新课标九年级数学竞赛辅导讲座_第27讲_动态几何问题透视

合集下载

人教版义务教育教科书《数学》九年级下册 27章中考数学专题动点型问题

人教版义务教育教科书《数学》九年级下册 27章中考数学专题动点型问题

y 例1 如图抛物线
(﹣6,0),与y轴交于点C.
ax2b与Leabharlann x轴交6于(a点A(02,)0)和点B
(1)求抛物线的解析式;
(2)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求Q点的坐标;
(3)若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标.
解:(1) 存在 ①当点 N 在 x 轴上方时,如图
∵ 抛物线的对称轴为直线x=-2,
C(0,6)
∴ N1(-4,6)
N1
②当点 N 在 x 轴下方时,
如图,过点 N2作N2 D⊥x 轴于点 D,可证△AN2D≌△M2CO
M
∴N2D=CO=6 ,即N2的纵坐标为-6
∴ 1 x2 2x 6 6
首页
末页
自主练习 2、(2014•湖北黄冈,)已知:在△ABC中,BC=10,BC边上的高h=5,动点E在边AB上,过点E作EF∥BC,交AC边于点F.点 D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为( )
D
A
B
C
D
思考: △DEF的面积S与哪些量有关?
(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式
No
思考:(2) 应通过怎样转化来求五边形OECQF的面积.
S五边形OECQF=S△BCD—S △DFQ—S△BOE
Image 或 S五边形OECQF=S△DOC—S △DFQ+S△COE •
点评:该题以四边形为载体,动点产生等腰三角形、图形面积问题
首页
末页
课前热身
如图,四边形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且 AE=EF=FB=5,DE=12,动点P从点A出发,沿折线AD-DC-CB 以每秒1个单位长的速度运动到点B停止.设运动时间为t秒, y=S△EPF,则y与t的函数图象大致是( )

2020年初中数学竞赛讲义:第27讲-动态几何问题透视

2020年初中数学竞赛讲义:第27讲-动态几何问题透视

2020年初中数学竞赛讲义:第27讲-动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A 移到点B时,A′B′的中点的位置( )A.在平分AB的某直线上移动B.在垂直AB的某直线上移动C.在AmB上移动D.保持固定不移动思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P 从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x 的关系.思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m /秒的速度向点A运动,点F沿折线A—D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2 (秒).(1)当t为何值时,线段EF与BC平行?(2)设1<t<2,当t为何值时,EF与半圆相切?(3)当1≤t<2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.思路点拨动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于tAP是否为一定的方程;对于(3),点P的位置是否发生变化,只需看PC值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】⊙O1与⊙O2相交于A、B两点;如图(1),连结O2O1并延长交⊙O1于P点,连结PA、PB并分别延长交⊙O2于C、D两点,连结C O2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求:CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P′为⊙O1上(⊙O2外)的动点,连结P′A、P′B并分别延长交⊙O2于C′、D′,请你探究∠C′AD′是否等于α? C′D′与P′O l的位置关系如何?并说明理由.思路点拨对于(1)、(2),作出圆中常见辅助线;对于(3),P点虽为OO l上的一个动点,但⊙O1、⊙O2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.学力训练1.如图,ΔABC中,∠C=90°,AB=12cm,∠ABC=60°,将ΔABC以点B为中心顺时针旋转,使点C旋转到AB延长线上的D处,则AC边扫过的图形的面积是cm (π=3.14159…,最后结果保留三个有效数字).2.如图,在RtΔABC中,∠C=90°,∠A=60°,AC=3cm,将ΔABC绕点B旋转至ΔA'BC'的位置,且使A、B、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( )A .23πB .34πC .4D .232π+4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .215.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动.(1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r的取值范围及相应的切点个数;(3)设O在整个移动过程中,在ΔABC内部,⊙O未经过的部分的面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围.6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB 的长为x,CD的长为y.(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE 为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN 的两边分别交射线OP于M、N两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=x,ON= (y>x≥0),ΔAOM的面积为S,若cosα、OA是方程0-z+z的两个根.2522=(1)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;(2)求证:AN2=ON·MN;(3)求y与x之间的函数关系式及自变量x的取值范围;(4)试写出S随x变化的函数关系式,并确定S的取值范围.8.已知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/s的速度运动,点Q从点C开始沿CD边向点D以1cm/s的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21 ; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.10.如图1,在直角坐标系中,点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动,B(4,2),以BE为直径作⊙O1.(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB,几秒时FB与⊙O1相切?(3)如图2,若E点提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于A点,连结AF交⊙O1于点P,试问PA·FA的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.参考答案。

中考复习专题:动态几何之定值问题探讨

中考复习专题:动态几何之定值问题探讨

20XX年中考复习专题:动态几何之定值问题探讨一、线段(和差)为定值问题:典型例题:例1:已知:在矩形ABCD中,AB=6cm,AD=9cm,点P从点B出发,沿射线BC方向以每秒2cm的速度移动,同时,点Q从点D出发,沿线段DA以每秒1cm的速度向点A方向移动(当点Q到达点A时,点P与点Q同时停止移动),PQ交BD于点E.求证:在点P、Q的移动过程中,线段BE的长度保持不变.例2:如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C,顶点坐标为P.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.练习题:1.如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A 运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA 于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.(1)求证:△PQE∽△PMF;(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.2、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)(1)(2) (3)3、如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时..出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.4、已知:A、B、C不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图一,当∠A=45°时,R=1,求∠BOC的度数和BC的长度;ii)如图二,当∠A为锐角时,求证sin∠A= BC2R;(2).若定长线段....BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P,试探索:在整个滑动过程中,P、A 两点的距离是否保持不变?请说明理由.二、面积(和差)为定值问题:典型例题:例1:如图,在梯形ABCD中,AD∥BC,E、F分别是AB、DC边的中点,AB=4,∠B=60°,(1)求点E到BC边的距离;(2)点P为线段EF上的一个动点,过P作PM⊥BC,垂足为M,过点M作MN∥AB交线段AD于点N,连接PN、探究:当点P在线段EF上运动时,△PMN的面积是否发生变化?若不变,请求出△PMN的面积;若变化,请说明理由.例2:如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P 从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C 出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同2.时停止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?练习题:1.如图1,在△ABC 中,AB=AC=5,BC=6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG=3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是 .2.如图2,在矩形ABCD 中,AD=5,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 _________ .图1 图23.如图所示,四边形OABC 是矩形.点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重含),过点D 作直线12y x b =+交折线OAB 于点E 。

