履带车辆设计计算说明书
履带车辆设计计算
履带车辆设计计算
履带车辆设计计算是一项重要的工程技术,它涉及到机械设计、力学、材料力学、动力学等多个学科。
在履带车辆的设计过程中,需要考虑车辆的速度、负载能力、通过障碍物的能力、悬挂系统、轮胎与路面间的摩擦等因素。
履带车辆的设计计算需要进行多种计算和分析,如轮距的计算、轮胎接地面积和接触压力的计算、车体的稳定性和平衡性分析、发动机的输出功率和燃油消耗率的计算等。
其中,最关键的因素是轮胎与路面间的摩擦系数,它直接影响着车辆的牵引力和行驶稳定性。
在履带车辆的设计计算中,还需要考虑到车辆的可靠性和安全性。
对于一些高性能的履带车辆,如坦克、军用装甲车等,还需要考虑到车辆的防弹性能和爆炸性能等方面的设计。
履带车辆的设计计算是一项复杂而又精密的工程技术,它为我们的生活和工作带来了巨大的便利,也在军事领域中发挥着重要的作用。
- 1 -。
履带车辆设计计算说明书
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第 2 部份:整机参数测量》标准要求进行计算:一、基本参数序号项目参数内容1 拖拉机型号2 型式履带式3 外形尺寸(长×宽×高) 3300×1550×22504 发动机型号YN38GB25 发动机标定功率57 kW6 整机重量1609Kg7 最高行走速度12km/h8 接地比压24kpa9 履带接地长1000mm10 动力输出轴功率49.4kW11 最大牵引力11.38kN12 标定转速2600r/min13 动力输出轴转速540/720r/min14 悬挂装置型式后置三点置挂15 爬坡能力<30016 驱动轮半径275mm17 底盘轨距1050mm8 履带最大高度860mm二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算:空载时:质心至后支承点的距离A0=830mm 质心至前支承点的距离B=610mm质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm 质心至前支承点的距离B=812mm质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距,a =1200mm h —质心至地面距离mm空载:12002450=1.33>0.7 满载:12002546=1.10>0.7 故拖拉机在空、满载运行中均能满足稳定性要求。
履带车辆设计计算说明
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆设计计算说明
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆设计计算说明
履带车辆设计计算说明 Document number:PBGCG-0857-BTDO-0089-PTT1998整车参数计算根据《GB/T 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ= (δ为滑转率)空载时:830/450=> 满载时:605/546=> 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=> 满载:12002546⨯=>故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速Vmax=8 km/h,所需功率:P emax =n1( pf+ pw)kw=(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h。
选用V2=4km/h,最大爬坡度为25%时,计算所需功率:p emax =n1( pf+ pi+pw)kw=上述两式中:Pf——滚动阻力消耗的功率;Pw——空气阻力消耗的功率;Pi——坡度阻力消耗的功率;η——传动效率系数,取η =;f——滚动阻力系数,取f=;C d ——空气阻力系数,取Cd=;A——拖拉机前进方向迎风面积A=B×H(宽×高)= ×V a ——拖拉机取低档速度Va=4km/h;i max ——最大爬坡坡度,imax=25%;G——拖拉机总质量,G总 =2200kg。
