2015年高考物理一轮精品小专题复习系列之单元评估检测(十二)Word版含答案

合集下载

2015高考理科综合物理部分广东卷精校图片重绘含答案解析word版

2015高考理科综合物理部分广东卷精校图片重绘含答案解析word版

2015年普通高等学校招生全国统一考试(广东卷)理科综合 物理部分一、单项选择题:本大题共4小题,每小题4分,共16分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

13、甲、乙两人同时同地出发骑自行车做直线运动,前1小时内的位移-时间图像如图所示。

下列表述正确的是( )A. 0.2-0.5小时内,甲的加速度比乙的大B. 0.2-0.5小时内,甲的速度比乙的大C. 0.6-0.8小时内,甲的位移比乙的小D. 0.8小时内,甲、乙骑行的路程相等14.如图4所示,帆板在海面上以速度v 朝正西方向运动,帆船以速度v 朝正北方向航行,以帆板为参照物( )A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为v 2D.帆船朝北偏东45°方向航行,速度大小为v 215. 图5为加热装置的示意图,使用电阻丝加热导气管,视变压器为理想变压器,原线圈接入电压有效值恒定的交流电并保持匝数不变,调节触头P ,使输出电压有效值由220V 降至110V 。

调节前后( )A. 副线圈中的电流比为1:2B. 副线圈输出功率比为2:1C. 副线圈的接入匝数比为2:1D. 原线圈输入功率比为1:216.在同一匀强磁场中,α粒子(42He )和质子(11H )做匀速圆周运动,若他们的动量大小相等,则α粒子和质子( )A. 运动半径之比是2:1B. 运动周期之比是2:1C. 运动速度大小之比是4:1D. 受到的洛伦兹力之比是2:1二、双项选择题:本大题共5小题,每小题6分,共30分。

在每小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得0分。

17.图6为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水。

在水加热升温的过程中,被封闭的空气( )A. 内能增大B. 压强增大C. 分子间引力和斥力都减小D. 所有分子运动速率都增大18. 科学家使用核反应获取氚,再利用氘和氚的核反应获得能量,核反应方程分别为:MeV H He Y X 9.43142++→+和MeV X H H H 6.17423121++→+,下列表述正确的有( )A. X 是中子B. Y 的质子数是3,中子数是6C. 两个核反应都没有质量亏损D. 氘和氚的核反应是核聚变反应19.如图7所示,三条绳子的一端都系在细直杆顶端。

2015年山东省高考物理试卷答案与解析

2015年山东省高考物理试卷答案与解析

2015年山东省高考物理试卷参考答案与试题解析一、选择题(共7小题,每小题6分,共42分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。

