高中数学新体系难点08__奇偶性与单调性(2)

合集下载

高中数学 函数的奇偶性与单调性复习

高中数学 函数的奇偶性与单调性复习

高中数学:函数的奇偶性与单调性复习一、函数奇偶性的复习函数的奇偶性是函数的重要性质之一,它反映了函数在输入与输出之间的内在关系。

根据奇偶性的定义,我们可以将函数分为奇函数和偶函数。

奇函数是指对于定义域内的任意x,都有f(-x)=-f(x)的函数;偶函数是指对于定义域内的任意x,都有f(-x)=f(x)的函数。

在复习过程中,我们需要掌握以下几点:1、掌握奇偶性的定义,理解奇函数和偶函数的特性。

2、掌握奇偶性的判断方法,能够根据函数的图像和性质判断其奇偶性。

3、了解奇偶性在函数性质中的应用,如对称性、单调性等。

二、函数单调性的复习函数的单调性是函数变化的另一种重要性质,它描述了函数在输入增加或减少时输出的变化情况。

如果对于定义域内的任意x1<x2,都有f(x1)<f(x2),则称函数在该区间上单调递增;如果对于定义域内的任意x1<x2,都有f(x1)>f(x2),则称函数在该区间上单调递减。

在复习过程中,我们需要掌握以下几点:1、掌握单调性的定义,理解单调递增和单调递减的含义。

2、掌握判断函数单调性的方法,能够根据函数的图像和性质判断其单调性。

3、了解单调性在函数性质中的应用,如最值、不等式等。

4、能够利用导数工具判断函数的单调性,并了解导数与单调性的关系。

三、总结函数的奇偶性和单调性是高中数学中重要的概念和性质,它们在函数的性质和应用中扮演着重要的角色。

通过复习,我们要能够深入理解奇偶性和单调性的定义和性质,掌握判断方法,并了解它们在解决实际问题中的应用。

我们还要能够利用导数工具判断函数的单调性,为后续的学习打下基础。

高中数学《函数的单调性》公开课一、教学背景分析函数的单调性是高中数学中非常重要的一部分,它不仅对于理解函数的概念有着关键性的作用,而且也是解决实际问题中常常需要用到的工具。

因此,通过对函数的单调性的学习,学生可以更好地理解函数的概念和性质,提高解决实际问题的能力。

高中高一数学教案:函数单调性与奇偶性

高中高一数学教案:函数单调性与奇偶性

高中高一数学教案:函数单调性与奇偶性一、教学目标1.理解函数单调性与奇偶性的概念。

2.能够判断给定函数的单调性与奇偶性。

3.能够运用单调性与奇偶性的性质解决实际问题。

二、教学重点与难点1.教学重点:函数单调性与奇偶性的概念及其判断方法。

2.教学难点:单调性与奇偶性的综合运用。

三、教学过程(一)导入1.通过提问方式引导学生回顾初中阶段学习的函数知识,如一次函数、二次函数的单调性。

2.提问:同学们,你们知道函数的单调性和奇偶性吗?它们有什么实际意义?(二)新课讲解1.讲解函数单调性的概念:(1)定义:函数f(x)在定义域D内,如果对于任意的x1,x2∈D,且x1<x2,都有f(x1)<f(x2),则称f(x)在D内是增函数;如果对于任意的x1,x2∈D,且x1<x2,都有f(x1)>f(x2),则称f(x)在D内是减函数。

(2)举例说明:以一次函数y=x和二次函数y=x^2为例,讲解它们的单调性。

2.讲解函数奇偶性的概念:(1)定义:函数f(x)在定义域D内,如果对于任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数;如果对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数。

(2)举例说明:以一次函数y=x和二次函数y=x^2为例,讲解它们的奇偶性。

3.讲解单调性与奇偶性的关系:(1)单调性与奇偶性是函数的两种基本性质,它们之间有一定的联系。

(2)单调性可以判断函数在某一区间内的增减趋势,而奇偶性可以判断函数在y轴两侧的对称性。

(3)单调性与奇偶性的综合运用可以解决一些实际问题。

(三)课堂练习(1)y=2x+1(2)y=x^2(1)y=x^3(2)y=x^2+1(1)f(x+1)(2)f(-x)(四)案例分析1.分析题目:已知函数f(x)=x^3-3x,求f(x)的单调区间和奇偶性。

2.解题步骤:(1)求导数:f'(x)=3x^2-3。

(2)判断单调性:令f'(x)>0,解得x>1或x<-1;令f'(x)<0,解得-1<x<1。

高中数学复习专题讲座(第8讲)奇偶性与单调性(2)

高中数学复习专题讲座(第8讲)奇偶性与单调性(2)

题目高中数学复习专题讲座处理具有单调性、奇偶性函数问题的方法(1) 高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识 重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数(2)加强逆向思维、数形统一 正反结合解决基本应用题目(3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力(4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解例1已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值命题意图 本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力知识依托 主要依据函数的性质去解决问题错解分析题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域技巧与方法 借助奇偶性脱去“f ”号,转化为x 的不等式,利用数形结合进行集合运算和求最值解 由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2), 又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3, 综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6}, 又g (x )=-3x 2+3x -4=-3(x -21)2-413知g (x )在B 上为减函数,∴g (x )max =g (1)=-4例2已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由命题意图 本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力知识依托 主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题错解分析 考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法技巧与方法 主要运用等价转化的思想和分类讨论的思想来解决问题 解 ∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数 于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正∴当2m <0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符;当0≤2m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22, ∴4-22<m ≤2当2m >1,即m >2时,g (1)=m -1>0⇒m >1 ∴m >2综上,符合题目要求的m 的值存在,其取值范围是m >4-另法(仅限当m 能够解出的情况) cos 2θ-m cos θ+2m -2>0对于θ∈[0,2π]恒成立,等价于m >(2-cos 2θ)/(2-cos θ) 对于θ∈[0,2π]恒成立∵当θ∈[0,2π]时,(2-cos 2θ)/(2-cos θ) ≤4-22,∴m >4-例3 已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0, 解不等式f [log 2(x 2+5x +4)]≥0解 ∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2) 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0 ∴不等式可化为 log 2(x 2+5x +4)≥2 ① 或 log 2(x 2+5x +4)≤-2 ② 由①得x 2+5x +4≥4,∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+- ④由③④得原不等式的解集为 {x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0}学生巩固练习1 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7 5)等于( )A 0 5B -0 5C 1 5D -1 5 2 已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( )A (22,3)B (3,10)C (22,4)D (-2,3)3 若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________4 如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________5 已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明6 已知f (x )=xxa 2112+-⋅ (a ∈R )是R 上的奇函数,(1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x7 定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围8 已知函数y =f (x )=cbx ax++12(a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f 5(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由参考答案:1 解析 f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5答案 B2 解析 ∵f (x )是定义在(-1,1)上的奇函数又是减函数, 且f (a -3)+f (9-a 2)<0 ∴f (a -3)<f (a 2-9)∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3) 答案 A3 解析 由题意可知 xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈(-3,0)∪(0,3)答案 (-3,0)∪(0,3)4 解析 ∵f (x )为R 上的奇函数∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31>-32>-1∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1)答案 f (31)<f (32)<f (1)5 解 函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数6 解 (1)a =1(2)f (x )=1212+-xx(x ∈R )⇒f--1(x )=log 2xx -+11 (-1<x <1)(3)由log 2xx -+11>log 2kx +1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}7解222sin 44sin 7cos 474sin sin 147sin cos 4m x m x x m x x m x x ⎧⎪-≤-≤⎧⎪+≤⎨-≥-++⎪⎪⎩⎪-≥+⎪⎩即, 对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}8 解 (1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx cbx axcbx ax-=+⇒+-+-=++1122∴c =0,∵a >0,b >0,x >0,∴f (x )=bxx ba bxax112+=+≥22ba ,当且仅当x =a1时等号成立,于是22ba =2,∴a =b 2,由f (1)<25得ba 1+<25即bb 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x(2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x消去y 0得x 02-2x 0-1=0,x 0=1∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称课前后备注。

