2020届内蒙古通辽市高考数学一模试卷(理科)(有答案)(加精)
内蒙古通辽市蒙古族中学2020届高三数学模拟试题(六)理【含答案】
一、选择题 CDB DCD BDC AAB
答案
二、填空题
13. 1,5
14. 2 3,+
15.
6
16. a 1,1 a
1 9
三解答题
17.解:Ⅰ数列 的前 n 项和为 ,
都有
,
则:当 时,
整理得:
,
,且对任意正整数 n,
即:
常数,
所以:
由于数列 满足
所以
.
证明:Ⅱ由于
. ,
,
所以: 则:
, .
故:
PD
19.(12 分)已知函数
求曲线
在点
. 处的切线方程;
求函数 在区间 上的最大值和最小值.
20.已知一个由 11 人组成的评审委员会以投票方式从符合要求的甲,乙两名候选人中选出一
人参加一次活动.投票要求委员会每人只能选一人且不能弃选,每位委员投票不受他人影
响.投票结果由一人唱票,一人统计投票结果.Ⅰ设:在唱到第 k 张票时,甲,乙两人的得
AQ AC
2xb 2a
2
2b
2x 0
c
0
,∴
a c
b
2x 2x 2
b
,
令 b 2x 2 ,则 AQ 2x 2, 2x 2, 2x ,它背向二面角,
又∵平面 ACD 的法向量 AP 0, 0, 2,它指向二面角,
这样,二面角 M AC D 的大小为 45 ,
即 cos
9.一个几何体的三视图如图所示,则该几何体的体积为( )
50
32
80
64
A. 3
B. 3
C. 3
D. 3
10.在空间中,已知 l,m,n 为不同的直线, , , 为不同的平面,则下列判断正确的是
2020年高考模拟内蒙古高考数学模拟试卷(理科)(3月份) 含解析
2020年高考模拟高考数学模拟试卷(理科)(3月份)一、选择题1.设复数z的共轭复数为,i为虚数单位,若z=1﹣i,则(3+2)i=()A.﹣2﹣5i B.﹣2+5i C.2+5i D.2﹣5i2.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.23.已知等差数列{a n}中,S n为其前n项的和,S4=24,S9=99,则a7=()A.13B.14C.15D.164.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角为θ,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.1﹣sin 2θB.C.1﹣sinθD.5.函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)的图象大致是()A.B.C.D.6.从6名女生3名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.45种B.120 种C.30种D.63种7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.B.2C.4D.12π8.设F1,F2分别是椭圆E的左、右焦点,过点F1的直线交椭圆E于A,B两点,A在x轴上方,且满足|AF1|=3|F1B|,,则A点位于()A.第一象限B.第二象限C.y轴上D.都有可能9.已知函数,函数y=f(x)﹣a有四个不同的零点,从小到大依次为x1,x2,x3,x4,则x1+x2+x3+x4的最大值为()A.1+e B.4+e C.1﹣e D.1+2e10.O为△ABC内一点,且,若B,O,D三点共线,则t的值为()A.B.C.D.11.已知F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是()A.(,+∞)B.(2,+∞)C.(,2)D.(1,2)12.定义在R上的偶函数f(x)的导函数为f′(x),且当x>0时,xf′(x)+2f(x)<0.则()A.B.9f(3)>f(1)C.D.二、填空题(共4小题,每小题5分,满分20分)13.设x,y满足,则z=2x+y的最小值为.14.在等比数列{a n}中,已知a2+a4=8,a6+a8=4,则a10+a12+a14+a16=.15.“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收人快速增长,人民生活品质不断提升.右图是北京市2012﹣2016年城乡居民人均可支配收人实际增速趋势图(例如2012年,北京城镇居民收人实际增速为7.3%,农村居民收人实际增速为8.2%).从2012﹣2016五年中任选两年,则至少有一年农村和城镇居民收入实际增速均超过7%的概率为.16.在棱长为a的正方体内有一个和各面都相切的球,过正方体中两条互为异面直线的棱的中点作直线,则该直线被球面截在球内的弦长为.三、解答题(共5小题,满分60分)17.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC 的外接圆半径为,求△ABC周长的最大值.18.如图,在平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,EDBF是矩形,DE =a,平面EDBF⊥平面ABCD.(1)若a=1,求证:AE⊥CF;(2)若二面角A﹣EF﹣B的余弦值为,求a的值.19.设动圆P(圆心为P)经过定点(0,2),被x轴截得的弦长为4,P的轨迹为曲线E.(1)求曲线E的方程;(2)直线l:y =x+m(m∈R)与曲线E交于不同的两点A、B,线段AB的垂直平分线与y轴交于点M,若tan∠AMB=﹣2,求m的值.20.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:M≥205质量指标值m m<185185≤m<205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如右的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似服从正态分布N(216,139),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?21.已知函数f(x)=x﹣2+ae x(e为自然对数的底数)(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>6.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(1)若a=1,求C与l交点的直角坐标;(2)若C上的点到l的距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|x﹣a|.(1)当a=﹣2时,求不等式0<f(x)≤3的解集;(2)若a≤0,∃x∈(0,+∞)使f(x)≤a2﹣3成立,求a的取值范围.参考答案一、选择题(共12小题,每小题5分,满分60分)1.设复数z的共轭复数为,i为虚数单位,若z=1﹣i,则(3+2)i=()A.﹣2﹣5i B.﹣2+5i C.2+5i D.2﹣5i【分析】把z=1﹣i代入(3+2)i,再由复数代数形式的乘除运算化简得答案.解:由z=1﹣i,得(3+2)i=(3+2+2i)i=(5+2i)i=﹣2+5i.故选:B.2.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.2【分析】可以求出M={x|﹣1<x<3},从而可以根据M∩N={x|0<x<1}即可得出N={x|0<x<m},从而得出m=1.解:∵M={x|﹣1<x<3},N={x|x2﹣mx<0},M∩N={x|0<x<1},∴N={x|0<x<m},∴m=1.故选:A.3.已知等差数列{a n}中,S n为其前n项的和,S4=24,S9=99,则a7=()A.13B.14C.15D.16【分析】由已知结合等差数列的求和公式可求d,a1,然后结合等差数列的通项公式即可求解.解:因为S4=24,S9=99,,解可得,a1=3,d=2则a7=a1+6d=15.故选:C.4.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角为θ,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.1﹣sin 2θB.C.1﹣sinθD.【分析】分别求出小正方形的面积及大正方形的面积,然后根据几何概率的求解公式即可.解:由题意可知,小正方形的边长为2(cosθ﹣sinθ),面积S1=4(cosθ﹣sinθ)2=4(1﹣sin2θ),大正方形的面积S=2×2=4,故镖落在小正方形内的概率P=(1﹣sin2θ).故选:A.5.函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)的图象大致是()A.B.C.D.【分析】利用函数的奇偶性排除选项,通过函数的导数求解函数的极值点的个数,求出f(π)的值,推出结果即可.解:函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)是偶函数排除A.当x>0时,f(x)=lnx+sin x,可得:f′(x)=+cos x,令+cos x=0,作出y=与y=﹣cos x图象如图:可知两个函数有一个交点,就是函数有一个极值点.f(π)=lnπ>1,故选:B.6.从6名女生3名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.45种B.120 种C.30种D.63种【分析】6名女生3名男生中,选出3名学生组成课外小组,根据分层抽样要求,应选出2名女生,1名男生.利用组合数的意义、乘法原理即可得出.解:6名女生3名男生中,选出3名学生组成课外小组,根据分层抽样要求,应选出2名女生,1名男生.∴不同的抽取方法数=•=45.故选:A.7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.B.2C.4D.12π【分析】首先把三视图转换为几何体,进一步利用几何体的表面积公式的应用求出结果.解:根据几何体的三视图,把几何体转换为:所以:该几何体的球心为O,R=,.故选:D.8.设F1,F2分别是椭圆E的左、右焦点,过点F1的直线交椭圆E于A,B两点,A在x轴上方,且满足|AF1|=3|F1B|,,则A点位于()A.第一象限B.第二象限C.y轴上D.都有可能【分析】设|BF2|=k,题意开发其他的焦半径的值,再由余弦定理可得a与k的关系,进而可得|AF2|=3k=|AF1|,可得A在y轴上.解:设|BF1|=k,则|AF1|=3k由椭圆的定义可得:|AF2|=2a﹣3k,|BF2|=2a﹣k,|AB|=4k,在△ABF2中,由余弦定理可得:|AB|2=|AF2|2+|BF﹣2|AF2|•|BF2|cos∠AF2B,即16k2=(2a﹣3k)2+(2a﹣k)2﹣2(2a﹣3k)(2a﹣k),整理可得a=3k,所以|AF2|=3k=|AF1|,|BF2|=5k,F1A⊥F2A,即△AF1F2为等腰直角三角形,所以A在y轴上,故选:C.9.已知函数,函数y=f(x)﹣a有四个不同的零点,从小到大依次为x1,x2,x3,x4,则x1+x2+x3+x4的最大值为()A.1+e B.4+e C.1﹣e D.1+2e【分析】作出函数f(x)的图象,结合题意,利用根与系数的关系利用函数的单调性得解.解:若函数y=f(x)﹣a有四个不同的零点,则有a∈(1,e],当x>0时,f(x)=x+﹣3≥2﹣3=1,可得f(x)在x>2递增,在0<x<2处递减,由f(x)=,x≤0,x<﹣1时,f(x)递减;﹣1<x<0时,f(x)递增,可得x=﹣1处取得极小值1,作出f(x)的图象,以及直线y=a,可得===,即有x1+1+x2+1=0,可得x1+x2=﹣2,x3,x4是方程﹣3=a的两根,即x2﹣(3+a)x+4=0的两个根,∴x3+x4=3+a,则x1+x2+x3+x4=﹣2+3+a=a+1≤e+1,故最大值为e+1,故选:A.10.O为△ABC内一点,且,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】根据即可得出,而根据B,O,D三点共线,可设,从而可得出,这样根据平面向量基本定理即可得出,解出t即可.解:由得,,∴,∵B,O,D三点共线,∴可设,且,∴,∴,解得.故选:D.11.