)1.(6分)(2015•山东)距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10m/s2.可求得h等于()A.1.25m B.2.25m C.3.75m D.4.75m考点:平抛运动.专题:平抛运动专题.分析:经过A点时将随车携带的小球由轨道高度自由卸下后,小球做平抛运动,小车运动至B点时细线被轧断,则B处的小球做自由落体运动,根据平抛运动及自由落体运动基本公式抓住时间关系列式求解.解答:解:经过A点,将球自由卸下后,A球做平抛运动,则有:H=解得:,小车从A点运动到B点的时间,因为两球同时落地,则细线被轧断后B出小球做自由落体运动的时间为t3=t1﹣t2=1﹣0.5=0.5s,则h=故选:A点评:本题主要考查了平抛运动和自由落体运动基本公式的直接应用,关键抓住同时落地求出B处小球做自由落体运动的时间,难度不大,属于基础题.2.(6分)(2015•山东)如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是()A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a1考点:同步卫星.专题:人造卫星问题.分析:由题意知,空间站在L1点能与月球同步绕地球运动,其绕地球运行的周期、角速度等于月球绕地球运行的周期、角速度,由a n=r,分析向心加速度a1、a2的大小关系.根据a=分析a3与a1、a2的关系.解答:解:在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,根据向心加速度a n=r,由于拉格朗日点L1的轨道半径小于月球轨道半径,所以a2>a1,同步卫星离地高度约为36000公里,故同步卫星离地距离小于拉格朗日点L1的轨道半径,根据a=得a3>a2>a1,故选:D.点评:本题比较简单,对此类题目要注意掌握万有引力充当向心力和圆周运动向心加速度公式的联合应用.3.(6分)(2015•山东)如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑.已知A与B间的动摩擦因数为μ1,A与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A与B的质量之比为()A.B.C.D.考点:共点力平衡的条件及其应用;摩擦力的判断与计算.专题:共点力作用下物体平衡专题.分析:对A、B整体和B物体分别受力分析,然后根据平衡条件列式后联立求解即可.解答:解:对A、B分析,受重力、支持力、推力和最大静摩擦力,根据平衡条件,有:F=μ2(m1+m2)g ①再对物体B分析,受推力、重力、向左的支持力和向上的最大静摩擦力,根据平衡条件,有:水平方向:F=N竖直方向:m2g=f其中:f=μ1N联立有:m2g=μ1F ②联立①②解得:=故选:B点评:本题关键是采用整体法和隔离法灵活选择研究对象,受力分析后根据平衡条件列式求解,注意最大静摩擦力约等于滑动摩擦力.4.(6分)(2015•山东)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动考点:导体切割磁感线时的感应电动势;电势.专题:电磁感应与电路结合.分析:将金属圆盘看成由无数金属幅条组成,根据右手定则判断感应电流的方向,从而判断电势的高低,当没有磁通量变化时,就没有感应电流产生.解答:解:A、将金属圆盘看成由无数金属幅条组成,根据右手定则判断可知:圆盘上的感应电流由边缘流向圆心,所以靠近圆心处电势高,所以A正确;B、根据右手定则可知,产生的电动势为BLv,所以所加磁场越强,产生的电动势越大,电流越大,受到的安培力越大,越易使圆盘停止转动,所以B正确;C、若所加磁场反向,只是产生的电流反向,根据楞次定律可知,安培力还是阻碍圆盘的转动,所以圆盘还是减速转动,所以C错误;D、若所加磁场穿过整个圆盘时,圆盘的磁通量不再变化,没有感应电流产生,没有安培力的作用,圆盘将匀速转动,所以D正确;故选:ABD点评:本题关键要掌握右手定则、安培定则,并能正确用来分析电磁感应现象,对于这两个定则运用时,要解决两个问题:一是什么条件下用;二是怎样用.5.(6分)(2015•山东)直角坐标系xOy中,M、N两点位于x轴上,G、H两点坐标如图.M、N两点各固定一负点电荷,一电量为Q的正点电荷置于O点时,G点处的电场强度恰好为零.静电力常量用k表示.若将该正点电荷移到G点,则H点处场强的大小和方向分别为()A.,沿y轴正向B.,沿y轴负向C.,沿y轴正向D.,沿y轴负向考点:电势差与电场强度的关系;电场强度.专题:电场力与电势的性质专题.分析:根据点电荷的场强公式和场强叠加的原理,可以知道在G点的时候负电荷在G点产生的合场强与正电荷在G点产生的场强大小相等反向相反,在H点同意根据场强的叠加来计算合场强的大小即可.解答:解:G点处的电场强度恰好为零,说明负电荷在G点产生的合场强与正电荷在G点产生的场强大小相等反向相反,根据点电荷的场强公式可得,正电荷在G点的场强为,负电荷在G点的合场强也为,当正点电荷移到G点时,正电荷与H点的距离为2a,正电荷在H点产生的场强为,方向沿y轴正向,由于GH对称,所以负电荷在G点和H点产生的场强的相等方向相反,大小为,方向沿y轴负向,所以H点处场合强的大小为,方向沿y轴负向,所以B正确;故选:B点评:本题是对场强叠加原理的考查,同时注意点电荷的场强公式的应用,本题的关键的是理解G点处的电场强度恰好为零的含义.6.(6分)(2015•山东)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压u ab为正,下列u ab ﹣t图象可能正确的是()A.B.C.D.考点:法拉第电磁感应定律;闭合电路的欧姆定律.专题:电磁感应与电路结合.分析:由图乙可知,电流为周期性变化的电流,故只需分析0.5T0内的感应电流即可;通过分析电流的变化明确磁场的变化,根据楞次定律即可得出电动势的图象.解答:解:在第一个0.25T0时间内,通过大圆环的电流为瞬时针增加的,由楞次定律可判断内球内a端电势高于b端,因电流的变化率逐渐减小故内环的电动势逐渐减小,同理可知,在0.25T0~0.5T0时间内,通过大圆环的电流为瞬时针逐渐减小;则由楞次定律可知,a环内电势低于b端,因电流的变化率逐渐变大,故内环的电动势变大;故只有C正确;故选:C.点评:本题考查楞次定律的应用,要注意明确楞次定律解题的基本步骤,正确掌握并理解“增反减同”的意义,并能正确应用;同时解题时要正确审题,明确题意,不要被复杂的电路图所迷或!7.(6分)(2015•山东)如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示.t=0时刻,质量为m的带电微粒以初速度为v0沿中线射入两板间,0~时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g.关于微粒在0~T时间内运动的描述,正确的是()A.末速度大小为v0B.末速度沿水平方向C.D.克服电场力做功为mgd重力势能减少了mgd考点:匀强电场中电势差和电场强度的关系.专题:电场力与电势的性质专题.分析:0~时间内微粒匀速运动,重力和电场力相等,~内,微粒做平抛运动,~T时间内,微粒竖直方向上做匀减速运动,水平方向上仍然做匀速直线运动,结合牛顿第二定律和运动学公式进行求解.解答:解:A、0~时间内微粒匀速运动,则有:qE0=mg,~内,微粒做平抛运动,下降的位移,~T时间内,微粒的加速度a=,方向竖直向上,微粒在竖直方向上做匀减速运动,T时刻竖直分速度为零,所以末速度的方向沿水平方向,大小为v0,故A错误,B正确.C、微粒在竖直方向上向下运动,位移大小为,则重力势能的减小量为,故C正确.D、在~内和~T时间内竖直方向上的加速度大小相等,方向相反,时间相等,则位移的大小相等,为,整个过程中克服电场力做功为,故D错误.故选:BC.点评:解决本题的关键知道微粒在各段时间内的运动规律,抓住等时性,结合牛顿第二定律和运动学公式进行求解.知道在~内和~T时间内竖直方向上的加速度大小相等,方向相反,时间相等,位移的大小相等.二、非选择题:必做题8.(10分)(2015•山东)某同学通过下述实验验证力的平行四边形定则.实验步骤:①将弹簧秤固定在贴有白纸的竖直木板上,使其轴线沿竖直方向.②如图甲所示,将环形橡皮筋一端挂在弹簧秤的秤钩上,另一端用圆珠笔尖竖直向下拉,直到弹簧秤示数为某一设定值时,将橡皮筋两端的位置标记为O1、O2,记录弹簧秤的示数F,测量并记录O1、O2间的距离(即橡皮筋的长度l).每次将弹簧秤示数改变0.50N,测出所对应的l,部分数据如表所示:F(N)0 0.50 1.00 1.50 2.00 2.50l(cm)l010.97 12.02 13.00 13.98 15.05③找出②中F=2.50N时橡皮筋两端的位置,重新标记为O、O′,橡皮筋的拉力记为F OO′.④在秤钩上涂抹少许润滑油,将橡皮筋搭在秤钩上,如图乙所示.用两圆珠笔尖成适当角度同时拉橡皮筋的两端,使秤钩的下端达到O点,将两笔尖的位置为A、B,橡皮筋OA段的拉力记为F OA,OB段的拉力记为F OB.完成下列作图和填空:(1)利用表中数据在给出的坐标系上(见答题卡)画出F﹣l图线,根据图线求得l0=10.0 cm.(2)测得OA=6.00cm,OB=7.60cm,则F OA的大小为 1.80N.(3)根据给出的标度,在答题卡上作出F OA和F OB的合力F′的图示.(4)通过比较F′与F oo′的大小和方向,即可得出实验结论.考点:验证力的平行四边形定则.专题:实验题.分析:(1)根据表中数据利用描点法得出对应的数据,图象与横坐标的交点即为l0;(2)橡皮筋两端拉力相等,根据题意求得总长度即可求得皮筋上的拉力;(3)通过给出的标度确定力的长度,根据平行四边形得出图象如图所示;(4)根据实验原理可明确应比较实验得出的拉力与通过平行四边形定则得出的合力.解答:解:(1)根据表格中数据利用描点法作出图象如图所示;由图可知,图象与横坐标的交点即为l0;由图可知l0=10.0cm;(2)AB的总长度为6.00+7.60cm=13.60cm;由图可知,此时两端拉力F=1.80N;(3)根据给出的标度,作出合力如图所示;(4)只要作出的合力与实验得出的合力F00'大小和方向在误差允许的范围内相等,即可说明平行四边形定则成立;故答案为:(1)如图所示;10.0;(2)1.80N;(3)如图所示;(4)点评:本题考查验证平行四边形定则的实验,要注意通过认真分析题意掌握实验原理,注意本题中橡皮筋挂在钩上时,两端的拉力大小相等;根据总长度即可求得拉力大小.9.(8分)(2015•山东)如图甲所示的电路中,恒流源可为电路提供恒定电流I0,R为定值电阻,电流表、电压表均可视为理想电表.某同学利用该电路研究滑动变阻器R L消耗的电功率.改变R L的阻值,记录多组电流、电压的数值,得到如图乙所示的U﹣I关系图线.回答下列问题:(1)滑动触头向下移动时,电压表示数减小(填“增大”或“减小”).(2)I0= 1.0A.(3)R L消耗的最大功率为5W(保留一位有效数字).考点:测定电源的电动势和内阻;闭合电路的欧姆定律;电功、电功率.