培优讲义03:锐角三角函数(一)

合集下载

锐角三角函数讲义

锐角三角函数讲义

锐角三角函数讲义【知识点拨】知识点一:锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注意:我们说锐角三角函数都是在直角三角形中讨论的!若没有直角,要想方设法构造直角。

课堂练习:1. 把Rt △ABC 各边的长度都扩大3倍得Rt △A 'B 'C ',那么锐角A.A '的余弦值的关系为( ).A.cosA =cosA 'B.cosA =3cosA 'C.3cosA =cosA 'D.不能确定 2. 已知中,AC =4,BC =3,AB =5,则( )A .B .C .D .3. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.45α图14.在△ABC中,∠C=90°,tan A=,则sin B=()A. B. C. D.5.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B=,6.⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.知识点二:特殊角三角函数值的计算知识点三:运用三角函数的关系化简或求值 1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (900-A )=ctan A ; ctan (900-A )=tan A2.同角的三角函数关系. ①平方关系:sin 2A+cos 2A=l ② 商数关系:sin cos tan ,cot cos sin A AA A A A==sin cos a a += ③倒数关系: tgα·ctgα=1.课堂练习:1. 如α∠是等腰直角三角形的一个锐角,那么cos α的值等于( )A.12D.12. 45cos 45sin +的值等于( ) A. 1B. 2C. 3D.213+ 3. 下列计算错误的是( )A .sin 60sin 30sin 30︒-︒=︒B .22sin 45cos 451︒+︒=C .sin 60cos 60cos 60︒︒=︒D .cos30cos30sin 30︒︒=︒4. 已知a 为锐角,sina=cos500则a 等于( )A 20°B 30°C 40°D 50°5. 若tan(a+10°)=3,则锐角a 的度数是 ( ) A 、20° B 、30° C 、35° D 、50°6. (兰州市)如果sin 2α+sin 230°=1那么锐角α的度数是( )A.15° B.30° C.45° D.60° 7. 已知α为锐角,且sin α-cos α=12 ,则sin α·cos α=___________8. cos 2α+sin 242○ =1,则锐角α=______.9. tan30°sin60°+cos 230°-sin 245°tan45°10. 22sin30cos60tan 60tan30cos 45+-⋅+︒.11. 22sin 45cos30tan 45+-知识点四:锐角三角函数的增减性三角函数的单调性1. 正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小.2. 余弦是减函数,三角函数值随角的增大而减小,随角的减小而增大。

《锐角三角函数》 讲义

《锐角三角函数》 讲义

《锐角三角函数》讲义一、锐角三角函数的定义在直角三角形中,我们把锐角的对边与斜边的比值叫做正弦(sin),锐角的邻边与斜边的比值叫做余弦(cos),锐角的对边与邻边的比值叫做正切(tan)。

以一个锐角为 A 的直角三角形为例,假设其对边为 a,邻边为 b,斜边为 c。

那么,sin A = a / c,cos A = b / c,tan A = a / b 。

需要注意的是,锐角三角函数的值只与角的大小有关,而与三角形的大小无关。

二、特殊角的三角函数值我们要牢记一些特殊角的三角函数值,这在解题中会经常用到。

30°角:sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3 。

45°角:sin 45°=√2 / 2,cos 45°=√2 / 2,tan 45°= 1 。

60°角:sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3 。

三、锐角三角函数的应用锐角三角函数在实际生活中有广泛的应用。

比如,测量物体的高度。

如果我们知道一个物体与我们的水平距离,以及我们观测物体顶部的仰角,就可以通过三角函数来计算物体的高度。

假设我们站在水平地面上,距离一个建筑物为 d 米,观测建筑物顶部的仰角为α,那么建筑物的高度 h 就可以通过tanα = h / d 来计算,即 h =d × tanα 。

再比如,测量河流的宽度。

我们可以在河的一岸选择一个点,然后测出对岸一个目标点与这个点的连线和河岸的夹角,以及这个点到河岸的垂直距离,从而计算出河流的宽度。

四、锐角三角函数的性质1、取值范围正弦和余弦的值域都在-1, 1之间,而正切的值域是全体实数。

2、增减性在锐角范围内,正弦函数值随着角度的增大而增大,余弦函数值随着角度的增大而减小,正切函数值随着角度的增大而增大。

锐角三角函数课件

锐角三角函数课件

余弦函数
1
定义和公式
余弦函数描述直角三角形中的比例关系,其定义和公式为cos(x) = 邻边/斜边。
2
图像和性质
余弦函数的图像呈现波浪形状,具有周期性、振幅和相位差等性质。
3
应用举例
余弦函数在几何、物理、工程等领域有广泛的应用,如研究周期性现象和计算机 图形学。
正切函数
定义和公式 图像和性质 应用举例
和差化积公式
三角函数的和差化积公式可 以将两个三角函数的和、差 表达为一个三角函数的乘积。
倍角公式
三角函数的倍角公式用于计 算两倍角的三角函数值。
总结
特点和应用
锐角三角函数具有周期性、对称性和广泛的 应用,为解决实际问题提供了重要的数学工 具。
实际生活中的应用举例
锐角三角函数在摄影、测量、物理仿真等实 际生活中有广泛的应用。
ห้องสมุดไป่ตู้
扩展和推广
锐角三角函数的研究和应用正在不断扩展和 推广,涉及到更多领域和复杂情况。
未来发展和研究方向
锐角三角函数的未来发展将涉及到更多领域 的交叉研究和深入探索。
正切函数用来描述直角三角形中的比例关系, 其定义和公式为tan(x) = 对边/邻边。
正切函数的图像呈现周期性、无界和渐近线等 特点,其图像在某些范围内会无限逼近无穷。
正切函数在物理、工程、电子等领域中常用于 信号处理和电路分析等方面。
三角函数的关系式
基本关系式
正弦、余弦和正切函数之间 有一系列关系式,如sin²θ + cos²θ = 1等。
特点
锐角三角函数的值域在特 定区间内,具有周期性和 对称性等特点。
正弦函数
定义和公式
正弦函数用来描述直角三角形 中的比例关系,其定义和公式 为sin(x) = 对边/斜边。