已知F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是()A.(,+∞)B.(2,+∞)C.(,2)D.(1,2)【分析】确定M,F1,F2的坐标,进而由•<0,结合a、b、c的关系可得关于ac的不等式,利用离心率的定义可得范围.解:设直线方程为y=(x﹣c),与双曲线(a>0,b>0)联立,可得交点坐标为P(,﹣)∵F1(﹣c,0),F2(c,0),∴=(﹣,),=(,),由题意可得•<0,即<0,化简可得b2<3a2,即c2﹣a2<3a2,故可得c2<4a2,c<2a,可得e=<2,∵e>1,∴1<e<2故选:D.12.定义在R上的偶函数f(x)的导函数为f′(x),且当x>0时,xf′(x)+2f(x)<0.则()A.B.9f(3)>f(1)C.D.【分析】构造函数g(x)=x2f(x),结合已知条件及导数与单调性关系可判断g(x)的单调性及奇偶性,从而可求解.解:令g(x)=x2f(x),当x>0时,xf′(x)+2f(x)<0,则g′(x)=2xf(x)+x2f′(x)=x[2f(x)+f′(x)]<0即g(x)在(0,+∞)上单调递减,因为f(﹣x)=f(x),所以g(﹣x)=(﹣x)2f(﹣x)=x2f(x)=g(x)即g(x)为偶函数,根据偶函数的对称性可知,g(x)在(﹣∞,0)上单调递增,g(e)>g(3),所以=,故选:D.二、填空题(共4小题,每小题5分,满分20分)13.设x,y满足,则z=2x+y的最小值为﹣6.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.解:由x,y满足作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过B(﹣2,﹣2)时直线在y轴上的截距最小,z最小z=﹣2×2﹣2=﹣6.故答案为:﹣6.14.在等比数列{a n}中,已知a2+a4=8,a6+a8=4,则a10+a12+a14+a16=3.【分析】由已知结合等比数列的通项公式可求公比q,然后结合等比数列的性质即可求解.解:设等比数列的公比为q,则,解可得q4=,所以a10+a12+a14+a16=+(a6+a8)q8=8×=3.故答案为:3.15.“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收人快速增长,人民生活品质不断提升.右图是北京市2012﹣2016年城乡居民人均可支配收人实际增速趋势图(例如2012年,北京城镇居民收人实际增速为7.3%,农村居民收人实际增速为8.2%).从2012﹣2016五年中任选两年,则至少有一年农村和城镇居民收入实际增速均超过7%的概率为.【分析】设至少有一年农村和城镇居民实际收入增速均超7%为事件B,这五年中任选两年,利用列举法能出至少有一年农村和城镇居民收入实际增速均超过7%的概率.解:设至少有一年农村和城镇居民实际收入增速均超7%为事件B,这五年中任选两年,有(2012,2013),(2012,2014),(2012,2015),(2012,2016),(2013,2014),(2013,2015),(2013,2016),(2014,2015),(2014,2016),(2015,2016)共10种情况,其中至少有一年农村和城镇居民实际收入增速均超过7%的为前9种情况,所以至少有一年农村和城镇居民收入实际增速均超过7%的概率P(B)=,故答案为:.16.在棱长为a的正方体内有一个和各面都相切的球,过正方体中两条互为异面直线的棱的中点作直线,则该直线被球面截在球内的弦长为.【分析】由题意画出图形,利用直线与圆的位置关系及垂径定理求解.解:如图,M,N是正方体中两条互为异面直线的棱的中点,直线MN与球O的表面交于E,F两点,连接MO,并延长交于P,则P为对棱的中点,取EF的中点G,则OG∥PN,且OG==.在Rt△OGE中,OE=,则EF=2EG=2.故答案为:.三、解答题(共5小题,满分60分)17.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC 的外接圆半径为,求△ABC周长的最大值.【分析】(1)根据向量数量积的定义求出f(x),结合零点的定义进行求解即可.(2)根据条件先求出A和a的大小,结合余弦定理,以及基本不等式的性质进行转化求解即可.解:(1)f(x)==2cos x sin(x﹣)+2sin x cos(x﹣)=2sin(2x﹣),由f(x)=0得2x﹣=kπ,k∈Z,得x=+,即函数的零点为x=+,k∈Z.(2)∵f(A)=2,∴f(A)=2sin(2A﹣)=2,得sin(2A﹣)=1,即2A﹣=2kπ+,即A=kπ+,在三角形中,当k=0时,A=,满足条件,∵△ABC的外接圆半径为,∴=2,即a=2×=3,由余弦定理得a2=b2+c2﹣2bc cos A=b2+c2﹣bc=(b+c)2﹣3bc≥=(b+c)2﹣(b+c)2=(b+c)2,即(b+c)2≤4×9=36,即b+c≤6当且仅当b=c时取等号,则a+b+c≤9,即三角形周长的最大值为9.18.如图,在平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,EDBF是矩形,DE =a,平面EDBF⊥平面ABCD.(1)若a=1,求证:AE⊥CF;(2)若二面角A﹣EF﹣B的余弦值为,求a的值.【分析】(1)根据勾股定理判断AD⊥BD,AE⊥EF,AE⊥EC,得到AE⊥平面EFC,最后得出结论;(2)以D为原点,DA,DB,DE分别为x,y,z轴建立空间直角坐标系,求出平面AEF 和平面DEFB的法向量,利用夹角公式列方程,求出a.解:(1)连接AC,在三角形ABD中AB=2,AD=1,∠BAD=60°,由余弦定理得BD=,AD2+BD2=AB2,故AD⊥BD,EDBF是矩形,DE=1,平面EDBF⊥平面ABCD,故BF⊥平面ABCD,DE⊥平面ABCD,则AF=,AE2+EF2=AF2,故AE⊥EF,由AC=,EC=,AE=,得AE2+EC2=AC2,故AE⊥EC,EC∩EF=E,所以AE⊥平面EFC,FC⊂平面EFC,所以AE⊥FC;(2)以D为原点,DA,DB,DE分别为x,y,z轴建立空间直角坐标系,则A(1,0,0),E(0,0,a),F(0,),,设平面AEF的法向量为,由,得,平面DEFB的法向量为,由cos<>=,得a=.19.设动圆P(圆心为P)经过定点(0,2),被x轴截得的弦长为4,P的轨迹为曲线E.(1)求曲线E的方程;(2)直线l:y=x+m(m∈R)与曲线E交于不同的两点A、B,线段AB的垂直平分线与y轴交于点M,若tan∠AMB=﹣2,求m的值.【分析】(1)设动圆P的圆心为(x,y),半径为r,根据题意列出方程组化简即可得到曲线E的方程;(2)设A(x1,y1),B(x2,y2),线段AB的中点坐标C(x3,y3),M(0,y0),联立直线l与抛物线方程,利用韦达定理求出C的坐标为(2,4+m),利用弦长公式求出|AB|=4,所以|AC|=2,又y0=6+m,所以|MC|=,再利用二倍角的正切公式求出tan,所以tan∠AMC===,即可解出m的值.解:(1)设动圆P的圆心为(x,y),半径为r,被x轴截得的弦长为|AB|,依题意得:,化简整理得:x2=4y,∴曲线E的方程为:x2=4y;(2)设A(x1,y1),B(x2,y2),线段AB的中点坐标C(x3,y3),M(0,y0),联立方程,整理得:,∴△=16×2+4×4m=32+16m>0,∴m>﹣2,∴,x1x2=﹣4m,,∴,y3=4+m,∴线段AB的中点C的坐标为(2,4+m),又|AB|===4,∴|AC|=2,又AB的垂直平分线方程为:y﹣(4+m)=﹣,∴y0=6+m,∴|MC|=,∵CM垂直平分AB,∴∠AMB=2∠AMC,又tan∠AMB==﹣2,解得tan或﹣(舍去),∴在Rt△AMC中,tan∠AMC===,∴m=0,满足m>﹣2,∴m的值为0.20.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:M≥205质量指标值m m<185185≤m<205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如右的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似服从正态分布N(216,139),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?【分析】(1)根据抽样调查数据,求得一等品所占比例的估计值为0.375,由于该估计值小于0.5,故不能认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定;(2)由直方图知,一、二、三等品的频率,求得在样本中用分层抽样的方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,然后利用古典概型概率计算公式求解;(3)求出“质量提升月”活动前,该企业这种产品的质量指标值的均值,再由“质量提升月”活动后,产品质量指标值X近似满足X~N(216,139),得质量指标的均值约为216,作差得答案.解:(1)根据抽样调查数据,一等品所占比例的估计值为0.260+0.090+0.025=0.375.由于该估计值小于0.5,故不能认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定;(2)由直方图知,一、二、三等品的频率分别为:0.375,0.5,0.125.故在样本中用分层抽样的方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中抽取4件,一、二、三等品都有的情形由2种.①一等品2件,二等品1件,三等品1件.②一等品1件,二等品2件,三等品1件.P=;(3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为:170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4.“质量提升月”活动后,产品质量指标值X近似满足X~N(216,139),即质量指标的均值约为216.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了15.6.21.已知函数f(x)=x﹣2+ae x(e为自然对数的底数)(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>6.【分析】(1)对函数求导,然后结合导数与单调性的关系对a进行分类讨论确定导数符号,即可求解函数单调性;(2)由零点存在的条件,结合函数的性质,把所要证明的不等式转换为函数的单调性与大小关系的比较.解:(1)f′(x)=1+ae x,当a≥0时,f′(x)>0,则f(x)在R上单调递增,当a<0时,令f′(x)=0可得x=ln(﹣),故函数的单调递增区间为(﹣),单调递减区间(ln(﹣),+∞),(2)证明:由f(x)=0可得a=,设g(x)=,则,当x<3时,g′(x)<0,函数单调递减,当x>3时,g′(x)>0,函数单调递增,当x=3时,g(x)取得最小值g(3)=﹣,当x>时,g(x)<0,当x<2时,g(x)>0,不妨设x1<x2,则x1∈(2,3),x2∈(3,+∞),所以6﹣x1>3,且g(x)在(3,+∞)上单调递增,要证x1+x2>6,只要证x2>6﹣x1>3,故只要证g(x2)>g(6﹣x1),因为g(x1)=g(x2)=a,只要证g(x1))>g(6﹣x1),即,即证(x1﹣4)+x﹣2<0,令h(x)=e2x﹣6(x﹣4)+x﹣2,2<x<3,则h′(x)=e2x﹣6(2x﹣7)+1,令m(x)=h′(x),则m′(x)=4e2x﹣6(x﹣3)<0,所以m(x)在(2,3)上单调及,h′(x)>h′(3)=0,故h(x)在(2,3)上单调递增,h(x)<h(3)=0,即e2x﹣6(x﹣4)+x﹣2<0,从而:x1+x2>6.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(1)若a=1,求C与l交点的直角坐标;(2)若C上的点到l的距离的最大值为,求a.【分析】(1)求出曲线C的普通方程和当a=1时,直线l的普通方程,列方程组能求出C与l的交点的直角坐标.(2)直线l的普通方程是x+y﹣1﹣a=0,C上的点(2cos θ,sin θ)到l的距离为,由此利用C上的点到l的距离的最大值为,能求出a.解:(1)∵曲线C的极坐标方程为,∴曲线C的普通方程为,∵直线l的参数方程为,∴当a=1时,直线l的普通方程为x+y﹣2=0.由解得或从而C与l的交点的直角坐标是.(2)直线l的普通方程是x+y﹣1﹣a=0,故C上的点(2cos θ,sin θ)到l的距离为,当a≥﹣1时,d的最大值为.由题设得,所以当a<﹣1时,d的最大值为.由题设得,所以.综上,.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|x﹣a|.(1)当a=﹣2时,求不等式0<f(x)≤3的解集;(2)若a≤0,∃x∈(0,+∞)使f(x)≤a2﹣3成立,求a的取值范围.【分析】(1)当a=﹣2时,利用绝对值不等式得f(x)=|x﹣1|﹣|x+2|≤|(x﹣1)﹣(x+2)|=3,即f(x)≤3的解集为R;再由f(x)>0,得|x﹣1|>|x+2|,解之,即可得到不等式0<f(x)≤3的解集;(2)当a≤0,x∈(0,+∞)时,可求得f(x)=|x﹣1|﹣x+a的最小值为f(1)=a﹣1,解不等式a2﹣3≥a﹣1即可得到答案.解:(1)当a=﹣2时,因为f(x)=|x﹣1|﹣|x+2|≤|(x﹣1)﹣(x+2)=3,|所以f(x)≤3的解集为R;由f(x)>0,得|x﹣1|>|x+2|,解得x<﹣,故不等式0<f(x)≤3的解集为(﹣∞,﹣);(2)当a≤0,x∈(0,+∞)时,f(x)=|x﹣1|﹣x+a=,则f(x)min=f(1)=a﹣1,故a2﹣3≥a﹣1,解得:a≥2或a≤﹣1,又a≤0,所以a≤﹣1.所以a的取值范围是(﹣∞,﹣1].。