专题:恒定电流专题.分析:(1)分析电路结构,根据并联电路规律可知R分流的变化,再由欧姆定律可得出电压表示数的变化;(2)由图象及并联电路的规律可分析恒定电流的大小;(3)由功率公式分析得出对应的表达式,再由数学规律可求得最大功率.解答:解:(1)定值电阻与滑动变阻器并联,当R向下移动时,滑动变阻器接入电阻减小,由并联电路规律可知,电流表示数增大,流过R的电压减小,故电压表示数减小;(2)当电压表示数为零时,说明R L短路,此时流过电流表的电流即为I0;故I0为1.0A;(3)由图可知,当I0全部通过R时,I0R=20;解得:R=4由并联电路规律可知,流过R L的电流为:I=;则R L消耗的功率为:P=I2R L==;则由数学规律可知,最大功率为:P=5W;故答案为;(1)减小;(2)1.0;(3)5点评:本题考查闭合电路欧姆定律在实验中的应用,要注意明确:一、图象的应用,能从图象得出对应的物理规律;二是注意功率公式的变形以及数学规律的正确应用.10.(18分)(2015•山东)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接,物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l.开始时物块和小球均静止,将此时传感装置的示数记为初始值,现给小球施加一始终垂直于l段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍,不计滑轮的大小和摩擦,重力加速度的大小为g,求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.考点:动能定理的应用;共点力平衡的条件及其应用.专题:动能定理的应用专题.分析:(1)分别对开始及夹角为60度时进行受力分析,由共点力平衡列式,联立可求得物块的质量;(2)对最低点由向心力公式进行分析求解物块的速度,再对全过程由动能定理列式,联立可求得克服阻力做功.解答:解:(1)设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件可得:对小球:T1=mg对物块,F1+T1=Mg当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T2,传感装置的示数为F2,根据题意可知,F2=1.25F1,由平衡条件可得:对小球:T1=mgcos60°对物块:F2+T2=Mg联立以上各式,代入数据可得:M=3m;(2)设物块经过最低位置时速度大小为v,从释放到运动至最低位置的过程中,小球克服阻力做功为W f,由动能定理得:mgl(1﹣cos60°)﹣W f=mv2在最低位置时,设细绳的拉力大小为T1,传感装置的示数为F3,据题意可知,F3=0.6F1,对小球,由牛顿第二定律得:T3﹣mg=m对物块由平衡条件可得:F3+T3=Mg联立以上各式,代入数据解得:W f=0.1mgl.答:(1)物块的质量为3m;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功为0.1mgl.点评:本题考查动能定理及共点力的平衡条件的应用,要注意正确选择研究对象,做好受力分析及过程分析;进而选择正确的物理规律求解;要注意在学习中要对多个方程联立求解的方法多加训练.11.(20分)(2015•山东)如图所示,直径分别为D和2D的同心圆处于同一竖直面内,O 为圆心,GH为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d的两平行金属极板间有一匀强电场,上级板开有一小孔.一质量为m,电量为+q的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度v射出电场,由H点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)带电粒子在电场中做加速运动;根据动能定理可求得电场强度的大小;(2)明确两种可能的相切情况,即可求得半径;根据洛仑兹充当向心力求解磁感应强度;(3)分析粒子在磁场中的运动,根据运动周期明确经过的圆心角,再由圆的性质明确对应的路程.解答:解:(1)设极板间电场强度大小为E,对粒子在电场中的加速运动,由动能定理可得:qE=mv2解得:E=(2)设I区内磁感应强大小为B,粒子做圆周运动的半径为R,由牛顿第二定律得:qvB=m如图甲所示,粒子的运动轨迹与小圆相切有两种情况,若粒子轨迹与小圆外切,由几何关系可得:R=;解得:B=;若粒子轨迹与小圆内切,由几何关系得:R=;解得:B=(3)设粒子在I区和II区做圆周运动的半径分别为R1、R2,由题意可知,I区和II 内的磁感应强度大小分别为B1=;B2=;由牛顿第二定律可得:qvB1=m,qvB2=m代入解得:R1=,R2=;设粒子在I区和II区做圆周运动的周期分别为T1、T2,由运动学公式得:T1=,T2=由题意分析,粒子两次与大圆相切的时间间隔的运动轨迹如图乙所示,由对称性可知,I区两段圆弧所对圆心角相同,设为θ1,II区内所对圆心角设为θ2,圆弧和大圆的两个切点与圆心O连线间的夹角为α,由几何关系可得:θ1=120°θ2=180°α=60°粒子重复上述交替运动到H点,设粒子I区和II区做圆周运动的时间分别为t1、t2,可得:t1=×T1,t2=×T2设粒子运动的路程为s,由运动学公式可得s=v(t1+t2)联立解得:s=5.5πD答:(1)极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,Ⅰ区磁感应强度的大小或;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H点,这段时间粒子运动的路程5.5πD.点评:本题考查带电粒子在磁场和电场中的运动,要注意明确洛仑兹力充当向心力的应用,同时要注意分析可能的运动过程,特别是具有对称性的性质要注意把握.【物理3-3】12.(4分)(2015•山东)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的考点:布朗运动.专题:布朗运动专题.分析:布朗运动是悬浮微粒永不停息地做无规则运动,用肉眼看不到悬浮微粒,只能借助光学显微镜观察到悬浮微粒的无规则运动,肉眼看不到液体分子;布朗运动的实质是液体分子不停地做无规则撞击悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动.解答:解:A、碳素墨水滴入清水中,观察到的布朗运动是液体分子不停地做无规则撞击碳悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动,不是由于碳粒受重力作用,故A错误;B、混合均匀的过程中,水分子做无规则的运动,碳粒的布朗运动也是做无规则运动.故B正确;C、当悬浮微粒越小时,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡表现的越强,即布朗运动越显著,所以使用碳粒更小的墨汁,混合均匀的过程进行得更迅速.故C正确;D、墨汁的扩散运动是由于微粒受到的来自各个方向的液体分子的撞击作用不平衡引起的.故D错误.故选:BC点评:该题中,碳微粒的无规则运动是布朗运动,明确布朗运动的实质是解题的关键,注意悬浮微粒只有借助显微镜才能看到.13.(8分)(2015•山东)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图,截面积为S的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K,压强为大气压强p0.当封闭气体温度上升至303K时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为p0,温度仍为303K,再经过一段时间内,内部气体温度恢复到300K.整个过程中封闭气体均可视为理想气体.求:(Ⅰ)当温度上升到303K且尚未放气时,封闭气体的压强;(Ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力.考点:理想气体的状态方程.专题:理想气体状态方程专题.分析:(I)分析初末状态的气体状态参量,由查理定律可求得后来的压强;(II)对开始杯盖刚好被顶起列平衡方程;再对后来杯内的气体分析,由查理定律及平衡关系列式,联立求解最小力.解答:解:(I)以开始封闭的气体为研究对象,由题意可知,初状态温度T0=300K,压强为P0,末状态温度T1=303,压强设为P1,由查理定律得:=代入数据解得:P1=P0;(II)设杯盖的质量为m,刚好被顶起时,由平衡条件得:P1S=P0S+mg放出少许气体后,以杯盖内的剩余气体为研究对象,由题意可知,初状态温度为T2=303K,压强P2=P0;末状态温度T3=300K,压强设为P3,由查理定律得=设提起杯盖所需的最小力为F,由平衡条件得:F+P3S=P0S+mg联立以上各式,代入数据得:F=P0S;答:(I)当温度上升到303K且尚未放气时,封闭气体的压强为P0;(Ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力为P0S;点评:本题考查气体实验定律及共点力的平衡条件应用,要注意明确前后气体质量不同,只能分别对两部分气体列状态方程求解.【物理3-4】14.(2015•山东)如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动.以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m.t=0时刻,一小球从距物块h高处自由落下:t=0.6s时,小球恰好与物块处于同一高度.取重力加速度的大小g=10m/s2.以下判断正确的是()A.h=1.7mB.简谐运动的周期是0.8sC.0.6s内物块运动的路程是0.2mD.t=0.4s时,物块与小球运动方向相反考点:简谐运动的振动图象.专题:简谐运动专题.分析:由振动公式可明确振动的周期、振幅及位移等;再结合自由落体运动的规律即可求得h高度;根据周期明确小球经历0.4s时的运动方向.解答:解:A、由振动方程式可得,t=0.6s物体的位移为y=0.2sin(2.5π×0.6)=﹣0.1m;则对小球有:h+=gt2解得h=1.7m;故A正确;B、由公式可知,简谐运动的周期T===0.8s;故B正确;C、振幅为0.1m;故0.6s内物块运动的路程为3A=0.3m;故C错误;D、t=0.4s=,此时物体在平衡位置向下振动,则此时物块与小球运动方向相同,故D错误;故选:AB.点评:本题考查简谐运动的位移公式,要掌握由公式求解简谐运动的相关信息,特别是位移、周期及振幅等物理量.15.(2015•山东)半径为R、介质折射率为n的透明圆柱体,过其轴线OO′的截面如图所示.位于截面所在平面内的一细束光线,以角i0由O点射入,折射光线由上边界的A点射出.当光线在O点的入射角减小至某一值时,折射光线在上边界的B点恰好发生反射.求A、B 两点间的距离.考点:光的折射定律.。

