平行四边形(二)
平行四边形(第2课时)(课件)八年级数学下册(苏科版)
探究新知 证明猜想
猜想1.两组对边分别相等的四边形是平行四边形.
已知:如图,四边形ABCD中,AD=BC,AB=DC. 求证:四边形ABCD是平行四边形.
A
分析:先证△ABD≌△CDB,再证AD∥BC,AB∥DC,
得四边形ABCD是平行四边形.
B
D C
探究新知
证明: 如图,连接BD. ∵AB=CD,AD=CB,BD=DB, ∴△ABD≌△CDB, ∴∠1=∠2,∠3=∠4, ∴AB∥CD,AD∥CB, ∴四边形ABCD是平行四边形.
D
F
C A.2个
C.4个
G
H
B.3个 D.5个
A
E
B
分析:▱ABCD 、▱DEBF 、▱AECF 、▱EHFG
课堂练习
3.如图,四边形AEFD和EBCF都是平行四边形. 求证: 四边形ABCD是平行四边形.
A E
B
证明:∵四边形AEFD是平行四边形, D
∴AD//EF,ADEF. F
∵四边形EBCF是平行四边形, C
课堂练习
2.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,
BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的
选法是
(C )
A.AB∥CD,AB=CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC=AD
D.AB=CD,BC=AD
课堂练习
2.如图,E,F分别是▱ABCD的边AB,CD的中点,则图 中平行四边形的个数共有( C).
A
B
C
方法一:
探究新知
A
D
B
C
方法依据:两组对边分别平行的四边形是平行四边形.
《平行四边形的性质(2)》学案
长春市第五十二中学教育集团八年级(上)数学学案平行四边形的性质(2)命题人:沈红岩审题人:冯丽亚一、学习目标:1、理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。
2、通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力。
3、培养学生独立思考的习惯与合作交流的意识,体验探索成功后的快乐。
二、自主学习1.已学平行四边形的性质:平行四边形的对边_______,对角_______;2.阅读教材页“探究”:了解“中心对称图形”的知识,并利用它发现平行四边形新的性质:平行四边形的对角线_____________;3.用三角形的全等来证明“平行四边形的对角线互相平分”这个性质:已知:在□ABCD中,对角线AC、BD相交于O.求证:OA=OC, OB=OD证明: 四边形ABCD是平行四边形∴AD=BC, ∠1=∠2,∠3=∠4∴△AOD≌△COB (ASA)∴OA=OC OB=OD∴平行四边形的对角线互相平分.三、经典例题例1:已知:如图,在□ABCD中,AC、BD交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.练习:如图,在□ABCD中,已知∠ADB=90°,AC=10cm,BD=6cm.求AD的长度。
例2:已知:如图,□ABCD的周长为60cm,对角线AC、BD相交于点O,AOB∆的周长比BOC∆的周长多 8cm,求这个平行四边形各边的长.例3:如图,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,试说明OE=OF.课后作业一、填空题1.已知□ABCD的对角线AC、BD相交于点O,AC=8cm,BD=10cm,则AO= ,BO= .2.如图,□ABCD的周长为22cm,AC、BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AD=______cm, AB=______cm.3.如图,在□ABCD中,对角线AC、BD相交于点O, AC与BD的和为24cm,BC的长为8cm,则△AOD的周长为 .4.一个平行四边形的周长为20cm,一条对角线将它分成两个三角形的周长都是18cm,则这条对角线的长是。
平行四边形的判定第二课时
∴ AB = CD,EB∥FD.
D
F
C
又∵ EB = 1 AB ,FD = 1 CD,
2
2
∴ EB = FD .
A
E
B
∴ 四边形 EBFD 是平行四边形.
练一练
1.已知四边形 ABCD 中有四个条件:AB∥CD,AB =
CD,BC∥AD,BC = AD,从中任选两个,不能使四
边形ABCD 成为平行四边形的选法是
∴ BE + EC = CF + EC,即 BC = EF.
又∵ ∠B = ∠DEF,∠ACB = ∠F,
AD
∴ △ABC≌△DEF, ∴ AB = DE.
P
∵∠B = ∠DEF,
∴ AB∥DE.
BE
CF
∴四边形 ABED 是平行四边形.
3. 如图,△ABC 中,AB = AC = 10,D 是 BC 边上的
(C)
A.AB∥CD,AB = CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC = AD
D.AB = CD,BC = AD
2. 如图,点 A,B,C,D 在同一条直线上,点 E,F
分别在直线 AD 的两侧,AE = DF,∠A = ∠D,
AB = DC. 求证:四边形 BFCE 是平行四边形. 证明:∵ AB = CD,
探究新知 知识点1: 一组对边平行且相等的四边形是平行四边形
猜想一:一组对边相等的四边形是平行四边形.
探究:(可提出反例)
猜想不成立
等腰梯形
猜想二:一组对边平行的四边形是平行四边形.
探究:(可提出反例)
猜想不成立
梯形
猜想三:一组对边平行且相等的四边形是平行四边形.