著名机构初中数学培优讲义锐角三角函数性质.第01讲(A级).教师版

著名机构初中数学培优讲义锐角三角函数性质.第01讲(A级).教师版

内容基本要求略高要求较高要求锐角三角函数了解锐角三角函数(正弦、余弦、正切、余切),知道特殊角的三角函数值由某个角的一个三角函数值,会求这个角其余两个三角函数值;会求含有特殊角的三角函数值的计算能用三角函数解决与直角三角形有关的简单问题1. 掌握锐角三角函数的概念,会熟练运用特殊三角函数值; 2. 知道锐角三角函数的取值范围以及变化规律; 3. 同角三角函数、互余角三角函数之间的关系; 4. 将实际问题转化为数学问题,建立数学模型.“正弦”的由来公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献.尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了.三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表.课前预习重难点中考要求锐角三角函数托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的.印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC 与∠AOC 对应,这样,他们造出的就不再是“全弦表”,而是“正弦表”了.印度人称连结弧(AB)的两端的弦(AB)为“吉瓦”,是弓弦的意思;称AB 的一半(AC) 为“阿尔哈吉瓦”.后来“吉瓦”这个词译成阿拉伯文时被误解为“弯曲”、“凹处”,阿拉伯语是“dschaib ”.十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了“sinus ”.三角学输入我国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学.在《大测》中,首先将sinus 译为“正半弦”,简称“正弦”,这就成了正弦一词的由来.模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=. (2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c=. (3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.cba CBA例题精讲二、特殊角三角函数这些特殊角的三角函数值一定要牢牢记住!三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以 0sin 10cos 1tan 0A A A <<<<>,,.四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A= 2.互余角三角函数关系:(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B <【例1】 如图,在Rt ABC ∆中,ACB ∠=90o ,CD AB ⊥于D ,则sin A =()AC=()BC,sin B =()CD=()AC,sin DCB ∠=()(),sin ACD ∠=()(),tan A =()AC =()CD ,tan B =()CD =()AC. DCBA【难度】1星【解析】利用三角函数定义【答案】,,,,,,,,,,,CD AB BC AB BD BC AD AC BC AD BD BC【巩固】在Rt ABC ∆中,90C ∠=︒,sin A =23,AB =9,则BC = . 【难度】2星【解析】要求学生能够正确画出图形,找出相对应的边. 因为2sin 3BC A AB ==,9AB =,所以6BC =.【答案】6【例2】 如图,在Rt ABC △中,90C ∠=o ,1BC =,2AB =,则下列结论正确的是( ). A.sin A =B .1tan 2A = C.cos B = D.tan B =【难度】2星【解析】考查勾股定理和锐角三角函数的定义,由勾股定理得:AC .根据三角函数定义:1sin 2BC A AB ==,tan BC A AC ==1cos 2BC B AB ==,tan ACB BC=【答案】D【巩固】(2011江苏连云港)如图,ABC △的顶点都在方格纸的格点上,则sin A =______.CBAC BA【难度】2星【解析】正弦、余弦、正切、余切都是在直角三角形中给出的.过点C 作CD AD ⊥交AB 的延长线于D 。

最新锐角三角函数讲义

最新锐角三角函数讲义

一、锐角三角函数【基础知识精讲】一、正弦与余弦,正切:1、 在ABC ∆中,C ∠为直角,锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin ,⋅=∠=caA A 斜边的对边sin锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos .cbA A =∠=斜边的邻边cos锐角A ∠的对边与邻边的比叫做A ∠的正切,记作A tan 。

的邻边的对边A A A ∠∠=tan =ab2、当A ∠为锐角时, 1sin 0<<A ,1cos 0<<A ,0tan >A 。

二、特殊角的三角函数值:三、增减性:当0900<<α时,sin α、tan α随角度α的增大而增大;cos α、cot α随角度α的增大而减小。

【例题巧解点拨】例1. 在Rt △ABC 中,∠C=90°,AC=12,BC=5(1)求AB 的长。

(2)求sinA ,cosA 的值。

(3)求的值。

(4)比较sinA 与cosB 的大小。

(5)比较tanA 与AAcos sin 的大小。

例2. 在平面直角坐标系xOy 中,已知点A (3,0) 和点B (0,-4), 则cos ∠OAB 等于( )A.43B.-43C. 53D. 54例3. 已知a 为锐角,且aa aa a cos 2sin cos sin ,3tan +-=求的值.例4.如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC. (1)求证:AC=BD ; (2)若sinC=54,BC=12.求AD 的长.例5、如图,在△ABC 中,∠C=90°,ED ⊥AB 于D 点,若tan ∠BED=34,cosA=1312,CE=1333,求DE 的长。

例6、如图,M 是正方形ABCD的边AD 的中点,BE=3AE 。

求sin ∠ECM 的值。

CDE【夯实基础】1.化简:+;2、△ABC 中,若cosB=23,tan A=,且 ∠A 、∠B 为锐角,则△ABC 是 三角形; 3、若αα,则锐角)110tan(3=︒+的度数为 ; 4、已知β是锐角,且cos β=23,则tan(90°-β)= ; 5.在△ABC 中,CD ⊥AB 于D 。