中考数学“动态几何探究”题型解析

中考数学“动态几何探究”题型解析

中考数学“动态几何探究”题型解析以三角形、四边形为背景的动态几何问题均以动态几何的形式来考查三角形、四边形的性质,判定,全等三角形、相似三角形的性质及判定,本节将对此类问题归类如下:一、在平面直角坐标系中探究【例题1】已知直线l 经过A(6,0)和B(0,12)两点,且与直线y = x 交于点C. (1)求直线l 的表达式;(2)若点P(x,0)在线段OA 上运动,过点P 作l 的平行线交直线y = x 于点D,①求△PCD 的面积S 与x 的函数关系式;②S 有最大值吗?若有,求出当S 最大时x 的值 .【解析】(1)设直线l 的表达式为y = kx + b , 用待定系数法求出k , b 的值即可;(2)①点C 是直线l 与y = x 的交点,从而可求得点C 的坐标 .根据三角形的面积公式及结合平行的性质,可求得S 与x 的函数关系式;②根据二次函数的性质,即可得到S 的最大值 .解:(1)设直线l 的表达式为y = kx + b ,由A(6,0)和B(0,12),得∴直线l 的表达式为y = -2x + 12 .(2)①∴点C 的坐标为(4,4),∴S△COP = 1/2 x ▪4 = 2x .∵PD∥直线l ,∴CD/OC = AP/OA .∵CD/OC = ( 1/2 h ×CD ) / ( 1/2 h ×OC ) = S / S△COP,∴S / S△COP = AP / OA , 即S / 2x = (6 - x)/ 6 ,∴△PCD 的面积S 与x 的函数关系式为S = -1/3 x^2 + 2x .②∵S = -1/3 (x - 3)^2 + 3 ,∴当S 最大时,x = 3 .【例题2】如图,在直角坐标系中,矩形OABC 的顶点A , C 均在坐标轴上,且OA = 4 ,OC = 3 , 动点M 从点A 出发,以每秒1 个单位长度的速度,沿AO 向终点O 移动;动点N 从点C 出发沿CB 向终点B 以同样的速度移动,当两个动点运动了x 秒(0 < x < 4)时,过点N 作NP⊥BC 交OB 于点P,连接MP .(1)直接写出点B 的坐标,并求出点P 的坐标(用含x 的式子表示);(2)当x 为何值时,△OMP 的面积最大?并求出最大值 .解:(1)在矩形OABC 中,OA = 4 , OC = 3 ,∴B 点的坐标为(4,3).如图,延长NP 交OA 于点G,则PG∥AB,OG = CN = x . ∵PG∥AB,∴△OPG∽△OBA .∴PG / BA = OG / OA , 即PG / 3 = x / 4 ,解得PG = 3/4 x .∴点P 的坐标为(x , 3/4 x).(2)设△OMP 的面积为S .在△OMP 中,OM = 4 - x , OM 边上的高为3/4 x,∴S 与x 之间的函数表达式为配方,得∴当x = 2 时,S 有最大值,最大值为3/2 .二、在几何图形中探究【例题3】如图,在矩形ABCD 中,AB = 3 米,BC = 4 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P , Q 两点同时移动的时间为t 秒(0 < t < 2.5).(1)当t 为何值时,PQ∥AB;(2)设四边形ABQP 的面积为y , 当t 为何值时,y 的值最小?并求出这个最小值 .【解析】(1)首先由勾股定理求得AC = 5 米,然后根据AB∥PQ 可得到PC / AC = QC / BC , 从而得到关于t 的方程,从而可解得t 的值;(2)过点P 作PE⊥BC,由PE∥AB 可得到PC / AC = PE / AB ,从而可求得PE = 3 - 6/5 t , 然后根据y = S△ABC - S△PQC 列出t 与y 的函数关系式,最后利用配方法求得最小值即可 .解:(1)在Rt△ABC 中,由题意,得PC = AC - AP = 5 - 2t , QC = t .如图①,∵AB∥PQ , ∴△CPQ∽△CAB .∴PC / AC = QC / BC , 即(5 - 2t)/ 5 = t / 4 , 解得t = 20/13 .(2)如图②,过点P 作PE⊥BC 于点E .由(1)知,PC = 5 - 2t , QC = t ,∵PE∥AB,∴△CPE∽△CAB .∴PC / AC = PE / AB , 即(5 - 2t)/ 5 = PE / 3 . ∴PE = 3 - 6/5 t .∴当t = 5/4 时,y 的值最小,最小值为81/16 .【例题4】如图,在△ABC 中,∠C = 60°,BC = 4,AC = 2√3,点P 在BC 边上运动,PD∥AB,交AC 于D . 设BP 的长为x , △APD 的面积为y .(1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少?(3)是否存在这样的点P,使得△ADP 的面积是△ABP 面积的2/3 ?若存在,请求出BP 的长;若不存在,请说明理由 .解:(1)∵PD∥AB,∴AD / AC = BP / BC .∵BC = 4 , AC = 2√3 , BP = x ,∴AD / 2√3 = x / 4 ,∴AD = √3/2 x .(2)过点P 作PE⊥AC 于E .∵sin∠ACB = PE / PC , ∠C = 60°,∴PE = PC ×sin60°= √3/2(4 - x ).∴y 与x 之间的函数关系式为∴当x = 2 时,y 的值最大,最大值是3/2 . (3)存在这样的点P .∵△ADP 与△ABP 等高不等底,∴S△ADP / S△ABP = DP / AB .∵△ADP 的面积是△ABP 面积的2/3 , ∴S△ADP / S△ABP = 2/3 ,∴DP / AB = 2/3 .∵PD∥AB,∴△CDP∽△CAB .∴DP / AB = CP / CB ,∴CP / CB = 2/3 .∴(4 - x)/ 4 = 2/3 ,∴x = 4/3 ,∴BP = 4/3 .。