2020年内蒙古呼伦贝尔市高考(理科)数学一模测试试卷 解析版
2020年高考数学一模试卷(理科)一、选择题1.若A={0,1,2},B={x=2a,a∈A},则A∪B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,2,4}D.{1,2,4}2.复数=()A.i B.1+i C.﹣i D.1﹣i3.在△ABC中,=,=2,=,则λ+μ=()A.B.C.D.4.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种B.70种C.75种D.150种5.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则直线AB的斜率为()A.B.C.2D.6.等比数列{a n}每项都是正数,设其前n项和为S n,若满足q>1,a3+a5=20,a2a6=64,则S5=()A.31B.36C.42D.487.函数的图象大致是()A.B.C.D.8.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.19.把函数y=sin(x+)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(0,0)10.在棱长均相等的正三棱柱ABC﹣A1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:①AC1⊥BC;②AF=FC1;③平面DAC1⊥平面ACC1A1;④异面直线AC1与CD所成角为60°.其中正确命题的个数为()A.1B.2C.3D.411.已知双曲线C:﹣=1(a>0,b>0),以点P(b,0)为圆心,a为半径作圆P,圆P与双曲线C的一条渐近线交于M,N两点,若∠MPN=90°,则C的离心率为()A.B.C.D.12.已知,若方程f(x)﹣2ax=a﹣1有唯一解,则实数a的取值范围是()A.{﹣8}∪(1,+∞)B.C.D.{﹣32}∪[1,2]∪(4,+∞)二、填空题13.(x+y)(2x﹣y)5的展开式中x3y3的系数为.(用数字填写答案)14.设实数x和y满足约束条件,则z=2x+3y的最小值为.15.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是,,C(0,1,0),,则该四面体的外接球的体积为.16.数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,满足a1=2,3S n=(n+m)a n(n∈N*,m∈R),且a n b n=n+1.若任意n∈N*,λ≤T2n﹣T n成立,则实数λ的取值范围为.三、解答题17.在△ABC中,角A、B、C的对应边分别为a、b、c,已知a=2,c=2,cos C=﹣.(1)求A;(2)设M为BC中点,求AM的长.18.万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:男女合计冰雪迷20非冰雪迷20合计(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全2×2列联表;并判断能否有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.附表及公式:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828,n=a+b+c+d19.在如图所示的四棱锥F﹣ABCD中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,FC⊥平面ABCD,AC⊥BF,CB=CD=1,(1)求证:AC⊥平面BCF;(2)已知二面角F﹣BD﹣C的余弦值为,求直线AF与平面DFB所成角的正弦值.20.已知点M(x0,y0)为椭圆C:+y2=1上任意一点,直线l:x0x+2y0y=2与圆(x ﹣1)2+y2=6交于A,B两点,点F为椭圆C的左焦点.(Ⅰ)求椭圆C的离心率及左焦点F的坐标;(Ⅱ)求证:直线l与椭圆C相切;(Ⅲ)判断∠AFB是否为定值,并说明理由.21.已知函数.(1)当a=1时①求函数f(x)在(2,f(2))处的切线方程;②定义其中n∈N*,求S2020;(2)当a≠2时,设t(x)=f(x)﹣ln(4x﹣x2),g(x)=xe1﹣x(e为自然对数的底数),若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:极坐标系与参数方程]22.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若A={0,1,2},B={x=2a,a∈A},则A∪B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,2,4}D.{1,2,4}【分析】求出A,B,由此利用并集的定义能求出A∪B.解:∵A={0,1,2},B={x=2a,a∈A}=(1,2,4),则A∪B=(0,1,2,4)故选:C.2.复数=()A.i B.1+i C.﹣i D.1﹣i【分析】将分子分线同乘2+i,整理可得答案.解:===i,故选:A.3.在△ABC中,=,=2,=,则λ+μ=()A.B.C.D.【分析】由平面向量的基本定理得:P为△ABC的重心,则==()=﹣+,所以,,所以,得解.解:由在△ABC中,=,=2,则P为△ABC的重心,则==()=﹣+,所以,,所以,故选:A.4.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.解:根据题意,从6名男干部中选出2名男干部,有C62=15种取法,从5名女干部中选出1名女干部,有C51=15种取法,则有15×5=75种不同的选法;故选:C.5.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则直线AB的斜率为()A.B.C.2D.【分析】根据抛物线的定义,结合|AF|=3,求出A的坐标,然后求出AF的斜率即可.解:抛物线的焦点F(1,0),准线方程为x=﹣1,设A(x,y),则|AF|=x+1=3,故x=2,此时y=,即A(2,).则直线AF的斜率k=.故选:D.6.等比数列{a n}每项都是正数,设其前n项和为S n,若满足q>1,a3+a5=20,a2a6=64,则S5=()A.31B.36C.42D.48【分析】利用等比中项的性质求得a3a5=a2a6,进而根据a3+a5=20,构造出一元二次方程求得a3和a5,则a1和q可求得,最后利用等比数列的求和公式求得答案.解:a3a5=a2a6=64,∵a3+a5=20,∴a3和a5为方程x2﹣20x+64=0的两根,∵a n>0,q>1,∴a3<a5,∴a5=16,a3=4,∴q===2,∴a1===1,∴S5==31.故选:A.7.函数的图象大致是()A.B.C.D.【分析】当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,f(x)→0,排除B,由此得答案.解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.8.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.1【分析】把已知熟记代入m2﹣m1=lg,化简后利用对数的运算性质求解.解:设太阳的星等是m1=﹣26.7,天狼星的星等是m2=﹣1.45,由题意可得:,∴,则.故选:A.9.把函数y=sin(x+)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(0,0)【分析】由条件利用函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.解:把函数y=sin(x+)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得函数y=sin(x+)的图象;再将图象向右平移个单位,可得y=sin[(x﹣)+]=sin x的图象,令x=kπ,求得x=2kπ,k∈Z,那么所得图象的对称中心为(2kπ,0)k∈Z,故选:D.10.在棱长均相等的正三棱柱ABC﹣A1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:①AC1⊥BC;②AF=FC1;③平面DAC1⊥平面ACC1A1;④异面直线AC1与CD所成角为60°.其中正确命题的个数为()A.1B.2C.3D.4【分析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断F是AC1的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线AC1与CD所成角判断④的正误.解:不妨设棱长为:2,对于①连结AB1,则AB1=AC1=2,∴∠AC1B1≠90°即AC1与B1C1不垂直,又BC∥B1C1,∴①不正确;对于②,连结AD,DC1,在△ADC1中,AD=DC1=,而DF⊥AC1,∴F是AC1的中点,AF=FC1;∴②正确;对于③由②可知,在△ADC1中,DF=,连结CF,易知CF=,而在Rt△CBD中,CD =,∴DF2+CF2=CD2,即DF⊥CF,又DF⊥AC1,∴DF⊥面ACC1A1,∴平面DAC1⊥平面ACC1A1,∴③正确;以A1为坐标原点,平面A1B1C1上过A1点垂直于A1C1的直线为x轴,A1C1所在的直线为y轴,A1A所在的直线为z轴,建立如图所示的直角坐标系;A1(0,0,0),B1(,1,0),C1(0,2,0),A(0,0,2),C(0,2,2),D (,1,1);=(0,2,﹣2),=(,﹣1,﹣1);异面直线AC1与CD所成角为θ,cosθ==0,故θ=90°.④不正确.故选:B.11.已知双曲线C:﹣=1(a>0,b>0),以点P(b,0)为圆心,a为半径作圆P,圆P与双曲线C的一条渐近线交于M,N两点,若∠MPN=90°,则C的离心率为()A.B.C.D.【分析】求出双曲线的一条渐近线方程,利用圆P与双曲线C的一条渐近线交于M,N 两点,若∠MPN=90°,列出方程,求解离心率即可.解:不妨设双曲线C的一条渐近线bx﹣ay=0与圆P交于M,N,因为∠MPN=90°,所以圆心P到bx﹣ay=0的距离为:=a,即2c2﹣2a2=ac,e=>1,解得e=.故选:A.12.