完整版)锐角三角函数超经典讲义

完整版)锐角三角函数超经典讲义

完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。

在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。

具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。

其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。

这些符号都是完整的,单独的“sin”没有意义。

在用大写字母表示角度时,一般省略“∠”符号。

在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。

例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。

例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。

证明△ABE≌△DFA,并求sin∠EDF的值。

解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。

又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。

又因为∠ADC=90°,所以∠AEB=90°。

因此,△ABE和△DFA是全等三角形。

接下来,求sin∠EDF的值。

由于∠BAC=45°,所以∠AED=45°。

由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。

因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。

解:由于∠A=60°,∠B=45°,所以∠C=75°。

根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。

九年级(上)培优讲义:第1讲 锐角三角函数

九年级(上)培优讲义:第1讲 锐角三角函数

第1讲: 锐角三角函数一、建构新知1. 请同学们回忆一下,我们已经学过哪些类型的函数?对于函数这种重要的数学模型是如何定义的?函数与自变量之间存在着怎样的一种关系?2. 如图,已知△ABC ∽△ADE ,根据相似三角形对应边成比例的性质,我们可得AD AE DEAB AC BC==,你还可以得出类似也相等的比例式吗? 请写出来,并请说明理由.3. 如图,在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b , c . 则(1)sinA = cosA = tanA =(2)sinB = cosB = tanB =(3)从上题的六个式子中,请你试着找出同一个角的不同三角函数值之间及互余两角的三角函数值之间具有怎样的数量关系.4.阅读教材后回答:(1) 在锐角三角函数中,自变量是什么?函数是什么?(2) 本节课本中指出锐角三角函数的值都是正实数,且0<sinα<1,0<cosα<1,你能说明原因吗?那么tanα的取值范围是什么?5.特殊三角函数值巧记的方法.(1) 识图记忆法AED CBBAC45︒45︒60︒30︒223122(2) 列表记忆法(3) 规律记忆法观察上述表格中的函数值,根据数值的变化特征,可以总结出下列记忆规律: ①有界性:锐角三角函数值都是正数,即当090α︒︒<<时,有01α<sin <,01α<cos < ②增减性:锐角的正弦、正切值随角度的增大而增大,余弦值随角度的增大而减小,即当090A B ︒︒<<<时,sin sin A B <,tan tan A B <,cos cos A B >。

特殊地,当045A ︒︒<<时,sin cos A A <,当4590A ︒︒<<,则sin cos A A > 二、经典例题例1. 如图,∠α的顶点在直角坐标系的原点,一边在x 轴上,•另一边经过点P (2,),求角α的三个三角函数值.例2.已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c . 且a 、b 、c 满足等式(2b )2=4(c +a )(c -a ), 且有5a -3c =0,求sinB 的值.PCBA例3. 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,•根据勾股定理有公式a 2+b 2=c 2,根据三角函数的概念有sinA =a c ,cosA =bc, • (1)求证:sin 2A +cos 2A =1,sin cos AA=tanA(2)请利用(1)中的结论求解下列题目. ①Rt △ABC 中,∠C =90°,sinA =35,求cosA ,tanA 的值;②Rt △ABC 中,∠C =90°,tanA =12,求sinA ,cosA 的值;③∠A 是锐角,已知cosA =1517,求sin (90°-A )的值.例4. 已知:⊙O 的直径AB 为3,线段AC =4,直线AC 和PM 分别与⊙O 相切于点A 、M ,(1)求证:点P 是线段AC 的中点;(2)求sin ∠PMC 的值.例5.如图,已知直线AB 与x 轴,y 轴分别相交于A 、B 两点,它的解析式为y =3 x +3,角α的一边为OA ,另一边为OP ⊥AB 于P ,求cosα的值.CBA三、 基础演练1. 在Rt △ABC 中,∠C =90°,AC =6,32sin =B ,那么AB 的长是 . 2. 在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A . 缩小2倍 B . 扩大2倍C . 不变D . 不能确定3. 如果α是锐角,且54sin =α,那么cos (90°-α)=( ) A . 54 B . 43 C . 53 D . 514. 如图,∠ABC =∠BCD =90°,AC =15,54sin =A ,BD =20,求sinD 、cosD 、tanD 的值.5. 等腰三角形的两边长分别为6cm 、8cm ,求它的底角的正切值.6. 在△ABC 中,若()01cos 23tan 2=-+-B A ,则△ABC 是( )A . 直角三角形B . 顶角为锐角的等腰三角形C . 等边三角形D . 含有60°的任意三角形 7. 若关于y 的方程()041cos 22=+-y y α有两个相等的实根,求锐角α的度数.8. 如图,在△ABC 中,已知∠A =30°,tanB =31,BC =10,求AB 的长.DCBAAB BAO9. 菱形的边长为4,它的一个内角为120°,则两条对角线长分别为 .10. 若斜坡AB 高为3m ,长为15m ,则斜坡AB 的坡比为 度. 11. 若α是锐角,且tan α=1.2,则( )A . α>45°B . α<45°C . 30°<α<45°D . 45°<α<60°12. 如图,在Rt △ABC 中,∠C =90°,∠BAC =30°.延长CA 至D ,使AD =AB . 根据此图,求出tan 15°=( )A . 32+B . 32-C . 33-D .13-13. 已知三角形三边长分别为3、4、5,求各角的度数. (精确到0.1度)14. 如图已知,在⊙O 中, 长为4cm ,OA =3cm .求: (1)∠AOB 度数;(精确到1度) (2)AB 的长度;(精确到0.1) (3)△AOB 的面积. (精确到0.01)四、直击中考1. (2013广东)如图5,四边形ABCD 是梯形,AD ∥BC , CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tanB =( ) A . 32 B . 22 C .411D . 4552. (2013湖南)在△ABC 中,若0)21(cos 21sin 2=-+-B A ,则∠C 的度数是( ) A .300 B .450 C .600D .9003. (2013重庆)计算6tan 45°-2cos 60°的结果是( ) A .43 B .4 C .53 D .54. (2013浙江)在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是( )A .43 B .34 C .53 D .545.(2013广东)如图,若∠A =60°,AC =20m ,则BC 大约是( ) A .34.64m B .34.6m C .28.3m D .17.3m6. (2013江苏)如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( )A .23 B .32C .21313D .313137.(2013甘肃)△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222c b a =+,那么下列结论正确的是( )A .c sinA =aB .b cosB =cC .a tanA =bD .c tanB =b 8.(2013江苏)在Rt △ABC 中,∠C =90°,若sinA =513则cosA 的值是( ) A .512 B . 813 C . 23 D . 12139. (2013湖北)如图,在半径为1的⊙O 中,∠AOB =45°,则sinC 的值为( ) A .22 B .222- C .222+ D .2410.(2013陕西)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC ,若BD =8,AC =6,∠BOC =120°,则四边形ABCD 的面积为 .11. (2013山东)如图,AB 是⊙O 的直径,⌒AD =⌒DE ,AB =5,BD =4,则sin ∠ECB =_______.12. (2013浙江)在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sinA =23;②cosB =21;③tanA =33;④tanB =3,其中正确的结论是__________(只需填上正确结论的序号) 13.(2013贵州).在Rt △ABC 中间,∠C =90°,tanA =43,BC =8,则△ABC 的面积_________。