【精校word版】2015年普通高等学校招生全国统一考试理综物理(安徽卷) (12)

【精校word版】2015年普通高等学校招生全国统一考试理综物理(安徽卷) (12)

海南高考1.·如图,a是竖直平面P上的一点,P前有一条形磁铁垂直于P,且S极朝向a点,P后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a点。

在电子经过a点的瞬间,条形磁铁的磁场对该电子的作用力的方向()A.向上B.向下C.向左D.向右2.·如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε,将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v运动时,棒两端的感应电动势大小为ε'。

则等于()A. B. C.1 D.3.·假设摩托艇受到的阻力的大小正比于它的速率。

如果摩托艇发动机的输出功率变为原来的2倍,则摩托艇的最大速率变为原来的()A.4倍B.2倍C.倍D.倍4.·如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g。

质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR5.·如图,一充电后的平行板电容器的两极板相距l。

在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子。

在电场力的作用下,两粒子同时从静止开始运动。

已知两粒子同时经过一平行于正极板且与其相距l的平面。

若两粒子间相互作用力可忽略,不计重力,则M∶m为()A.3∶2B.2∶1C.5∶2D.3∶16.·若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶。

已知该行星质量约为地球的7倍,地球的半径为R,由此可知,该行星的半径约为()A.RB.RC.2RD.R7.·如图,两电荷量分别为Q(Q>0)和-Q的点电荷对称地放置在x轴上原点O的两侧,a点位于x轴上O点与点电荷Q之间,b点位于y轴O点上方。

2015届高考物理二轮阶段性效果检测12含答案

2015届高考物理二轮阶段性效果检测12含答案

一、选择题(本大题共10小题,每小题7分,共70分。

多选题已在题号后标出,选不全得4分)1.如图所示,在一匀强磁场中有一U型导线框bacd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab一根导体杆,它可以在ab、cd上无摩擦地滑动,杆ef及线框中导体电阻都可不计。

开始时,给ef一个向右初速度,则( )A.ef将减速向右运动,但不是匀减速B.ef将匀速向右运动,最后静止C.ef将匀速向右运动D.ef将做往复运动2.(2013·南岸区模拟)如图所示,闭合导线框质量可以忽略不计,将它从如图所示位置匀速拉出匀强磁场。

若第一次用0.3 s 时间拉出,外力所做功为W1,通过导线截面电荷量为q1;第二次用0.9 s时间拉出,外力所做功为W2,通过导线截面电荷量为q2,则( )A.W1<W2,q1<q2B.W1<W2,q1=q2C.W1>W2,q1=q2D.W1>W2,q1>q23.如图所示,水平光滑平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在空间内,质量一定金属棒PQ垂直导轨放置。

今使棒以一定初速度v0向右运动,当其通过位置a、b时,速率分别为v a、v b,到位置c时棒刚好静止,设导轨与棒电阻均不计,a到b与b 到c间距相等,则金属棒在由a到b和由b到c两个过程中( )A.回路中产生内能相等B.棒运动加速度相等C.安培力做功相等D.通过棒横截面积电荷量相等4.一个刚性矩形铜制线圈从高处自由下落,进入一水平匀强磁场区域,然后穿出磁场区域继续下落,如图所示,则( )A.若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B.若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C.若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D.若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动5.(多选)如图所示,竖直平面内虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则( )A.上升过程克服磁场力做功大于下降过程克服磁场力做功B.上升过程克服磁场力做功等于下降过程克服磁场力做功C.上升过程克服重力做功平均功率大于下降过程中重力平均功率D.上升过程克服重力做功平均功率等于下降过程中重力平均功率6.(多选)在伦敦奥运会上,100 m赛跑跑道两侧设有跟踪仪,其原理如图甲所示,水平面上两根足够长金属导轨平行固定放置,间距为L=0.5 m,一端通过导线与阻值为R=0.5 Ω电阻连接;导轨上放一质量为m =0.5 kg 金属杆,金属杆与导轨电阻忽略不计;匀强磁场方向竖直向下。

(完整word版)2015高考理科综合物理部分新课标2精校图片重绘含答案解析word版,推荐文档

(完整word版)2015高考理科综合物理部分新课标2精校图片重绘含答案解析word版,推荐文档

2015年普通高等学校招生全国统一考试(新课标2卷)理科综合 物理部分一、选择题(本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分) 14.如图,两平行的带电属板水平放置,若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动15.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上,当金属框绕ab 边以ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c 已知bc 边的长度为l ,下列判断正确的是( )A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿abca.C.U bc =212Bl ω-,金属框中无电流 D.U bc =212Bl ω,金属框中电流方向沿acba 16.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行,已知同步卫星的环绕速度约为 3.1×103m/s ,某次发射卫星飞经赤道上空时的速度为 1.55×103m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A.西偏北方向,1.9×103m/sB.东偏南方向,1.9×103m/sC.西偏北方向,2.7×103m/sD.东偏南方向,2.7×103m/s 17.汽车在平直公路上行驶,。

2015年安徽高考物理考试卷(含详细解析汇报)

2015年安徽高考物理考试卷(含详细解析汇报)