《平行四边形的性质》第二课时教案 (公开课)2022年1
平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:〔1〕本节课的主要内容是平行四边形的性质3,它是通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质.这一节综合性较强,教学中要注意引导学生.要注意让学生稳固根底知识和根本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.〔2〕教学时要讲明线段互相平分的意义和表示方法.如图,设四边形HEFG 的对角线HF、EG相交于点O,假设HF与EG互相平分,那么有OH=OF,OE =OG.〔3〕在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底〞是相对高而言的.在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.〔4〕平行四边形的面积等于它的底和高的积,即=a·h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,如图〔1〕.要防止学生发生如图〔2〕的错误.为了区别,有时也可以把高记成、,说明它们所对应的底是a或AB.〔5〕学完本节后,归纳总结一下平行四边形比一般四边形多哪些性质,平行四边形有哪些性质.可以按边、角、对角线进行总结.通过复习总结,使学生掌握这些知识,也培养学生随时复习总结的习惯,并提高他们归纳总结的能力.三、课堂引入1.复习提问:〔1〕什么样的四边形是平行四边形?四边形与平行四边形的关系是:〔2〕平行四边形的性质:①具有一般四边形的性质〔内角和是〕.②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从图中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:〔1〕平行四边形是中心对称图形,两条对角线的交点是对称中心;〔2〕平行四边形的对角线互相平分.四、例习题分析例1〔补充〕:如图,ABCD的对角线AC、BD相交于点O,EF过点O 与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF〔ASA〕.∴OE=OF,AE=CF〔全等三角形对应边相等〕.∵ABCD,∴ AB=CD〔平行四边形对边相等〕.∴ AB—AE=CD—CF.即BE=FD.※【引申】假设例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?假设将EF向两方延长与平行四边形的两对边的延长线分别相交〔图c和图d〕,例1的结论是否成立,说明你的理由.解略例1是性质3的直接运用,然后对它进行了引申,可以根据学生实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的根本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2〔教材P85的例2〕四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高〔高为此底上的高〕,可求得ABCD的面积.〔平行四边形的面积小学学过,再次强调“底〞是对应着高说的,平行四边形中,任一边都可以作为“底〞,“底〞确定后,高也就随之确定了.〕3.平行四边形的面积计算解略〔参看教材P85〕.例2是复习稳固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。
平行四边形证明(二)
平行四边形证明(二)一.截长补短例1.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE. (1)如图1,若BC=12,CD=13,求DE的长.(2)如图2,过点G做DG//BE交BF于点G,求证:BG=AE+DG.例2.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.例3.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,AE⊥AD.(1)若BG=1,EF的长度;=.(2)求证:CE AB例4.(2017•大渡口区模拟)如图1,菱形ABCD中,∠BAD=60°,点E、F分别是边AB、AD上两个动点,满足AE=DF,连接BF与DE相交于点G.(1)如图2,连接BD,求∠BGD的度数;(2)如图3,作CH⊥BG于H点,求证:2GH=DG+BG.课堂小练1.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.2.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.3.在平行四边形ABCD中,以线段CD为边在平行四边形内作等边△CDE,连结AE.(1)如图1,若点E在对角线AC上,且△ABC=75º,,求AE的长;(2)如图2,若点F是AE的中点,且BF△AE,过点E作MN△BF,分别交BC、AD于点M、N,求证:BM+ME=CM.4.平行四边形ABCD中,DE⊥BC于E,且DE=AD,DG=EC,过G作GF⊥AB于F,连接EF. 求证:-2.FBFE=FG二.线段特殊倍数关系例5.如图,在□ABCD 中,对角线DB⊥AB,DB=DC,BE⊥BF分别交CD,AD于点E,F两点,过点F作FG⊥AB于点G.(1)如图1,若tan∠DBE=31,DE=2,求FG的长(2)如图2,点M,N分别为AD,AB上两点,连接MN交BF于点P,若AM=DF,MN//BE,求证:FG=21 BN.例6.如图,四边形ABCD是平行四边形,连接对角线AC,BCAE⊥于点E,F为EA延长线上一点,且EFBE=,连接CF.(1)如图1,若ACAB⊥,4=AB,3=AC,求AF的长度;(2)如图2,若CFCD⊥,求证:AFACAD+=2.图1图2例7.如图,在平行四边形ABCD 中,∠D=30°,AC=AD ,AF ⊥CD ,CM ⊥AN ,BN ⊥AN ,点E 在AN 上,且∠CEM=30°.(1)若AF=3,求AB 的长; (2)求证:AE BN CM =+33232.5.如图,在平行四边形ABCD 中,∠ACB=45°,AE ⊥BC 于点E.过点C 作CF ⊥AB 于点F ,交AE 于点M.点N 在边BC 上,且AM=CN ,连结DN. (1)若AB=10,AC=4,求BC 的长; (2)求证:AD+AM=2DN.MND FECBA6.如图1,在□ABCD 中,E 为AD 上一点,连接BE 、CE ,满足BC =BE =CE . (1)已知∠ABC =90°,BC =4,求AC 的长;(2)如图2,过点A 作AF ⊥BE 于点F ,交CE 于点G ,连接EG ,在BG 上取点M ,使得∠AMG =60°,延长AM 交BC 于点N ,求证:CN =2AE .7.8.如图,在平行四边形ABCD 中,AE ⊥BD 于点E.(1)若BC=BD ,tan ∠ABE=3,DE=16,求平行四边形ABCD 的周长.(2)若∠DBC=45°,对角线AC 、BD 交于点O ,F 为AE 上一点,且AF=2EO ,求证:CF=2CD.8.