中考数学复习锐角三角函数专项复习讲义

中考数学复习锐角三角函数专项复习讲义

中考数学复习锐角三角函数专项复习讲义第一课时:三角函数定义与特殊三角函数值知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数例1.如图所示,在Rt △ABC 中,∠C =90°.①=______,=对对)(sin =A 对对)(sin =B ______;②=______,=对对)(cos =A 对对)(cos =B ______;③=______,=对对对A A ∠=)(tan )(tan 对对对B B ∠=______.例2. 锐角三角函数求值:在Rt△ABC中,∠C=90°,若a=9,b=12,则c=______,sin A=______,cos A=______,tan A=______,sin B=______,cos B=______,tan B=______.例3.已知:如图,Rt△TNM中,∠TMN=90°,MR⊥TN 于R点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.对应练习:1、在Rt△ABC中,a=5,c=13,求sinA,cosA,tanA.2、如图,△ABC中,AB=25,BC=7,CA=24.求sinA的值.25247C BA3、 已知α是锐角,且cosα=,求sinα、tanα的值.344、在Rt ABC △中,90C ∠= ,5AC =,4BC =,则tan A =.5、在△ABC 中,∠C=90°,sinA=,那么tanA 的值等于53().A . B.C.D. 354534436、 在△ABC 中,∠C =90°,cosA =,c =4,则a =_______.7、如图,P 是∠α的边OA 上一点,且P 点坐标为(2,3),则sinα=_______,cosα=_________,tanα=______ _.知识点二:特殊角的三角函数值当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(1).计算:.︒-︒+︒60tan 45sin 230cos 2(2)计算:.︒-︒+︒30cos 245sin 60tan 2例2.求适合下列条件的锐角α .锐角α30°45°60°sin αcos αtan α(1)(2)21cos =α33tan =α(3)已知α 为锐角,且,求的值3)30tan(0=+ααtan 例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 21,那么∠A 的取值范围是A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2. 已知A 为锐角,且,则 ( )030sin cos <A A. 0°< A < 60° B. 30°< A < 60° C. 60°< A < 90°D. 30°< A < 90°类型一 特殊三角函数值与计算1、(1)计算:3-1+(2π-1)0-33tan30°-tan45°(2)计算:.30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+(3)计算:;tan 45sin 301cos 60︒+︒-︒(4)(5)222sin =α33)16cos(6=- α(图)在中,若,都是锐ABC ∆022(sin 21cos 2=-+-B A B A ∠∠,角,求.C ∠类型二:利用网格构造直角三角形CBA 2、如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.3、如图,A 、B 、C 三点在正方形网络线的交点处,若将绕着点A 逆时针旋转得到,则的值为ABC ∆''B AC ∆'tan B A.B.C.D. 41312114、正方形网格中,如图放置,则tan 的值是AOB ∠AOB ∠() A .B. C. D. 252512ABO类型三:直角三角形求值1、已知Rt △ABC 中,求AC 、AB 和,12,43tan ,90==︒=∠BC A C cos B .2、如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,求AB 及OC 的长.⋅=∠43sin AOC3、已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ;(2)求cos ∠AOC 及tan ∠AOC .4、已知是锐角,,求,的值A ∠178sin =A A cos A tan 类型四. 利用角度转化求值:1、已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE⊥AB于E点.DE∶AE=1∶2.求:sin B、cos B、tan B.2、如图,直径为10的⊙A经过点和点,与x轴(05)C对(00)O对的正半轴交于点D,B是y轴右侧圆弧上一点,则cos ∠OBC的值为()A.BC.D.1 23545图8图图3、如图,角 的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则sinα=.4、如图,菱形ABCD的边长为10cm,DE⊥AB,3sin5A=,则这个菱形的面积= cm2.5、如图,O⊙是ABC△的外接圆,AD是O⊙的直径,若O⊙的半径为32,2AC=,则sin B的值是()A.23B.32C.34D.436、如图,沿折叠矩形纸片,使点落在边的点AE ABCD D BC F 处.已知,,AB=8,则的值为( )8AB=10BC=tan EFC∠A. B.C.D.34433545A DECB F8图7、如图,在等腰直角三角形中,,,ABC ∆90C ∠=︒6AC =D 为上一点,若 ,则的长为( )AC 1tan 5DBA ∠=AD AB .C .D .218、 如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线图AD =求 ∠B 的度数及边BC 、AB 的长.3316ABC类型五. 化斜三角形为直角三角形2、已知:如图,在△ABC中,∠BAC=120°,AB=10,AC =5.求:sin∠ABC的值.3、如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)4、已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .5、ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是A.2 cm 2 .4 cm 2 C.6 cm 2333D.12 cm 2第二课时:解直角三角形知识点三: 解直角三角形1.在解直角三角形的过程中,一般要用的主要关系如下:在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:______;_______;==B A cos sin ==B A sin cos _____;______.==BA tan 1tan ==B A tan tan 1 ④直角三角形中成比例的线段.在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________;BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1)已知:a =35,,求∠A 、∠B ,b ;235=c (2)已知:,,求∠A 、∠B ,c ;32=a 2=b (3)已知:,,求a 、b ;32sin =A 6=c (4)已知:求a 、c ;,9,23tan ==b B(5)已知:∠A=60°,△ABC的面积求a、b、c及∠S12,3B.例2.已知:如图,△ABC中,∠A=30°,∠B=60°,AC =10cm.求AB及BC的长.例3.已知:如图,Rt△ABC中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD的长.例4.已知:如图,△ABC中,∠A=30°,∠B=135°,AC=10cm .求AB 及BC 的长.知识点四:三角函数应用类型一: 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,,作3==BC AC ∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .31tan =∠B 4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.D CB A5.如图,△ABC 中,∠A=30°,,ABtan B =AC =的长.ACB第三课时,解直角三角形应用类型二:解直角三角形的实际应用一、仰角与俯角:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