已知,若方程f(x)﹣2ax=a﹣1有唯一解,则实数a的取值范围是()A.{﹣8}∪(1,+∞)B.C.D.{﹣32}∪[1,2]∪(4,+∞)【分析】求出f(x)的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出a的范围即可.解:令﹣1<x<0,则0<x+1<1,则f(x+1)=,故f(x)=,如图示:由f(x)﹣2ax=a﹣1,得f(x)=a(2x+1)﹣1,函数y=a(2x+1)﹣1恒过A(﹣,﹣1),由B(1,),C(0,1),可得k AB==1,k OA=2,k AC==4,若方程f(x)﹣2ax=a﹣1有唯一解,则1<2a≤2或2a>4,即<a≤1或a>2;当2ax+a﹣1=﹣1即图象相切时,根据△=0,9a2﹣8a(a﹣2)=0,解得a=﹣16(0舍去),则a的范围是{﹣16}∪(,1]∪(2,+∞),故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(x+y)(2x﹣y)5的展开式中x3y3的系数为40.(用数字填写答案)【分析】由二项式定理及分类讨论思想得:(2x﹣y)5的展开式的通项为T r+1=(2x)5﹣r(﹣y)r,则(x+y)(2x﹣y)5的展开式中x3y3的系数为﹣22+=40,得解.解:由(2x﹣y)5的展开式的通项为T r+1=(2x)5﹣r(﹣y)r,则(x+y)(2x﹣y)5的展开式中x3y3的系数为﹣22+=40,故答案为:40.14.设实数x和y满足约束条件,则z=2x+3y的最小值为14.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y对应的直线进行平移,可得当x=4且y=2时,z=2x+3y取得最小值.解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(4,2),B(4,6),C(6,4)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最大值∴z最小值=F(4,2)=14故答案为:1415.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是,,C(0,1,0),,则该四面体的外接球的体积为.【分析】由题意,四面体的外接球就是长方体的外接球,其直径为长方体的对角线OD,求出半径,即可求出四面体的外接球的体积解:由题意,四面体的外接球就是长方体的外接球,其直径为长方体的对角线OD==3,可得四面体的外接球的半径R=,可得四面体的外接球的体积为V=π•()3=.故答案为:.16.数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,满足a1=2,3S n=(n+m)a n(n∈N*,m∈R),且a n b n=n+1.若任意n∈N*,λ≤T2n﹣T n成立,则实数λ的取值范围为(﹣∞,].【分析】当n≥2时,a n=S n﹣S n﹣1,可得到=,再用累乘法求出a n,再求出b n,根据定义求出T n,再借助单调性求解.解:当n=1时,3S1=(1+m)a1=3a1,则m=2,3S n=(n+2)a n,当n≥2时,3S n﹣1=(n+1)a n﹣1,∴3a n=(n+2)a n﹣(n+1)a n﹣1,∴=,∴a n=a1••…=2×××…•=n(n+1),∴b n==,∴T2n﹣T n=++…+≥(当且仅当n=1时等号成立),∴λ≤,故答案为:(﹣∞,].三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在△ABC中,角A、B、C的对应边分别为a、b、c,已知a=2,c=2,cos C=﹣.(1)求A;(2)设M为BC中点,求AM的长.【分析】(1)直接根据特殊角的三角函数值求出C,结合正弦定理求出A;(2)结合第一问的结论以及余弦定理即可求解.解:(1)∵△ABC中,角A、B、C的对应边分别为a、b、c;a=2,c=2,cos C=﹣,∴C=120°;∴sin C=,∵=⇒sin A==⇒A=30°;(2)由(1)得:B=30°,∴AC=BC=2;∴CM=1;∴AM2=AC2+CM2﹣2AC•CM•cos∠ACM=22+12﹣2×2×1×cos120°=7;∴AM=.18.万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:男女合计冰雪迷20非冰雪迷20合计(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全2×2列联表;并判断能否有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.附表及公式:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828,n=a+b+c+d【分析】(1)根据频率分布直方图补全2×2列联表,求出k2≈2.778>2.706,从而有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:6×=4人,抽中女教工:6×=2人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,则ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.解:(1)将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,根据频率分布直方图补全2×2列联表:男女合计冰雪迷402060非冰雪迷202040合计6040100=≈2.778>2.706,∴有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:6×=4人,抽中女教工:6×=2人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,则ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:ξ012P数学期望E(ξ)==.19.在如图所示的四棱锥F﹣ABCD中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,FC⊥平面ABCD,AC⊥BF,CB=CD=1,(1)求证:AC⊥平面BCF;(2)已知二面角F﹣BD﹣C的余弦值为,求直线AF与平面DFB所成角的正弦值.【分析】(1)由已知可得CF⊥AC,结合AC⊥BF,由直线与平面垂直的判定可得AC ⊥平面BCF;(2)由(1)知,AC⊥CB,则CA,CB,CF两两互相垂直,以C为坐标原点,分别以CA,CB,CF所在直线为x,y,z轴建立空间直角坐标系,设F(0,0,a),由二面角F﹣BD﹣C的余弦值为求解a,再由空间向量求解直线AF与平面DFB所成角的正弦值.【解答】(1)证明:∵FC⊥平面ABCD,∴CF⊥AC,又AC⊥BF,BF∩CF=F,∴AC⊥平面BCF;(2)解:由(1)知,AC⊥CB,则CA,CB,CF两两互相垂直,以C为坐标原点,分别以CA,CB,CF所在直线为x,y,z轴建立空间直角坐标系,由CB=CD=1,∠ABC=60°,得C(0,0,0),A(,0,0),B(0,1,0),D(,﹣,0),设F(0,0,a),则,,设平面BDF的一个法向量为,由,取x=,得.平面BCD的一个法向量为.由cos<>==,解得a=1.∴,又,∴直线AF与平面DFB所成角的正弦值为|cos<>|==.20.已知点M(x0,y0)为椭圆C:+y2=1上任意一点,直线l:x0x+2y0y=2与圆(x ﹣1)2+y2=6交于A,B两点,点F为椭圆C的左焦点.(Ⅰ)求椭圆C的离心率及左焦点F的坐标;(Ⅱ)求证:直线l与椭圆C相切;(Ⅲ)判断∠AFB是否为定值,并说明理由.【分析】(Ⅰ)根据椭圆的离心率公式即可求出,(Ⅱ)根据判别式即可证明.(Ⅲ)根据向量的数量积和韦达定理即可证明,需要分类讨论,解:(Ⅰ)由题意可得a=,b=1,则c==1,∴椭圆C的离心率e==,左焦点F的坐标(﹣1,0),证明:(Ⅱ)由题意可得+y02=1,当y0=0时,直线l的方程为x=或x=﹣,直线l与椭圆相切,当y0≠0时,由可得(2y02+x02)x2﹣4x0x+4﹣4y02=0,即x2﹣2xx0+2﹣2y02=0,∴△=(﹣2x0)2﹣4(2﹣2y02)=4x02+8y02﹣8=0,故直线l与椭圆C相切.(Ⅲ)设A(x1,y1),B(x2,y2),当y0=0时,x1=x2,y1=﹣y2,x1=±,∴•=(x1+1)2﹣y12=(x1+1)2﹣6+(x1﹣1)2=2x12﹣4=0,∴⊥,即∠AFB=90°当y0≠0时,由,(y02+1)x2﹣2(2y02+x0x)x+2﹣10y02=0,则x1+x2=,x1x2=,∴y1y2=x1x2﹣(x1+x2)+=,∴•=(x1+1,y1)•(x2+1,y2)=x1x2+x1+x2+1+y1y2=++==0,∴⊥,即∠AFB=90°综上所述∠AFB为定值90°.21.已知函数.(1)当a=1时①求函数f(x)在(2,f(2))处的切线方程;②定义其中n∈N*,求S2020;(2)当a≠2时,设t(x)=f(x)﹣ln(4x﹣x2),g(x)=xe1﹣x(e为自然对数的底数),若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,求a的取值范围.【分析】(1)①a=1时,+x﹣1,f′(x)=,利用导数的几何意义能求出函数f(x)在(2,f(2))处的切线方程.②由+x﹣1,得f(x)+f(4﹣x)=2,由此能求出S2020=f()+f()+…+f()的值.(2)根据若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,得到函数t(x)在区间(0,e]上不单调,从而求得a的取值范围.解:(1)①a=1时,+x﹣1,f′(x)=+1=,=0,f(2)=ln1+2﹣1=1,∴函数f(x)在(2,f(2))处的切线方程为y﹣1=0,即y=1.②∵,其中n∈N*,∴S2020=f()+f()+…+f(),∵+x﹣1,∴f(x)+f(4﹣x)=ln+x﹣1+ln+4﹣x﹣1=2,∴S2020=f()+f()+…+f()=2×4039+f(2)=8078+1=8079.(2)∵t(x)=f(x)﹣ln(4x﹣x2)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x,g'(x)=(1﹣x)e1﹣x,∴g(x)在(0,1)上单调递增,在(1,e]上单调递减,又因为g(0)=0,g(1)=1,g(e)=e2﹣e>0,∴g(x)在(0,e]上的值域为(0,1].t′(x)=2﹣a﹣=,当x=时,t′(x)=0,t(x)在x=处取得最小值t()=a﹣2ln,由题意知,t(x)在(0,e]上不单调,所以0<,解得a<,所以对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,当且仅当a满足条件t()≤0且f(e)≥1,∵t(1)=0,∴t()恒成立,由t(e)≥1,解得a≤,综上所述,a的取值范围是(﹣∞,).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:极坐标系与参数方程]22.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【分析】(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().【分析】(Ⅰ)根据f(x)+f(x+4)=|x﹣1|+|x+3|=,分类讨论求得不等式f(x)+f(x+4)≥8的解集.(Ⅱ)要证的不等式即|ab﹣1|>|a﹣b|,根据|a|<1,|b|<1,可得|ab﹣1|2﹣|a﹣b|2 >0,从而得到所证不等式成立.解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)+f(x+4)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.。
2020届高三毕业班第一次综合质量检测数学(理)试题—附答案
5.