九年级数学动态几何知识点

九年级数学动态几何知识点

九年级数学动态几何知识点动态几何是数学中一个非常重要的分支,它研究的是物体的运动和相对位置的变化。

在九年级数学中,我们需要掌握一些基本的动态几何知识点。

本文将结合实例,详细介绍这些知识点。

1. 平移平移是指物体在平面上沿着某个方向保持一定的距离进行移动。

平移可以改变物体的位置,但不改变物体的形状和大小。

我们可以使用向量表示平移的方向和距离。

例如,有一个三角形ABC,我们将它沿着向量→AB进行平移,得到三角形A'B'C'。

A'B'C'与ABC形状相同,只是位置改变了。

2. 旋转旋转是指物体绕某个固定点进行转动。

旋转可以改变物体的位置、形状和大小。

我们可以使用旋转角度和旋转中心来描述旋转。

例如,有一个矩形ABCD,我们以点O为旋转中心,逆时针旋转90度,得到矩形A'B'C'D'。

A'B'C'D'与ABCD形状相同,只是位置、形状和大小改变了。

3. 对称对称是指物体相对于某个中心对称轴进行镜像翻转。

对称可以改变物体的位置和形状,但不改变物体的大小。

例如,有一个正方形ABCD,以直线AC为对称轴进行对称,得到正方形A'B'C'D'。

A'B'C'D'与ABCD位置和形状相同,但位置翻转了。

4. 相似相似是指两个图形的形状相同,但大小不同。

相似关系可以用比例表示。

例如,有一个三角形ABC,与之相似的三角形是DEF。

两个三角形形状相同,但大小不同,可以表示为:∠A=∠D,∠B=∠E,∠C=∠F,AB/DE=BC/EF=AC/DF。

5. 共线共线是指三个或更多点在同一条直线上。

例如,有三个点A、B、C,如果三个点都在同一条直线上,那么我们可以说A、B、C是共线的。

6. 相交相交是指两个或多个图形有公共的点。

例如,有两条直线AB和CD,如果它们有一个公共的点O,那么我们可以说直线AB和CD相交于点O。

最新人教版九年级全一册数学培优课件第27课时 实际问题与二次函数(3)——实物抛物线

最新人教版九年级全一册数学培优课件第27课时  实际问题与二次函数(3)——实物抛物线

解得a=
∴水柱所在抛物线的函数关系式为y=
(x-3)2+5(0<x<8).
返回目录
(2)当y=1.8时,有
(x-3)2+5=1.8.
解得x1=-1(不符题意,舍去),x2=7.
∴为了不被淋湿,身高1.8 m的王师傅站立时必须在离水池中心7
m以内.
返回目录
C组
8. 如图1-22-27-10,一座隧道的截面由抛物线和长方形组成
,以OA所在直线为x轴,以OB所在直线为y轴建立平面直角坐标
系.
(1)求抛物线所对应的函数解析式;
(2)由于隧道较长,在抛物线型拱壁
上需要安装两排灯,使它们到地面的高
度相同.如果灯离地面的高度是8 m,求
两排灯的水平距离.
返回目录
解:(1)根据题意,得顶点D的坐标为(6,10),点B的坐标
为(0,4).
设函数解析式为y=a(x-6)2+10.
把点B(0,4)代入,得36a+10=4.
解得a=
∴所求的函数解析式为y=
(x-6)2+10.
返回目录
(2)把y=8代入y=
(x-6)2+10,得
(x-6)2+10=8.
解得x1=6+2
x2=6-2
∴所求的距离为x1-x2=4
答:两排灯的水平距离是4
(m).
坐标是
(1)求这个二次函数的解析式;
(2(1)设二次函数的解析式是y=a(x-4)2+
将(0,2)代入,得
a·(0-4)2+
=2.
解得a=
∴二次函数的解析式是y=
返回目录
(2)令y=0,得

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

第27课尺规作图本节内容考纲要求考查五个基本作图和能转化为基本作图的简单尺规作图。

广东省近5年试题规律:以解答题出现,一般考查作角平分线,线段的垂直平分线和过一点直线的垂线,多与三角形、四边形问题结合一起,难度不大,但学生欠缺动手操作,是常见丢分题。