高三数学函数的单调性、奇偶性及函数的周期性知识精讲9页word文档

高三数学函数的单调性、奇偶性及函数的周期性知识精讲9页word文档

高三数学函数的单调性、奇偶性及函数的周期性【本讲主要内容】函数的单调性、奇偶性及函数的周期性 【知识掌握】 【知识点精析】1. 函数的单调性:设函数)(x f y =的定义域为I ,D 是I 的一个区间,如果对于任意的21,x x D ∈,其21x x <,都有)()(21x f x f <则称)(x f 在区间D 上是增函数,同时D 是函数)(x f 的增区间;如果对于任意的21,x x D ∈,且21x x <都有)()(21x f x f >,则称)(x f 在区间D 上是减函数,同时,D 是函数)(x f 的减区间。

并统称具有上述情况的函数具有单调性。

注:(1)单调性是函数的区间性质,若一个函数在其整个定义域内(是一个区间)都是增函数(减函数)则称这个函数为单调函数。

(2)一次函数是单调函数,二次函数不是单调函数,但以对准轴为界,对应两个单调区间,指、对数函数是单调函数;三角函数不是单调函数。

(3)奇函数在一个区间上的单调性与其在对称区间上的单调性一致,如奇函数3xy =在(0,∞+)↑同时在(0,∞-)↑,偶函数在一个区间上的单调性与其在对称区间上的单调性相反。

(3)互反函数其各自对应的区间上的单调性相同。

(4)复合函数的单调性遵循“同增,异减”的规律。

如2)1()(2+-=x x f 求)(2x f 的单调增区间 令12≥=x z ,则)(z f 关于z 是增函数 又2x z =当),0(+∞∈x 时,z 关于x 是增函数 ∴ ),1(+∞是函数)(2x f 的增区间 令12<=x z ,则)(z f 关于z 是减函数 又2x z =当)0,(-∞∈x 时,z 关于x 是减函数 ∴ )0,1(-是函数)(2x f 的增区间综上所述,函数)(2x f 的增区间为)0,1(-和),1(+∞(5)对于可导函数)(x f y =,若在独立区间D 上,)(x f '0>,则)(x f 是D 上的增函数,0)(<'x f ,则为减函数。

高二数学复习(八)函数的单调性与奇偶性

高二数学复习(八)函数的单调性与奇偶性

高二数学复习(八)函数的单调性与奇偶性知识梳理1.函数的单调性自左向右看图象是___________自左向右看图象是__________(2)单调区间的定义若函数()f x 在区间D 上是_______或_____ ___,则称函数()f x 在这一区间上具有(严格的)单调性,________叫做()f x 的单调区间.2.奇函数、偶函数的概念一般地,如果对于函数()f x 的定义域内任意一个x ,都有____________,那么函数()f x 就叫做偶函数. 一般地,如果对于函数()f x 的定义域内任意一个x ,都有___ __________,那么函数()f x 就叫做奇函数。

奇函数的图象关于原点对称;偶函数的图象关于y 轴 对称。

3.判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1)考查定义域是否关于______对称;(2) 若()f x -=______,则()f x 为奇函数; 若()f x -=________,则()f x 为偶函数; 若()f x -=________且()f x -=________,则()f x 既是奇函数又是偶函数;若()f x -)≠-()f x 且()f x -≠()f x ,则()f x 既不是奇函数又不是偶函数,即非奇非偶函数.4.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性_____, 偶函数在关于原点对称的区间上的单调性______(填“相同”、“相反”). (2)在公共定义域内①两个奇函数的和是_____,两个奇函数的积是偶函数; ②两个偶函数的和、积是_________;③一个奇函数,一个偶函数的积是_________.典型例题例1 . 求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数; (2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数.例2.函数()f x =的单调性为________________ 例3.若()x f 是定义在()+∞,0上的增函数,则不等式()()[]28->x f x f 的解集是________ 例4.若()()33212-++-=m mx x m x f 为偶函数,则实数m 的值为_______例5.判断下列函数的奇偶性:(1)2(12)()2x xf x +=_____________;(2)()lg(f x x =_____________;(3)221()lg lgf x x x =+______________;(4)()(1f x x =-; (5)2()11f x x x =+-+_______________;(6)22(0),()(0).x x x f x x x x ⎧-+≥⎪=⎨<+⎪⎩___________例 6. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.课后练习1.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)2.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f3.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .R x x y ∈-=,3 B .R x x y ∈-=,1 C .R x x y ∈=, D .R x x y ∈=,)21( 4.下列函数中: ①1()f x x=;②()221f x x x =++;③()f x x =-;④()1f x x =-. 其中,在区间(0,2)上是递增函数的序号有 . 5.函数y x x =的递增区间是___ __.6.函数y =的递减区间是__________.7.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.8.已知函数1()21x f x =+,则该函数在R 上单调递 ,(填“增”“减”)值域为_______. 9.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f = .10.函数2)1(2)(2+-+-=x a x x f 在(4,4)-上是增函数,则实数a 的范围是 .11.给出4个函数:①5()5f x x x =+;②421()x f x x -=;③()25f x x =-+;④()x x f x e e -=-.其中奇函数的有___ ;偶函数的有____ ;非奇非偶的有 . 12. 设函数()()()xa x x x f ++=1为奇函数,则实数=a .13.若f (x )是偶函数,当x ∈[0,+∞)时,f (x )=x -1,求f (x -1)<0的解集________.14.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f _______. 15.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使0)(<x f 的x 的取值范围是 . 16.已知f (x )=ax 2+bx +3a +b 是偶函数,且定义域为[a -1,2a ],则a =______,b =_______.17.已知f(x)=x 5+ax 3-bx-8,f(-2)=10,求f(2)18.已知()f x 是奇函数,在区间(2,2)-上单调递增,且有(2)(12)0f a f a ++->,求实数a 的取值范围。