如图,在平行四边形ABCD 中,AB ⊥AC ,过点D 作DE ⊥AD 交直线AC 于点E ,点O 是对角线AC 的中点,点F 是线段AD 上一点,连接FO 并延长交BC 于点G. (1)如图1,若AC=4,cos ∠CAD=54,求△ADE 的面积; (2)如图2,点H 为DC 延长线上一点,连接FH ,若∠H=30°,DE=BG ,求证DH=CE+FH 23OGEFDCBAHOG EFDCBA平行四边形证明(二)1.如图,在▱ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.(1)若∠D=60°,CF=2,求CG的长;(2)求证:AB=ED+CG.2.在▱ABCD中,点E为AB边上一点,且AE=AD,连接DE,过A作AH⊥BC于点H,交DE于点G,且AH=AD,过D作DQ⊥AD,使得DQ=HB,连接AQ.(1)如图1,若∠B=60°,AQ=2,求GE的长度;(2)如图2,过A作AF⊥AQ,交BC于点F,求证:AB=AG+BF.3.在▱ABCD中,对角线BD⊥BC,G为BD延长线上一点且△ABG为等边三角形,∠BAD、∠CBD的平分线相交于点E,连接AE交BD于F,连接GE.(1)若▱ABCD的面积为9,求AG的长;(2)求证:AE=BE+GE.4.在平行四边形ABCD中,E为对角线AC上任意一点,连接BE.(1)如图①所示,若∠EBC=30°,∠BCE=45°,AD=3,求线段BE的长;(2)如图②所示,延长BE至F,使得EF=EB,连接CF、FD,求证:CE=AE+FD.5.如图,在▱ABCD中,AE⊥BC于E点,点E为BC的中点,tanB=2,点P在BE上,作EF⊥DP于点F,连结AF.(1)若AD=4,求AE的长;(2)求证:AF+EF=DF.6.如图,平行四边形ABCD的对角线AC、BD相交于点O,∠BDC=45°,过点B作BH⊥DC,交DC的延长线于点H,在DC上取DE=CH,延长BH至点F,使FH=CH,连接DF、EF.(1)若AB=2,AD=10,求BH的值;(2)求证:AC=2EF.7.在平行四边形ABCD中,点E是AD边上一点,连接CE,交对角线BD于点F,过点A作AB的垂线交BD的延长线于点G,过B作BH垂直于CE,垂足为点H,交CD于点P,21290∠+∠=︒.(1)若PH=2,BH=4,求PC的长;(2)若BC=FC,求证:GFPC8.如图,在□ABCD中,∠A=60°,E为直线CB上一点,CD=CE,连接DE,F为DE上一点,且∠FBC=45°,过点F作FG⊥DE交AD于点G,连接BG.(1)若EF=3,求BE的长;(2)若BG=BF,求证:EF+GD=2BF.GF E DCB A。
平行四边形的判定(二)
北师大版八年级数学下册第六章 6.2.2平行四边形的判定(二) 同步练习题
2020-2021学年北师大版八年级数学下册第六章 6.2.2平行四边形的判定(二) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AC,BD相交于点O,E,F分别为OB,OD上的点,且OE=OF,再由OC=OA,即可得到四边形AECF是平行四边形,理由是________________________.2.如图,AC,BD是相交的两条线段,点O为它们的中点.当BD绕点O旋转时,连接AB,BC,CD,DA,所得到的四边形ABCD始终为______.3.在四边形ABCD中,对角线AC,BD相交于点O,下列条件中能判定这个四边形是平行四边形的是______.(填序号)①AB=CD,AD=BC;②AB=CD,AD∥BC;③AB=CD,AB∥CD;④AD∥BC,AB∥CD.4.如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF,有以下结论:①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE.这些结论中正确的是______.(填序号)二、选择题5.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E,G为垂足,则下列说法不正确的是( ) A.AB=CDB.EC=GFC.A,B两点的距离就是线段AB的长度D.a与b的距离就是线段CD的长度6.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DOD.AB=DC,AD∥BC7.根据下列条件,能作出平行四边形的是( )A.两组对边的长分别是3和5B.相邻两边的长分别是3和5,且一条对角线长为9C.一边的长为7,两条对角线的长分别为6和8D.一边的长为7,两条对角线的长分别为6和58.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )A.6 B.12 C.20 D.24三、解答题9.(1)如图,▱ABCD的对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,连接DE,BF.求证:四边形DEBF是平行四边形.(2)如图,四边形ABCD的对角线AC,BD相交于点O,AO=CO,EF过点O且与AD,BC 分别相交于点E,F,OE=OF.求证:四边形ABCD是平行四边形.10.(1)如图,H,G是▱ABCD对角线上的点,且AG=CH,E,F分别是AB,CD的中点.求证:四边形EHFG是平行四边形.(2)如图,在四边形ABCD中,BC∥AD,∠ABC=90°,AD=5,BC=13,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.①求证:四边形BDFC是平行四边形;②若BD=BC,求四边形BDFC的面积.B组(中档题)一、填空题11.在如图所示的▱ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC 所在平面内的点E处,且AE过BC的中点O.则△ADE的周长等于______.12.如图,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A,B(均在格点上)的位置如图所示.若以A,B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有______个.13.如图,Rt△OAB的两直角边OA,OB分别在x轴和y轴上,A(-2,0),B(0,4),将△OAB绕点O顺时针旋转90°得到△OCD,直线AC,BD交于点E.点M为直线BD上的动点,点N为x轴上的点.若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为______.二、解答题14.如图,已知AC是▱ABCD的对角线,△ACP和△ACQ都是等边三角形.求证:四边形BPDQ是平行四边形.C组(综合题)15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=4时,连接DF,求线段DF的长.参考答案2020-2021学年北师大版八年级数学下册第六章 6.2.2平行四边形的判定(二) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AC,BD相交于点O,E,F分别为OB,OD上的点,且OE=OF,再由OC=OA,即可得到四边形AECF是平行四边形,理由是对角线互相平分的四边形是平行四边形.2.如图,AC,BD是相交的两条线段,点O为它们的中点.当BD绕点O旋转时,连接AB,BC,CD,DA,所得到的四边形ABCD始终为平行四边形.3.在四边形ABCD中,对角线AC,BD相交于点O,下列条件中能判定这个四边形是平行四边形的是①③④.