已知函数
f
(
x)
1
x x
2
sin x ,则函数 y
f (x) 的图像大致为
A.
B.
C.
D.
6.从区间 0,1随机抽取 2n 个数 x1, x2 ,, xn , y1, y2 ,, yn ,组成坐标平面上的 n 个点
(x1, y1 ) ,(x2 , y2 ) ,… (xn , yn ) ,其中到原点距离小于1的点有 m 个,用随机模拟的
A.20100
B.20200
C.40200
D.40400
12.在棱长为 4 的正方体 ABCD A1B1C1D1 中, E, F 分别为 AA1, BC 的中点,点 M 在
棱 B1C1 上, B1M
1 4
B1C1
,若平面
FEM
交
A1B1 于点 N
,四棱锥 N
BDD1B1 的五
个顶点都在球 O 的球面上,则球 O 半径为
A(3, 0, 0) , B(0, 3, 0) , S(0, 3 , 3 3 ) , C(1,0,0) , 22
上.
(1)求曲线 C 的普通方程及直线 l 的直角坐标方程. (2)求△PAB 面积的最大值.
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知函数 f (x) | 2x t | ,若 f (x) 1的解集为 (1,0) . (1)求 t 并解不等式 f (x) x 2 ; (2)已知: a,b R ,若 f (x) 2a b | 2x 2 | ,对一切实数 x 都成立, 求证: a 2b 1 .
3
2
根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用
(精选3份合集)2020届内蒙古通辽市高考数学模拟试卷
③NH3+HNO3=NH4NO3;
④H2+Cl2 HCl
故①②③④都可以通过化合反应制备,选D。
2.“白墙黑瓦青石板,烟雨小巷油纸伞”,是著名诗人戴望舒《雨巷》中描述的景象,下列有关说法中错误的是
A.“白墙”的白色源于墙体表层的CaO
B.“黑瓦”与陶瓷的主要成分都是硅酸盐
D.大飞机C919采用大量先进复合材料、铝锂合金等,铝锂合金属于金属材料
【答案】D
【解析】
【详解】
A.我国近年来大量减少化石燃料的燃烧,大力发展核电、光电、风电、水电,电能属于二次能源,故A错误;
B.新型无机非金属材料在性能上比传统无机非金属材料有了很大的提高,可适用于不同的要求。如高温结构陶瓷、压电陶瓷、透明陶瓷、超导陶瓷等都属于新型无机非金属材料,故B错误;
5.下列实验合理的是()
A.证明非金属性Cl>C>Si
B.制备少量氧气C.除去来自l2中的HClD.吸收氨气,并防止倒吸
A.AB.BC.CD.D
【答案】D
【解析】
【详解】
A.盐酸不是氯元素的最高价含氧酸,因此不能通过盐酸的酸性大于碳酸的酸性比较Cl与C的非金属性强弱,同时盐酸易挥发,与硅酸钠反应生成硅酸沉淀,干扰二氧化碳、水与硅酸钠的反应,因此图中装置不能说明碳酸的酸性大于硅酸的酸性,则不能比较C与Si的非金属性强弱,故A错误;
D.8.0×105Pa、30℃条件下转化率从50%增至90%时段NO,时间为3.7s,转化的NO为amol×0.1×(90%-50%)=0.04amol,反应速率v=△n/△t,则NO的反应速率为0.04amol/3.7s=4a/370mol/s,故D正确;
故选D。
【点睛】
从实验数据中获取正确信息的关键是,比较相同压强时,温度对平衡能移动的影响及相同温度时,压强对平衡移动的影响,从时间的变化比较外界条件对反应速率的影响。
2020年高考理科数学(1卷):答案详细解析(客观题 最新)
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020届内蒙古通辽市蒙古族中学高三模拟(六)数学(理)试题解析
绝密★启用前数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{}1,0,1,2A =-,{}2B x x x ==,则AB =()A .{}0B .{}1C .{}0,1D .{}0,1,2答案:C化简集合B ,利用交集运算得到结果. 解:由{}2B x x x ==,可得{}0,1B =,又{}1,0,1,2A =-, ∴AB ={}0,1,故选:C 点评:本题考查集合的交集运算,考查一元二次方程的解法,属于基础题. 2.复数21iz =+在复平面内对应的点所在象限为() A .第一象限 B .第二象限C .第三象限D .第四象限答案:D利用复数的除法运算化简复数z ,明确对应点的坐标,即可得到结果. 解: 因为()()()212=11+i 11i z i i i -==-+-,在复平面内对应的点为(1,-1) 故选D. 点评:本题考查复数代数形式的除法运算,考查复数的几何意义,属于基础题. 3.已知()13ln2a =,()13ln3b =,2log 0.7c =,则a ,b ,c 的大小关系是() A .a b c << B .c a b << C .b a c <<D .c b a <<答案:B结合0,1进行a,b,c 的大小比较,即可. 解:22log 0.7log 10c =<=,()()11330ln 21ln 3a b <=<<=,故c a b <<,故选B.点评:本道题考查了对数、指数比较大小,关键可以结合0,1进行大小比较,难度中等. 4.设随机变量~(1,1)X N ,其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷10000个点,则落入阴影部分的点的个数的估计值是() (注:若2~(,)X N μσ,则()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+≈)A .7539B .7028C .6587D .6038答案:C由题意正方形的面积为1S =,再根据正态分布曲线的性质,求得阴影部分的面积,利用面积比的几何概型求得落在阴影部分的概率,即可求解,得到答案. 解:由题意知,正方形的边长为1,所以正方形的面积为1S = 又由随机变量服从正态分布()~1,1X N , 所以正态分布密度曲线关于1x =对称,且1σ=, 又由()0.6826P X μσμσ-<<+≈,即()020.6826P X <<≈,所以阴影部分的面积为10.682610.65872S =-=, 由面积比的几何概型可得概率为10.6587SP S==,所以落入阴影部分的点的个数的估计值是100000.65876587⨯=,故选C . 点评:本题主要考查了正态分布密度曲线的性质,以及面积比的几何概型的应用,其中解答中熟记正态分布密度曲线的性质,准确求得落在阴影部分的概率是解答的关键,着重考查了运算与求解能力,属于基础题. 5.函数cos(π)()e e x xx f x -=-的大致图象为()A .B .C .D .答案:C根据定义域排除B ,根据(1)0f <排除A ,当1(0,)2x ∈时,()0f x >,当13()22x ∈,时,()0f x <,排除D 项,得到答案.解:由e e 0x x --≠,解得0x ≠,所以函数()f x 的定义域为(,0)(0,)-∞+∞,故排除B 项.因为()cos[π()]cos(π)()()e e (e e )x x x x x x f x f x ------===----,所以函数()f x 为奇函数, 又1111cos π1(1)0e e e ef ---==<--,故排除A 项. 设()e ex xg x -=-,显然该函数单调递增,故当0x >时,()(0)0g x g >=,则当1(0,)2x ∈时,cos(π)0y x =>,故()0f x >,当13()22x ∈,时,cos(π)0y x =<,故()0f x <,所以排除D 项.故选:C . 点评:本题考查了图像的识别,意在考查学生的计算能力和综合应用能力.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若cos cos 0a A b B -=,则ABC 一定是() A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰或直角三角形 答案:D根据正弦定理得到sin 2sin 2A B =,计算得到答案. 解:cos cos 0a A b B -=,则sin cos sin cos 0A A B B -=,即sin 2sin 2A B =.故A B =或22A B π+=,即2A B π+=.故选:D . 点评:本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力. 7.已知平面上三点A ,B ,C 满足6AB =,8AC =,10BC =,则AB BC BC CA CA AB ⋅+⋅+⋅=()A .48B .48-C .100D .100-答案:D利用勾股定理判断三角形为直角三角形,然后进行向量的数量积运算,即可求得答案. 解:6AB =,8AC =,10BC =∴222||||||AB AC BC +=故ABC ∆为直角三角形,且90BAC ︒∠=∴0AB AC ⋅=∴AB BC BC CA CA AB ⋅+⋅+⋅ AB BC BC CA =⋅+⋅()2100BC CA AB BC CB BC =-=⋅+=⋅=-故选:D. 点评:本题主要考查了向量的运算,解题关键是掌握向量的基础知识,考查了分析能力和计算能力,属于基础题.8.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位,得到的图象关于y 轴对称,则() A .函数()f x 的周期为2πB .函数()f x 图象关于点,03π⎛⎫⎪⎝⎭对称C .函数()f x 图象关于直线12x π=对称D .函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调答案:D根据对称轴之间的距离,求得周期,再根据周期公式求得ω;再平移后,根据关于y 轴对称可求得ϕ的值,进而求得解析式。
内蒙古2020年高考数学一模试卷(理科)A卷
内蒙古2020年高考数学一模试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一上·邢台月考) 集合,那么()A .B .C .D .2. (2分) (2015高三上·青岛期末) 若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A . 3B . ﹣3C . 0D .3. (2分) (2019高一上·银川期中) 若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex ,则g(x)=()A . ex-e-xB . (ex+e-x)C . (e-x-ex)D . (ex-e-x)4. (2分) (2018高三上·凌源期末) 如图所示,网格纸上小正方形的边长为1,图中画出的是某几何体的三视图,则该几何体的表面积为()A .B .C .D .5. (2分)(2019·淮南模拟) 在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:符合的点的轨迹围成的图形面积为8;设点是直线:上任意一点,则;设点是直线:上任意一点,则使得“ 最小的点有无数个”的充要条件是;设点是椭圆上任意一点,则.其中正确的结论序号为A .B .C .D .6. (2分) (2019高三上·资阳月考) 执行如图所示的程序框图,若输入的值分别为,,输出的值分别为,,则()A . -4B . -2C .D .7. (2分)某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算k=7.069,则认为“学生性别与支持活动有关系”的犯错误的概率不超过()A . 0.1%B . 1%C . 99%D . 