新高考数学复习考点知识归类与题型专题讲义5 函数的性质——单调性、奇偶性与周期性

新高考数学复习考点知识归类与题型专题讲义5 函数的性质——单调性、奇偶性与周期性

新高考数学复习考点知识归类与题型专题讲义考点五函数的性质——单调性、奇偶性、周期性考点知识归类梳理1.函数的单调性(1) 单调函数的定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是单调增函数.如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是单调减函数.从图象来看,增函数图象从左到右是上升的,减函数图象从左到右是下降的,如图所示:(2)单调性与单调区间如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间).2.函数的奇偶性(1) 奇函数、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(2) 判断函数的奇偶性的步骤与方法判断函数的奇偶性,一般都按照定义严格进行,一般步骤是:①考察定义域是否关于原点对称.②考察表达式f(-x)是否等于f(x)或-f(x):若f(-x)=-f(x),则f(x)为奇函数;若f(-x)=f(x),则f(x)为偶函数;若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数;若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,既非奇非偶函数.3.函数的周期性(1) 周期函数的概念:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,则称y=f(x)为周期函数,非零常数T叫做函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.(3)一般地,如果T为函数f(x)的周期,则nT(n∈Z)也是函数f(x)的周期,即有f(x+nT)=f(x).(4)最小正周期是指是函数值重复出现的自变量x要加上的最小正数,这个正数是相对x而言的.并不是所有的周期函数都有最小正周期,比如常数函数f(x)=C(C为常数)就没有最小正周期.典例剖析题型一函数单调性的判断例1下列函数中,在区间(0,+∞)上为增函数的是________. (填序号)①y=x+1 ②y=(x-1)2③y=2-x④y=log0.5(x+1)答案①解析由基本初等函数的性质得,选项②中的函数在(0,1)上递减,选项③,④中的函数在(0,+∞)上为减函数,选①.变式训练下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是________. (填序号)① f (x )=x 12 ② f (x )=x 3 ③ f (x )=⎝ ⎛⎭⎪⎫12x ④ f (x )=3x答案 ④解析 f (x )=x 12,f (x +y )=(x +y )12≠x 12·y 12,不满足f (x +y )=f (x )f (y ),①不满足题意.f (x )=x 3,f (x +y )=(x +y )3≠x 3·y 3,不满足f (x +y )=f (x )f (y ),②不满足题意.f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y ,满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x 不是增函数,③不满足题意. f (x )=3x ,f (x +y )=3x +y =3x ·3y ,满足f (x +y )=f (x )·f (y ),且f (x )=3x 是增函数,④满足题意.解题要点 确定函数单调性的常用方法:(1)定义法:先求定义域,再根据取值、作差、变形、定号的顺序得结论.(2)图象法:若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降写出它的单调性.(3)转化法:转化为已知函数的单调性,即转化为已知函数的和、差或复合函数,再根据“增+增得增”“减+减得减”“同增异减”得待确定函数的单调性.(4)导数法:先求导,再确定导数值的正负,由导数的正负得函数的单调性.题型二 函数单调性的应用例2 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.答案 -14≤a ≤0解析 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a , 因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0. 综合上述得-14≤a ≤0. 变式训练 函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.答案 6解析 易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧ f a =1,f b =13,即⎩⎪⎨⎪⎧ 1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧ a =2,b =4.∴a +b =6.解题要点 1.利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.③注意数形结合思想的运用,借助图形列出对应不等式,从而求出参数范围.2.利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.题型三求函数的单调区间(x2-4x+3)的单调区间.例3求函数y=log13u与u=x2-4x+3的解析令u=x2-4x+3,原函数可以看作y=log13复合函数.令u=x2-4x+3>0,则x<1或x>3.(x2-4x+3)的定义域为(-∞,1)∪(3,+∞).∴函数y=log13又u=x2-4x+3的图象的对称轴为x=2,且开口向上,∴u=x2-4x+3在(-∞,1)上是减函数,在(3,+∞)上是增函数.u在(0,+∞)上是减函数,而函数y=log13(x2-4x+3)的单调递减区间为(3,+∞),单调递增区间为∴y=log13(-∞,1).解题要点 1.求单调区间的常用方法:(1)定义法;(2)图象法;(3)导数法.2.求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成基本初等函数:y=f(u),u=g(x);(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y=f(g(x))为增函数;若一增一减,则y=f(g(x))为减函数,即“同增异减”.3.求单调区间时需注意两点:①最终结果写成区间的形式;②不可忽视定义域.题型四 判断函数的奇偶性例4 判断下列函数的奇偶性:(1)f (x )=x 3-x ;(2)f (x )=(x +1) 1-x 1+x; (3) f (x )=3-x 2+x 2-3.解析 (1) 定义域为R ,关于原点对称,又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x )=-f (x ), ∴函数为奇函数.(2)由1-x 1+x≥0可得函数的定义域为(-1,1]. ∵函数定义域不关于原点对称,∴函数为非奇非偶函数.(3) 因为f(x)定义域为{-3,3},所以f(x)=0,则f(x)既是奇函数也是偶函数.解题要点判断函数单调性的两个步骤:1.判断函数定义域是否关于原点对称;2.判断f(-x)与f(x)关系. 若f(-x)=-f(x) 则函数为奇函数;若f(-x)=f(x)则函数为偶函数.或是利用下列两个等价关系式进行判断:若f(x)+f(-x)=0则函数为奇函数;若f(x)-f(-x)=0则函数为偶函数.题型五函数的周期性例5已知f(x)是定义在R上的偶函数,并且f(x+2)=-1f x,当2≤x≤3时,f(x)=x,则f(105.5)=______.答案 2.5解析由已知,可得f(x+4)=f[(x+2)+2]=-1f x+2=-1-1f x=f(x).故函数的周期为4.∴f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5).∵2≤2.5≤3,由题意,得f(2.5)=2.5.∴f(105.5)=2.5.解题要点关于函数周期性的三个常用结论:对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.题型六函数性质的综合运用例6 已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,23解析 偶函数满足f (x )=f (|x |),根据这个结论,有f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇔f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,进而转化为不等式|2x -1|<13,解这个不等式即得x 的取值范围是⎝ ⎛⎭⎪⎫13,23.当堂练习1. 函数f (x )=x 3-x 的图象关于________对称.答案 原点解析 由f (-x )=(-x )3-(-x )=-x 3+x =-f (x ),知f (x )是奇函数,则其图象关于原点对称.2.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)的值为________.答案 0解析∵ f(x)为奇函数且f(x+4)=f(x),∴f(0)=0,T=4,∴f(8)=f(0)=0.3.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=________.答案 1解析因为f(x)是偶函数,g(x)是奇函数,所以f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1.(x2-4)的单调递增区间是________.4.函数f(x)=log12答案(-∞,-2)解析 因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).5.函数y =f (x )是定义在[-2,2]上的单调减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案 [-1,1)解析 由条件⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a <1.课后作业一、 填空题1.下列函数中,既是奇函数又是增函数的为________.(填序号)①y =x +1 ②y =-x 2 ③ y =1x ④ y =x |x |答案 ④2.函数y =1-1x -1________.(填序号)①在(-1,+∞)上单调递增 ②在(-1,+∞)上单调递减③在(1,+∞)上单调递增 ④在(1,+∞)上单调递减答案 ③3.下列函数中,在区间(-∞,0)上是减函数的是________.(填序号)①y =1-x2②y =x 2+x ③y =--x ④y =xx -1答案 ④4.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f x 2-f x 1x 2-x 1<0”的是________.(填序号)①f (x )=1x②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1)答案 ①解析 满足f x 2-f x 1x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,故选①.5.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于________.答案 3解析 ∵f (x )为奇函数,∴f (-1)=-f (1),又g (x )为偶函数,∴g (-1)=g (1),∴-f (1)+g (1)=2,f (1)+g (1)=4,将两式相加得2g (1)=6,∴g (1)=3.6.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是________.(填序号)①y =x 3 ②y =|x |+1 ③y =-x 2+1 ④y =2-|x |答案 ②7.若函数y =x 2+(2a -1)x +1在区间(-∞,2]上是减函数,则实数a 的取值范围是________.答案 ⎝⎛⎦⎥⎤-∞,-32解析 由题意得-2a -12≥2,得a ≤-32.8.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则f (-1)与f (3)的大小关系是________.答案 f (-1)<f (3)解析 依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).9.函数y =x 2-2x (x ∈[2,4])的增区间为________.答案 [2,4]10.设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=________.答案 -1解析 由题知,f (-1)=f (-1+2)=f (1)=1-2=-1.11.给出下列命题①y =1x在定义域内为减函数; ②y =(x -1)2在(0,+∞)上是增函数;③y =-1x在(-∞,0)上为增函数; ④y =kx 不是增函数就是减函数.其中错误命题的个数有________.答案 3解析 ①②④错误,其中④中若k =0,则命题不成立.二、解答题12.证明函数g (x )=-2x x -1在(1,+∞)上单调递增.证明:任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2x 1-x 2x 1-1x 2-1,因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2).故g (x )在(1,+∞)上是增函数.13.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.解 ∵f (x )的定义域为[-2,2].∴有⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减,∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.即实数m 的取值范围是[-1,1).。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性————————————————————————————————作者:————————————————————————————————日期:函数的奇偶性与单调性一.知识总结1.函数的奇偶性(首先定义域必须关于原点对称)(1)为奇函数;为偶函数;(2)奇函数在原点有定义(3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和即(奇)(偶).2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义)(1)定义:区间上任意两个值,若时有,称为上增函数,若时有,称为上减函数.(2)奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则.3.周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.二.例题精讲【例1】已知定义域为的函数是奇函数.(Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的取值范围.解析:(Ⅰ)因为是奇函数,所以=0,即又由f(1)= -f(-1)知(Ⅱ)由(Ⅰ)知.又由题设条件得:,即:,整理得上式对一切均成立,从而判别式【例2】设函数在处取得极值-2,试用表示和,并求的单调区间.解:依题意有而故解得从而。