优小型履带式液压挖掘机的行走机构计算说明书
优小型履带式液压挖掘机的行走机构计算说明书标题: 优小型履带式液压挖掘机的行走机构计算说明书
正文:
本文介绍了小型履带式液压挖掘机的行走机构计算的重要性和
方法,包括行走机构的主要部件,行走机构的运动方式以及行走机构
的计算过程。
此外,还详细介绍了行走机构计算的具体步骤,以及如何根据计算结果来优化行走机构的设计。
本文适合用于小型履带式液压挖掘机的设计、制造和调试过程中,有助于提高挖掘机的性能和质量。
读者可以了解如何计算小型履带式液压挖掘机的行走机构,从而更好地设计和控制挖掘机的运动,提高
挖掘机工作效率和性能。
行走机构的主要部件包括液压缸、油缸盖、油缸柱塞、活塞、履带和支撑梁等。
这些部件的运动方式分为三种:
1. 线性运动方式:液压缸活塞来回运动,形成履带上方的位移。
这种运动方式适用于平稳的行走和工作,但是履带受到较大压力,导
致油缸柱塞和支撑梁受损。
2. 螺旋运动方式:液压缸活塞向下运动,履带以一定的速度向上移动。
这种运动方式适用于较陡峭的地形和较大的负载。
3. 螺旋向下运动方式:液压缸活塞向上运动,履带以一定的速度向下移动。
这种运动方式适用于平稳的行走和工作,但是履带受到较大的压力,导致油缸柱塞和支撑梁受损。
因此,在行走机构计算过程中,我们需要确定每种运动方式所需
的油缸数据和支撑梁数据,并根据行走机构的工作负载和地形条件选择适当的运动方式。
履带计算和发动机的选型
履带的设计1设定车身重100kg 承载重100kg 全地形车时速达30km/h 爬坡15履带的节距t履带的宽 b b=根据履带设计标准取0.18驱动轮节圆半径r r==118mm计算得=850mm r=118mm L==1236mm平均接地比压p查表得极限比压 =0.26Mpa ==0.00401<最大接地比压履带车对地面的附着力的计算校核履带行走机构的牵引力必须大于或等于各阻力之和,但应小于或等于履带对地面的附着力履带行驶机构对地面的附着力是附着系数下面是各路面的附着系数:路面附着系数干粘土 0.9混粘土 0.7松散土路 0.6煤路 0.6混沙土 0.5岩石坑 0.55散砾土 0.50混凝土 0.45干沙土 0.3雪地 0.25冰地 0.12取最小附着系数的冰地=0.12履带下垂量 h履带的静态张紧力g是履带的重量履带行走机构牵引力的计算—— 滚动阻力; ——坡道阻力f是摩擦系数:路面摩擦系数混凝土 0.05冰雪地 0.03-0.04坚实路面 0.07松散土路 0.10泥泞地沙地 0.1-0.15取最大摩擦系数f=0.15>计算结果说明冰地用最大的牵引力履带车上坡上不去设路面是雪地计算=490N< 雪地用最大的牵引力爬坡上不去设路面为干沙土=580N< 干沙土用最大的牵引力爬15的坡也上不去设路面为混凝土=882> 所以混凝土路面可以用最大的牵引力爬15度的坡这样其他的路面也都能用最大的牵引力爬15度坡我们可以设定路面为附着力最大路面=0.9 计算得最大爬坡为48度发动机的的确定已知履带车速度为30km/h,最大牵引力为784N 设总传动比为0.82P=/P=/=7969w=7.969kw根据算出的最大功率我选宗申zs157FMJ发动机下面是此型号发动机的技术参数:宗申宗申zs157FMJ发动机。
履带车辆设计计算说明书
整车参数计算根拯《GB/T 3871.2-2006农业拖拉机试验规程第2部份:整机参数测量》标准要求进行计算:一. 基本参数二、质量参数的计算1、整备质量Mo为1825kg ;2、总质量懸M总=MO+M1+ M2 二1825+300+75二2200 kg血载质量:300kg M2驾驶员质量:75kg3、使用质M: M总二M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871. 15-2006农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0二830mm质心至前支承点的距离B二610mm质心至地而的距离h0=450mm满载时:质心至后支承点的距离A0二605mm质心至前支承点的距离B二812mm质心至地而的距离h0二546mm5、稳左性计算a、保证拖拉机爬坡时不纵向翻倾的条件是:% > 戶.7 (§为滑转率)空载时:830/450=1. 84>0.7满载时:605/546=1.11 >0.7满足条件。