知识清单知识点一尺规作图定义只用圆规和尺子来完成的图画,称为尺规作图.基本步骤(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,使它符合什么条件;(3)作法:运用五种基本作图,保留作图痕迹;(4)证明:验证所作图形的正确性;(5)结论:对所作的图形下结论.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过一已知点作直线的垂线;(5)作已知线段的垂直平分线.课前小测1.(尺规作图的定义)尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.(作角平分线)如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS3.(作一个角等于已知角)小明回顾用尺规作一个角等于已知角的作图过程(如图所示),连接CD、C′D′得出了△OCD≌△O′C′D′,从而得到∠O=∠O′,其中小明作出△OCD≌△O′C′D′判定的依据是()A.SSS B.SAS C.ASA D.AAS 4.(作垂直平分线)如图所示,已知线段AB=6,现按照以下步骤作图:①分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧相交于点C和点D;②连结CD交AB于点P.则线段PB的长为.5.(作垂线)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.经典回顾考点一作线段垂直平分线【例1】(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【点拨】作线段的垂直平分线要点:①以线段两端点为圆心作弧,两弧交于两点;②再过两点作垂线.考点二作角平分线【例2】(2018•赤峰)如图,D是△ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∥AC.【点拔】作角的平分线要点:①以顶点为圆心画弧交角的两边于两点;②再以这两点为圆心作弧,两弧交于一点;③最后过顶点与交点作射线.考点三作垂线【例3】(2015•广东)如图,已知锐角△AB C.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.【点拨】过一点作垂线或作高线要点:①以这点为圆心,在直线上截取一条线段;②再作线段的垂直平分.考点四作一个角等于已知角【例4】(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC 于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.【点拔】过一点作一个角等于已知角要点:①以角的顶点为圆心画弧交两边于两点,以这一点为圆心,相同半径作弧,交于一点;②再以两点间距离为半径,作弧,两弧交于一点;③最后过这一点于交点作射线.对应训练1.(2019•泰州)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.2.(2019•中山一模)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.3.(2019•江门期末)画图题:如图,已知三角形ABC,AB=5.(1)过点C作CD⊥AB,点D为垂足:(2)在(1)的条件下,若DB=2,求点A到CD的距离.4.(2019•顺德期末)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.中考冲刺夯实基础1.(2019•赤峰)已知:AC是□ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.2.(2019•惠阳二模)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(不要求写作法,保留作图痕迹)(2)判断△ACE的形状,并证明.3.(2019•玉林)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.(2019•越秀一模)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.能力提升5.(2019•白银)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.6.(2019•三明模拟)如图,在△ABC中,AB=AC.(1)尺规作图:作∠CBD=∠A,D点在AC边上(要求:不写作法,保留作图痕迹)(2)若∠A=40°,求∠ABD的度数.7.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.第27课尺规作图课前小测1.C.2.D.3.A.4.3.5.B.经典回顾考点一作线段垂直平分线【例1】解:(1)如图,直线EF即为所求;(2)∵四边形ABCD是菱形,∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABD=∠DBC=12∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.考点二作角平分线【例2】(1)解:如图,DE为所求;(2)证明:∵DE平分∠ADB,∴∠ADE=∠BDE,∵∠ADB=∠C+∠DAC,而∠C=∠DAC,∴2∠BDE=2∠C,即∠BDE=∠C,∴DE∥AC.考点三作垂线【例3】解:(1)如图,MN为所求;(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠BAD=BDAD =34,∴BD=3,∴CD=BC﹣BD=5﹣3=2.考点四作一个角等于已知角【例4】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴AEEC =ADDB=2.对应训练1.解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.2.解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.3.解:(1)如图,CD为所作.(2)∵AB=5,BD=2,∴AD=3,∴点A到CD的距离为3.4.解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.中考冲刺夯实基础1.解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.2.解:(1)如图即为所求:(2)△ACE是等腰三角形.证明:∵CE平分∠ACD,∴∠ACE=∠ECD,∵AB∥CD,∴∠AEC =∠ECD ,∴∠ACE =∠AEC ,∴△ACE 是等腰三角形.3.(1)解:如图,点D 为所作;(2)证明:∵AB =AC ,∴∠ABC =∠C =(180°﹣36°)=72°, ∵DA =DB ,∴∠ABD =∠A =36°,∴∠BDC =∠A +∠ABD =36°+36°=72°, ∴∠BDC =∠C ,∴△BCD 是等腰三角形.4.(1)解:如图,F 点为所作;(2)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠B =90°,∴∠DAE =∠AEB ,∵DF ⊥AE ,∴∠AFD =90°,在△ABE 和△DFA 中B DFAAEB DAF AE AD=⎧⎪=⎨⎪=⎩∠∠∠∠,∴△ABE≌△DFA(AAS),∴AB=DF.能力提升5.解:(1)如图⊙O即为所求.(2)25π.6.解:(1)如图,∠CBD为所作;(2)∵AB=AC,∴∠ABC=∠C=1(180°﹣∠A)=70°,2∵∠CBD=∠A=40°,∴∠ABD=70°﹣40°=30°.7.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=12∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴DEAC =BEBC,即2DE=33DE,∴DE=65.。

2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版

2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。

动态几何问题(课件)

动态几何问题(课件)
动态几何问题在实际生活中的应用广泛,如建筑设计、机械制造、航空航天等。 动态几何问题的解决需要运用数学、物理、计算机等多学科知识,需要跨学科合作。 动态几何问题的解决需要创新思维和实践能力,需要不断探索和尝试。 动态几何问题的解决需要关注实际问题,需要结合实际需求进行优化和改进。
THANK YOU
动态几何问题的实 际应用案例分析
实际应用案例的选择标准
代表性:案例应具有代表性,能够反映动态几何问题的普遍性和特殊性 实用性:案例应具有实用性,能够解决实际问题,具有实际应用价值 创新性:案例应具有创新性,能够展示动态几何问题的新方法和新思路 教育性:案例应具有教育性,能够帮助学生理解和掌握动态几何问题的基本概念和方法
动态几何问题的应 用
在数学竞赛中的应用
动态几何问题在数学竞赛中的 重要性
动态几何问题的解题技巧和方 法
动态几何问题在数学竞赛中的 常见题型和解题思路
动态几何问题在数学竞赛中的 创新应用和挑战
在实际生活中的应用
建筑设计:利 用动态几何问 题进行空间布 局和结构设计
机械制造:利 用动态几何问 题进行机械零 件设计和装配
力。
激发学习兴趣: 动态几何问题具 有趣味性和挑战 性,有助于激发 学生的学习兴趣, 提高学习积极性。
对学生思维发展的影响
提高空间思维能 力:通过动态几 何问题的解决, 学生可以更好地 理解和掌握空间 关系,提高空间
思维能力。
培养逻辑思维能 力:动态几何问 题的解决需要学 生运用逻辑推理 和数学思维,有 助于培养学生的 逻辑思维能力。
研究方法和成果
研究方法:动态几何问题的研究方法主要包括几何分析、代数方法、微 分几何等。
成果:动态几何问题的研究成果包括发现了许多新的几何结构、证明了 许多重要的几何定理、解决了许多重要的几何问题等。

九年级春季数学下册听课笔记:第二十七章相似-在平面直角坐标系中画位似图形

九年级春季数学下册听课笔记:第二十七章相似-在平面直角坐标系中画位似图形

2024九年级春季数学下册听课笔记:第二十七章相似- 在平面直角坐标系中画位似图形1. 教师行为1.1 导入•情境引入:教师首先通过展示一些具有相似性质的图形(如放大的照片、缩小的地图等),引导学生观察并思考这些图形之间的共同点,即它们都是按照一定的比例进行放大或缩小的。

•概念引出:在此基础上,教师引出“位似图形”的概念,并解释在平面直角坐标系中,位似图形是如何通过给定的位似中心和比例因子来绘制的。

•目标明确:阐述本节课的学习目标,即掌握在平面直角坐标系中画位似图形的方法,并能熟练应用到实际问题中。

1.2 教学过程•理论讲解:•详细解释位似图形的定义、位似中心、比例因子等基本概念。

•讲解在平面直角坐标系中,如何根据给定的位似中心和比例因子,找到原图形上每一点关于位似中心的对应点。

•强调在计算对应点坐标时,需要注意坐标的符号变化,特别是当位似中心不在原点时。

•示范操作:•教师选取一个简单的图形(如三角形、矩形等),在黑板上逐步演示如何在平面直角坐标系中画出其位似图形。

•在演示过程中,教师注重解题步骤的清晰性和逻辑性,确保学生能够跟随教师的思路进行理解。

•学生实践:•给出几道练习题,让学生尝试在平面直角坐标系中画出给定图形的位似图形。

•教师巡视课堂,及时解答学生的疑问,纠正学生的错误,并给予必要的指导和鼓励。

•难点突破:•针对学生在实践过程中遇到的难点(如比例因子的应用、坐标的计算等),教师进行集中讲解和示范,帮助学生克服难关。

板书设计(提纲式)1.导入•情境引入:相似图形示例•概念引出:位似图形定义•目标明确:学习绘制方法2.理论讲解•基本概念:位似中心、比例因子•绘制方法:找对应点,计算坐标•注意事项:坐标符号变化3.示范操作•示例图形选择•逐步演示绘制过程4.学生实践•练习题布置•巡视指导与答疑5.难点突破•集中讲解难点•示范解决策略作业布置•完成课后习题,包括不同形状、不同位似中心和比例因子的位似图形绘制题目。