令,得或。

由于在处取得极值,故,即。

(1)若,即,则当时,;(2)当时,;当时,;从而的单调增区间为;单调减区间为若,即,同上可得,的单调增区间为;单调减区间为【例3】(理)设函数,若对所有的,都有成立,求实数的取值范围(文)讨论函数的单调性(理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1,(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数,又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x ≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1].解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对g(x)求导数g′(x)=ln(x+1)+1-a令g′(x)=0解得x=e a-1-1,当x>e a-1-1时,g′(x)>0,g(x)为增函数,当-1<x<e a-1-1,g′(x)<0,g(x)为减函数,所以要对所有x≥0都有g(x)≥g(0)充要条件为e a-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].(文)解:设,则∵∴,,,当时,,则为增函数当时,,则为减函数当时,为常量,无单调性【例4】(理)已知函数,其中为常数.(Ⅰ)若,讨论函数的单调性;(Ⅱ)若,且=4,试证:.(文)已知为定义在上的奇函数,当时,,求的表达式.(理)(文)解:∵为奇函数,∴当时,∵为奇函数∴∴∴三.巩固练习1.已知是上的减函数,那么的取值范围是( )A. B. C. D.2.已知是周期为2的奇函数,当时,,设则( )A. B. C. D.3.下列函数中,在其定义域内既是奇函数又是减函数的是( )A. B. C. D.4.若不等式对于一切 (0,)成立,则的取值范围是( )A.0B. –2C.-D.-35.设是上的任意函数,则下列叙述正确的是( )A.是奇函数B.是奇函数C.是偶函数D.是偶函数6.已知定义在上的奇函数满足,则的值为( )A.-1B.0C.1D.27.已知函数的图象与函数(且)的图象关于直线对称,记.若在区间上是增函数,则实数的取值范围是( ) A. B. C. D.8.(理)如果函数在区间上是增函数,那么实数的取值范围是( )A.B.C.D.9.对于上可导的任意函数,若满足,则必有( )A. B.C. D.10.已知,则( )A. B. C. D.11.已知函数,若为奇函数,则 .12.已知函数是定义在上的偶函数. 当时,,则当时, .13.是定义在上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是( )A.5B.4C.3D.214.下列函数既是奇函数,又在区间上单调递减的是( )A. B. C. D.15.若函数, 则该函数在上是( )A.单调递减无最小值B.单调递减有最小值C.单调递增无最大值D.单调递增有最大值16.若函数在区间内单调递增,则的取值范围是( )A. B. C. D.17.设是定义在上的奇函数,且的图象关于直线对称,则______.18.设函数在上满足,,且在闭区间[0,7]上,只有.(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.19. (理)已知,函数(1)当为何值时,取得最小值?证明你的结论;(2)设在[ -1,1]上是单调函数,求的取值范围.(文)已知为偶函数且定义域为,的图象与的图象关于直线对称,当时,,为实常数,且.(1)求的解析式;(2)求的单调区间;(3)若的最大值为12,求.20.已知函数的图象过点(0,2),且在点处的切线方程为.(1) 求函数的解析式;(2)求函数的单调区间.21.已知向量若函数在区间(-1,1)上是增函数求的取值范围.22. (理)已知函数,,.若,且存在单调递减区间,求的取值范围.(文)已知函数在区间上是减函数,且在区间上是增函数,求实数的值.巩固练习参考答案1. C2. D3. A4. C5. D6. B7. D8. B9. C 10.A11. a=12. -x-x4 13. B 14. D 15. A 16. B 17. 018 .解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数, 由,从而知函数的周期为又,故函数是非奇非偶函数;(II)由(II) 又故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.19. (理) 解:(I)对函数求导数得令得[+2(1-)-2]=0从而+2(1-)-2=0解得当变化时,、的变化如下表+ 0 - 0 + 递增极大值递减极小值递增∴在=处取得极大值,在=处取得极小值。

高一数学最新课件-奇偶性和单调性 精品

高一数学最新课件-奇偶性和单调性 精品
y=f(x) y=f(x)+k 上下平移
a>0,向左平移a个单位 a<0,向右平移|a|个单位 k>0,向上平移k个单位
k<0,向下平移|k|个单位
2.对称变换
(1)y=f(x)与y=f(-x)的图象关于 y 轴 对称;
(2)y=f(x)与y=-f(x)的图象关于 x 轴 对称;
(3)y=f(x)与y=-f(-x)的图象关于 原 点 对称;
形.
(4)y=f(x)与y=f -1(x)的图象关于 直线y=x 对称.
(5)由y=f(x)的图象作y=f(|x|)的图象:保留y=f(x)
中 y轴右侧 部分,再加上这部分关于y轴 对称的图
形.
(6)由y=f(x)的图象作y=|f(x)|的图象:保留y=f(x)
中 x轴上方 部分,再加上这部分关于 x轴 对称的图
(1).奇函数 f (-x)= - f (x) 或f (-x)+ f (x) = 0 (2).偶函数 f (-x)= f (x) 或 f (-x)- f (x) = 0
2.奇函数、偶函数的图象特点
(1).奇函数形。
函数图象
1.平移变换: y=f(x) y=f(x+a)左右平移
f(x1) f(x 2 )
函数f (x)在给定区间 上为增函数。
定 义
x1
x2 x

y

y f(x)
在给定区间上任取 x1, x2, 断


f (x1) f(x2)
O
x1 x2
x1 x2
f(x1) f(x 2 )
函数f (x)在给定区间 单
上为减函数。

x

Ktdrep高考数学难点突破 难点08 奇偶性与单调性(二)