99.9%8. (2分) (2016高二下·临泉开学考) 设x,y满足约束条件,则z=2x﹣3y的最小值是()A . ﹣7B . ﹣6C . ﹣5D . ﹣39. (2分)若三点共线,则的值为()A .B .C .D .10. (2分)(2018·银川模拟) 函数的部分图象如图所示,则该函数图象的一个对称中心是()A .B .C .D .11. (2分) (2017高三下·银川模拟) 已知双曲线﹣ =1的两个焦点分别为F1 , F2 ,以线段F1F2为直径的圆与双曲线渐近线一个交点为(4,3),则该双曲线的实轴长为()A . 6B . 8C . 4D . 1012. (2分)在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A . (0,)B . (0,]C . [,π)D . (,π)二、填空题 (共4题;共4分)13. (1分)若(x﹣)9的展开式中x3的系数是﹣84,则a=________14. (1分) (2020高二下·河南月考) 的值为________.15. (1分) (2015高一下·普宁期中) 在△ABC中,∠B=90°,AB=BC=1.点M满足,则=________.16. (1分) (2020高一下·西安期末) 在锐角中,,,则的取值范围为________.三、解答题 (共7题;共60分)17. (10分) (2020高一下·崇礼期中) 已知等差数列的前项和为,,, .(1)求数列的通项公式;(2)设,求数列的前n项和 .18. (10分) (2019高二上·湖南月考) 在三棱锥中,是正三角形,面面,,,、分别是、的中点.(1)证明:;(2)求二面角的余弦值.19. (5分)(2017·丰台模拟) 某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为ai , i=1,2,3,…,15)购买这四种新产品的情况,记录如下(单位:件):顾a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15客产品A11111B11111111C1111111D111111(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,求随机变量X的分布列和数学期望;(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)20. (10分) (2017高三上·孝感期末) 解答题。
内蒙古通辽市奈曼旗实验中学2020届高三数学下学期模拟考试试题理
内蒙古通辽市奈曼旗实验中学2020届高三数学下学期模拟考试试题理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=+-ii23 A .1-i B .2-2iC .1+iD .2+2i2.设集合},179|),{(22=+=y x y x M }2|),{(x y y x N ==,则N M 的子集的个数是 A .8B .4C .2D .03.《张丘建算经》是中国古代的数学著作,书中有一道题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺布”,则第30天织布A .7尺B .14尺C .21尺D .28尺 4.以下四个结论,正确的是①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在回归直线方程3.11.0ˆ+=x y 中,当变量x 每增加一个单位时,变量y ˆ增加0.13个单位;③在频率分布直方图中,所有小矩形的面积之和是1;④对于两个分类变量X 与Y ,求出其统计量2K 的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大. A .②④B .②③C .①③D .③④5.在8)1)(1(+-x x 的展开式中3x 的系数是 A .-14B .14C .-28D .286.抛物线22(0)y px p =>的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足设线段AB 的中点M 在l 上的投影为N ,则||||MN AB 的最大值是A .B .7.设,m n 是两条不同直线,,αβ是两个不同的平面,下列命题正确的是A .αα//,n n m m ⇒⊥⊥B .,m n αβαβ⊥⊥⊥且,则m n ⊥C .,那么αβ⊥ D .βαββαα////,//,,⇒⊂⊂n m n m8.已知双曲线的中心在原点,一个焦点为()15,0F -,点P 在双曲线上,且线段1PF 的中点坐标为()0,2,则此双曲线的方程是A .2214x y -=B .22123x y -=C .22132x y -=D .2214y x -= 9.已知向量1(sin ,)2m A =与向量(3,sin 3)n A A =共线,其中A 是ABC ∆的内角,则角A 的大小为A .2πB .4πC .3πD .6π10.已知()f x 在R 上是可导函数,则()f x 的图象如图所示,则不等式()()2230x x f x '-->的解集为 A .()(),21,-∞-+∞ B .()(),21,2-∞-C .()()(),11,02,-∞--+∞ D .()()(),11,13,-∞--+∞11.已知正四面体ABCD 的棱长为3,则其外接球的体积为A .π38B .π829C .π928D .π29 12.已知椭圆221:113x y C m n +=+-与双曲线1:222=+ny m x C 有相同的焦点,则双曲线2C 的一条斜率为正的渐近线的斜率的取值范围为 A .),1(+∞ B .),22(+∞ C .)1,0( D .)3,1( 二、填空题:本大题共4小题,每小题5分,共20分. 13.某校从高一年级学生中随机抽取部分学生,将他们的数学检测成绩(满分100分)分 成6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100]加以统计,得到如图所示 的频率分布直方图。
内蒙古通辽市蒙古族中学2020届高三数学模拟试题六理含解析
【答案】C
【解析】
【分析】
先由三视图还原几何体,根据题中数据,以及体积公式,即可求出结果。
【详解】由三视图,在正方体 中画出该几何体为:三棱柱 截取一个三棱锥 后所得几何体 ,如图所示:
由三视图可得:正方体的棱长为 , ,
则该几何体体积为: .
故选:C.
【点睛】本题主要考查由三视图求几何体体积,熟记体积公式,以及几何体结构特征即可,属于常考题型.
【答案】
【解析】
【分析】
在 上单调递增等价于 在 上恒成立,参变分离求最值,即可得到结果。
【详解】由题意 在 上单调递增,
可知: 在 上恒成立,
即 在 上恒成立,
又 ,
∴ ,
故答案为:
【点睛】本题主要考查函数单调性和导数之间的关系,将函数单调递增转化为 恒成立是解决本题的关键.
15。如图,已知球 是棱长为1 的正方体 的内切球,则平面 截球 的截面面积为.
17。已知数列 的前n项和为 , ,且对任意正整数n,都有 ,数列 满足 .
(1)求数列 , 的通项公式;
(2)求证: .
【答案】(1) ; ;(2)证明见解析。
【解析】
【分析】
(1)由 可得 ,两式作差化简可得数列 的通项,进而得到 的通项。
(2)先利用放缩得 ,再利用裂项相消法证得结果.
【详解】(1)数列 的前n项和为 , ,
18.如图,在四棱锥 中, , , ,且 , .
(1)证明: 平面 ;
(2)在线段 上,是否存在一点 ,使得二面角 的大小为 ?如果存在,求 的值;如果不存在,请说明理由.
【答案】(1)证明见解析;(2)存 , .
【解析】
内蒙古2020年高考数学一模试卷(I)卷
内蒙古2020年高考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分)已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},∁UN={x|0<x<2},M∩N=________2. (1分)已知复数 =i,则Z的虚部为________.3. (1分) (2016高一上·虹口期末) 已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为________.4. (1分)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是________5. (1分)已知M(x,y)为由不等式组,所确定的平面区域上的动点,若点A(,1),则z=的最大值为________6. (1分)从边长为1的正方形的中心和顶点这五个点中,随机(等可能)取两点,则该两点间的距离为的概率是________.7. (1分) (2019高三上·东台月考) 执行如图所示的流程图,则输出的值为________.8. (1分)(2019·新乡模拟) 已知,则________.9. (1分)已知等腰直角△ABC的斜边AB长为2,以它的一条直角边AC所在直线为轴旋转一周形成一个几何体,则此几何体的侧面积为________.10. (1分) (2017高二上·平顶山期末) 平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的动点的轨迹为曲线C,关于曲线C的几何性质,给出下列四个结论:①曲线C的方程为x2=4y;②曲线C关于y轴对称③若点P(x,y)在曲线C上,则|y|≤2;④若点P在曲线C上,则1≤|PF|≤4其中,所有正确结论的序号是________.11. (1分) (2020高一下·宣城期末) 函数的零点个数为________.12. (1分)(2019高二上·嘉定月考) 已知数列的前n项和满足,则________.二、选择题 (共4题;共8分)13. (2分) (2018高二上·抚顺期中) 已知,则“ ”是或的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件14. (2分)三棱锥P﹣ABC中,AB=AC=PB=PC=5,PA=BC若该三棱锥的四个顶点在同一个球面上,且球的表面积为34π,则棱PA的长为()A . 3B .C .D . 515. (2分)圆x2+y2=1在矩阵A对应的伸压变换下变为椭圆,则矩阵A是()A .B .C .D .16. (2分)“金导电、银导电、铜导电、铁导电,所以一切金属都导电”.此推理方法是()A . 完全归纳推理B . 类比推理C . 归纳推理D . 演绎推理三、解答题 (共5题;共55分)17. (10分) (2017高三上·唐山期末) 在四棱锥中,底面是边长为的菱形,, .(1)证明:平面;(2)若,求二面角的余弦值.18. (10分) (2019高一上·南充月考) 已知定义域为的单调减函数是奇函数,当时,.(1)求的解析式;(2)若对任意的,不等式恒成立,求实数的取值范围19. (15分) (2016高二上·平原期中) 在单位正方体ABCD﹣A1B1C1D1中,O是B1D1的中点,如图建立空间直角坐标系.(1)求证:B1C∥平面ODC1;(2)求异面直线B1C与OD夹角的余弦值;(3)求直线B1C到平面ODC1的距离.20. (10分)(2017·南京模拟) 已知椭圆E:(a>b>0)的右准线的方程为x= ,左、右两个焦点分别为F1(),F2().(1)求椭圆E的方程;(2)过F1 , F2两点分别作两条平行直线F1C和F2B交椭圆E于C,B两点(C,B均在x轴上方),且F1C+F2B 等于椭圆E的短轴的长,求直线F1C的方程.21. (10分) (2020高一下·重庆期末) 已知等差数列的前项和为,,且成等比数列.(1)求的通项公式;(2)若的公差不为0,求数列的前项和 .