(填序号)①AB=CD,AD=BC;②AB=CD,AD∥BC;③AB=CD,AB∥CD;④AD∥BC,AB∥CD.4.如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF,有以下结论:①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE.这些结论中正确的是①②④⑤.(填序号)二、选择题5.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E,G为垂足,则下列说法不正确的是(D) A.AB=CDB.EC=GFC.A,B两点的距离就是线段AB的长度D.a与b的距离就是线段CD的长度6.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(D)A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DOD.AB=DC,AD∥BC7.根据下列条件,能作出平行四边形的是(A)A.两组对边的长分别是3和5B .相邻两边的长分别是3和5,且一条对角线长为9C .一边的长为7,两条对角线的长分别为6和8D .一边的长为7,两条对角线的长分别为6和58.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D)A .6B .12C .20D .24三、解答题9.(1)如图,▱ABCD 的对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AB ,CD 于点E ,F ,连接DE ,BF.求证:四边形DEBF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,OD =OB , AO =OC.∴∠DCO =∠BAO.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠FCO =∠EAO ,CO =AO ,∠COF =∠AOE ,∴△AEO ≌△CFO(ASA).∴OE =OF.∵OD =OB ,∴四边形DEBF 是平行四边形.(2)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AO =CO ,EF 过点O 且与AD ,BC 分别相交于点E ,F ,OE =OF.求证:四边形ABCD 是平行四边形.证明:∵AO =CO ,OE =OF ,∠AOE =∠COF , ∴△AOE ≌△COF(SAS). ∴∠OAE =∠OCF.∴AD ∥BC. ∴∠EDO =∠FBO.又∵OE =OF ,∠EOD =∠FOB , ∴△EOD ≌△FOB(AAS). ∴OB =OD.又∵OA =OC ,∴四边形ABCD 是平行四边形.10.(1)如图,H ,G 是▱ABCD 对角线上的点,且AG =CH ,E ,F 分别是AB ,CD 的中点.求证:四边形EHFG 是平行四边形.证明:连接CE ,AF ,EF ,EF 与AC 交于点O. ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD.∵E ,F 分别是AB ,CD 的中点, ∴AE =CF ,AE ∥CF.∴四边形AECF 是平行四边形. ∴OA =OC ,OE =OF. ∵AG =CH ,∴OG =OH.∴四边形EHFG 是平行四边形.(2)如图,在四边形ABCD 中,BC ∥AD ,∠ABC =90°,AD =5,BC =13,E 是边CD 的中点,连接BE 并延长与AD 的延长线相交于点F.①求证:四边形BDFC 是平行四边形; ②若BD =BC ,求四边形BDFC 的面积.解:①证明:∵BC ∥AF , ∴∠CBE =∠DFE.∵E 是边CD 的中点,∴CE =DE. 在△BEC 和△FED 中, ⎩⎪⎨⎪⎧∠CBE =∠DFE ,∠BEC =∠FED ,CE =DE ,∴△BEC ≌△FED(AAS).∴BE =FE. ∴四边形BDFC 是平行四边形.②由(1)得:△BEC ≌△FED ,∴DF =BC =13.∵BC ∥AF ,∠ABC =90°,∴∠BAD +∠ABC =180°. ∴∠BAD =90°.∵BD =BC =13,AD =5,∴AB =BD 2-AD 2=132-52=12. ∴S 四边形BDFC =DF ·AB =13×12=156.B 组(中档题)一、填空题 11.在如图所示的▱ABCD 中,AB =2,AD =3,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,且AE 过BC 的中点O.则△ADE 的周长等于10.12.如图,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A,B(均在格点上)的位置如图所示.若以A,B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有11个.13.如图,Rt△OAB的两直角边OA,OB分别在x轴和y轴上,A(-2,0),B(0,4),将△OAB绕点O顺时针旋转90°得到△OCD,直线AC,BD交于点E.点M为直线BD上的动点,点N为x轴上的点.若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为(2,2)或(6,-2).二、解答题14.如图,已知AC是▱ABCD的对角线,△ACP和△ACQ都是等边三角形.求证:四边形BPDQ是平行四边形.证明:方法一:(利用全等得两组对边相等)∵AC是▱ABCD的对角线,∴∠DAC=∠BCA.∵∠ACP=∠CAQ=60°,∴∠DAQ=∠BCP.又∵AD=CB,AQ=CP,∴△ADQ≌△CBP.∴DQ=BP.同理可证△ABQ≌△CDP.∴BQ=DP.∴四边形BPDQ是平行四边形.方法二:(利用对角线互相平分证明结论)连接BD交AC于点O,连接PO,QO.利用△ACP和△ACQ是全等等边三角形可得P,O,Q三点共线,且PO=QO.又∵BO=DO,∴四边形BPDQ是平行四边形.C组(综合题)15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=4时,连接DF,求线段DF的长.解:(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C.∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形.∴∠DEG=∠C.∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC.∴∠F=∠DEG.∴BF∥DE.又∵EF∥BD,∴四边形BDEF为平行四边形.(2)作FM⊥BD于点M,连接DF.∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°.∴△BDE,△BEF是等腰直角三角形.∴BF=BE=22BD=2 2.易得△BFM是等腰直角三角形.∴FM=BM=22BF=2.∴DM=6.在Rt△DFM中,DF=FM2+DM2=22+62=210.。
2024年中考第一轮复习特殊平行四边形2
3.[2019·上海]如图25-7,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE
翻折,点A落在点F处,连结DF,那么∠EDF的正切值是
图25-7
.