Ktdrep高考数学难点突破 难点08 奇偶性与单调性(二)

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0.●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.(★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数, (1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lgkx+1. 7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2). 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0 ∴不等式可化为log 2(x 2+5x +4)≥2 ① 或log 2(x 2+5x +4)≤-2 ② 由①得x 2+5x +4≥4 ∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+-④由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 歼灭难点训练一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔330 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx -+11>log 2k x+1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。

奇偶性与单调性方法总结

奇偶性与单调性方法总结

奇偶性与单调性及典型例题函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.难点磁场(★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数.案例探究[例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明:(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果"赋值"不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y是解题关键;对于(2),判定的范围是焦点.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)-f(x1)=f(x2)-f(-x1)=f()∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴>0,又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0∴x2-x1<1-x2x1,∴0<<1,由题意知f()<0,即f(x2)<f(x1).∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.∴f(x)在(-1,1)上为减函数.[例2]设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.本题属于★★★★★级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题.错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0<x1<x2,则-x2<-x1<0,∵f(x)在区间(-∞,0)内单调递增,∴f(-x2)<f(-x1),∵f(x)为偶函数,∴f(-x2)=f(x2),f(-x1)=f(x1),∴f(x2)<f(x1).∴f(x)在(0,+∞)内单调递减.由f(2a2+a+1)<f(3a2-2a+1)得:2a2+a+1>3a2-2a+1.解之,得0<a<3.又a2-3a+1=(a-)2-.∴函数y=()的单调减区间是[,+∞]结合0<a<3,得函数y=()的单调递减区间为[,3).锦囊妙计本难点所涉及的问题及解决方法主要有:(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的"磁场"及"训练"认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.歼灭难点训练一、选择题1.(★★★★)下列函数中的奇函数是( )A.f(x)=(x-1)B.f(x)=C.f(x)=D.f(x)=2.(★★★★★)函数f(x)=的图象( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称二、填空题3.(★★★★)函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0 (0<x1<x2),在[x2,+∞上单调递增,则b的取值范围是_________.三、解答题5.(★★★★)已知函数f(x)=ax+ (a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案难点磁场(1)解:依题意,对一切x∈R,有f(x)=f(-x),即+aex.整理,得(a-)(ex-)=0.因此,有a-=0,即a2=1,又a>0,∴a=1(2)证法一:设0<x1<x2,则f(x1)-f(x2)=由x1>0,x2>0,x2>x1,∴>0,1-e<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2)∴f(x)在(0,+∞)上是增函数证法二:由f(x)=ex+e-x,得f′(x)=ex-e-x=e-x·(e2x-1).当x∈(0,+∞)时,e -x>0,e2x-1>0.此时f′(x)>0,所以f(x)在[0,+∞)上是增函数.歼灭难点训练一、1.解析:f(-x)= =-f(x),故f(x)为奇函数.答案:C2.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称.答案:C二、3.解析:令t=|x+1|,则t在(-∞,-1上递减,又y=f(x)在R上单调递增,∴y=f(|x+1|)在(-∞,-1上递减.答案:(-∞,-14.解析:∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x-x1)(x-x2)=ax3-a(x1+x2)x2+ax1x2x,∴b=-a(x1+x2),又f(x)在[x2,+∞单调递增,故a>0.又知0<x1<x,得x1+x2>0, ∴b=-a(x1+x2)<0.答案:(-∞,0)三、5.证明:(1)设-1<x1<x2<+∞,则x2-x1>0, >1且>0,∴>0,又x1+1>0,x2+1>0∴>0,于是f(x2)-f(x1)=+ >0∴f(x)在(-1,+∞)上为递增函数.(2)证法一:设存在x0<0(x0≠-1)满足f(x0)=0,则且由0<<1得0<-<1,即<x0<2与x0<0矛盾,故f(x)=0没有负数根.证法二:设存在x0<0(x0≠-1)使f(x0)=0,若-1<x0<0,则<-2,<1,∴f(x0)<-1与f(x0)=0矛盾,若x0<-1,则>0, >0,∴f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.6.证明:∵x≠0,∴f(x)=,设1<x1<x2<+∞,则.∴f(x1)>f(x2),f(x)在(1,+∞)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x=x1-x2,则f(-x)=f(x2-x1)==-f(x1-x2)=-f(x).∴f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a).∵f(x+a)=f[x-(-a)]=.∴f(x+4a)=f[(x+2a)+2a]==f(x),故f(x)是以4a为周期的周期函数.8.(1)证明:设x1<x2,则x2-x1->-,由题意f(x2-x1-)>0,∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-)-1=f[(x2-x1)-]>0,∴f(x)是单调递增函数.(2)解:f(x)=2x+1.验证过程略.难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f [log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤},求函数g(x)=-3x2+3x-4(x∈B)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的"f"号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去"f"号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由且x≠0,故0<x<,又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2<x<,即A={x|2<x<},∴B=A∪{x|1≤x≤}={x|1≤x<},又g(x)=-3x2+3x-4=-3(x-)2-知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.[例2]已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0,]都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f(x)是R上的奇函数,且在[0,+∞)上是增函数,∴f(x)是R上的增函数.于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m),即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0.设t=cosθ,则问题等价地转化为函数g(t)=t2-mt+2m-2=(t-)2-+2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正.∴当<0,即m<0时,g(0)=2m-2>0m>1与m<0不符;当0≤≤1时,即0≤m≤2时,g(m)=-+2m-2>04-2<m<4+2,4-2<m≤2.当>1,即m>2时,g(1)=m-1>0m>1.∴m>2综上,符合题目要求的m的值存在,其取值范围是m>4-2.