初三锐角三角函数复习讲义

初三锐角三角函数复习讲义

锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:如图所示,在Rt△ABC 中,∠C=90则∠A 的正弦可表示为:sinA0, ∠A 、∠B、∠C 的对边分别为a、b、c,∠A 的余弦可表示为:cosA∠A 的正切可表示为:tanA,它们称为∠ A 的锐角三角函数①( )sin A =______,斜边②( )cos A =______,斜边③( )tan A =______,A的邻边【特别提醒:1、sinA、cosA、tanA 表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关。

2、取值范围<sinA< ,<cosA< ,tanA>例1. 锐角三角函数求值:在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=______,sinA=______,cosA=______,tanA=______,sinB=______,cosB=______,tanB=______.典型例题:类型一:利用直角三角形求值1.已知:如图,Rt△TNM 中,∠TMN =90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR 、tan∠TMR.2.已知:如图,⊙O 的半径OA=16cm,OC⊥AB 于C 点,sin AOC 求:AB 及OC 的长.3 4类型二.利用角度转化求值:1.已知:如图,Rt△ABC 中,∠C=90°.D 是AC 边上一点,DE⊥AB 于E 点.DE∶AE=1∶2.求:sin B、cosB、tanB.2.如图,直径为10 的⊙ A 经过点C (0,5) 和点O (0,0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则c os∠OBC 的值为()A.y 12B.32C.35D.45CAxO DB第8题图35.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为2,AC 2 ,则sin B 的值是()A.23B.32C.34D.436. 如图4,沿AE 折叠矩形纸片A BCD ,使点D 落在BC 边的点F 处.已知AB 8 ,BC 10 ,AB=8,则t an∠EFC 的值为()A DEA.34 B.43C.35D.45BFC7. 如图6,在等腰直角三角形ABC 中, C 90 ,AC 6 ,D为A C 上一点,若tan1DBA ,则A D 的长为( )5A. 2 B .2 C.1 D .2 2类型三. 化斜三角形为直角三角形8.如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 3,求AB 的长.2.如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2 ,求△ABC 的周长.(结果保留根号)3. ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是()2 B.43 cm2A.2 3 cm2 D.12 cm2C.6 3 cm类型四:利用网格构造直角三角形1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()12 A.B.55C.10102 55D. ACO BA B2.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.3.如图,A、B、C 三点在正方形网络线的交点处,若将ABC 绕着点 A 逆时针旋转得到AC'B',则tan B' 的值为()A. 14B.13C.12D. 14.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A .55B.2 5512C.D. 2知识点二:特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.29.计算:tan 60 sin 45 2 cos30 -1+(2 π-1)0-10.计算:333tan30 -°tan45 °3.计算:122 cos60 sin 4532tan 30 4.计算:t an 45 sin 301 cos60例2.求适合下列条件的锐角.(1)1cos (2)23tan (3)32sin 2 (4) 6 cos( 16 ) 3 32()已知为锐角,且tan( 30 ) 3,求tan 的值1 22()在ABC 中,cos A (sin B ) 0 ,A, B 都是锐角,求 C 的度数2 2例3.三角函数的增减性1.已知∠A 为锐角,且sin A < 12,那么∠A 的取值范围是A. 0 <°A < 30 °B. 30 <°A <60°C. 60 <°A < 90 °D. 30 <°A < 90 °4. 已知 A 为锐角,且0cos A sin 30 ,则()A. 0 <°A < 60 °B. 30 <°A < 60 °C. 60 <°A < 90 °D. 30 <°A < 90 °类型五:三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E,BE=16cm,sin A 1213求此菱形的周长.2.已知:如图,Rt△ABC 中,∠C=90°,AC BC 3 ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD;(2)sin∠BAD、cos∠BAD 和tan∠BAD.11. 已知:如图△ABC 中,D 为BC 中点,且∠BAD=90°,∠CAD 、tan∠CAD.1tan B ,求:sin∠CAD、cos3312. 如图,在Rt△ABC 中,∠C=90°,sin B ,点D 在BC 边上,DC= AC = 6 ,求tan ∠BAD5的值.AB D C5(.本小题 5 分)如图,△ABC 中,∠A=30°,AC 4 3.求AB 的长.tan3B ,2CAB知识点三:解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在Rt△ABC 中,∠C=90°,AC=b,BC=a,AB=c,①三边之间的等量关系:________________________________ .②两锐角之间的关系:__________________________________ .③边与角之间的关系:sin A cos B______;cos A sin B _______;1 1tan A _____;tan Btan B tan A______.④直角三角形中成比例的线段(如图所示).在Rt△ABC 中,∠C=90°,CD⊥AB 于D.2=_________;AC2=_________; CD2=_________;AC·BC=_________. BC例1.在Rt△ABC 中,∠C=90°.(1)已知:a 2 3 ,b 2 ,求∠A、∠B,c;(2)已知:2sin A ,c 6 ,求a、b;3(3).已知:△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.类型六:解直角三角形的实际应用仰角与俯角1.如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD为100 米,点 A 、D、B 在同一直线上,则A B 两点的距离是()A .200 米B.200 米C.220 米D.100()米2.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13 所示,某学生在河东岸点A处观测到河对岸水边有一点 C ,测得 C 在A北偏西31 的方向上,沿河岸向北前行20 米到达B 处,测得C 在B北偏西45 的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31 °≈35,sin31 °≈12)图133.如图,小聪用一块有一个锐角为30 的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3 3 米,小聪身高AB 为1.7 米,求这棵树的高度.CADB E4.一数学兴趣小组为测量河对岸树AB 的高,在河岸边选择一点C,从C 处测得树梢A的仰角为45°,沿BC 方向后退10 米到点D,再次测得点 A 的仰角为30°.求树高.(结果精确到0.1 米.参考数据: 2 1.414, 3 1.732)A45°30°BCD5.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的在 A 处,离益阳大道的距离(AC)为30 米.这时,一辆测点设知识检测车速.如图,观为8 秒,∠BAC=75°.小轿车由西向东匀速行驶,测得此车从 B 处行驶到 C 处所用的时间(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到 1 米,参考数据:sin75 °≈0.96,59cos75°≈0.258,8 tan75°≈ 3.73,23 ≈ 1.73,260 千米/小时≈16.7米/秒)坡度与坡角13.如图,某水库堤坝横断面迎水坡AB 的坡比是1: 3 ,堤坝高BC=50m,则应水坡面AB 的长度是()A.100m B.100 3 m C.150m D.50 3 m14.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡比为i=1:10,学生小明站在离升旗台水平距离为35m(即CE=35m)处的 C 点,测得旗杆顶端 B 的仰角为α,已知tanα= CD =1.6m,请帮小明计算出旗杆AB 的高度. 37,升旗台高AF =1m,小明身高BA i FC = 1:10αD FC E15.如图,有两条公路OM,ON 相交成30°角,沿公路OM 方向离O 点80 米处有一所学校A,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50 米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校 A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18 千米/时.(1)求对学校 A 的噪声影响最大时,卡车P 与学校 A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校 A 带来噪影响的时间.NP30°O M80米 A16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 米,AB=6 米,中间平台宽度DE =1 米,EN、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC 于F,∠CDF =45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 米,参考数据:sin31 °≈0.,52cos31°≈0.8,6tan31°≈0.)60CE D 45° F31°A N MB5.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45o降为30o,已知原滑滑板AB 的长为 5 米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空地,像这样改造是否可行?说明理由。