b、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:/2/1 > =0. 7 a—轨距,a二1200mm h—质心至地而距离mm空载:丿2烈八二1・33>0・72x450满载:J???二I K)〉。
.?2x546故拖拉机在空、满载运行中均能满足稳是性要求。
三、发动机匹配根据《GB/T 1147. 1-2007中小功率内燃机第1部份:通用技术条件》标准要求进行计算: XJ-782LT履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标圧功率为57kW/h,转速为2600r/min.(1) 最髙设讣车速鼻弐km/h,所需功率: 尸z •二丄(巴+几)kwn 「3 -1 "・g ・f ・V 唤、,Cd-A-V m ax x ; =-( ---- --- ---- )+( ---------- ) kmn[ 3600 761401—而=6.188kW(2) 根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 0选用 V2=4km/h,最大爬坡度为25%时,讣算所需功率:=1 "g •八)+宀皿必)胁77 L 3600 3600 76140 _1 r 2200x9.8x0.02x8, z 2200x9.8x0.25x4 x 0.9xl.4xl.l5x43 x 0.9 L 3600 3600 76140=6. 948kw 上述两式中:P.——滚动阻力消耗的功率: P.一一空气阻力消耗的功率:匚一一坡度阻力消耗的功率; n —传动效率系数,取耳二0.9: /一一滚动阻力系数,取£0.02; q ——空气阻力系数,取q 二0.9:A ——拖拉机前进方向迎风而积A=BXH (宽X 髙)二1.40X1. 15y 一一拖拉机取低档速度K=4km/h;1 一一最大爬坡坡度,i =25%;(2200x9g().02xb +(().9xl.4xl.l5x8‘360076140G一一拖拉机总质量,G总二2200kg。
履带车辆设计计算说明
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用云发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆设计计算说明
履带车辆设计计算说明履带车辆设计计算说明1、引言1.1 目的本文档旨在提供履带车辆设计计算的详细说明,帮助设计人员完成履带车辆设计工作。
1.2 背景履带车辆是一种特殊类型的车辆,具有良好的通过性和载重能力,因此广泛应用于工程和军事领域。
2、设计参数2.1 载重能力履带车辆设计的关键参数之一是载重能力,需要根据实际应用场景来确定。
2.2 速度要求履带车辆的速度也是设计的重要参数,需要考虑到行驶环境和任务需求。
2.3 尺寸限制履带车辆的尺寸限制可能涉及到运输和操作方面的因素,需要根据实际条件做出合理的设计。
2.4 燃油效率在设计履带车辆时,燃油效率也是需要考虑的因素之一,可以通过优化动力系统和车辆结构来提高效率。
3、动力系统设计3.1 发动机选择根据设计参数和要求,选择合适的发动机,包括功率输出和燃油消耗等方面。
3.2 传动系统设计履带车辆的传动系统通常包括离合器、变速器和差速器等,需要根据设计要求进行选型和设计计算。
4、履带系统设计4.1 履带选择履带的选择需要考虑到载重能力和使用环境等因素,可以根据所需的抓地力和耐用性来确定。
4.2 履带框架设计履带框架的设计需要结合载重能力和尺寸限制等因素,确保框架具有足够的强度和刚度。
5、悬挂系统设计5.1 阻尼器选择履带车辆的悬挂系统通常需要配备阻尼器,以提高行驶平稳性和舒适性。
5.2 悬挂布局设计悬挂系统的布局需要考虑到载重平衡和行驶性能等因素,可以通过前、后动臂和扭杆等组件来实现。