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练一、选择题1.(★★★★)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,a的取值范围是( )A.(2,3)B.(3,)C.(2,4)D.(-2,3)二、填空题3.(★★★★)若f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则xf(x)<0的解集为_________.4.(★★★★)如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比较f(),f(),f(1)的大小关系_________.三、解答题5.(★★★★★)已知f(x)是偶函数而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f(x)= (a∈R)是R上的奇函数,(1)求a的值;(2)求f(x)的反函数f-1(x);(3)对任意给定的k∈R+,解不等式f-1(x)>lg.7.(★★★★)定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f(-+cos2x)对任意x∈R都成立,求实数m的取值范围.8.(★★★★★)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.(1)试求函数f(x)的解析式;(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2).又∵f(x)为偶函数,且f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上为减函数且f(-2)=f(2)=0∴不等式可化为log2(x2+5x+4)≥2 ①或log2(x2+5x+4)≤-2②由①得x2+5x+4≥4∴x≤-5或x≥0 ③由②得0<x2+5x+4≤得≤x<-4或-1<x≤④由③④得原不等式的解集为{x|x≤-5或≤x≤-4或-1<x≤或x≥0}歼灭难点训练一、1.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5.答案:B2.解析:∵f(x)是定义在(-1,1)上的奇函数又是减函数,且f(a-3)+f(9-a2)<0.∴f(a-3)<f(a2-9).∴∴a∈(2,3).答案:A二、3.解析:由题意可知:xf(x)<0∴x∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3)4.解析:∵f(x)为R上的奇函数∴f()=-f(-),f()=-f(-),f(1)=-f(-1),又f(x)在(-1,0)上是增函数且-> ->-1.∴f(-)>f(-)>f(-1),∴f()<f()<f(1).答案:f()<f()<f(1)三、5.解:函数f(x)在(-∞,0)上是增函数,设x1<x2<0,因为f(x)是偶函数,所以f(-x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知f(x)(0,+∞)上是减函数,于是有f(-x1)<f(-x2),即f(x1)<f(x2),由此可知,函数f(x)在(-∞,0)上是增函数.6.解:(1)a=1.(2)f(x)= (x∈R)f--1(x)=log2 (-1<x<1.(3)由log2>log2log2(1-x)<log2k,∴当0<k<2时,不等式解集为{x|1-k<x<1;当k≥2时,不等式解集为{x|-1<x<1.7.解:,对x∈R恒成立,∴m∈[,3]∪{}.8.解:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即∴c=0,∵a>0,b>0,x>0,∴f(x)=≥2,当且仅当x=时等号成立,于是2=2,∴a=b2,由f(1)<得<即<,∴2b2-5b+2<0,解得<b<2,又b∈N,∴b=1,∴a=1,∴f(x)=x+.(2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在y=f(x)图象上,则消去y0得x02-2x0-1=0,x0=1±.∴y=f(x)图象上存在两点(1+,2),(1-,-2)关于(1,0)对称.函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f [log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由且x≠0,故0<x< ,又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2<x< ,即A={x|2<x< },∴B=A∪{x|1≤x≤ }={x|1≤x< },又g(x)=-3x2+3x-4=-3(x- )2-知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.[例2]已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈[0, ]都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f(x)是R上的奇函数,且在[0,+∞)上是增函数,∴f(x)是R上的增函数.于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m),即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0.设t=cosθ,则问题等价地转化为函数g(t)=t2-mt+2m-2=(t- )2- +2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正.∴当 <0,即m<0时,g(0)=2m-2>0 m>1与m<0不符;当0≤≤1时,即0≤m≤2时,g(m)=- +2m-2>04-2 <m<4+2 ,4-2 <m≤2.当 >1,即m>2时,g(1)=m-1>0 m>1.∴m>2综上,符合题目要求的m的值存在,其取值范围是m>4-2 .●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练一、选择题1.(★★★★)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,a的取值范围是( )A.(2 ,3)B.(3, )C.(2 ,4)D.(-2,3)二、填空题3.(★★★★)若f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则xf(x)<0的解集为_________.4.(★★★★)如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比较f( ),f( ),f(1)的大小关系_________.三、解答题5.(★★★★★)已知f(x)是偶函数而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f(x)= (a∈R)是R上的奇函数,(1)求a的值;(2)求f(x)的反函数f-1(x);(3)对任意给定的k∈R+,解不等式f-1(x)>lg .7.(★★★★)定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f( - +cos2x)对任意x ∈R都成立,求实数m的取值范围.8.(★★★★★)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)< .(1)试求函数f(x)的解析式;(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2).又∵f(x)为偶函数,且f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上为减函数且f(-2)=f(2)=0∴不等式可化为log2(x2+5x+4)≥2 ①或log2(x2+5x+4)≤-2 ②由①得x2+5x+4≥4∴x≤-5或x≥0 ③由②得0<x2+5x+4≤得≤x<-4或-1<x≤④由③④得原不等式的解集为{x|x≤-5或≤x≤-4或-1<x≤或x≥0}歼灭难点训练一、1.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5.答案:B2.解析:∵f(x)是定义在(-1,1)上的奇函数又是减函数,且f(a-3)+f(9-a2)<0.∴f(a-3)<f(a2-9).∴∴a∈(2 ,3).答案:A二、3.解析:由题意可知:xf(x)<0∴x∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3)4.解析:∵f(x)为R上的奇函数∴f( )=-f(- ),f( )=-f(- ),f(1)=-f(-1),又f(x)在(-1,0)上是增函数且- > - >-1.∴f(- )>f(- )>f(-1),∴f( )<f( )<f(1).答案:f( )<f( )<f(1)三、5.解:函数f(x)在(-∞,0)上是增函数,设x1<x2<0,因为f(x)是偶函数,所以f(-x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知f(x)(0,+∞)上是减函数,于是有f(-x1)<f(-x2),即f(x1)<f(x2),由此可知,函数f(x)在(-∞,0)上是增函数.6.解:(1)a=1.(2)f(x)= (x∈R) f--1(x)=log2 (-1<x<1 .(3)由log2 >log2 log2(1-x)<log2k,∴当0<k<2时,不等式解集为{x|1-k<x<1 ;当k≥2时,不等式解集为{x|-1<x<1 .7.解:,对x∈R恒成立,∴m∈[ ,3]∪{ }.8.解:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即∴c=0,∵a>0,b>0,x>0,∴f(x)= ≥2 ,当且仅当x= 时等号成立,于是2 =2,∴a=b2,由f(1)<得<即< ,∴2b2-5b+2<0,解得<b<2,又b∈N,∴b=1,∴a=1,∴f(x)=x+ . (2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在y=f(x)图象上,则消去y0得x02-2x0-1=0,x0=1± .∴y=f(x)图象上存在两点(1+ ,2 ),(1- ,-2 )关于(1,0)对称.。