锐角三角函数锐角三角函数

锐角三角函数锐角三角函数

03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。

《锐角三角函数》(解析版)

《锐角三角函数》(解析版)

《锐角三角函数》(解析版)锐角三角函数一、定义三角函数是数学中一类重要的函数,它们与三角关系密切相关。

而锐角三角函数是指在直角三角形中,角度小于90°的三角函数。

1. 正弦函数(sin)正弦函数是指在锐角三角形中,对应的直角边比斜边的比值。

可以用以下公式表示:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是指在锐角三角形中,对应的直角边比斜边的比值。

可以用以下公式表示:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是指在锐角三角形中,对边比邻边的比值。

可以用以下公式表示:tanθ = 对边 / 邻边二、性质1. 值域和定义域正弦函数和余弦函数的值域都在[-1, 1]之间,定义域为锐角三角形中的角度范围。

2. 周期性正弦函数和余弦函数在每个周期内都有相同的波形形状,它们的周期都为360°或2π弧度。

3. 正交性正弦函数和余弦函数之间具有正交性,即它们的乘积积分为0。

4. 切线斜率正切函数的斜率可以表示为tanθ的导数,即:f'(θ) = sec^2(θ)5. 三角恒等式锐角三角函数之间满足一系列的三角恒等式,如:sin^2(θ) + cos^2(θ) = 1三、图像与应用1. 图像正弦函数和余弦函数的图像为周期性的正弦波和余弦波,可以通过函数图像进行可视化。

2. 应用锐角三角函数广泛应用于物理学、工程学和计算机图形学等领域。

例如在电路分析中,可以通过正弦函数来表示交流电压的变化;在计算机图形学中,可以通过正弦函数和余弦函数来生成动画效果。

四、常见问题1. 如何计算锐角三角函数的值?通过查阅三角函数表或使用计算器等数学工具,可以准确地计算出锐角三角函数的值。

2. 如何利用锐角三角函数解决实际问题?在实际问题中,可以通过建立三角函数模型并利用已知条件来解决问题。

例如在测量中,可以利用正弦函数或余弦函数计算出某个角度的值。

3. 锐角三角函数与钝角三角函数有什么区别?锐角三角函数与钝角三角函数在定义上有所不同,钝角三角函数可定义为任意角度,而锐角三角函数仅限于小于90°的角度范围。

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点锐角三角函数是高中数学的重要内容,它涉及到三角函数的定义、性质以及与三角函数相关的常见解题方法。