参考答案一、填空题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共55分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古通辽市高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共6分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M={﹣2,﹣1,0,1,2},N={x|<1},则M∩N等于()A.{1}B.{0,1}C.{1,2}D.{﹣2,﹣1,0,1}2.复数z=﹣3+(1+i)2在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列函数中,不是偶函数的是()A.y=1﹣x2B.y=tanx C.y=cos2x D.y=3x+3﹣x4.双曲线=1的左焦点到右顶点的距离为()A.1 B.2 C.4 D.55.已知变量x与y线性相关,且由观测数据算得样本平均数分别为=4,=3,则由该观测数据算得的线性回归方程不可能是()A.=0.2x+2.2 B.=0.3x+1.8 C.=0.4x+1.4 D.=0.5x+1.26.若变量x、y满足约束条件则z=4x+y的最大值为()A.﹣8 B.10 C.12 D.157.某几何体的三视图如图所示.则该几何体的体积等于()A.B.2 C.D.38.在△ABC中,a,b,c分别为内角A,B,C的对边,3cosA﹣cos(B+C)=1,a=,B=,则b等于()A. B.3 C.2D.9.执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.10.已知函数f(x)=2sin(ωx+φ)(ω>0.|φ|<)的图象如图所示,则函数y=f(x)+ω的对称中心坐标为()A.(kπ+,)(k∈Z)B.(3kπ﹣,)(k∈Z)C.(kπ+,)(k∈Z)D.(﹣,)(k∈Z)11.设α为锐角,则“tanα>2”是“﹣<tan2α<0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.若直线y=a与函数y=||的图象恰有3个不同的交点,则实数a的取值范围为()A.{}B.(0,)C.(,e)D.(,1)∪{}二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡中的横线上)13.设与的夹角为60°,且||=2,||=,则•=.14.(1﹣)7的展开式中x2的系数为.15.过原点且与直线平行的直线l被圆所截得的弦长为.16.在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2,则四棱锥S﹣ABCD的外接球的表面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.设S n为等比数列{a n}的前n项和,a1=1,a2=3.(1)求a n,S n;(2)若a3,S n+5,a5成等差数列,求n的值.18.为调查了解某药物使用后病人的康复时间,从1000个使用该药的病人的康复时间中抽取了24个样本,数据如下图中的茎叶图(单位:周).专家指出康复时间在7周之内(含7周)是快效时间.(1)求这24个样本中达到快效时间的频率;(2)以(1)中的频率作为概率,从这1000个病人中随机选取3人,记这3人中康复时间达到快效时间的人数为X,求X的分布列及数学期望.19.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,BC=4,EF=2,四边形EFCB是高为的等腰梯形,EF∥BC,O为EF的中点.(1)求证:AO⊥CF;(2)求二面角F﹣AE﹣B的正弦值.20.设椭圆=1(a>b>0)的离心率为,且左焦点在抛物线y2=4x的准线上.(1)求椭圆的方程;(2)若在y轴上的截距为4的直线l与椭圆分别交于A,B两点,O为坐标原点,且直线OA,OB的斜率之和等于2,求直线AB的斜率.21.已知函数f(x)=(a>0).(1)若a>,且曲线y=f(x)在点(2,f(2))处的切线的斜率为﹣,求函数f(x)的单调区间;(2)求证:当x>1时,f(x)>.请考生在22、23、24三题中任选一题作答,[选修4-1:几何证明选择]22.如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.(1)求证:BC2=AC•BP;(2)若EC=2,求EA的长.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,圆N的方程为ρ2﹣6ρsinθ=﹣8.(1)求圆N的直角坐标方程;(2)判断直线l与圆N的位置关系.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣a|+|x﹣2|.(1)当a=2时,求不等式f(x)≤14的解集;(2)若f(x)≥a2对x∈R恒成立,求实数a的取值范围.内蒙古通辽市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共6分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M={﹣2,﹣1,0,1,2},N={x|<1},则M∩N等于()A.{1}B.{0,1}C.{1,2}D.{﹣2,﹣1,0,1}【考点】交集及其运算.【分析】解不等式求出集合N,结合已知中集合M,和集合的交集运算,可得答案.【解答】解:∵集合M={﹣2,﹣1,0,1,2},N={x|<1}=[1,2),∴M∩N={1},故选:A2.复数z=﹣3+(1+i)2在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】直接由复数代数形式的乘法运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.【解答】解:由z=﹣3+(1+i)2,得z=﹣3+2i.则复数z=﹣3+(1+i)2在复平面内对应的点的坐标为:(﹣3,2),位于第二象限.故选:B.3.下列函数中,不是偶函数的是()A.y=1﹣x2B.y=tanx C.y=cos2x D.y=3x+3﹣x【考点】函数奇偶性的判断.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:y=tanx在定义域内是奇函数,其余都是偶函数,故选:B4.双曲线=1的左焦点到右顶点的距离为()A.1 B.2 C.4 D.5【考点】双曲线的简单性质.【分析】求得双曲线的a,b,由c=,可得c,即可得到左焦点和右顶点,进而得到它们的距离.【解答】解:双曲线=1的a=2,b=,c==3,可得右顶点为(2,0),左焦点为(﹣3,0),可得左焦点到右顶点的距离为5.故选:D.5.已知变量x与y线性相关,且由观测数据算得样本平均数分别为=4,=3,则由该观测数据算得的线性回归方程不可能是()A.=0.2x+2.2 B.=0.3x+1.8 C.=0.4x+1.4 D.=0.5x+1.2【考点】线性回归方程.【分析】将样本平均数代入回归方程逐一验证.【解答】解:由最小二乘法原理可知样本平均数(4,3)在线性回归方程上.对于A,当x=4时,y=0.8+2.2=3,对于B,当x=4时,y=1.2+1.8=3,对于C,当x=4时,y=1.6+1.4=3,对于D,当x=4时,y=2+1.2=3.2≠3.故选:D.6.若变量x、y满足约束条件则z=4x+y的最大值为()A.﹣8 B.10 C.12 D.15【考点】简单线性规划.【分析】利用线性规划的内容作出不等式组对应的平面区域,然后由z=4x+y得y=﹣4x+z,根据平移直线确定目标函数的最大值.【解答】解:作出不等式组对应的平面区域如图:由z=4x+y得y=﹣4x+z,平移直线y=﹣4x+z,由图象可知当直线经过点A时,直线的截距最大,此时z最大,由,解得,即A(4,﹣1),代入z=4x+y得最大值为z=16﹣1=15.故选:D.7.某几何体的三视图如图所示.则该几何体的体积等于()A.B.2 C.D.3【考点】由三视图求面积、体积.【分析】几何体为四棱柱与三棱柱的组合体.【解答】解:由三视图可知该几何体上部分为四棱柱,下部分为三棱柱,四棱柱的底面为边长为1的正方形,高为2,三棱柱的底面为等腰直角三角形,直角边为1,三棱柱的高为1,所以几何体的体积V=1×1×2+=.故选C.8.在△ABC中,a,b,c分别为内角A,B,C的对边,3cosA﹣cos(B+C)=1,a=,B=,则b等于()A. B.3 C.2D.【考点】两角和与差的余弦函数;余弦定理.【分析】由条件利用诱导公式,同角三角函数的基本关系求得cosA、sinA的值,利用正弦定理求得b的值.【解答】解:△ABC中,由3cosA﹣cos(B+C)=3cosA+cosA=4cosA=1,可得cosA=,∴sinA==.再根据a=,B=,利用正弦定理可得=,即=,求得b=2,故选:C.9.执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.【考点】程序框图.【分析】由=(﹣),模拟执行程序,可得程序框图的功能是计算并输出S=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)的值,用裂项法计算即可得解.【解答】解:∵==(﹣),∴模拟执行程序,可得n=10,S=0,i=2满足条件i≤10,S==(1﹣),i=4满足条件i≤10,S=(1﹣)+(﹣),i=6满足条件i≤10,S=(1﹣)+(﹣)+(﹣),i=8满足条件i≤10,S=(1﹣)+(﹣)+(﹣)+(﹣),i=10满足条件i≤10,S=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣),i=12不满足条件i≤10,退出循环,输出S=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)=(1﹣)=.故选:A.10.已知函数f(x)=2sin(ωx+φ)(ω>0.|φ|<)的图象如图所示,则函数y=f(x)+ω的对称中心坐标为()A.(kπ+,)(k∈Z)B.(3kπ﹣,)(k∈Z)C.(kπ+,)(k∈Z)D.(﹣,)(k∈Z)【考点】正弦函数的图象.【分析】由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式;再利用正弦函数的图象的对称性,求得y=f(x)+ω的对称中心坐标.【解答】解:根据函数f(x)=2sin(ωx+φ)(ω>0.|φ|<)的图象,可得=﹣,∴ω=.再根据五点法作图可得•+φ=,求得φ=,f(x)=2sin(x+).则函数y=f(x)+ω=2sin(x+)+,令x+=kπ,求得x=﹣,k∈Z,故函数y=f(x)+ω=的对称中心坐标为(﹣,),k∈Z,故选:D.11.设α为锐角,则“tanα>2”是“﹣<tan2α<0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,结合正切函数的图象和性质以及一元二次不等式的解法进行求解即可.【解答】解:由tanα>2,α为锐角得60°<arctan2<α<90°,则120°<2α<180°则tan(2arctan2)<tan2α<0,而tan(2arctan2)=﹣<0,所以,有“﹣<tan2α<0”;充分性成立.∵α为锐角,∴0°<2α<180°,∵﹣<tan2α<0,∴90°<2α<180°,则45°<α<90°,则tanα>1由﹣<tan2α<0得﹣<,即﹣(1﹣tan2α)>2tanα,即2tan2α﹣3tanα﹣2>0,解得tanα>2或tanα(舍),即必要性成立,故“tanα>2”是“﹣<tan2α<0”的充分必要条件,故选:C12.若直线y=a与函数y=||的图象恰有3个不同的交点,则实数a的取值范围为()A.{}B.(0,)C.(,e)D.