[答案]2
1
[解析] 如图所示,由折叠可得 AE=FE,∠AEB=∠FEB= ∠AEF,
■ 知识梳理
1.定义:顺次连结四边形各边中点所得的四边形称为中点四边形.
2.任意四边形的中点四边形是① 平行四边形 .
对角线相等的四边形的中点四边形是② 菱形
.
对角线垂直的四边形的中点四边形是③ 矩形
.
对角线互相垂直且相等的四边形的中点四边形是④ 正方形 .
考向一
中点四边形
例1 如图25-4,D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点
1
2
∵AC=BD=8,AE=CF=2,∴OD=4,OE=OF= (8-2-2)=2.
由勾股定理,得 DE= 2 + 2 = 42 + 22 =2 5,
∴四边形 BEDF 的周长=4DE=4×2 5=8 5.
■ 知识梳理
图25-2
考点二
中点四边形
4.顺次连结任意四边形各边的中点,所得的四边形一定是
,O是△ABC所在平面上的动点,连结OA,OB,OC,点G,F分别是OB,OC的中点,顺
次连结点D,G,F,E.
(1)当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
解:(1)证明:∵D,E 分别是 AB,AC 的中点,
1
∴DE∥BC,且 DE=2BC.
1
同理,GF∥BC,且 GF=2BC,
八年级数学《平行四边形的性质2》教案
19.1.1 平行四边形性质2情理推导,认识性质1、演示操作。
2、提出下列问题。
3、发现结论。
ABCD绕它的中心O旋转180°后与自身重合,这时我们说 ABCD是中心对称图形,点O叫对称中心。
平行四边形的对角线互相平分.4、证明性质。
5、指导认识。
(几何语言)教师活动:操作投影仪,显示“探究”中的问题,组织学生观察操作,发现结论。
学生活动:观察操作、交流,从中领悟并验证平行四边形ABCD绕点O旋转180度仍和平行四边形EFGH重合,从中观察出平行四边形对边相等、对角相等、对角线互相平分。
教师活动:指导写已知、求证,启导学生分析思路。
学生活动:合作学习,互相讨论自己的思路。
师生归纳:平行四边形性质三平行四边形对角线互相评分。
设计意图采用动手操作感知,辅以三角形全等知识的应用,发现、验证了所要学习的内容,解决了重点,突破的难点。
应用新知,提高认识范例点击应用所学例(投影仪)四边形ABCD是平行四边形,AB=10,AD=8,AC垂直BC,求BC、CD、AC、OA的长以及平行四边形的面积。
思路点拨:可以利用平行四边形对变相等求出BC=AD=8,CD=AB=10,在求出AC长度时,因为∠ACB=90°,可以在求出RT⊿ABC中应用勾股订立求出AC=6,由于OA=OC,因此AO=3.求的平行四边形面积是48。
补充例题,如图,已知平行四边形ABCD和平行四边形EBFD的顶点A、E、F、C在一条直线上,那么线段AE、CF的大小关系如何?说明理由。
教师活动:分析讲例题,教会学生分析思路是本例题的重点。
渗透综合分析法。
学生活动:参与教师分析,学生几何分析的基本思路,学会综合分析法。
设计意图:本例题是要复习巩固平行四边形的对边相等、对角线互相平分性质,同时,还涉及了勾股定理以及平行四边形的面积计算问题,在以后的学习中经常要运用到,这一点要引起学生的注意。
设计意图证明线段相等,学生通常证法一:AE=CF,在⊿ABF ≌⊿CDE 中 ∵AB ∥CD, ∴∠BAC=∠DCE 又四边形是平行四边形 ∴BF=DE, ∠BFE=∠DEC, ∴⊿ABF ≌⊿CDE(AAS) ∴AF=CE AF-EF=CE-EF 即 AE=CF (同理,可通过证明⊿BCE ≌⊿AFD 或⊿ABE ≌⊿CDF 或,⊿AED ≌⊿CFB 得到AE=CF ) 证法二:连接BD,交AC 于O.因为四边形都是平行四边形 所以OA=OC.OE=OF,所以OA-OE=OC-OF 即AE=CF. 课堂演练 说一说,练一练 1、在平行四边形ABCD 中, BC=10cm, AC=8cm, BD=14cm, (1)△ AOD 的周长是多少?为什么? ( 2) △ ABC 与△ DBC 的周长哪个长?长多少? 2、平行四边形ABCD 的对角线AC 与BD 相交于O,直线EF 过点 O 与 AB 、CD 分别相交于E 、F,试探究OE 与OF 的大小关系?并说明理由。
人教版《平行四边形的性质》初中数学-教学课件2
)
证明:在▱ABCD中,AD∥BC,
又∵AM=CN,∴△ABM≌△CDN, 如图,▱ABCD的对角线AC和BD相交于点O,对于以O为公共顶点的4个三角形来说,下面结论中错误的是(
)
∴∠AMB=∠CND,
∴∠BMO=∠DNO,∴BM∥DN.