2022中考数学压轴题之动态几何专题《动态几何问题探究》PPT讲义 - 副本

2022中考数学压轴题之动态几何专题《动态几何问题探究》PPT讲义 - 副本

从点B开始沿BC向点C以2 cm/s的速度移动,点Q从点C开始沿CA边向
点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,第几秒时
PQ∥AB?
A
(陕西省咸阳市中考试题)
Q
B
P
C
图9—2
分析:如图9—2,假设运动开始后t秒时,PQ∥AB根据这时图形的特殊位置, 利用平行线分线段成比例定理求解.
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明 理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数。
中考动态几何问题探索
线动实质就是点动,即点动带动线 动,进而还会产生面动,因而线动型几 何问题可以通过转化成点动型问题来求 解.解决此类题的关键是要把握图形运 动与变化的全过程,抓住其中的等量关 系和变量关系.从运动变化得图形的特 殊位置,进而探索出一般的结论或者从 中获得解题启示,这种由特殊到一般的 思想对我们解决运动变化问题是极为重 要的.
2、图形旋转型
例7(临沂)
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板
DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为
DF),将直角三角板DEF绕D点按逆时针方向旋转。
⑴在图1中,DE交AB于M,DF交BC于N。①证明DM=DN;②在这一过程中,
B P RC (图2)
D
变化?若变化,请说明理由;若不变,求出四边 A
E
形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相
O
似?
B
C
D
(备用图)
1
中考动态几何问题探索
(眉山)、如图:∠MON = 90°,在∠MON的内部有一个 正方形AOCD,点A、C分别在射线OM、ON上,点B1是ON上的 任意一点,在∠MON的内部作正方形AB1C1D1。

九年级数学中考直线上的动态几何专题讲座

九年级数学中考直线上的动态几何专题讲座

直线上的动态几何专题讲座【学习目标】1.探究直线上的动态几何问题;2.熟练掌握动点形成的等腰三角形的处理方法;【例题精讲】重难点一:直线旋转例1如图,已知点P (2m -1,6m -5)在第一象限角平分线OC 上,一直角顶点P 在OC 上,角两边与x 轴,y 轴分别交于A 点、B 点.(1)求点P 的坐标;(2)当∠APB 绕着P 点旋转时,OA +OB 的长是否发生变化?若变化,求出其变化范围;若不变,求其值.例2在平面直角坐标系中,已知O 为坐标原点,点A (3,0)、B (0,4),以点A 为旋转中心,把△ABD 顺时针旋转,得△ACD ,记旋转角为α,∠ABO 为β.(1)如图①,当旋转后点D 恰好落在AB 边上时,求点D 的坐标;(2)如图②,当旋转后满足BC ∥x 轴时,求α与β之间的数量关系;(3)当旋转后满足∠AOD =β时,求直线CD 的解析式.练习:如图,在平面直角坐标系xoy 中,直线y =3x 经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 顺时针旋转60°得到△BCD ,若点B 的坐标为(2,0)则点C 的坐标为__________.重难点二:直线上动点所形成的直角三角形D OByA Cx例3如图,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是两直线y=2x+6上的一点,若△APD是等腰直角三角形.(1)求点D的坐标;(2)直线y=2x+6向右平移6个单位后,在该直线上,是否存在点D,使△APD是等腰直角三角形?若存在,请求出这些点的坐标;若不存在,请说明理由.练习:如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.重难点三:直线上动点所形成的等腰三角形例4在坐标系中,点A、B的坐标分别为(4,0)、(0,﹣2).(1)在坐标轴上是否存在点P使△ABP为等腰三角形?(2)在直线y=2x+3上是否存在点Q 使QA=QB?练习:如图,直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B,P为线段AB 上一动点,作直线PC⊥PO,交直线x=1于点C,过P点作直线MN平行于x轴,交y轴于点M ,交直线x =1于点N .(1)当点C 在第一象限时,求证:△OPM ≌△PCN ;(2)当点C 在第一象限时,设AP 长为m ,四边形POBC 的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段AB 上移动时,点C 也随之在直线x =1上移动,△PBC 是否可能成为等腰三角形?如果可能,求出所有能使△PBC 成为等腰三角形的点P 的坐标;如果不可能,请说明理由.重难点四:综合探究直线里的动态几何例5(面积问题)如图,一次函数y =-3x +3的图像与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作Rt △ABC ,且使∠ABC =30°若在第二象限内有一点P (m ,A My Px =1N COBx3),使得△APB 与△ABC 面积相等,求m 的值.2例6(动而不变)如图1所示,直线AB 交x 轴于点A (a ,0),交y 轴于点B(0,b ),且a 、b 满足(a +b )+(a -4)=0.22y BDOACx(1)如图1,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标.(2)如图2,连接OH,求证∠OHP=45°.(3)如图3,若点D为AB的中点,点M位y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子S△BDM-S△ADN的值是否发生改变,若改变,求出该式子的值的变化范围;若不改变,求该式子的值.练习:如图①l1:y=3x+3与x轴交于B点,与l2交于y轴上一点A,且l2与x轴的交点为C (1,0).(1)求证:∠ABC=∠ACB.(2)如图②,过x轴上一点D(-3,0)作DE⊥AC于E,DE交y轴于F点,交AB于G点,求G点的坐标.(3)如图③,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A,C两点),过P点作一直线与AB的延长线交于Q点,与x轴交于M点,且CP=BQ,在△ABC平移的过程中,线段OM的长度是否发生变化?若不变,求其长度;若变化,确定其变化范围.yAB O C图①xyGD BFO图②EBQAyPC xM O C图③x 例7在直角坐标系xOy中,一次函数y=kx+b(k≠0)的图像与x轴、y轴的正半轴分别交于点A、B,且使得△AOB的面积值等于︱OA︱+︱OB︱+3.(1)用b表示k.(2)求△AOB面积的最小值.练习:已知一次函数的图像过点P (1,4),且分别与x 轴、y 轴交于点A 、B ,当△AOB 面积最小时,求k 、b .例8:如图,已知射线AB 与x 轴和y 轴分别交于点A (-3,0)和点B (0,33).动点P 从点A 出发,以1个单位长度/秒的速度沿x 轴向右作匀速运动,过点P 作PQ ⊥AB 于Q .设运动时间为t 秒,且第一象限内有点N (n ,n -2).(1)当n =3时,若PQ 恰好经过点N ,求t 的值;(2)连接BP ,记△BPQ 面积为S △BPQ ,△ABP 面积为S △ABP .1①当S △BPQ ≤S △ABP 时,求t 的取值范围;2122②当S △BPQ =S △ABP 时,记Q (a ,b ),若(a -n )+(b -n +2)取得最小值时,求直线QN 的解3析式.。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=