2015年高考物理试卷一.选择题(共7小题)1.如图示是α粒了(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是()2.由库仑定律可知,真空中两个静止的点电荷,带电量分别为q1和q2,其间距离为r时,它们之间相互作用力的大小为F=k,式中k为静电力常量.若用国际单位制的基本单位表示,k的单3.图示电路中,变压器为理想变压器,a、b接在电压有效值不变的交流电流两端,R0为定值电阻,R为滑动变阻器,现将变阻器的滑片从一个位置滑动到另一位置,观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,则下列说确的是()ρ,棒单位体积自由电子数为n,电子的质量为m,电荷量为e,在棒两端加上恒定的电压时,棒产生电流,自由电子定向运动的平入空气,当出射角i′和入射角i相等时,出射光线相对于入射光线偏转的角度为θ,已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为()的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为的电荷量,ɛ0为常量,如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q,不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引A.和B.和C.和D.和二.解答题(共5小题)8.在“验证力的平行四边形定则”实验中,某同学用图钉把白纸固定在水平放置的木板上,将橡皮条的一端固定在板上一点,两个细绳套系在橡皮条的另一端,用两个弹簧测力计分别拉住两个细绳套,互成角度地施加拉力,使橡皮条伸长,结点到达纸面上某一位置,如图所示,请将以下的实验操作和处理补充完整:①用铅笔描下结点位置,记为O;②记录两个弹簧测力计的示数F1和F2,沿每条细绳(套)的方向用铅笔分别描出几个点,用刻度尺把相应的点连成线;③只用一个弹簧测力计,通过细绳套把橡皮条的结点仍拉到位置O,记录测力计的示数F3,;④按照力的图示要求,作出拉力F1,F2,F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较的一致程度,若有较大差异,对其原因进行分析,并作出相应的改进后再次进行实验.9.某同学为了测量一节电池的电动势和阻,从实验室找到以下器材:一个满偏电流为100μA、阻为2500Ω的表头,一个开关,两个电阻箱(0~999.9Ω)和若干导线.(1)由于表头量程偏小,该同学首先需将表头改装成量程为50mA的电流表,则应将表头与电阻箱(填“串联”或“并联”),并将该电阻箱阻值调为Ω.(2)接着该同学用改装的电流表对电池的电动势及阻进行测量,实验电路如图1所示,通过改I图线;②根据图线可得电池的电动势E是V,阻r是Ω.10.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;(3)求物块在反向运动过程中克服摩擦力所做的功W.11.在xOy平面,有沿y轴负方向的匀强电场,场强大小为E(图象未画出),由A点斜射出一质量为m、带电量为+q的粒子,B和C是粒子运动轨迹上的两点,如图所示,其中l0为常数,粒子所受重力忽略不计,求:(1)粒子从A到C过程中电场力对它做的功;(2)粒子从A到C过程所经历的时间;(3)粒子经过C点时的速率.12.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况).若A 星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.2015年高考物理试卷参考答案与试题解析一.选择题(共7小题)1.如图示是α粒了(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是()2.由库仑定律可知,真空中两个静止的点电荷,带电量分别为q1和q2,其间距离为r时,它们之间相互作用力的大小为F=k,式中k为静电力常量.若用国际单位制的基本单位表示,k的单3.图示电路中,变压器为理想变压器,a、b接在电压有效值不变的交流电流两端,R0为定值电阻,R为滑动变阻器,现将变阻器的滑片从一个位置滑动到另一位置,观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,则下列说确的是()子的质量为m,电荷量为e,在棒两端加上恒定的电压时,棒产生电流,自由电子定向运动的平均速率为v,则金属棒的电场强度大小为()入空气,当出射角i′和入射角i相等时,出射光线相对于入射光线偏转的角度为θ,已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为()的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()的电荷量,ɛ0为常量,如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q,不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引二.解答题(共5小题)8.在“验证力的平行四边形定则”实验中,某同学用图钉把白纸固定在水平放置的木板上,将橡皮条的一端固定在板上一点,两个细绳套系在橡皮条的另一端,用两个弹簧测力计分别拉住两个细绳套,互成角度地施加拉力,使橡皮条伸长,结点到达纸面上某一位置,如图所示,请将以下的实验操作和处理补充完整:①用铅笔描下结点位置,记为O;②记录两个弹簧测力计的示数F1和F2,沿每条细绳(套)的方向用铅笔分别描出几个点,用刻度尺把相应的点连成线;③只用一个弹簧测力计,通过细绳套把橡皮条的结点仍拉到位置O,记录测力计的示数F3,记下细绳的方向;④按照力的图示要求,作出拉力F1,F2,F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较力F3与F的大小和方向的一致程度,若有较大差异,对其原因进行分析,并作出相分析:该实验采用了等效替代的方法,因此要求两次拉橡皮筋要使橡皮筋的形变相同,即将橡皮筋拉到同一点,力是矢量,因此在记录时要记录大小和方向,步骤③中要记下细绳的方向,才能确定合力的方向,步骤⑥比较力F′与F的大小和方向,看它们是否相同,得出结论.解答:解:步骤③中要记下细绳的方向,才能确定合力的方向,从而用力的图示法画出合力;步骤⑥比较力F3与F的大小和方向,看它们的一致程度,得出结论.故答案为:记下细绳的方向;力F3与F的大小和方向.阻为2500Ω的表头,一个开关,两个电阻箱(0~999.9Ω)和若干导线.(1)由于表头量程偏小,该同学首先需将表头改装成量程为50mA的电流表,则应将表头与电阻箱并联(填“串联”或“并联”),并将该电阻箱阻值调为 5.0Ω.(2)接着该同学用改装的电流表对电池的电动势及阻进行测量,实验电路如图1所示,通过改1 2 3 4 5 6R(Ω)95.0 75.0 55.0 45.0 35.0 25.0 I(mA)15.0 18.7 24.8 29.5 36.0 48.0 IR(V) 1.42 1.40 1.36 1.33 1.26 1.20I图线;②根据图线可得电池的电动势E是 1.53V,阻r是 2.0Ω.分析:(1)由电表的改装原理可明确应并联一个小电阻分流来扩大电流表量程,根据并联电路规律可求得对应的电阻;(2)由描点法得出图象;再由闭合电路欧姆定律求出表达式,由图象即可求出电动势和电阻.解答:解:(1)电流表量程扩大于50mA,即扩大=500倍,则应并联一个小电阻,其分流应为表头电流的499倍,则有:R=≈5Ω;(2)根据描点法作出5、6两点,再由直线将各点相连即得出对应的图象如图所示;(3)因IR即表示电源的路端电压,则有;IR=E﹣I(r+R A),则由图象可知,对应的电动势为1.53V,阻为:r=﹣5=2.0Ω故答案为:(1)并联,5;(2)①如图所示;②1.53,2.0所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;(3)求物块在反向运动过程中克服摩擦力所做的功W.分析:(1)对物块应用动能定理可以求出动摩擦因数.(2)对物块应用动量定理可以求出作用力大小.(3)应用动能定理可以求出物块反向运动过程克服摩擦力做的功.解答:解:(1)物块从A到B过程,由动能定理得:﹣μmgs AB=mv B2﹣mv02,代入数据解得:μ=0.32;(2)以向右为正方向,物块碰撞墙壁过程,由动量定理得:Ft=mv﹣mv B,即:F×0.05=0.5×(﹣6)﹣0.5×7,解得:F=﹣130N,负号表示方向向左;(3)物块向左运动过程,由动能定理得:W=mv2=×0.5×62=9J;质量为m、带电量为+q的粒子,B和C是粒子运动轨迹上的两点,如图所示,其中l0为常数,粒子所受重力忽略不计,求:(1)粒子从A到C过程中电场力对它做的功;(2)粒子从A到C过程所经历的时间;(3)粒子经过C点时的速率.互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况).若A 星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.。

2015届高考物理大一轮总复习 相互作用阶段示范性金考卷(含解析)

2015届高考物理大一轮总复习 相互作用阶段示范性金考卷(含解析)