6、制动系统设计6.1 制动器选型履带车辆的制动系统需要选择合适的制动器,以确保安全性和控制性能。
6.2 制动力计算根据设计参数和要求,进行制动力的计算和设计,确保制动系统具有足够的制动能力。
7、安全性设计7.1 车辆稳定性在设计履带车辆时,需要考虑到车辆的稳定性,包括重心高度和悬挂系统等因素。
7.2 环境适应性履带车辆应具备适应不同环境的能力,包括应对不同地形和气候条件等。
[精选]履带车辆设计计算说明资料
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
250T履带地基计算书
顶板行走250吨履带吊对混凝土结构影响250吨履带吊车空载为212.4吨,履带接地长度为7.8米,宽度为1.12米,则每条履带下压力为G/LB=212.4×9.8/(2×7.8×1.12)=119.1kPa。
根据设计图纸,顶板考虑的超限荷载为满布20kPa,验算土建结构承载力时,考虑的原则如下:○1吊车荷载产生的内力不大于超限荷载(施工荷载)产生的内力,适用于梁;○2吊车荷载所产的内力远小于结构的极限承载力,适用于板。
顶板厚度基本为500mm,最大单向板块尺寸为4.5m×20.5m,当计算楼板受力时,分为两种工况,履带垂直板跨与平行板跨。
(一)履带垂直板跨(履带横轨向行走)当履带垂直板跨时,履带接地长度为7.8m,板跨为4.5m,最不利情况为两条履带均处于板跨中,考虑到履带中心间距为 6.4m,实际最不利情况为一条履带处于板跨中,如下图所示。
单跨内荷载为11.8kPa,满足设计20kPa超限荷载要求。
吊车横轨向行走示意图(1)楼板承载力验算根据《建筑结构荷载规范》(50009-2012)附录B中相关条文,当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度b 为(下图所示):①当cy cx b b <,l b cy 2.2≤,l b cx ≤时:l b b cy 73.032+= ②当cy cx b b <,l b cy 2.2>,l b cx ≤时:cy b b =式中l —板的跨度cx b —荷载作用面平行于板跨的计算宽度;cy b —荷载作用面垂直于板跨的计算宽度;而h s b b tx cx ++=2=1120mm ,h s b b ty cy ++=2=8300mm 。
式中tx b —荷载作用面平行于板跨的宽度;ty b —荷载作用面垂直于板跨的宽度;s —垫层的厚度,实际为铺设钢板厚度,计算中暂不考虑;h —板的厚度,为500mm 。
履带车辆设计计算说明书
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆行走系统设计方案
# 履带车辆行走系统设计方案1. 概述履带车辆是一种能够在恶劣环境或者不平坦地面上行驶的特种车辆,如坦克、斗笠车等。
它们都采用了履带行走系统,具有重载能力高、越野性能强等特点。
履带车辆行走系统的设计方案是履带车辆的核心部分之一。
本文旨在介绍履带车辆行走系统的设计方案。
2. 履带车辆行走系统组成履带车辆行走系统主要由履带、履带轮、履带链轮、支撑轮组、张紧轮、履带承载轮等部件组成,如下图所示。
履带车辆行走系统组成图其中,履带是系统的主承载部分,由多个链节组成,链节上有多个橡胶轮(或金属齿轮),橡胶轮(或金属齿轮)通过履带链轮带动履带前进,支撑轮组用于支撑履带,在系统中起到重要作用。
张紧轮可以对履带进行张紧,避免履带出现松弛现象,达到稳定行驶的目的。
履带承载轮为了保证车身重量得到平衡,可以使车身承受更大的荷载,提高了车身的稳定性。
3. 履带车辆行走系统设计3.1 履带车辆行走系统流程设计履带车辆行走系统的流程如下:1.确定车辆所需承受的荷载、行驶速度和行驶路线。
2.根据车辆所需承受的荷载,确定履带的宽度、厚度和强度,并在此基础上计算出履带链轮和支撑轮组的设计参数。
3.确定履带链轮和支撑轮组的直径和数量。
4.设计履带的张紧系统和履带承载系统,确定张紧轮和承载轮的设计参数。
5.选用适当的电机和传动装置来驱动履带行走系统。
6.绘制履带车辆行走系统的组装图。