新人教版数学九年级下册第27章27.3位似图形的概念及画法(教案)

新人教版数学九年级下册第27章27.3位似图形的概念及画法(教案)
-位似变换的作图方法:学会运用位似变换对几何图形进行放大与缩小,掌握作图方法,为解决实际问题奠定基础。
-举例:已知一个三角形,按位似比2:1放大,画出放大后的三角形;理解位似变换在实际问题中的应用,如地图的缩放。
2.教学难点
-位似图形的识别与判断:对于某些复杂的位似图形,学生可能难以直观地判断它们之间的位似关系,需要掌握一定的方法和技巧。
-位似性质在几何证明中的应用:位似性质在解决几何问题时具有重要作用,但学生在运用过程中可能遇到困难。
-突破方法:通过典型例题,引导学生运用位似性质进行几何证明,总结解题方法;加强练习,提高学生的几何证明能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《位似图形的概念及画法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体放大或缩小的情况?”(如照片的放大、地图的缩小等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索位似图形的奥秘。
-能够运用所学知识,构建位似图形模型。
-能够结合实际情境,发现并提出与位似图形相关的问题。
三、教学难点与重点
1.教学重点
-位似图形的定义与性质:位似图形的比值、对应点、对应边、对应角是本节课的核心内容。通过实例和练习,使学生掌握位似图形的基本概念,能够识别和应用位似性质。
-举例:比较两个位似三角形的边长比例,理解位似比的概念;找出位似图形的对应点、对应边、对应角,并说明它们之间的关系。
-位似图形在生活中的应用实例
4.练习与巩固
-判断两个图形是否位似
-已知位似比,画出一个图形的位似图形
-应用位似变换解决实际问习题1、2、3