返回
数学
6.【例3】如图,在▱ABCD中,对角线AC,BD相交于点O,过点O 的直线分别交AD,BC于点M,N,若△CON的面积为2,△DOM 的面积为4,求△AOB的面积.
返回
数学
解:∵四边形 ABCD 是平行四边形, ∴∠CAD=∠ACB,OA=OC, 而∠AOM=∠CON,∴△CON≌△AOM, ∴S△AOD =S△DOM +S△AOM =S△DOM +S△CON =4+2=6, 又∵OB=OD,∴S△AOB =S△AOD =6.
返回
数学
10.如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线 交AD于点E,交BC于点F.直线EF两旁的梯形的面积相等吗? 为什么?
∴∠EDO=∠FBO,∠DEO=∠BFO, 解决一类问题、一系列问题。
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 32 定理1 关于某条直线对称的两个图形是全等形
∴△DEO≌△BFO,∴DE=BF. 30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
(4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。 ○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上
第十八章 平行四边形
第2课时 平行四边形的性质(2)
八年级平行四边形(二)
【答案】B
4、如图,在平行四边形ABCD中,AB= AC,若平行四边形ABCD的周长为38 ,△ABC的周长比平行四边形ABCD的周长少l0 ,求平行四边形ABCD的一组邻边的长.
【提示】△ABC的周长: =28
平行四边形ABCD的周长:
【答案】
5、如图,平行四边形ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6 ,BC=l0 ,试求:
题型二:证明线段互相平分
例1、已知:如图.平行四边形ABCD中,E、F分别是AB、CD的中点,G、H分别在AD、BC上,AG =CH.求证:EF与GH互相平分.
【提示】根据本题要证得结论可以分析出本题只要证明四边形GFHE是平行四边形即可.连结GF、FH、HE、EG
例2、如图,平行四边形ABCD的对角线AC和BD交于O,E、F分别为OB、OD的中点,过O任作一直线分别交AB、CD于G、H.求证:GF∥EH.
【注意】边:对边平行,对边相等;角:对角相等,邻角互补;对角线:对角线互相平分。
知识点3:平行四边形的判定
根据定义来判定:两组对边分别平行的四边形叫做平行四边形,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形。
1.平行四边形判定定理l:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形.
【提示】AD EF BC.
1、专题精讲
题型一:证明线段相等
例1、己知:如图,在平行四边形ABCD中,AC、BD交于点O,EF过点O,分别交CB,AD的延长线于点E、F,求证:AE=CF.
【提示】易证△DOF≌△BOE,DF=BE,AF CE,证得四边形AECF为平行四边形.(△DOF≌△BOE及已知条件,根据对角线互相平分的四边形是平行四边形,证得四边形AECF为平行四边形.)
平行四边形的性质与判定(2)
平行四边形的判定与性质(2)知识点梳理1.判别方法一:有两组对边分别平行的四边形是平行四边形,这是平行四边形的定义,也是判别平行四边形的根本方法,也是其他判别方法的基础。
2.判别方法二:两条对角线互相平分的四边形是平行四边形。
3.判别方法三:一组对边平行且相等的四边形是平行四边形。
4.判别方法四:两组对边分别相等的四边形是平行四边形.提示:(1)当题目中涉及四边形的边比较多时,往往借助于这种方法说明一个四边形是平行四边形.(2)必须是两组对边分别相等,而不是邻边.5.判别方法五:两组对角分别相等的四边形是平行四边形.提示:这种方法需要把握住两点:(1)“两组对角分别相等”,只有“一组对角相等”结论不成立.(2)必须是对角,而不是邻角.6.平行四边形判别方法的选择例1.能判别一个四边形是平行四边形的是()A.一组对边相等,另一组对边平行B.对角线相等C.对角线互相垂直平分D.一条对角线平分另一条对角线变式:1.已知四边形ABCD中,对角线AC、BD相交于O,且OA=OC,OB=OD,下列结论不成立的是()A. AB=ACB.AB∥CDC. ∠A=∠CD.AD=BC2.四边形ABCD中,AD平行且等于CB,则下列结论中错误的是()A. ∠A=∠BB.AB=CDC. AB∥CDD.对角线互相平分3.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边平行B.两条对角线互相平分C. 一组对边平行D.两条对角线互相垂直例2.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD ,所以ABCD 是平行四边形.( ) (2)因为AB∥CD,AD=BC ,所以ABCD 是平行四边形.( ) (3)因为AD∥BC,AD=BC ,所以ABCD 是平行四边形.( ) (4)因为AB∥CD,AD∥BC,所以ABCD 是平行四边形.( ) (5)因为AB=CD ,AD=BC ,所以ABCD 是平行四边形.( ) (6)因为AD=CD ,AB=AC ,所以ABCD 是平行四边形.( )平行四边形的判定1.两组对边分别平行的四边形为平行四边形例3.如图,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗.为什么.变式:1.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD 是不是平行四边形.2.如图所示:四边形ABCD 是平行四边形,DE 平分BF ADC ,∠平分ABC ∠.试证明四边形BFDE 是平行四边形.提高:如图,在平行四边形ABCD 中,AC 的平行线MN 交DA 的延长线于M,交DC 的延长线于N,交AB,BC 于P ,Q.(1) 请指出图中平行四边形的个数,并说明理由.(2) MP 与QN 能相等吗?2.两组对边分别相等的四边形为平行四边形NM Q PD C BA例4.