以下将详细介绍锐角三角函数的知识点。

一、锐角三角函数的定义1. 正弦函数(sine function):在锐角ABC中,以角A为自变量,以对边AB与斜边AC的比值作为函数值。

记作sinA = AB/AC。

2. 余弦函数(cosine function):在锐角ABC中,以角A为自变量,以邻边BC与斜边AC的比值作为函数值。

记作cosA = BC/AC。

3. 正切函数(tangent function):在锐角ABC中,以角A为自变量,以对边AB与邻边BC的比值作为函数值。

记作tanA = AB/BC。

4. 余切函数(cotangent function):在锐角ABC中,以角A为自变量,以邻边BC与对边AB的比值作为函数值。

记作cotA = BC/AB。

5. 正割函数(secant function):在锐角ABC中,以角A为自变量,以斜边AC与邻边BC的比值作为函数值。

记作secA = AC/BC。

6. 余割函数(cosecant function):在锐角ABC中,以角A为自变量,以斜边AC与对边AB的比值作为函数值。

记作cscA = AC/AB。

二、锐角三角函数的性质1. 正弦函数的定义域为[0, π/2],值域为[0, 1],是一个奇函数,即sin(π/2 - A) = cosA。

2. 余弦函数的定义域为[0, π/2],值域为[0, 1],是一个偶函数,即cos(π/2 - A) = sinA。

3.正割函数和余割函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。

4.正弦函数和余弦函数的图像是一条周期为2π的曲线,对称于直线x=π/25.正切函数和余切函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。

6.正切函数和余切函数的图像是一条周期为π的曲线,对称于直线x=π/2三、常用的锐角三角函数解题方法1. 利用定义求函数值:根据三角函数的定义,利用已知信息计算出函数值。

锐角三角函数讲义

锐角三角函数讲义

锐角三角函数专题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、30°、45°、60°特殊角的三角函数值(重要)5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

6、正切、的增减性:A 90B 90∠-︒=∠︒=∠+∠得由B A对边邻边当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

9、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

10、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

:i h l =hlα典型例题1、已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( )A .43B .45C .54D .342、104cos30sin 60(2)2008)-︒︒+--=______.3、 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B.C米 D米 4、一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( )A .5sin 40°B .5cos 40°C .5tan 40°D .5cos 40°5、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( )A.4 m C..8 m6、 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是BC 与水平宽度AC 之比),则AC 的长是( )A. 米 B . 10米C .15米 D. 7、如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是( )A .3B .5C .25D .2258、如图所示,小明在家里楼顶上的点A处,测量建在与小明D家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).1.4141.732)9、如图,热气球的探测器显示,从热气球A 看一栋大楼顶部B 的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A 的高度为240米,求这栋大楼的高度.10、如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB 的长为4米,点D 、B 、C 在同一水平面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:141.12=,732.13=,449.26=,以上结果均保留到小数点后两位.)11、求值101|2|20093tan 303-⎛⎫+--+ ⎪⎝⎭°A BC名校真题1.(巴蜀半期) 如图,A 为某旅游景区的最佳观景点,游客可以在B 处乘坐缆车沿BD 方向先到达小观景平台DE 观景,然后再由E 处继续乘坐缆车沿EA 方向到达A 处,返程时从A 处乘坐升降电梯直接到C 处.已知AC BC ⊥于C ,//DE BC ,斜坡BD 的坡度4:3i =,210BC =米,48DE =米,100BD =米,64α=︒,则AC 的高度为( )米(结果精确到0.1米,参考数据:sin640.9︒≈,tan642.1︒≈)A .214.2B .235.2C .294.2D .315.2 2.(南开月考三)如图,市规划局准备修建一座高6AB m =的过街天桥,已知天桥的坡面AC 的坡度3:4i =,则坡面AC 的长度为( )A 、10mB 、8mC 、6mD、3.(南开月考二)如图,在课题学习后,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且 2.82AB =米,BCD ∆表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18,最大夹角β为66,根据以上数据,计算出遮阳蓬中CD 的长是(结果精确到0.1)(参考数据:sin180.31≈,tan180.32≈,sin 660.91≈,tan66 2.2≈)( ) A 、1.2米 B 、1.5米 C 、1.9米 D 、2.5米4.(南开月考一)如图,小明在大楼30米高(即30PH =米)的窗口P 处进行观测,测得山坡顶A 处的俯角为15,山脚处B 的俯角为60,已知该山坡的坡度i =P 、H 、B 、C 、A 在同一个平面上,点HBC 在同一条直线上,且PH HC ⊥,则A 到BC 的距离为( )A.米 B .15米C.米D .30米5.(八中月考三)11、如图,某风景区在坡度2题图1题图为7:24的斜坡AB上有一座标志性建筑物BC,在点A处测得建筑物顶部C的仰角为31,斜坡AB=100米,则这座建筑物BC的高度约为()。

三角函数培优讲义

三角函数培优讲义

三角函数培优讲义(一)【知识梳理】:1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说该角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