初中数学竞赛专题选讲(初三19)动态几何的定值

初中数学竞赛专题选讲(初三19)动态几何的定值

初中数学竞赛专题选讲(初三.19)动态几何的定值一、内容提要1. 动态几何是指用运动的观点研究几何图形的位置、大小的相互关系. 用动的观点看几何定理,常可把几个定理归为一类. 例如:① 梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线; ② 两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上;③ 相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长定理等等.2. 动态几何的轨迹、极值和定值. 几何图形按一定条件运动,有的几何量随着运动的变化而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题. 例如:半径等于R A 的圆A 与半径为R B (R B >R A ) 的定圆B 内切.那么: 动点A 有规律地变化,形成了一条轨迹:以B 为圆心,以R B -R A 的长为半径的圆. 而A ,B 两点的距离,却始终保持不变:AB=R B -R A .若另有一个半径为R C 的圆 C 与圆B 外切,则A ,C 两点的距离变化有一定的范围: R B +R C -(R B -R A )≤AC ≤R B +R C +(R B -R A ).即R C +R A ≤AC ≤2R B +R C -R A .所以AC 有最大值:2R B +R C -R A ; 且有最小值:R C +R A .3. 解答动态几何定值问题的方法,一般有两种:第一种是分两步完成 :① 先探求定值. 它要用题中固有的几何量表示.② 再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.二、例题例1. 已知:△ABC 中,AB =AC ,点P 是BC 上任一点,过点P 作BC 的垂线分别交AB ,AC 或延长线于E ,F.求证:PE +PF 有定值.分析:(探求定值)用特位定值法.① 把点P 放在BC 中点上. 这时过点P 的垂线与AB ,AC 的交点都是点A , PE +PF =2PA ,从而可确定定值是底上的高的2倍因此原题可转化: 求证:PA +PB =2AD (AD 为底边上的高). 证明:∵AD ∥PF ,∴BD BP AD PE ; BD PD CD CD CP AD PF +=. ∴2BD BD 2BD PD CD BD BP AD PF AD PE ==++=.即2AD PF PE =+. ∴PE +PF =2AD.② 把点P 放在点B 上.这时PE =0,PF =2AD (三角形中位线性质),结论与①相同. 还可以由PF =BC ×tanC ,把定值定为:BC ×tanC. 即求证PE +PF =BC ×tanC. (证明略)同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可.例2. 已知:同心圆为O 中,AB 是大圆的直径,点P 在小圆上求证:PA 2+PB 2有定值.分析:用特位定值法.设大圆,小圆半径分别为R ,r.① 点P 放在直径AB 上.得PA 2+PB 2=(R +r )2+(. R -r )2=2(R 2+r 2).② 点P 放在与直径AB 垂直的另一条直径上也可得PA 2+PB 2= R 2+r 2+R 2+r 2=2(R 2+r 2).证明: 设∠POA =α,根据余弦定理,得PA 2=R 2+r 2-2RrCos α, PB 2=R 2+r 2-2RrCos(180 -α). ∵Cos(180 -α)=Cos α.∴PA 2+PB 2=2(R 2+r 2).本题一般知道定值是用两个圆的半径来表示的,所以可省去探求定值的步骤,直接列出PA ,PB 与R, r 的关系式,关键是引入参数α.例3. 已知:△ABC 中,AB =AC ,点P 在中位线MN 上,BP ,CP 的延长线分别交AC ,AB 于E ,F. 求证:CE1BF 1+有定值, 分析: 本题没有明显的特殊位置,不过定值一般是用三角形边长a, b, c 来表示的, 为便于计算引入参数t, 用计算法证明. 证明:设MP 为t, 则NP=21a -t. ∵MN ∥BC , ∴BF MF BC MP =, CE NE BC NP =.C即=a t BF ac t a BF c a t a c BF 12121BF 21=-⇒=-⇒-; CE ab t a CE b a t a CE b CE a t a 1212121212121=+⇒=+⇒-=- ∴CE 1BF 1+=c ac t a t a 32121=++- ∵c 是定线段,∴c3是定值. 即CE 1BF 1+有定值c 3. 例4. 已知:在以AB 为弦的弓形劣弧上取一点M(不包括A 、B 两点),以M 为圆心作圆M 和AB 相切,分别过A ,B 作⊙M 的切线,两条切线相交于点C.求证:∠ACB 有定值.分析: ⊙M 是△ABC 的内切圆,∠AMB 是以定线段AB 为弦的定弧所含的圆周角,它是个定角.(由正弦定理Sin ∠AMB=R 2AB ), 所求定值可用它来表示.证明:在△ABC 中,∠MAB+∠MBA=180 -∠AMB ,∵M 是△ABC 的内心,∴∠CAB+∠CBA=2(180 -∠AMB).∴∠ACB=180 -(∠CAB+∠CBA )=180 -2(180 -∠AMB)= 2∠AMB -180 . 由正弦定理R 2AMB S AB =∠in , ∴Sin ∠AMB=R2AB . ∵弧AB 所在圆是个定圆,弦AB 和半径R 都有定值,∴∠AMB 有定值.∴∠ACB 有定值2∠AMB -180.C三、练习1. 用固有的元素表示下列各题中所求的定值 (不写探求过程和证明):①.等腰三角形底边上的任一点到两腰距离的和有定值是___________.②.等边三角形内的任一点到三边距离的和有定值是________.③.正n 边形内的任一点到各边距离的和有定值是_________.④.延长凸五边形A 1A 2A 3A 4A 5的各边,相交得五个角:∠B 1,∠B 2,∠B 3,∠B 4,∠B 5它们的度数和是________,延长凸n 边形 (n ≥5)的各边相交,得n 个角,它们的度数和是___________. (2001年希望杯数学邀请赛初二试题) ⑤.两个定圆相交于A ,B ,经过点B 任意作一条直线交 一圆于C ,交另一圆于D , 则.ADAC 有定值是_____________. ⑥.在以AB 为直径的半圆内,任取一点P ,AP ,BP 的延长线分别交半圆于C ,D ,则AP ×AC+BP ×BD 有定值是_________.⑦.AB 是定圆O 的任意的一条弦,点P 是劣弧AB 上的任一点(不含A 和B),PA ,PB 分别交AB 的中垂线于E ,F.则OE ×OF 有定值是__________.2. 已知:点P 是⊙O 直径AB 上的任一点,过点P 的弦CD 和AB 相交所成的锐角45.求证:PC 2+PD 2有定值.3. 已知:点O 是等腰直角三角形ABC 斜边BC 的中点,点P 在BC 的延长线上,PD⊥BA 交BA 延长线于D ,PE ⊥AC 交AC 的延长线于E.求证:∠DOE 是定角4. 已知:点P 是线段AB 外一点,PD ⊥AB 于D ,且PD=AB ,H 是△PAB 的垂心,C 是AB 的中点.求证:CH+DH 是定值.5. 已知:AB ,CD 是⊙O 的两条直径,点P 是⊙O 上任一点(不含A ,B ,C ,D). . 求证:点P 在AB ,CD 的射影之间的距离是个定值.6. 经过∠XOY 的平分线上的任一点A ,作一直线与OX ,OY 分别交于P ,Q 则OP ,OQ 的倒数和是一个定值.7. △ABC 中,AB=AC=2,BC 边有100个不同点P 1,P 2,……,P 100,记m i =AP i 2+Bp i ×P i C (i=1,2,3,……,100).则m 1+m 2+……+m 100=________. (1990年全国初中数学联赛题)8.. 直角梯形ABCD 中,AB ∥CD ,DA ⊥AB ,AB =26cm,CD=24cm,AD=8cm,有两个动点P 和Q ,点P 在CD 上,由D 向C 以每秒1cm 的速度移动,点Q 在AB 上由B 向A 以每秒3cm 的速度移动.问时间t 经过几秒时,①BCPQ 为平行四边形?等腰梯形?②PQ 与以AD 为直径的圆O 相切?相离?相交?练习题参考答案1 ①腰上的高. ②一边上的高或3r 3 . ③ nr n. ④ 180度,(n -4)180度. ⑤两圆半径比. ⑥AB2 ⑦⊙O 的半径的平方.2. 定值是AB 平方的一半, 证Rt △COM ≌Rt △OBD , OM=DN.3. 定值是直角, 以PA 为直径的圆经过A ,O ,E ,P ,D 五点, PE=AD ,∠AOD=∠POE .4. 定值是AB 的一半,证明 仿例3.5. 定值是⊙O 的半径与两直径夹角的正弦的积,证明仿例4.6. 定值是OA os αC 2(∠xoy=2α),证明 作AR ∥OQ 交Dx 于R ,AR1OP 1OQ 1=+. 7. 4×100.。

初中数学专题讲座精编中考动态几何问题

初中数学专题讲座精编中考动态几何问题

中考动态几何问题动态几何问题通常包括:(1)动点;(2)动直线;(3)动型问题。

通过这些问题,有效的区分学生的档次,在做这类题前一定要基本知识扎实,“化动为静”,通常前两问较简单,有时是“静态”的题,所以一定要认真冷静,有时又需要用数学方法(分类讨论数形结合等),因此一定要多多训练,独立思考,充满信心。