如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM 、BL =DN ,则四边形KLMN 为平行四边形吗.说明理由.变式:已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,且AE=CF.求证:四边形EGFH是平四边形.3.一组对边平行且相对的四边形为平行四边形例5.如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE =21AB ,CF =21CD ,试证明AECF 为平行四边形.变式:1.如图所示,在ABCD 中,已知点E 和点F 分别在AD 和BC 上,且AE=CF ,连接CE 和AF ,试说明四边形AFCE 是平行四边形.2.如图14,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)⊿AFD ≌⊿CEB .(2)四边形ABCD 是平行四边形.4.两组对角分别相等的四边形为平行四边形BCG例6.如图,在平行四边形ABCD中,∠ABC的平分线交CD于E,∠ADC的平分线交AB于点F.试证明四边形DFBE为平行四边形.5.对角线互相平分的四边形为平行四边形例7.如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.变式:如图所示,在ABCD中,AC、BD相交于点O.E、F分别在OB、OD上,且OE=OF,又OC= ,所以是平行四边形,理由是 .应用:例8.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.变式:1.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.2.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE ,DF ,相交于点M .求证:CD=CM .3.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作ACED ,延长DC•交EB 于F ,求证:EF=FB .提高:1.已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,且BE=BC =CF.求证:AF⊥DE.2.已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.(1)猜想:DF与AE间的关系是______. (2)证明你的猜想.作业:E FB C1. 下列条件中,不能判别四边形是平行四边形的是()A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 对角线互相平分D. 一组对边平行且相等2. 下面是四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()A. 1:2:3:4B.2:2:3:4C. 2:3:2:3D. 2:3:3:23.四边形ABCD中,已知AB=CD,再添加一个条件可以判定四边形ABCD为平行四边形.4. 已知四边形ABCD,AD∥BC,分别添加下列条件:①AB∥CD;②AB=CD;③AD=BC;④∠A=∠C;⑤∠B=∠C,能使四边形ABCD为平行四边形的有(填序号).5.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。
平行四边形的判定(2)++课件+2022—2023学年人教版数学八年级下册++
∥
=
∥ =
四边形是平行四边形
平行四边形
的判定
应用新知
基础
训练
平行四边形的性质与判定
. 如图,在平行四边形中,是对角线,过、两点分别
作 ⊥ , ⊥ ,、为垂足.
求证:四边形是平行四边形
∵ = ∥
∴ 四边形是平行四边形
平行四边形
的判定
应用新知
基础
训练
平行四边形的性质与判定
. 已知:如图四边形和四边形都是平行四边形.
求证:四边形是平行四边形.
证明: ∵
∴
∵
平行四边形
∴
的性质
∴
∴
四边形是平行四边形
∥
=
D
B
C
学习新知
一组对边平行且相等的四边形是平行四边形
平行四边形的任意一组对边平行且相等
已知:在四边形中, ∥ , = .
求证:四边形是平行四边形.
证明:连接
∵ ∥
∴ ∠ = ∠
又 ∵ = =
∴ △ ≌△
∴ =
18.1.2平行四边形的判定
第二课时
第十八章
平
行
四
边
形
作业
. 如图,将平行四边形的对角线向两个方向延长至
点和点,使 = .
求证:四边形是平行四边形.
O
证明:连接AC交EF于点O
∵ 四边形ABCD是平行四边形
∴ = =
∵ =
∴ + = +
∵ = =
∴ 四边形是平行四边形
A
D
1
人教版八年级下数学平行四边形的性质——平行四边形对角线互相平分
A
D
10
O
6
?
B8 C
5、如图4, ABCD的对角线AC、BD相交于点O,直
线EF过点O且与AB,CD分别相交于点E、F。你又可以得
到什么结论?
A
D
E
O
●
F
B
图4
C
在上述问题中,若直线EF与边DA、BC的延长线交于点E、 F,(如图2),上述结论是否仍然成立?试说明理由。
A E
●
O
●
B (1)
D
人教版义务教育教科书
4、变式:如上图,将“AC⊥BC”改成“ OA=3”,其余条件不变,那么你能求出哪些线段的长?哪些角的度数?还能进一步求出什
么问?题2(:求2出这)些线如段后图,你还1能,得到什么A?BCD中,对角线AC、BD相交于点
∵AB∥CD,AD∥BC
例1、如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC.
例1、如图,四边形ABCD是平行四边形,AB=10,
AD=8,AC⊥BC.
A8 D
10
O
10
B8C
问题1:根据这些条件你能求出哪些线段的长?
问题2:求出这些线段后,你还能得到什么?
4、变式:如上图,将“AC⊥BC”改成“ OA=3”, 其余条件不变,那么你能求出哪些线段的长?哪些角 的度数?还能进一步求出什么?
…
…
…
一位18老.人1有平一行块平四行边四边形形性的质土 (2)
地,他决定把这块土地分给四个 儿子,老人是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么呢?