相互作用本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共110分.第Ⅰ卷(选择题,共50分)一、选择题(本题共10小题,每小题5分,共50分.在第1、2、4、5、6、9、10小题给出的4个选项中,只有一个选项正确;在第3、7、8小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有选错的得0分.)1. 如图所示,木块放在水平地面上,在F=6 N的水平拉力作用下向右做匀速直线运动,速度为1 m/s.则下列说法中正确的是( )A.以1 m/s的速度做匀速直线运动时,木块受到的摩擦力大小为6 NB.当木块以2 m/s的速度做匀速直线运动时,它受到的水平拉力大于6 NC.当用8 N的水平拉力使木块运动时,木块受到的摩擦力为8 ND.将水平拉力F撤去后,木块运动得越来越慢,木块受到的摩擦力越来越小解析:由于水平方向受力平衡,f=F=6 N,选项A正确,B错误;当用8 N的水平拉力使木块运动时,由f=μN=μmg得f=6 N,选项C错误,将水平拉力F撤去后,木块做减速运动,木块受到的摩擦力f=μmg不变,D选项错误.答案:A2. 如图所示,质量为m的球放在倾角为α的光滑斜面上,用挡板AO将球挡住,使球处于静止状态,若挡板与斜面间的夹角为β,则( )A.当β=30°时,挡板AO所受压力最小,最小值为mg sinαB.当β=60°时,挡板AO所受压力最小,最小值为mg cosαC.当β=60°时,挡板AO所受压力最小,最小值为mg sinαD.当β=90°时,挡板AO所受压力最小,最小值为mg sinα解析:以球为研究对象,球所受重力产生的效果有两个:对斜面产生的压力N1、对挡板产生的压力N2,根据重力产生的效果将重力分解,如图所示,当挡板与斜面的夹角β由图示位置变化时,N1大小改变但方向不变,始终与斜面垂直,N2的大小和方向均改变,由图可看出当挡板AO与斜面垂直,即β=90°时,挡板AO所受压力最小,最小压力N2min=mg sinα,D 项正确.答案:D3. 物体A、B在外力F的作用下,在如图甲、乙两种情况下以相同的速率沿F的方向做匀速运动,若接触面间都不光滑.关于物体A、B的受力,下列说法正确的是( )A. 甲、乙两图中的物体A一定都受摩擦力作用B. 甲、乙两图中的物体B一定都受摩擦力作用C. 甲图中速度越大,B受到的摩擦力越大D. 乙图中倾角越大,A受到的摩擦力越大解析:在题甲图中,A、B一起匀速运动,A、B间无摩擦力,B与地面间的滑动摩擦力与运动快慢无关,A、C两项错误;在乙图中,对A受力分析可知,受到静摩擦力f=m A g sinα,方向沿斜面向上,斜面倾角越大,摩擦力越大,B、D两项正确.答案:BD4. [2013·江西南昌二模]如图所示,相隔一定距离的两个相同圆柱体固定在同一水平高度处,一轻绳套在两圆柱体上,轻绳下端悬挂一重物,绳和圆柱之间的摩擦忽略不计.现增加轻绳长度,而其他条件保持不变,则( )A. 轻绳对物体的作用力的合力将变大B. 轻绳对物体的作用力的合力将变小C. 轻绳的张力将变大D. 轻绳的张力将变小解析:对重物受力分析如图,当轻绳变长,两绳的夹角变小,可知,绳的张力变小,D项正确,C项错,两绳的合力始终与重力平衡,所以合力不变,A、B项均错.答案:D5. [2014·重庆考前训练]三个质量均为1 kg的相同木块a、b、c和两个劲度均为500 N/m 的相同轻弹簧p、q用轻绳连接如图所示,其中a放在光滑水平桌面上.开始时p弹簧处于原长,木块都处于静止.现用水平力缓慢地向左拉p弹簧的左端,直到c木块刚好离开水平地面为止,g取10 m/s2.该过程p弹簧的左端向左移动的距离是( )A. 4 cmB. 6 cmC. 8 cmD. 10 cm解析:开始时q弹簧处于压缩状态,由胡克定律知,压缩了2 cm.c木块刚好离开水平地面时,轻弹簧q中拉力为10 N,由胡克定律,轻弹簧q伸长2 cm;轻弹簧p中拉力为20 N,由胡克定律,轻弹簧p伸长4 cm.该过程p弹簧的左端向左移动的距离是2 cm+2 cm+4 cm =8 cm,选项C正确.答案:C6. [2014·湖南名校联考]如图所示,斜面体M放置在水平地面上,位于斜面上的物块m 受到沿斜面向上的推力F作用.设物块与斜面之间的摩擦力大小为F1,斜面与地面之间的摩擦力大小为F2.增大推力F,斜面体始终保持静止,下列判断正确的是( )A.如果物块沿斜面向上滑动,则F1、F2一定增大B.如果物块沿斜面向上滑动,则F1、F2一定不变C.如果物块与斜面相对静止,则F1、F2一定增大D.如果物块沿斜面相对静止,则F1、F2一定不变解析:当物块相对斜面静止时,可把M、m当成整体,F增大时,F2一定增大,F1为静摩擦力大小变化无法判断;当物块在斜面滑动时,m、M之间为滑动摩擦力,当F增大时,F1、F2一定不变,故选B.答案:B7. [2013·东北三校二联]如图所示,A、B两物块始终静止在水平地面上,有一轻质弹簧一端连接在竖直墙上P点,另一端与A相连接,下列说法正确的是( )A.如果B对A无摩擦力,则地面对B也无摩擦力B.如果B对A有向左的摩擦力,则地面对B也有向左的摩擦力C.P点缓慢下移过程中,B对A的支持力一定减小D.P点缓慢下移过程中,地面对B的摩擦力一定增大解析:物块B在水平方向只有可能受到地面对B、A对B的两个摩擦力的作用,由于B物体静止,则这两个力或都不存在、或同时存在且等大反向,故A、B皆正确.在P点缓慢下移到P、A等高过程中,若弹簧原处于拉伸状态时,弹簧可能由伸长变为压缩,也可能一直处于拉伸状态,则弹力可能由斜向上的逐渐减小的拉力变为斜向下逐渐增大的推力,也可能一直是斜向上逐渐减小的拉力,故对A由平衡条件知:两种情况下B对A的支持力在弹力逐渐减小时是一直减小的,而在弹力逐渐增大时不能判定;B对A的摩擦力变化情况在弹力减小时不能确定,在弹力增大时摩擦力一定增大.同理可知若弹簧原处于原长或压缩状态时,则弹力一直是逐渐增大的推力,由平衡条件知B对A的支持力变化情况不能确定,B对A的摩擦力一定是一直增大的,再考虑到还有P点移动到与A等高位置之下的情况,故整个过程中B对A 的支持力、摩擦力变化情况都不能确定,则地面对B的摩擦力变化情况也不能确定,C、D皆错误.答案:AB8. 如图所示,质量m=1 kg的物块在与水平方向夹角为θ=37°的推力F作用下静止于墙壁上,物块与墙之间的动摩擦因数μ=0.5,若物块与墙面间的最大静摩擦力与滑动摩擦力相等,则推力F大小可能是( )A. 5 NB. 15 NC. 35 ND. 55 N解析:当F较大时,物块会有向上滑动趋势,摩擦力向下.若物块恰不上滑,则力F有最大值(受力如图a所示),N=F max cosθ,F max sinθ=f+mg,又f=μN,解得,F max=50 N;当力F较小时,物块有向下滑动趋势,摩擦力向上,若物块恰不下滑,则力F有最小值(受力如图b所示),由平衡条件可得,N=F min cosθ,F min sinθ+f-mg=0,又f=μN,解得,F min =10 N;所以使物块静止于墙面上推力F的范围为10 N≤F≤50 N,B、C两项正确.答案:BC9. [2014·湖南长沙]如图所示,小方块代表一些相同质量的钩码,图①中O 为轻绳之间联结的节点,图②中光滑的滑轮跨在轻绳上悬挂钩码,两装置处于静止状态,现将图①中的B 滑轮或图②中的端点B 沿虚线稍稍上移一些,则关于θ角变化说法正确的是( )A .图①、图②中θ角均增大B .图①、图②中θ角均不变C .图①中θ增大、图②中θ角不变化D .图①中θ不变、图②中θ角变大解析:图①中O 点处三绳拉力等于悬挂钩码的重力,大小一定,O 点竖直向下的拉力方向一定,由平衡条件,另两绳拉力方向也一定,则θ角不变;图②中AB 为一根绳子,内部张力大小处处相等,滑轮两边绳子与水平方向夹角相等,设滑轮两边绳长分别为l 1和l 2,AB 水平距离为d ,则(l 1+l 2)cos θ=d ,因绳长和d 一定,θ角一定,故B 项正确.答案:B10. [2014·甘肃部分示范校调研]一个挡板固定于光滑水平地面上,截面为14圆的柱状物体甲放在水平面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与地面接触而处于静止状态,如图所示.现在对甲施加一个水平向左的力F ,使甲沿地面极其缓慢地移动,直至甲与挡板接触为止.设乙对挡板的压力为F 1,甲对地面的压力为F 2,在此过程中( )A. F 1缓慢增大,F 2缓慢增大B. F 1缓慢增大,F 2不变C. F 1缓慢减小,F 2不变D. F 1缓慢减小,F 2缓慢增大解析:把甲、乙看做一个整体,竖直方向仅受重力和地面支持力,在此过程中,两物体重力不变,支持力不变,由牛顿第三定律,甲对地面的压力不变,F 2不变;对乙进行受力分析,在此过程中,挡板对乙的支持力缓慢减小,由牛顿第三定律,乙对挡板的压力F 1缓慢减小,所以选项C 正确.答案:C第Ⅱ卷 (非选择题,共60分)二、实验题(本题共2小题,共16分)11. (8分)某同学利用如下图左所示装置做“探究弹簧弹力大小与其长度的关系”的实验.(1)在安装刻度尺时,必须使刻度尺保持________状态.(2)他通过实验得到的如上图右所示的弹力大小F 与弹簧长度x 的关系图线,由此图线可得该弹簧的原长x 0=________cm ,劲度系数k =________N/m.(3)他又利用本实验原理把该弹簧做成一把弹簧秤,当弹簧秤上的示数如图右所示时,该弹簧的长度x 1=________cm.解析:(1)悬挂重物后,弹簧沿竖直方向伸长,要测量弹簧沿竖直方向上的伸长量,刻度尺当然要保持竖直状态.(2)如果以弹簧长度x 为横坐标,弹力大小F 为纵坐标,作出F -x 图象,那么图象与横轴的截距表示弹簧的原长,图线的斜率表示弹簧的劲度系数,所以根据图象可知,该弹簧的原长x 0=4 cm ,劲度系数k =ΔF Δx=50 N/m. (3)弹簧的读数表示弹力的大小,即F =3 N ,所以该弹簧的长度x 1=x 0+F k=10 cm. 答案:(1)竖直 (2)4 50 (3)1012. (8分)某同学做“验证力的平行四边形定则”实验的情况如下图甲所示,其中A 为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是在白纸上根据实验结果画出的图.(1)实验中用弹簧测力计测量力的大小时,下列使用方法中正确的是________.A.拿起弹簧测力计就进行测量读数B.拉橡皮筋的拉力大小不能超过弹簧测力计的量程C.测量前检查弹簧指针是否指在零刻线,用标准砝码检查示数正确后,再进行测量读数D.应尽量避免弹簧、指针、拉杆与刻度板间的摩擦(2)关于此实验的下列说法中正确的是________.A.同一次实验中,O点位置不允许变动B.实验中,只需记录弹簧测力计的读数和O点的位置C.实验中,把橡皮筋的另一端拉到O点时,两个弹簧测力计之间的夹角必须取90°D.实验中,要始终将其中一个弹簧测力计沿某一方向拉到最大量程,然后调节另一弹簧测力计拉力的大小和方向,把橡皮筋另一端拉到O点(3)图乙中的F与F′两力中,方向一定沿AO方向的是________.(4)本实验采用的科学方法是________.解析:(1)弹簧称使用前,应先检查指针是否指零,再用标准砝码检查示数正确后,再测量,应避免弹簧、指针、拉杆与刻度板的摩擦.(2)同一次实验中,O点位置不能变动;需记录拉力的大小和方向,其夹角不能太大,也不能太小.(3)由图可知,F是F1和F2合成的结果,方向不一定沿AO方向,但F′是用一只弹簧称的拉力,其方向一定沿AO方向.答案:(1)BCD (2)A (3)F′(4)等效替代三、计算题(本题共4小题,共44分)13. (12分)如图所示,质量为m1的物体甲通过三段轻绳悬挂,三段轻绳的结点为O,轻绳OB水平且B端与放置在水平面上的质量为m2的物体乙相连,轻绳OA与竖直方向的夹角θ=37°,物体甲、乙均处于静止状态.(已知sin37°=0.6,cos37°=0.8,tan37°=0.75,g取10 m/s2.设最大静摩擦力等于滑动摩擦力)求:(1)轻绳OA 、OB 受到的拉力是多大?(2)物体乙受到的摩擦力是多大?方向如何?(3)若物体乙的质量m 2=4 kg ,物体乙与水平面之间的动摩擦因数为μ=0.3,则欲使物体乙在水平面上不滑动,物体甲的质量m 1最大不能超过多少?解析:(1)F T OA =m 1g cos θ=54m 1gFT OB =m 1g tan θ=34m 1g(2)F f =F T OB =34m 1g 方向水平向左(3)F fm =μm 2g =0.3×40 N=12 N当F T OB =34m 1g =F f m =12 N 时, m 1=1.6 kg ,即物体甲的质量m 1最大不能超过1.6 kg.答案:(1)54m 1g 34m 1g (2)34m 1g 方向水平向左 (3)1.6 kg 14. (10分)[2014·陕西宝鸡]如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.解析:(1)对物体受力分析,由平衡条件可知,mg sin30°=μmg cos30°解得,μ=tan 30°=33. (2)设斜面倾角为α时,受力情况如图,由匀速直线运动的条件:F cos α=mg sin α+f N =mg cos α+F sin αf =μN解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α→0,即cot α→33时,F →∞, 即“不论水平恒力F 多大,都不能使物体沿斜面向上滑行”此时,临界角θ0=α=60°.答案:(1)33(2)60° 15. [2013·中山模拟](10分)如图所示,质量为m B =14 kg 的木板B 放在水平地面上,质量为m A =10 kg 的木箱A 放在木板B 上,一根轻绳一端拴在木箱上,另一端拴在地面的木桩上,绳绷紧时与水平面的夹角为θ=37°,已知木箱A 与木板B 之间的动摩擦因数μ1=0.5,木板B 与地面之间的动摩擦因数μ2=0.4,重力加速度g 取10 m/s 2,现用水平力F 将木板B 从木箱A 下面匀速抽出,试求:(sin37°=0.6,cos37°=0.8)(1)绳上张力F T 的大小;(2)拉力F 的大小.解析:(1)隔离木箱A ,对A 进行受力分析,如图甲所示,由平衡条件得F f =F T cos θF T sin θ+m A g =F N1又F f =μ1F N 1,联立解得F T =μ1m A g cos θ-μ1sin θ=100 N. (2)木板B 受力如图乙所示,对木板B ,由平衡条件得F=μ1F N1+μ2F N2m B g+F N1=F N2联立解得F=200 N.答案:(1)100 N (2)200 N16. (12分)如图所示,三根轻细绳悬挂两个质量均为m的小球保持静止,A、D间细绳是水平的,现对B球施加一个水平向右的力F,将B球缓缓拉到图中虚线位置,则(1)此过程AB绳中的拉力如何变化?(2)求水平力F和AC绳中的张力大小.解析:(1)以B球为研究对象,作出平衡三角形,如图甲所示,可看得出此过程AB绳中的拉力F B逐渐变大.(2)以A、B两球组成的整体为研究对象,画出受力图如图乙所示:竖直方向:F C·sin30°=2mg,得F C=4mg以B球为研究对象,分析受力如图丙所示:竖直方向:F B·sin30°=mg水平方向:F B·cos30°=F解得:F B=2mg,F=3mg答案:(1)拉力逐渐变大(2)水平力F为3mg AC绳中的张力为4mg。