高考数学难点突破_难点08__奇偶性与单调性(二)

高考数学难点突破_难点08__奇偶性与单调性(二)

难点8 奇偶性与单调性(二)例题讲解:[例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 题目分析:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.题目分析:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,∴4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.题目分析:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.课后习题:一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.(★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数,(1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lg kx+1.7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以 f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx-+11>log 2k x +1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得b a 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y xx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。

函数奇偶性与单调性

函数奇偶性与单调性

一、函数的奇偶性奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,那么称函数()y f x =为偶函数;()()f x f x =--,那么称函数()y x =为奇函数.性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言;(2)由()()()()()f x f x f x f x =-=--知,假设,x D ∈那么x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分)(3)假设0D ∈,那么()00f =是()f x 为奇函数的必要条件(非充分)(4)常数函数()()f x c x R =∈一定()0f x =是偶函数;假设0c =那么()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数⇔()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集)(5)奇偶函数的图像特征:函数()f x 是奇函数⇔函数()f x 图像关于原点对称; 函数()f x 是偶函数⇔函数()f x 图像关于y 轴对称.(6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D =那么在D 上有:(7)多项式函数()230123n n f x a a x a x a x a x =++++为奇函数⇔偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++为偶函数⇔奇次项系数全为0.二、函数的单调性单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 假设()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 假设()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间.性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有假设干个增减性不同的单调区间;假设函数()f x 在整个定义域上单调,那么称()f x 为单调函数.(2)函数单调性二个等价形式:①()()()121200f x f x x x -><⇔-在D 上单调递增(递减);②()()()()121200x x f x f x --><⇔⎡⎤⎣⎦()f x 在D 上单调递增(递减).(3)假设()f x 在R 上单调递增,那么()()f a f b a b >⇔>;假设()f x 在R 上单调递减,那么________. (4)设12,,x x D ∈那么()()()()1212(0)x x f x f x f x --><⇔⎡⎤⎣⎦在D 上是增(减)函数.(5)单调性与奇偶性:假设奇函数()f x 在区间[],a b 上单调递增(减),那么()f x 在区间[],b a --上单调递增(减);假设偶函数()f x 在区间[],a b 上单调递增(减),那么()f x 在区间[],b a --上单调递减(增); (6)复合函数单调性:两个单调函数()f x 与()g x 复合,不管复合结果是()f g x ⎡⎤⎣⎦还是()g f x ⎡⎤⎣⎦,有如下性质:假设()f x 与()g x 单调性相同,同增或同减,那么复合结果为增;假设()f x 与()g x 单调性相反,一个增一个减,那么复合结果为减;以上性质可记为一句口诀:“同增异减〞.单调区间的书写要求:假设函数在区间的端点有定义,常常写成闭区间,当然写成开区间也是可以的.但是假设函数在区间的端点处没有定义,那么必须写成开区间.另外,假设函数()f x 在其定义内的两个区间A 、B 上都是单调增〔减〕函数,一般不能认简单地认为()f x 在区间A B 上是增〔减〕函数.例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞上是减函数.事实上,假设取1211x x =-<=,有(1)11(1)f f -=-<<.一、函数的奇偶性题型一 判断并证明函数的奇偶性 方法:(1)定义法:首先判断其定义域是否关于原点中心对称.假设不对称,那么为非奇非偶函数;假设对称,那么再判断()()f x f x =-或()()f x f x =-是否认义域上的恒等式; (2)图象法:观察图像是否符合奇、偶函数的对称性. 说明:(1)分段函数的奇偶性的判定和分类讨论思想密切相关,要注意自变量在不同情况下表达式的不同形式以及它们之间的相互利用;(2)判断函数的奇偶性,首先要考查定义域是否对称; (3)假设判断函数不具备奇偶性,只需举出一个反例即可;(4)函数就奇、偶性来划分可以分成奇函数、偶函数、非奇非偶函数、既是奇函数也是偶函数. 例1.判断以下函数的奇偶性:(1)x xx x f ++=1)(2; (2)()(1f x x =-(2)()0f x = (4) ()⎩⎨⎧≤+>+-=)0()0(22x x x x x x x f(5)()2212-+-=x x x f(6)函数)(x f 满足:),)(()(2)()(R y x y f x f y x f y x f ∈=-++,且0)0(≠f ,那么函数)(x f 的奇偶性为________.题型二 利用奇偶性求函数式或函数值 例2.完成以下各题:1.设函数)(x f 为定义域为R 上奇函数,又当0>x 时2()23f x x x =--,试求)(x f 的解析式.3.设函数()f x 是定义域R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,求(7.5)f 的值.4.设()f x 在R 上是偶函数,在区间(,0)-∞上递增,且有22(21)(321)f a a f a a ++<-+,求a 的取值范围.5.函数53()4f x ax bx =++,假设(2)0f -=,求(2)f 的值.6.假设函数()f x 是偶函数,那么=--+)211()21(f f ________. 7.()f x 是偶函数,()g x 是奇函数,且()()11f xg x x +=-,试求()()f x g x 与的表达式.题型三 逆用函数奇偶性求参数的值例3.1.假设函数43()(2)(22)f x x m n x m n x mn =+-++-+为偶函数,求实数,m n 的值。

高一数学:函数奇偶、单调性结合题型

高一数学:函数奇偶、单调性结合题型

高一数学:函数奇偶、单调性结合题型
函数的奇偶性、单调性在函数的诸多性质当中,占有重要的地位.近些年,高考中考查函数的题型在不断翻新,并且考得比较“隐蔽”,经常与其他知识进行交融考查,同时函数的奇偶性、单调性有时联袂出手,相辅相成.下面阐述两者的区别与联系,并举例说明两者的关系在解题中的应用.
一、函数奇偶性与单调性的区别与联系
函数的单调性是对于函数定义域内某个子区间而言的“局部”性质,它反映了函数f(x)在区间上函数值的变化趋势.函数的奇偶性是相对于函数的定义域来说的“整体”性质,主要讨论的是函数的对称性,奇函数的图象关于原点对称, 在原点的两侧具有相同的单调性;偶函数的图象关于y 轴对称,在原点的两侧具有相异的单调性.
二、函数的奇偶性、单调性联袂出手
【评注】本题先利用单调性的定义研究函数的单调性,再与函数的奇偶性结合,转化为不等式问题的研究.。

函数单调性与奇偶性

函数单调性与奇偶性

函数单调性与奇偶性在数学的广袤世界中,函数的单调性与奇偶性是两个极为重要的性质。

它们不仅帮助我们更深入地理解函数的行为和特征,还在解决各种数学问题中发挥着关键作用。

首先,让我们来聊聊函数的单调性。

简单来说,单调性就是描述函数值随自变量变化的趋势。

如果函数在某个区间内,当自变量增大时,函数值也随之增大,那么我们就说这个函数在这个区间上是单调递增的;反之,如果自变量增大时,函数值反而减小,那这个函数在这个区间就是单调递减的。

想象一下,有一条函数曲线,就像是一个山坡。

如果是单调递增的,那就像是从山脚往山顶走,越走越高;要是单调递减的,就像是从山顶往山脚走,越走越低。

比如说,一次函数 y = 2x + 1 ,它就是单调递增的。

因为当 x 增大时,2x 增大,整个函数值也就增大了。

再看反比例函数 y = 1/x ,在 x > 0 这个区间,它是单调递减的。

随着 x 的增大,1/x 的值会越来越小。

函数单调性的判断方法有很多。

其中,最常用的就是求导法。

对于一个可导的函数,其导数大于零的区间就是单调递增区间,导数小于零的区间就是单调递减区间。

这就像是给函数安装了一个“探测器”,通过导数的正负来告诉我们函数的增减情况。

接下来,咱们说说函数的奇偶性。

这可是个有趣的性质。

如果对于函数 f(x),都有 f(x) = f(x) ,那么这个函数就是偶函数;如果都有 f(x) = f(x) ,那它就是奇函数。

偶函数的图像关于 y 轴对称。

比如说,二次函数 y = x²就是一个偶函数。

当 x 取一个值和它的相反数时,函数值是相等的。

奇函数的图像关于原点对称。

像 y = x³就是奇函数,当 x 变为 x 时,函数值也变成了原来的相反数。

函数的奇偶性在解题中常常能给我们带来意想不到的便利。

比如,在计算定积分时,如果函数是奇函数,那么在关于原点对称的区间上的定积分值就为零;如果是偶函数,那么在对称区间上的定积分就等于在一半区间上积分值的两倍。

高中函数的单调性和奇偶性

高中函数的单调性和奇偶性

函数的单调性(一)知识梳理1、函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆,如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间。

如果用导数的语言来,那就是:设函数)(x f y =,如果在某区间I 上0)(>'x f ,那么)(x f 为区间I 上的增函数;如果在某区间I 上0)(<'x f ,那么)(x f 为区间I 上的减函数;2、确定函数的单调性或单调区间的常用方法:(1)①定义法(取值――作差――变形――定号);②导数法(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,(2)在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x =+>,0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[.(3)复合函数法:复合函数单调性的特点是同增异减(4)若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)。