5.5平行四边形的判定(2) (2)
§5、5 平行四边形的判定(2)教学目标设计:1、经历平行四边形判别条件的探索过程,掌握平行四边形的判定定理“对角线互相平分的四边形是平行四边形”;2、会应用判定定理判断一个四边形是不是平行四边形;并在与他人交流的过程中,能合理清晰地表达自己的思维过程;3、会综合应用平行四边形的性质定理和判定定理解决简单的几何问题,通过探索式证明法,开拓学生的思路,发展学生的思维能力;4、在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
教学重点、难点:教学重点是平行四边形的判定定理;由于例2的证明步骤较多,且要综合运用平行四边形的判定定理和性质定理,是本节教学的难点。
教学策略及教法设计:活动策略:课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判定”的方法。
学生学习策略:明确学习目标,了解所需掌握的知识,在组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握知识。
教法:A、讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。
B、练习法:精心设计随堂变式练习,巩固和提高学生的认知水平。
教学过程设计:一、首先复习性质和判定,从寻找相关的联系入手:如果在前一课的教学中,已经对平行四边形的判定定理3有一定的发现,那么本课就可以直接引入,或视学生的具体情况而定。
教师结合下图性质与判定的对比,一方面给学生以总结,巩固学生的旧知,也为本课的引入奠定基础:或可以采用情境引入:小明的爸爸在钉制平行四边形框架时采用了下面的方法。
方法:如图,将两根木条AC,BD的中点重叠,并用钉子固定,(当然上述的方法也可以让学生进则四边形ABCD就是平行四边形。
行操作,让学生在在拼摆各种图形的过程中,积累数学活动经验,增强学生的创新意识,培养学生团结协作的精神,并满足他们的好胜心。
平行四边形的边长公式(二)
平行四边形的边长公式(二)
平行四边形的边长公式
1. 周长公式
•平行四边形的周长等于它的四条边之和。
•公式:周长 = 边长1 + 边长2 + 边长3 + 边长4
•例子:若一个平行四边形的边长分别为3、5、3、5,则它的周长为3 + 5 + 3 + 5 = 16。
2. 对角线长度公式
•平行四边形的对角线互相平分,且长度相等。
•公式:对角线长度= √(边长1^2 + 边长2^2 + 2 * 边长1 * 边长2 * cos(夹角))
•例子:若一个平行四边形的边长分别为4和6,夹角为60°,则它的对角线长度为√(4^2 + 6^2 + 2 * 4 * 6 * cos(60°)) = √(16 + 36 + 48) = √100 = 10。
3. 高度公式
•平行四边形的高度是一个垂直于底边的线段,连接底边与对角线的交点。
•公式:高度 = 对角线长度 * sin(夹角)
•例子:若一个平行四边形的对角线长度为10,夹角为45°,则它的高度为10 * sin(45°) = 10 * ≈ 。
4. 面积公式
•平行四边形的面积等于底边长度乘以高度。
•公式:面积 = 底边长度 * 高度
•例子:若一个平行四边形的底边长度为8,高度为6,则它的面积为8 * 6 = 48。
以上是平行四边形的边长公式,包括周长、对角线长度、高度和面积四个方面的公式和例子。
在解决平行四边形相关问题时,可以根据需要选择适用的公式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲平行四边形(二)(初三尖子数学)
主要内容:四边形综合应用。
A.例题讲练
15。
例1.如图1,正方形ABCD中,P为其内部一点,且∠PAB=∠PBA=
求证:△PCD是正三角形。
例2. 如图2,三个全等的正方形依次相连,试猜想∠ACB+∠AFB+∠AHB的度数,并予以证明
图2 例3.如图3,正方形ABCD,菱形DBEF,点F在线段CE上。
求证:∠BDF=2∠CDF
例4.如图4,正方形ABCD中,E、F分别是AB、AD的中点。
求证:(1). CF=DE
(2).CF⊥DE
(3).PB=AB
图4
例5. 如图5,△BAC和△BGP均为等腰直角三角形,E是BC的中点,PH⊥AH于H,试判断EG与EH的关系。
图5
例6. 如图1,OP是∠MO的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:
60,AD、CE分别是∠BAC、(1).如图2,在△ABC中,∠ACB是直角,∠B=
∠BCA的平分线,AD、CE相交于点F。
请你判断并写出FE于FD之间的数量关系。
(2)如图3,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得的结论是否依然成立,请证明,若不成立,请说明理由。
图1 图2
B. 基础练习:
1、到三角形三边距离相等的点是()
A、三条高的交点
B、三条角平分线的交点
C、三边中垂线的交点
D、三边中线交点
2、△ABC中,∠A=2∠B,∠C=∠A+∠B+12º,按角分类此三角形为。
3、如果a、b、c是△ABC的∠A、∠B、∠C的对边,且已知a≠c,a、b满足
a2+b2=2ab-a+b,则这个三角形是()
A、等腰三角形
B、直角三角形
C、不等边三角形
D、以上均有可能
4、△ABC中,∠C=90º,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,
且AB=6cm,则△DEB的周长()
A、4cm
B、6cm
C、10cm
D、12cm
5、作锐角△ABC,取AB的中点D,AC的中点E,作CF//AB,交DE的延长线于
点F。
(1)求证:DE=EF
(2)观察DE与BC在数量上和位置上有何特殊关系?加以说明。