3.2 履带车辆行走系统设计要点1.履带的宽度、厚度和强度要根据车辆所需承受的荷载和行驶速度进行计算,并确保在各种荷载情况下,履带能够稳定运动。
2.履带链轮和支撑轮组的设计要考虑到支撑轮与地面的接触方式、支撑轮的直径以及支撑轮间距等因素,确保系统的稳定性和可靠性。
3.履带的张紧系统要能够实现履带的松紧调节,并在运动过程中保持张紧力的稳定性,确保履带能够平稳运动。
4.履带承载系统的设计要能够提高车身的稳定性,并能够承受更大的荷载。
5.电机和传动装置要根据车辆的行驶速度和荷载情况进行选型,并要考虑到电机的功率、效率和噪音等因素,确保履带车辆行走系统具有稳定可靠的运行性能。
履带车辆设计计算说明
履带车辆设计计算说明1.动力系统计算:履带车辆的动力系统计算主要包括发动机功率计算、传动系统计算和液压系统计算。
发动机功率计算需要考虑车辆的负载和工作条件,以确定合适的发动机功率。
传动系统计算需要考虑传动效率和传递的扭矩,以确定合适的传动比。
液压系统计算需要考虑液压元件的工作压力和流量,以确定合适的液压功率。
2.结构强度计算:履带车辆的结构强度计算主要包括车架强度计算、履带强度计算和连接件强度计算。
车架强度计算需要考虑车辆的荷载和工作条件,以确定合适的车架截面尺寸和材料。
履带强度计算需要考虑履带的负载和工作条件,以确定合适的履带材料和结构。
连接件强度计算需要考虑连接件的承载能力和工作条件,以确定合适的连接件尺寸和材料。
3.操纵性计算:履带车辆的操纵性计算主要包括转向系统计算和悬挂系统计算。
转向系统计算需要考虑转向角度和转向力矩,以确定合适的转向系统和转向角度。
悬挂系统计算需要考虑悬挂系统的刚度和减震性能,以确定合适的悬挂系统和悬挂参数。
4.稳定性计算:履带车辆的稳定性计算主要包括车辆重心计算、侧倾角计算和抗侧翻稳定性计算。
车辆重心计算需要考虑车辆的负载和工作条件,以确定合适的重心高度和位置。
侧倾角计算需要考虑车辆的悬挂系统和转弯半径,以确定合适的侧倾角限制。
抗侧翻稳定性计算需要考虑车辆的重心高度、侧倾角限制和悬挂系统刚度,以确定合适的抗侧翻稳定性。
以上是对履带车辆设计计算的一般说明,具体的设计计算需要根据实际情况和车辆类型进行具体分析。
设计计算的结果需要进一步验证和调整,以确保车辆的安全性、稳定性和性能表现。
250T履带地基计算书
顶板行走250吨履带吊对混凝土结构影响250吨履带吊车空载为212.4吨,履带接地长度为7.8米,宽度为1.12米,则每条履带下压力为G/LB=212.4×9.8/(2×7.8×1.12)=119.1kPa。
根据设计图纸,顶板考虑的超限荷载为满布20kPa,验算土建结构承载力时,考虑的原则如下:○1吊车荷载产生的内力不大于超限荷载(施工荷载)产生的内力,适用于梁;○2吊车荷载所产的内力远小于结构的极限承载力,适用于板。
顶板厚度基本为500mm,最大单向板块尺寸为4.5m×20.5m,当计算楼板受力时,分为两种工况,履带垂直板跨与平行板跨。
(一)履带垂直板跨(履带横轨向行走)当履带垂直板跨时,履带接地长度为7.8m,板跨为4.5m,最不利情况为两条履带均处于板跨中,考虑到履带中心间距为 6.4m,实际最不利情况为一条履带处于板跨中,如下图所示。
单跨内荷载为11.8kPa,满足设计20kPa超限荷载要求。
吊车横轨向行走示意图(1)楼板承载力验算根据《建筑结构荷载规范》(50009-2012)附录B中相关条文,当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度b 为(下图所示):①当cy cx b b <,l b cy 2.2≤,l b cx ≤时:l b b cy 73.032+= ②当cy cx b b <,l b cy 2.2>,l b cx ≤时:cy b b =式中l —板的跨度cx b —荷载作用面平行于板跨的计算宽度;cy b —荷载作用面垂直于板跨的计算宽度;而h s b b tx cx ++=2=1120mm ,h s b b ty cy ++=2=8300mm 。
式中tx b —荷载作用面平行于板跨的宽度;ty b —荷载作用面垂直于板跨的宽度;s —垫层的厚度,实际为铺设钢板厚度,计算中暂不考虑;h —板的厚度,为500mm 。