3、单调性的说明:(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;(3)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点8:奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场已知偶函数()f x 在()0,+∞上为增函数,且()20f =,解不等式()2log 2540f x x ⎡⎤++≥⎣⎦.●案例探究[例1]已知奇函数()f x 是定义在()3,3-上的减函数,且满足不等式()()2330f x f x -+-<,设不等式解集为A,{1B A x =⋃≤,求函数()()2334g x x x x B =-+-∈的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为cos x x 不等式,利用数形结合进行集合运算和求最值.解:由23336333x x x ⎧⎧-<-<<⎨⎨<<⎩-<-<⎩得且0x ≠,故0x <<又∵()f x 是奇函数,∴()()()22333f x f x f x -<--=-,又()f x 在()3,3-上是减函数,∴233x x ->-,即260x x +->,解得23x x ><-或,综上得2x <<,即{2A x x =<<,∴{{11B A x x x x =⋃≤≤=≤≤,又()22113334324g x x x x ⎛⎫=-+-=--- ⎪⎝⎭知:()g x 在B 上为减函数,∴()()max 14g x g ==-.[例2]已知奇函数()f x 的定义域为R ,且()f x 在[)0,+∞上是增函数,是否存在实数m ,使()()()cos2342cos 0f f m m f θθ-+->对所有0,2πθ⎡⎤∈⎢⎥⎣⎦都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵()f x 是R 上的奇函数,且在[)0,+∞上是增函数,∴()f x 是R 上的增函数.于是不等式可等价地转化为()()cos232cos 4f f m m θθ->-, 即cos 232cos 4m m θθ->-,即cos 2cos 220m m θθ-+->. 设cos t θ=,则问题等价地转化为函数()222222224m m g t t mt m t m ⎛⎫=-+-=--+- ⎪⎝⎭在[]0,1上的值恒为正,又转化为函数()g t 在[]0,1上的最小值为正. ∴当02m<,即0m <时,()02201g m m =->⇒>与0m <不符; 当012m ≤≤时,即02m ≤≤时,()22204m g m m =-+->444 2.m m ⇒-<<+-<≤ 当12m>,即2m >时,()110 1.2g m m m =->⇒>∴>综上,符合题目要求的m 的值存在,其取值范围是4m >-●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题. ●歼灭难点训练 一、选择题1.设()f x 是(),-∞+∞上的奇函数,()()2f x f x +=,当01x ≤≤时,()f x x =,则()7.5f 等于( ).A 0.5.B 0.5- .C 1.5 .D 1.5-2.已知定义域为()1,1-的奇函数()y f x =又是减函数,且()()2390f a f a -+-<,则a 的取值范围是( ).A ().B (.C ()4.D ()2,3-二、填空题3.若()f x 为奇函数,且在()0,+∞内是增函数,又()30f -=,则()0xf x <的解集为______.4.如果函数()f x 在R 上为奇函数,在()1,0-上是增函数,且()()2f x f x +=-,试比较()12,,133f f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的大小关系______. 三、解答题5.已知()f x 是偶函数而且在()0,+∞上是减函数,判断()f x 在(),0-∞上的增减性并加以证明.6.已知()()2121x x a f x a R ∙-=∈+是R 上的奇函数,(1)求a 的值;(2)求()f x 的反函数()1f x -; (3)对任意给定的k R +∈,解不等式()11lgxf x k-+>.7.定义在(],4-∞上的减函数()f x 满足()7sin cos 24f m x f x ⎫-≤+⎪⎭对任意x R ∈都成立,求实数m 的取值范围.8.已知函数()()21,,,0,0ax y f x a b c R a b bx c+==∈>>+是奇函数,当0x >时,()f x 有最小值2,其中b N ∈且()512f <. (1)试求函数()f x 的解析式;(2)问函数()f x 图象上是否存在关于点()1,0对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵()20f =,∴原不等式可化为()()2log 2542f x x f ⎡⎤++≥⎣⎦.又∵()f x 为偶函数,且()f x 在()0,+∞上为增函数, ∴()f x 在(),0-∞上为减函数且()()220f f -== ∴不等式可化为()2log 2542x x ++≥ ① 或()2log 2542x x ++≤-②由①得2544x x ++≥ ∴50x x ≤-≥或③由②得210544x x <++≤得4x ≤<-或1x -<≤ ④ 由③④得原不等式的解集为5410x x x x x ⎧⎫⎪⎪≤-≤≤--<≤≥⎨⎬⎪⎪⎩⎭或歼灭难点训练 一、1.解析:()()()()()()()7.5 5.52 5.5 3.52 3.5 1.52 1.5f f f f f f f =+=-=-+==+=- ()()()0.520.50.50.5f f f --+=-=-=-. 答案:B 2.解析:∵()f x 是定义在()1,1-上的奇函数又是减函数,且()()2390f a f a -+-<.∴()()239f a f a -<-.2213119139a a a a -<-<⎧⎪∴-<-<⎨⎪->-⎩∴()a ∴∈. 答案:A 二、3.解析:由题意可知:()()()00000x x xf x f x f x ⎧<>⎧⎪<⇔⎨⎨><⎪⎩⎩或()()()()00003333x x x x f x f f x f x x ⎧<>⎧<>⎧⎧⎪⇔⇔⎨⎨⎨⎨>-<>-<⎩⎩⎪⎩⎩或或∴()()3,00,3x ∈-⋃ 答案:()()3,00,3-⋃ 4.解析:∵()f x 为R 上的奇函数∴()()1122,,113333f ff f f f ⎛⎫⎛⎫⎛⎫⎛⎫=--=--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又()f x 在()1,0-上是增函数且12133->->-.∴()()12121,13333f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫->->-∴<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.答案:()12133f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭三、5.解:函数()f x 在(),0-∞上是增函数,设120x x <<,因为()f x 是偶函数,所以()()()()1122,f x f x f x f x -=-=,由假设可知120x x ->->,又已知()f x 在()0,+∞上是减函数,于是有()()12f x f x -<-,即()()12f x f x <,由此可知,函数()f x 在(),0-∞上是增函数.6.解:(1)1a =.(2) ()()()()111221log 1121xx xx f x x R f x x +---=∈⇒=-<<+.(3)由()1111222logloglog log 2x x x x k k ++-->⇒<,∴当02k <<时,不等式解集为{}11x k x -<<;当2k ≥时,不等式解集为{}11x x -<<.7.解:222sin 44sin 7cos 474sin sin 147sin cos 4m x m x x m x x m x x ⎧⎪-≤-≤⎧⎪⎪⎪+≤⎨⎨≥-++⎪⎪⎩⎪-≥+⎪⎩即, 对x R ∈恒成立,33122m m m ≤⎧⎪⎨≥=⎪⎩或 ∴31,322m ⎡⎤⎧⎫∈⋃⎨⎬⎢⎥⎣⎦⎩⎭.8.解:(1)∵()f x 是奇函数,∴()()f x f x -=-,即2211ax ax bx c bx c bx c bx c++=-⇒+=-+-+ ∴()2110,0,0,0,ax a c a b x f x x bx b bx +=∴>>>∴==+≥当且仅当x =时等号成立,于是22,a b =∴=,由()512f <得152a b +<即2152b b +<, ∴22520b b -+<,解得122b <<,又()1,1,1,b N b a f x x x∈∴=∴=∴=+. (2)设存在一点()00,x y 在()y f x =的图象上,并且关于()1,0的对称点()002,x y --也在()y f x =图象上,则()200020001212x y x x y x⎧+=⎪⎪⎨-+⎪=-⎪-⎩消去0y得2000210,1x x x --==∴()y f x =图象上存在两点((1,1--关于()1,0对称.。

相关文档
最新文档