2015年全国卷II卷高考物理试卷含答案(word版)

2015年全国卷II卷高考物理试卷含答案(word版)

2015年新课标II高考物理试卷一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)如图,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,改微粒将()A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动2.(6分)如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为U a、U b、U c.已知bc边的长度为l.下列判断正确的是()A.U a>U c,金属框中无电流B.U b>U c,金属框中电流方向沿a﹣b﹣c﹣aC.U bc=﹣Bl2ω,金属框中无电流D. U bc=Bl2ω,金属框中电流方向沿a﹣c﹣b﹣a3.(6分)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为()A.西偏北方向,1.9×103m/s B.东偏南方向,1.9×103m/sC.西偏北方向,2.7×103m/s D.东偏南方向,2.7×103m/s4.(6分)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t 的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t 变化的图线中,可能正确的是()A. B.C.D.5.(6分)指南针是我国古代四大发明之一.关于指南针,下列说明正确的是()A.指南针可以仅具有一个磁极B.指南针能够指向南北,说明地球具有磁场C.指南针的指向会受到附近铁块的干扰D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转6.(6分)有两个匀强磁场区域Ⅰ和Ⅱ,I中的磁感应强度是Ⅱ中的k倍,两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子()A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度是Ⅰ中的k倍7.(6分)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a的加速度向东行驶时,连接某两相邻车厢的挂钩P和Q间的拉力大小为F;当机车在西边拉着这列车厢以大小为a的加速度向西行驶时,P和Q间的拉力大小仍为F.不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为()A.8 B.10 C. 15 D. 188.(6分)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b 可视为质点,重力加速度大小为g.则()A.a落地前,轻杆对b一直做正功B. a落地时速度大小为C.a下落过程中,其加速度大小始终不大于gD. a落地前,当a的机械能最小时,b对地面的压力大小为mg三、非选择题:包括必考题和选考题两部分.第9题~第12题为必做题,每个考题考生都必须作答,第13为选考题,考生格局要求作答.9.(6分)(2015春•南昌校级期末)某学生用图(a)所示的实验装置测量物块与斜面的动摩擦因数.已知打点计时器所用电源的频率为50Hz,物块下滑过程中所得到的纸带的一部分如图(b)所示,图中标出了五个连续点之间的距离.(1)物块下滑是的加速度a=m/s2,打C点时物块的速度v=m/s;(2)已知重力加速度大小为g,求出动摩擦因数,还需测量的物理量是(填正确答案标号)A.物块的质量B.斜面的高度C.斜面的倾角.10.(9分)电压表满偏时通过该表的电流是半偏时通过该表的电流的两倍.某同学利用这一事实测量电压表的内阻(半偏法)实验室提供材料器材如下:待测电压表(量程3V,内阻约为3000欧),电阻箱R0(最大阻值为99999.9欧),滑动变阻器R1(最大阻值100欧,额定电流2A),电源E(电动势6V,内阻不计),开关两个,导线若干.(1)虚线框内为该同学设计的测量电压表内阻的电路图的一部分,将电路图补充完整.(2)根据设计的电路写出步骤:.(3)将这种方法测出的电压表内阻记为R v′,与电压表内阻的真实值R v相比,R v′R v(填“>”“=”或“<”),主要理由是.11.(12分)如图,一质量为m、电荷量为q(q>0)的粒子在匀强电场中运动,A、B为其运动轨迹上的两点.已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B点时速度方向与电场方向的夹角为30°.不计重力.求A、B两点间的电势差.12.(20分)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示.假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变.已知A开始运动时,A离B下边缘的距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10m/s2.求:(1)在0~2s时间内A和B加速度的大小(2)A在B上总的运动时间.(二)选考题,共45分。