练习:(注:题目难度按照动态几何题目难度编排,并非中考试卷难度) 1.(2000吉林省)如图,在矩形ABCD 中,BC=acm ,AB=bcm ,a>b,且a,b 是方程84231(5)5x x x x x -++=++的两个根,P 是BC 上一动点,动点Q 在PC 或其延长线上,BP=PQ ,以PQ为一边的正方形为PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP=x 。

cm ,正方形PQRS与矩形ABCD 重叠部分的面积为ycm 2. (1)求a 和b ;(2)分别求出0≤x ≤2和2≤x ≤4时,y 与x 之间的函数关系式.2.(2001吉林省)如图,A ,B 是直线l 的两点,AB =4厘米,过l 外一点C 作CD//l ,射线BC 与l 所成的锐角∠l =60°,线段BC= 2厘米.动点P,Q 分别从B ,C 同时出发,P 以每秒1厘米的速度沿由B 向C 的方向运动,Q 以每秒2厘米的速度沿由C 向D 的方向运动.设P ,Q 运动的时间为t (秒),当t >2时,PA 交CD 于E . (1)用含t 的代数式分别表示CE 和QE 的长; (2)求△APQ 的面积S 与t 的函数关系式;(3)当QE 恰好平分△APQ 的面积时,QE 的长是多少厘米?CPEQD 13. (江西2001)如图,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm .现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1㎝/s 的速度向点A 运动,点F 沿折线A —D —C 以2㎝/s 的速度向点C 运动.设点E 离开点B 的时间为t (s ). (l)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值.CABD4. (2001湖南长沙市)已知:Rt △AOC 中,∠AOB =90°,OA =3厘米,OB =4厘米.以O 为坐标原点建立如图所示的平面直角坐标系.设P 、Q 分别为AB 边、OB 边上的动点,它们同时分别从点A 、O 向B 点匀速移动,移动的速度都为1厘米/秒.设P 、Q 移动时间为t 秒(40≤≤t ).(l )过点P 作PM ⊥OA 于M .证明:ABAPBO PM AO AM ==,并求出P 点的坐标(用t 表示). (2)求△OPQ 的面积S (厘米2)与移动时间t (秒)之间的函数关系式;当t 为何值时,S 有最大值,并求出S 的最大值.(3)当t 为何值时,△OPQ 为直角三角形?(4)①试证明无论t 为何值,△OPQ 不可能为正三角形;②若点P 的移动速度不变,试改变点Q 的运动速度;使△OPQ 为正三角形,求出点Q 的运动速度和此时的t 值.yx5.(2002上海市)操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q . 探究:设A 、P 两点间的距离为x . (1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到的结论;(1) 当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的取值范围;(3)当点P 在线段AC 上滑动时,△P CQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图1、图2、图3的形状大小相同,图1供操作、实验用,图2和图3备用)6.(2000吉林省)如图,有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ=PR=5cm ,QR=8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2.解答下列问题:(1)当t=3秒时,求S 的值; (2)当t=5秒时,求S 的值;(3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.A B C D A B CD A B C D图2图1图37.(2002年吉林省)如图,菱形OABC的边长为4㎝,∠AOC=60°,动点P从O出发,以每秒1㎝的速度沿O→A→B路线运动,点P出发2s后。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七讲动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.(黄冈市中考题)思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A移到点B时,A′B′的中点的位置( )A.在平分AB的某直线上移动B.在垂直AB的某直线上移动C.在AmB上移动D.保持固定不移动(荆州市中考题)思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O →A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.(吉林省中考题)思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】 如图,正方形ABCD 中,有一直径为BC 的半圆,BC=2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1m /秒的速度向点A 运动,点F 沿折线A —D —C 以2cm /秒的速度向点C 运动,设点E 离开点B 的时间为2 (秒).(1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值. (江西省中考题)思路点拨 动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t 的方程;对于(3),点P 的位置是否发生变化,只需看PCAP 是否为一定值. 注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】 ⊙O 1与⊙O 2相交于A 、B 两点;如图(1),连结O 2 O 1并延长交⊙O 1于P 点,连结PA 、PB 并分别延长交⊙O 2于C 、D 两点,连结C O 2并延长交⊙O 2于E 点.已知⊙O 2的半径为R ,设∠CAD=α.(1)求:CD 的长(用含R 、α的式子表示);(2)试判断CD 与PO 1的位置关系,并说明理由;(3)设点P ′为⊙O 1上(⊙O 2外)的动点,连结P ′A 、P ′B 并分别延长交⊙O 2于C ′、D ′,请你探究∠C ′AD ′是否等于α? C ′D ′与P ′O l 的位置关系如何?并说明理由. (济南市中考题)思路点拨 对于(1)、(2),作出圆中常见辅助线;对于(3),P 点虽为OO l 上的一个动点,但⊙O 1、⊙O 2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.学力训练1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字). (济南市中考题)2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .(黄冈市中考题)3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为A .23πB .34π C .4 D .232π+ (烟台市中考题) ( ) ⌒4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22 C .1 D .21 (荆门市中考题) 5.如图,正△ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动.(1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式并写出自变量r 的取值范围. (江西省中考题)6.如图,⊙O 韵直径为10,弦AC=8,点B 在圆周上运动(与A 、C 两点不重合),连结BC 、BA ,过点C 作CD ⊥AB 于D .设CB 的长为x ,CD 的长为y .(1)求y 关于x 的函数关系式;当以BC 为直径的圆与AC 相切时,求y 的值;(2)在点B 运动的过程中,以CD 为直径的圆与⊙O有几种位置关系,并求出不同位置时y 的取值范围;(3)在点B 运动的过程中,如果过B 作BE ⊥AC 于E ,那么以BE 为直径的圆与⊙O 能内切吗?若不能,说明理由;若能,求出BE 的长.(太原市中考题)7.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移移动.设OM=x ,ON= (y >x ≥0),ΔAOM 的面积为S ,若cos α、OA 是方程02522=+-z z 的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离;(2)求证:AN 2=ON ·MN ;(3)求y 与x 之间的函数关系式及自变量x 的取值范围;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.(河北省中考题)8.已知:如图,梯形ABCD 中,AD ∥BC ,AB=CD=3cm ,∠C =60°,BD ⊥CD .(1)求BC 、AD 的长度;(2)若点P 从点B 开始沿BC 边向点C 以2cm /s 的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm /s 的速度运动,当P 、Q 分别从B 、C 同时出发时,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式并写出自变量t的取值范围(不包含点P 在B 、C 两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.(青岛市中考)9.如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动.设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21=; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.(福建省三明市中考题)10.如图1,在直角坐标系中,点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动,B(4,2),以BE为直径作⊙O1.(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系并证明你的结论;(2)在(1)的条件下,连结FB,几秒时FB与⊙O1相切?(3)如图2,若E点提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于A点,连结AF交⊙O1于点P,试问PA·FA的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.(武汉市中考题)参考答案。

相关文档
最新文档