履带车辆设计计算说明
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
选用V2=4km/h ,最大爬坡度为25%时,计算所需功率:p emax =n1( p f + p i +p w )kw a3max 1k 3600360076140a d a m g i v C A V m g f v m n ⎡⎤⋅⋅⋅⋅⋅⋅⋅⋅⋅=++⎢⎥⎣⎦)()()3122009.80.02822009.80.2540.9 1.4 1.1540.93600360076140⎡⎤⨯⨯⨯⨯⨯⨯⨯⨯⨯=++⎢⎥⎣⎦()()()=6.948kw 上述两式中:P f ——滚动阻力消耗的功率; P w ——空气阻力消耗的功率; P i ——坡度阻力消耗的功率;η——传动效率系数,取η =0.9;f ——滚动阻力系数,取f =0.02; C d ——空气阻力系数,取C d =0.9;A ——拖拉机前进方向迎风面积A=B ×H (宽×高)= 1.40×1.15V a ——拖拉机取低档速度V a =4km/h;i max ——最大爬坡坡度,i max =25%;G ——拖拉机总质量,G 总 =2200kg 。
(注:表示履拖在工作状态)经计算拖拉机组满载时以最高时速行驶所需功率P e max 和低档速度爬25%的坡时,所需功率均小于YN38GB2柴油机的标定功率57kW ,并有一定功率储备,故能够满足设计要求。
五、履带式底盘的设计与确定1、履带底盘的说明:底盘是拖拉机的重要部件,它对整个装置起着支撑作用。
所以根据农用履带式拖拉机对整个装置进行较完整的配合与加工等一系列的设计。
履带行走装置有“四轮一带”(驱动轮,支重轮,导向轮,拖带轮或张紧轮,以及履带),张紧装置和行走机构组成。
机械行走时,驱动轮在履带紧边产生一个拉力,力图把履带从支重轮下拉出。
出于支重轮下的履带与地面有足够的附着力,阻止履带的拉出,迫使驱动轮卷绕履带向前滚动,导向轮把履带铺设到地面,从而使机体借支重轮沿履带轨道向前运行。
大功率轮式拖拉机机重一般在5500~8500kg, 接地面积比履带拖拉机小,因此接地压力较大。
经数年耕作后, 在土壤的耕层下面将生成硬底层, 不利于土壤的蓄水保墒和作物的生长。
即使经过深度翻耙, 依然会保持碎小的板结硬块,土壤的显微结构遭到了破坏。
附着性能差, 滑转率高。
橡胶履带拖拉机牵引力大, 适合重负荷作业( 如耕、耙等) , 接地比压小,对农田压实、破坏程度轻, 特别适合在低、湿地作业, 而且除田间作业外, 还在农田基本建设和小型水利工程中用作推土机, 综合利用程度较高。
依据轮式与大功率履带机械的特点,以其以上所叙述的比较分析,综合考虑后得出采用:三角形式的“四轮一带”橡胶履带行走装置。
履带整机参数初步确定以后,应进行计算该履带机械的基本性能是否满足预期要求,整机参数选择是否合理。
这里主要是关于牵引性能的计算。
2、牵引功率计算:根据《GB/T 3871.9-2006 农业拖拉机试验规程第9部份:牵引功率试验》标准要求进行计算:计算工况:计算时所用的工况一般为:在使用重量状态与水平区段的茬地上(对旱地是适耕适度的茬地,对水田是中等泥脚深度的茬地),带牵引负荷(牵引线与地面平行)全油门等速行驶。
(1) 履带式传动的驱动力P q 履带传动ηdqe cq m i p r =kgf 式中: M e ——发动机转矩kgf ;i ——各档总传动比;n c ——各档总传动效率; r dq ——驱动轮动力半径m ;n q ——履带驱动段半径效率,计算时一般去取n q =0.95。
G s max =2L o b q p ; G s max =1.5P TN ; P TN =(1.1-1.2)P T 。
式中:G s max --—最大使用重量;L o ——履带接地长度;b ——履带板宽度;q p ——一般为0.35~0.5 kgf/cm 2; P TN ——额定牵引力; P T ——牵引力。
∑根据(2)中的活动阻力P f ,经计算即可得P q ) 经计算后得结果P q =12.775KN. (2) 履带式传动的活动阻力P fP f =f G s kgf式中: G s ——使用重量(kgf);f ——履带式一般取0.1。