①第I 象限角的集合: ;②第II 角限角的集合: ; ③第III 象限角的集合: ; ④第IV 象限角的集合: ; ⑤终边在x 轴正半轴的角的集合: ;终边在x 轴负半轴的角的集合: ;终边在x 轴上的角的集合: ;⑥终边在y 轴正半轴的角的集合: :终边在y 轴负半轴的角的集合: ;终边在y 轴上的角的集合: ; ⑦终边在坐标轴上的角的集合: :⑧终边在直线x y =的角的集合: :⑨终边在直线x y -=的角的集合: :3. 终边相同的角的表示:①α终边与θ终边相同(α的终边在θ终边所在射线上)⇔ ; ②α终边与θ终边共线(α的终边在θ终边所在直线上)⇔ ; ③α终边与θ终边关于x 轴对称⇔ ; ④α终边与θ终边关于y 轴对称⇔ ;⑤α终边与θ终边关于原点对称⇔ ; ⑥ α终边与θ终边关于直线x y =对称⇔ ;注意:相等的角的终边一定相同,终边相同的角不一定相等. 4.弧长公式:①扇形的弧长为l ,半径为R ,圆心角为α,则: , ②扇形面积公式: ;1弧度(1rad)57.3≈.5.任意角的三角函数的定义:①设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么正弦sin ,cos y x r rαα==余弦sin ,cos y x r r αα==,正切()tan ,0y x x α=≠;②了解:余切cot x y α=(0)y ≠,正割sec r x α=()0x ≠,余割()csc 0r y yα=≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲:锐角三角函数(一)知识点一:锐角三角函数1、锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

2、锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。

3、锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos 。

4、锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A ∠∠=tan 。

sin α,cos α,tan α都是一个完整的符号,单独的 “sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。

注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。

考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=5,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。

3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。

4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。

5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1n cosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形F ,连接DE 。

(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。

6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。

注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。

7、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 8、如图(2)所示,在正方形网格中,sin ∠AOB 等于( )A B C 、12 D 、29、如图(3),在ABC △中,90ACB ∠=,CD AB ⊥于D ,若AC =AB =tan BCD ∠的值为( )AB C D 10、如图(4),直径CD 为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A 、12B 、34C D 、4511、如图(5),A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为( )A 、12B 、13C 、14D 、412、如图(6),菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2。

图(1) 图(2) 图(3) 图(4) 图(5) 图(6)13、如图,在Rt △ABC 中,∠C=90°,sinB=35,点D 在BC 边上,且∠ADC=45°,DC=6,求∠BAD 的正切值。

14、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

15、如图,在梯形ABCD 中,AB ∥DC ,∠BCD=90°,AB=1,BC=2,tan ∠ADC=2。

(1)求证:DC=BC(2)E 是梯形ABCD 内一点,F 是梯形ABCD 外一点,且∠EDC=∠FBC ,DE=BF ,是判断△ECF 的形状,并证明你的结论;(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin ∠BFE 的值。

(1)01(π4)sin 302--- (2)201()2sin 3032--+︒+-(31012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭(4)2sin45°+3cos30°-2317、∠B 是Rt △ABC 中的一个内角,且sinB=23,则cos 2B =( )A 、21B 、23C 、22D 、21 18、在△ABC 中,a =3,b =4,∠C=60°,则△ABC 的面积为________。

19、Rt △ABC 中,∠C=90°,c =12,tanB=33,则△ABC 的面积为( )A 、363B 、183C 、16D 、1820、如图所示,在直角坐标系中,OP=4,OP 与x 轴正半轴的夹角为30°,则点P 的坐标为( ) A 、(2、23-) B 、(23,2)C 、(2,23)D 、(23,-2)21、已知PA 是⊙O 的切线,切点为A ,PA=23,∠APO=30°,则⊙O 的半径长为_______。

22、在菱形ABCD 中,已知其周长为16 cm ,较短对角线长为4 cm ,求菱形较小角的正弦值 和余弦值。

23、如图,在平面直角坐标系中,点A 在第一象限内,点B 的坐标为(3,0),OA=2,∠AOB=60°。

(1)求点A 坐标;(2)若直线AB 交y 轴于点C ,求△AOC 的面积。

考点二:已知一个特殊角的正、余弦值或正切值,求相应的锐角24、cosA = 22,A 为锐角,则A =________;2cos(α-100) = 1,则锐角α =________。

25、若tanA 的值是方程03)31(2=++-x x 的一个根,则锐角A=( )A 、30°或45°B 、30°或60°C 、45°或60°D 、60°或90°26、若2cosA -3=0,则锐角A=________。

27、在Rt △ABC ,∠C=90°,BC=5,AC=15,则∠A 等于( ) A 、90° B 、60° C 、45° D 、30° 28、在△ABC 中,锐角A ,B 满足(sinA-3)2+│cosB -3│=0,则△ABC 是( )A 、等腰三角形B 、等边三角形C 、等腰直角三角形D 、直角三角形29、若∠B 是Rt △ABC 的一个内角,sinB=32,则cos 2B 的值是( )A 、12B 、22C 、33D 、32考点一:锐角三角函数的增减性1、当0°<<90°时,sin 和tan α随α的增大而增大,cos α随α的增大而减小。

2、锐角三角函数的取值范围:0<sin α<1,0<cos α<1,tan α>0。

30、当锐角∠A >45°时,sin A 的值为( )A 、大于22B 、小于22C 、小于32D 、大于3231、当锐角A 的cos A>2时,∠A 的值为( ) A 、小于45° B 、小于30° C 、大于45°D 、大于30° 32、当锐角∠A <60°时,tan A 的值为( )ABCD33、已知sin α≤21,则α的取值范围是( )A 、α>30°B 、30°<α<90°C 、0°<α<30°D 、0°≤α≤30°34、比较大小: (1)cos 18°________cos 18.3° (2)tan 31°_________tan 32° (3)sin 30°________sin 89° 35、比较大小:sin20°________sin25°;cos50°________cos70°。

37、已知α为锐角,且sin 54=α,则cos α=________。

38、cos (60°-β)=sin (________)。

(0°<β<90°) 39、若sin10°=cosA ,则锐角A=( ) A 、10°B 、80°C 、10°或20°D 、不确定40、已知sin cos =α36°,则锐角α=________。

相关文档
最新文档