(,1)∪{}【考点】根的存在性及根的个数判断;函数的图象.【分析】先求得函数y=||的定义域为(0,+∞),再分段y=||=,从而分别求导确定函数的单调性,从而解得.【解答】解:函数y=||的定义域为(0,+∞),y=||=,当x∈(0,e﹣1)时,y′=,∵x∈(0,e﹣1),∴lnx<﹣1,∴y′=<0,∴y=||在(0,e﹣1)上是减函数;当x∈(e﹣1,+∞)时,y′=﹣,∴当x∈(e﹣1,)时,∴y′>0,当x∈(,+∞)时,∴y′<0,∴y=||在(e﹣1,)上是增函数,在(,+∞)上是减函数;且||=+∞,f(e﹣1)=0,f()=, ||=0,故实数a的取值范围为(0,),故选B.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡中的横线上)13.设与的夹角为60°,且||=2,||=,则•=.【考点】平面向量数量积的运算.【分析】根据向量数量积的定义计算.【解答】解:=2=.故答案为:.14.(1﹣)7的展开式中x2的系数为7.【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.【解答】解:由于(1﹣)7的展开式的通项公式为T r+1=•(﹣1)r•,令=2,求得r=6,可得展开式中x2的系数为=7,故答案为:7.15.过原点且与直线平行的直线l被圆所截得的弦长为2.【考点】直线与圆的位置关系.【分析】先求出直线l:=0,再求出圆的圆心、半径和圆心(0,)到直线l:=0的距离d,由此能求出直线l被圆所截得的弦长.【解答】解:设与直线平行的直线l为+c=0,∵l过原点,∴c=0,∴直线l:=0,圆的圆心(0,),半径r=,圆心(0,)到直线l:=0的距离d==1,∴直线l被圆所截得的弦长|AB|=2=2=2.故答案为:2.16.在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2,则四棱锥S﹣ABCD的外接球的表面积为8π.【考点】球的体积和表面积.【分析】作出直观图,根据所给条件寻找外接球的球心位置,计算球的半径,即可求出四棱锥S﹣ABCD的外接球的表面积为.【解答】解:取底面中心O,BC中点E,连结SO,SE,OE,则OE=AB=1,OA=OB=OC=OD=,SO⊥平面ABCD,∴SO⊥OE,∵AD∥BC,∴∠SCB为异面直线AD,SC所成的角,即∠SCB=60°,∵SB=SC,∴△SBC是等边三角形,∵BC=AB=2,∴SE=,∴SO==.∴OA=OB=OC=OD=OS,即O为四棱锥S﹣ABCD的外接球球心.∴外接球的表面积S=4π×()2=8π.故答案为:8π.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.设S n为等比数列{a n}的前n项和,a1=1,a2=3.(1)求a n,S n;(2)若a3,S n+5,a5成等差数列,求n的值.【考点】等比数列的通项公式;等差数列的通项公式.【分析】(1)利用等比数列的通项公式及其前n项和公式即可得出.(2)由a3,S n+5,a5成等差数列,可得2(S n+5)=a3+a5,再利用等比数列的通项公式及其前n项和公式即可得出.【解答】解:(1)设等比数列{a n}的公比为q,∵a1=1,a2=3.∴q==3.∴a n=3n﹣1.S n==.(2)∵a3,S n+5,a5成等差数列,∴2(S n+5)=a3+a5,∴3n﹣1+10=32+34,化为3n=34,解得n=4.18.为调查了解某药物使用后病人的康复时间,从1000个使用该药的病人的康复时间中抽取了24个样本,数据如下图中的茎叶图(单位:周).专家指出康复时间在7周之内(含7周)是快效时间.(1)求这24个样本中达到快效时间的频率;(2)以(1)中的频率作为概率,从这1000个病人中随机选取3人,记这3人中康复时间达到快效时间的人数为X,求X的分布列及数学期望.【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)由茎叶图得24个样本中,康复时间在7周之内(含7周)的样本个数为8个,由此能求出这24个样本中达到快效时间的频率.(2)由已知得X的可能取值为0,1,2,3,X~B(3,),由此能求出X的分布列和EX.【解答】解:(1)由茎叶图得24个样本中,康复时间在7周之内(含7周)的样本个数为8个,∴这24个样本中达到快效时间的频率p=.(2)由已知得X的可能取值为0,1,2,3,X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X 0 1 2 3PEX==1.19.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,BC=4,EF=2,四边形EFCB是高为的等腰梯形,EF∥BC,O为EF的中点.(1)求证:AO⊥CF;(2)求二面角F﹣AE﹣B的正弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)推导出AO⊥EF,从而AO⊥平面EFCB,由此能证明AO⊥CF.(2)取BC中点D,以O为原点,OB为x轴,OD为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣AE﹣B的正弦值.【解答】证明:(1)∵在四棱锥A﹣EFCB中,△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,平面AEF⊥∩平面EFCB=EF,∴AO⊥平面EFCB,∵CF⊂平面EFCB,∴AO⊥CF.解:(2)取BC中点D,以O为原点,OB为x轴,OD为y轴,OA为z轴,建立空间直角坐标系,A(0,0,),E(1,0,0),F(﹣1,0,0),B(2,,0),=(1,0,﹣),=(2,,﹣),设平面ABE的法向量=(x,y,z),则,取z=1,得=(,﹣1,1),平面AEF的法向量=(0,1,0),设二面角F﹣AE﹣B的平面角为θ,则cosθ==,sinθ==.∴二面角F﹣AE﹣B的正弦值为.20.设椭圆=1(a>b>0)的离心率为,且左焦点在抛物线y2=4x的准线上.(1)求椭圆的方程;(2)若在y轴上的截距为4的直线l与椭圆分别交于A,B两点,O为坐标原点,且直线OA,OB的斜率之和等于2,求直线AB的斜率.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)根据抛物线的性质求得其准线方程,即可求得椭圆的焦点坐标,跟据离心率的定义,求得可求a和b,求得椭圆方程;(2)根据椭圆方程,设出直线AB的方程,代入椭圆消去y得到关于x的一元二次方程,利用判别式△>0,求得k的取值范围,根据韦达定理求得x1+x2及x1•x2,分别求得直线OA及OB的斜率,根据斜率之和等于2,即可求得k的值.【解答】解:(1)由抛物线y2=4x的准线为,x=﹣,∴椭圆=1(a>b>0)的左焦点坐标为(﹣,0),∴c=,由e==,∴a=2,由a2=b2+c2,求得b=1,故椭圆的方程为:,设椭圆=1(a>b>0)的离心率为,且左焦点在抛物线y2=4x的准线上.(2)设直线l AB:y=kx+4,A(x1,y1),B(x2,y2),将直线方程代入椭圆方程整理得:(1+4k2)x2+32kx+60=0,△=(32k)2﹣240(1+4k2)>0,解得k>或k<﹣,由韦达定理可知x1+x2=﹣,x1•x2=,k OA+k OB=+==2k+4×=2k+4×,∵直线OA,OB的斜率之和等于2,即2k+4×=2,解得k=﹣15,∴直线AB的斜率﹣15.21.已知函数f(x)=(a>0).(1)若a>,且曲线y=f(x)在点(2,f(2))处的切线的斜率为﹣,求函数f(x)的单调区间;(2)求证:当x>1时,f(x)>.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,求得切线的斜率,解方程可得a=1,由导数大于0,可得增区间,由导数小于0,可得减区间;(2)要证当x>1时,f(x)>(a>0),即证当x>1时,>(a>0),即有当x>1时,9+lnx<9x.令g(x)=9+lnx﹣9x(x>1),求出导数,判断单调性,即可得证.【解答】解:(1)函数f(x)=的导数为f′(x)=,即有在点(2,f(2))处的切线的斜率为=﹣,解得a=<(舍去)或a=1,即有f(x)=的导数为f′(x)=,由f′(x)>0,可得﹣1<x<1,由f′(x)<0,可得x>1或x<﹣1.则f(x)的增区间为(﹣1,1),减区间为(﹣∞,﹣1),(1,+∞);(2)证明:要证当x>1时,f(x)>(a>0),即证当x>1时,>(a>0),即有当x>1时,9+lnx<9x.令g(x)=9+lnx﹣9x(x>1),g′(x)=﹣9<0,即有g(x)在(1,+∞)递减,则g(x)<g(1)=0,即有当x>1时,9+lnx<9x.故当x>1时,f(x)>.请考生在22、23、24三题中任选一题作答,[选修4-1:几何证明选择]22.如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.(1)求证:BC2=AC•BP;(2)若EC=2,求EA的长.【考点】与圆有关的比例线段.【分析】(1)证明:△ACB∽△CBP,即可证明BC2=AC•BP.(2)由题意可得EC2=EA•EB=EA(EA+AB),即可解得EA的值.【解答】解:(1)证明:∵AB为圆O的直径,∴∠ACB=90°.又AC∥BP,∴∠ACB=∠CBP,∠ECA=∠P.∵EC为圆O的切线,∴∠ECA=∠ABC,∴∠ABC=∠P,∴△ACB∽△CBP.∴,即BC2=AC•BP.…(2)解:∵EC为圆O的切线,EC=2,AB=8,…∴EC2=EA•EB=EA(EA+AB),∴20=EA(EA+8),∴EA=2.…[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,圆N的方程为ρ2﹣6ρsinθ=﹣8.(1)求圆N的直角坐标方程;(2)判断直线l与圆N的位置关系.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)根据极坐标和直角坐标的关系进行化简求解即可.(2)消去参数求出直线l的普通方程,求出圆心到直线的距离与半径之间的关系进行判断.【解答】解:(1)∵y=ρsinθ,x2+y2=ρ2,∴由ρ2﹣6ρsinθ=﹣8得x2+y2﹣6y=﹣8,即x2+(y﹣3)2=1,则圆N的直角坐标方程是x2+(y﹣3)2=1;(2)∵直线l的参数方程为,∴消去参数t得,即3x+4y﹣19=0,则圆心C(0,3)的直线的距离d==>1,即直线l与圆N的位置关系是相离.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣a|+|x﹣2|.(1)当a=2时,求不等式f(x)≤14的解集;(2)若f(x)≥a2对x∈R恒成立,求实数a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)先将不等式等价为:|x﹣2|≤7,再直接去绝对值求解;(2)先用绝对值三角不等式将问题等价为:f(x)min=|a﹣2|≥a2,再分类讨论求解即可.【解答】解:(1)当a=2时,不等式f(x)≤14即为,|x﹣2|+|x﹣2|≤14,所以,|x﹣2|≤7,不等式等价为:﹣7≤x﹣2≤7,解得,﹣5≤x≤9,故原不等式的解集为:{x|﹣5≤x≤9};(2)因为不等式f(x)≥a2对x∈R恒成立,所以,f(x)min≥a2,根据绝对值三角不等式,|x﹣a|+|x﹣2|≥|(x﹣a)﹣(x﹣2)|=|a﹣2|,即f(x)min=|a﹣2|,所以,|a﹣2|≥a2,分类讨论如下:①当a≥2时,a﹣2≥a2,无解;②当a<2时,2﹣a≥a2,解得a∈[﹣2,1],综合以上讨论得,实数a的取值范围为:[﹣2,1].2016年8月12日。