经计算后得结果P f =1.90KN(3) 行驶速度v 理论速度h km i r n v dq e /377.0∑1=实际速度v =v l (1-δ) km/h式中: n e ——发动机转速;r dq ——驱动轮动力半径;i Σ——驱动轮轮滑转率(履带式一般取0.07)。
经计算后得结果v =(1.15~6)km/h(4)履带式传动的牵引效率n T 式中:n c ——各档的总传动效率; n f ——滚动效率; n δ——滑转效率;n q ——履带驱动带效率(一般取0.95)。
经计算后得结果n T =0.75(5) 履带机械的附着力P Ψδ (要求:附着力应大于或等于履带行走机构的牵引力且大于等于各阻力之和。
)P Ψδ =ΨδG Ψ 式中:Ψδ——一般取0.75; G Ψ——取1900KG 。
经计算后得结果P Ψδ=14.25KN (符合要求) 3、转向最大驱动力矩的分析与计算:根据《GB/T 15833-1995 林业轮式和履带式拖拉机试验方法》标准要求进行计算: (1) 履带转向时驱动力说明:履带行走装置在转向时, 需要切断一边履带的动力并对该履带进行制动, 使其静止不动, 靠另一边履带的推动来进行转向, 或者将两条履带同时一前一后运动, 实现原地转向, 但两种转向方式所需最大驱动力一样。
因此以机器单条履带制动左转为例, 见图:图5-2 履带转左向示意图左边的履带处于制动状态,右边履带的推动下,整台机器绕左边履带的中心C 1点旋转,产生转向阻力矩Mr,右边履带的行走阻力Fr/2 。
一般情况,履带接地长度L 和履带轨距B 的比值L/ B ≤1.6。
同时, L/ B 值也直接影响转向阻力的大小,在不影响机器行走的稳定性及接地比压的要求下,应尽量取小值,也就是尽量缩短履带的长度,可以降低行走机构所需驱动力。
(2) 转向驱动力矩的计算转向阻力矩是履带绕其本身转动中心O 1(或O 2)作相对转动时,地面对履带产生的阻力矩,如图所示,O 1、O 2 分别为两条履带的瞬时转向中心。
为便于计算转向阻力矩M r 的数值,作如下两点假设:(1)机体质量平均分配在两条履带上,且单位履带长度上的负荷为: Lmq 2=式中:M-总质量(kg ); L-履带接地长度(m)。
经过计算:1900593.75(/)22 1.6G q kg m L ===⨯形成转向阻力矩Mu的反力都是横向力且是均匀分布的。
履带拖拉机牵引负荷在转向时存在横向分力,在横向分力的影响下,车辆的转向轴线将由原来通过履带接地几何中心移至O1O2,移动距离为x。
图5-3 履带转向受力图根据上述假设,转向时地面对履带支承段的反作用力的分布为矩形分布。
在履带支承面上任何一点到转动中心的距离为x,则微小单元长度为dx,分配在其上的车体重力为qdx,总转向阻力矩可按下式:⎪⎪⎭⎫⎝⎛+=⎰⎰-+xxLxxLu uqxduqxdM0222式中:U-转向阻力系数。
45.015.085.0max=+=BRuu式中: -车辆作急转弯时转弯的转向阻力系数;B—履带轨距。
)将式⎪⎪⎭⎫⎝⎛+=⎰⎰-+xxLxxLu uqxduqxdM0222代入上式积分得并简化得:4uGLMu=即:0.451900 1.6342.44uuGLM N m⨯⨯===(3)转向驱动力矩(假设机器重心与履带行走装置几何中心相重合)把转向半径2≥BR和02≤BR分别考虑。
1)当转向半径2≥BR如下图所示,两侧履带都向前运动,此时两侧履带受地面摩擦阻maxu≤力朝同一方向(即行驶的反方向),外侧、内侧履带受力分别为:图5-4 右转向示意图2)当转向半径0 ≤2≤BR 如下图所示,此时两侧履带受地面摩擦阻力朝反 方向,外侧、内侧履带受力分别为:图5-5 左转向示意图式中: F f 1,F f 1 -分别为内侧前进阻力和驱动力;F q1,F q 2 -分别为外侧前进阻力和驱动力。
考虑机体的重心在中心位置,所以履带的前进阻力 为:F f 1 =F f 2 =G21f 式中:f — 履带滚动阻力系数 (即F f 1 =F f 2 =21Gf =1460 N ) 转向时的最大驱动力矩为:M max =maxr F F q2q1⨯}{, 式中:r —驱动轮节圆直径。