,求a 的值.P260俯视图BDF EP19.(本小题满分12分)一个四棱锥的三视图和直观图如图所示,其中俯视图中060DAB ∠=.E 为侧棱PD 的中点. (1)求证:PB //平面AEC ;(2)若F 为侧棱PA 上的一点,且PFFAλ=, 则λ为何值时, PA ⊥平面BDF ?并求此时几何体F —BDC 的体积.20. (本小题满分13分)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若12log n n n b a a =⋅,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.21.(本题满分14分)已知函数2()2,f x x x =+()e xg x x =. (1)求()()f x g x -的极值;(2)当(2,0)x ∈-时,()1()f x ag x +≥恒成立,求实数a 的取值范围.22.(本题满分14分)已知抛物线21:2(0)C y px p =>的焦点F 以及椭圆22222:1(0)y x C a b a b+=>>的上、下焦点及左、右顶点均在圆22:1O x y +=上. (1)求抛物线1C 和椭圆2C 的标准方程;(2)过点F 的直线交抛物线1C 于,A B 两不同点,交y 轴于点N ,已知12,NA AF NB BF λλ==,求12λλ+的值;(3)直线l 交椭圆2C 于,P Q 两不同点,,P Q 在x 轴的射影分别为','P Q ,''10OP OQ OP OQ ⋅+⋅+=,若点S 满足OS OP OQ =+,证明:点S 在椭圆2C 上.2014年届湖北省黄冈中学五月模拟试题参考答案1.【答案】B 【解析】{|2013}{|01}{|01}MN x x x x x x =<<<=<<2. 【答案】D【解析】原命题为特称命题,故其否定为全称命题,即:p ⌝,sin 2x x x ∀∈≥R . 3.答案:B解析:因为f (x )=2sin(ωx +π3),|x 1-x 2|的最小值为344T π=,故3T π=,所以ω=23.4.【答案】 D【解析】对于函数f (x )=⎝⎛⎭⎫34x 上的点列(x n ,y n ),有y n =3()4nx ,由于{x n }是等差数列,所以x n +1-x n =d ,因此1n ny y +=113()334()()344()4n n n n x x x d x ++-==,这是一个与n 无关的常数,故{y n }是等比数列.故选D. 5.【答案】B【解析】设BC 的中点为D ,,AP AD 的夹角为θ,则有()2AP AB AC AP AD ⋅+=⋅22||(||cos )2||6AD AP AD θ=⋅==。
湖北省武汉市武昌区部分学校2014届高三五月适应性考试语文试题(word版)
湖北省武汉市武昌区部分学校2014届高三五月适应性考试语文试题注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是()A.颓圮.(pǐ)彳亍.(chí)偌.大(ruî)休戚.相关(qī)B.隽.秀(jùn)迁徙.(xǐ)徘徊.性(huái)性情孤僻.(pì)C.束.缚(sù)瞭.望(liào)忖.度(cǔn)数.见不鲜(shuî)D.熟稔.(rěn)孝悌.(tì)惩.罚(chěng)模棱.两可(léng)2.下列各组词语中,没有错别字的一组是()A.凋蔽荫蔽起承转合燕侣莺俦B.磐石绮丽丰华正茂煮鹤焚琴C.罪孽谛听功不唐捐归根结蒂D.蜇居神采管窥蠡测安分守己3.依次填入下列横线处的词语,最恰当的一组是()①尤其对盆栽兰花,我更是心怀痛惜。
她们在人的下,野性全无,变得羸弱,经不起风风雨雨,勉强开一些小小花朵,以示自己的存在。
②走出尘世,背着书籍去旅行,融入自然,没有世俗牵绊,因此宽广空灵轻盈,所有的凡尘烦恼。
A.摆弄只是胸怀了无踪影 B.摆布可是胸襟沓无踪影C.伺候而是怀抱无影无踪 D.侍弄总是心怀毫无踪迹4.下列各句中,没有语病的一句是()A.正能量告诉我们每个人身上都是带有能量的,而只有健康、积极、乐观的心态的人才带有正能量;而减少不该有的欲望,保持心态的平和,多做善事能增加这一能量场。
湖北省黄冈市2014届高三5月适应性考试文科数学试题及答案
黄冈市2014届高三5月适应性考试数学试题(文科)本试卷分为第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分。
考试时间120分钟。
第一卷一.选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1..已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1 } 2.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则 A .:,2p x A x B ⌝∃∈∈ B .:,2p x A x B ⌝∃∉∈ C . :,2p x A x B ⌝∃∈∉ D .:,2p x A x B ⌝∀∉∉3.2014年3月,为了调查教师对十二届全国人民代表大会二次会议的了解程度,黄冈市拟采用分层抽样的方法从A ,B ,C 三所不同的中学抽取60名教师进行调查,已知A ,B ,C 三所中学分别有180,270,90名教师,则从C 学校学校中抽取的人数是A .10B 。
12C 。
18D 。
24 4. 函数13y x x =-的图象大致为5.将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 A .35π B .65π C .2πD .6π6.若同一平面内向量a b c1=1=3=b ++等于 A .2B .5C .2或5D .2或57。
直线L :134=+y x 与椭圆E :191622=+y x 相交于A ,B 两点,该椭圆上存在点P ,使得 △ PAB 的面积等于3,则这样的点P 共有A .1个错误!未找到引用源。
B .2个错误!未找到引用源。