人教版高考物理一轮总复习课后习题 第15单元 热学 实验练20用油膜法估测油酸分子的大小

人教版高考物理一轮总复习课后习题 第15单元 热学 实验练20用油膜法估测油酸分子的大小

实验练20用油膜法估测油酸分子的大小1.(浙江台州二模)(1)在用油膜法估测油酸分子的大小的实验中,所选用的油酸酒精溶液每104 mL溶液中含有纯油酸5 mL。

用注射器测得1 mL 上述溶液有75滴。

把1滴该溶液滴入盛水的浅盘里,测得水面稳定后的油膜面积为99 cm2,可算出一滴溶液中含有纯油酸的体积为 mL,油酸分子的直径约为 m。

(结果均保留一位有效数字)(2)某同学最终得到的油酸分子直径的数值和其他同学相比明显偏大,其原因可能是。

A.水面上爽身粉撒得较多,油膜未充分展开B.使用了长时间放置且未密封保存的油酸酒精溶液C.计算油膜面积时,错将所有不完整的方格作为完整方格处理D.错误地将油酸酒精溶液的体积直接作为纯油酸的体积进行计算2.(浙江余姚中学期末)某学习小组用油膜法估测油酸分子的大小,实验中他们向1 mL纯油酸中添加酒精,配得油酸酒精溶液总体积为500 mL,接着用注射器向量筒内滴加80滴上述溶液,量筒中的溶液体积增加了1 mL,把1滴这样的溶液滴入水面撒有爽身粉的盛水的浅盘里,把玻璃板盖在浅盘上并描出油膜的轮廓,如图所示。

(1)已知每一个小正方形的边长为20 mm,则该油酸薄膜的面积为m2(结果保留2位有效数字)。

(2)油酸分子的直径是 m(结果保留2位有效数字)。

3.在粗测油酸分子大小的实验中,具体操作如下:①取1.0 mL油酸注入250 mL容量瓶内,然后向瓶中加入酒精,直到液面达到200 mL的刻度为止,摇动容量瓶使油酸在酒精中充分溶解,形成油酸酒精溶液;②用滴管吸取制得的溶液逐滴滴入量筒,记录滴入的滴数直到量筒内液体达到1.0 mL为止,恰好共滴了100滴;③在边长约40 cm的浅水盘内注入约2 cm深的水,将爽身粉均匀地撒在水面上,再用滴管吸取油酸酒精溶液,轻轻地向水面滴一滴溶液,酒精挥发后,油酸在水面上尽可能地散开,形成一层油膜,膜上没有爽身粉,可以清楚地看出油膜轮廓;④待油膜形状稳定后,将事先准备好的玻璃板放在浅盘上,在玻璃板上绘出油酸膜的形状;⑤如图所示,将画有油酸膜形状的玻璃板放在边长为1.0 cm的方格纸上。

【物理】云南省红河州2015届高三毕业生复习统一检测(精校解析版)

【物理】云南省红河州2015届高三毕业生复习统一检测(精校解析版)

云南省红河州2015届高三一模物理试卷一、选择题:本题8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.14.在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进程.在对以下几位物理学家所作科学贡献的叙述中,正确的说法是()A.英国物理学家牛顿用实验的方法测出万有引力常量GB.第谷接受了哥白尼日心说的观点,并根据开普勒对行星运动观察记录的数据,应用严密的数学运算和椭圆轨道假说,得出了开普勒行星运动定律C.亚里士多德认为两个从同一高度自由落下的物体,重物体与轻物体下落一样快D.胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比【答案】D.【解析】牛顿提出了万有引力定律及引力常量的概念,但没能测出G的数值;G是由卡文迪许通过实验方法得出的,故A错误;开普勒接受了哥白尼日心说的观点,并根据第谷对行星运动观察记录的数据,应用严密的数学运算和椭圆轨道假说,得出了开普勒行星运动定律,故B错误;亚里士多德认为两个从同一高度自由落下的物体,重物体比轻物体下落快.故C错误;胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比,故D正确.【考点】物理学史.15.近来,我国大部分地区都出现了雾霾天气,给人们的正常生活造成了极大的影响.在一雾霾天,某人驾驶一辆小汽车以30m/s的速度行驶在高速公路上,突然发现正前方30m 处有一辆大卡车以10m/s的速度同方向匀速行驶,小汽车紧急刹车,但刹车过程中刹车失灵.如图a、b分别为小汽车和大卡车的v﹣t图象,以下说法正确的是()A.因刹车失灵前小汽车已减速,不会追尾B.在t=5s时追尾C.在t=3s时追尾D.由于初始距离太近,即使刹车不失灵也会追尾【答案】C【解析】根据速度﹣时间图象所时间轴所围“面积”大小等于位移,由图知,t =3s 时,b 车的位移为:s b =v b t =10×3m=30ma 车的位移为s a =12×(30+20)×1+12×(20+15)×2=60m 则s a ﹣s b =30m ,所以在t =3s 时追尾.故C 正确.【考点】 运动的图像的应用.16. “神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能E k ( )A .等于mg (R +h )B .小于mg (R +h )C .大于mg (R +h )D .等于mgh【答案】B . 【解析】研究飞船绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式22()Mm v G m R h R h=++解得v =① 忽略地球自转的影响,根据万有引力等于重力列出等式2Mm Gmg R = 解得GM =gR 2②由①②解得:飞船在上述圆轨道上运行的动能E k =12mv 2=22()2()2()mgR mg R h R h R h +++<,即飞船在上述圆轨道上运行的动能E k 小于1()2mg R h +,故B 正确. 【考点】 人造卫星的加速度、周期和轨道的关系.17. 用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T ,则T 随ω2变化的图象是( )A.B.C.D.【答案】C.【解析】设绳长为L,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg、支持力N和绳的拉力T而平衡,T=mg cosθ≠0,所以A项、B项都不正确;ω增大时,T增大,N减小,当N=0时,角速度为ω0.当ω<ω0时,由牛顿第二定律得,T sinθ﹣N cosθ=mω2L sinθ,T cosθ+N sinθ=mg,解得T=mω2L sin2θ+mg cosθ;当ω>ω0时,小球离开锥子,绳与竖直方向夹角变大,设为β,由牛顿第二定律得T sinβ=mω2L sinβ,所以T=mLω2,可知T﹣ω2图线的斜率变大,所以C项正确,D错误.【考点】匀速圆周运动;向心力.18.在空间直角坐标系O﹣xyz中,A、B、C、D四点的坐标分别为(L,0,0),(0,L,0),(0,0,L),(2L,0,0).在坐标原点O处固定电荷量为+Q的点电荷,下列说法正确的是()A.将一电子由D点分别移动到A、C两点,电场力做功相同B.A、B、C三点的电场强度相同C.电子在B点的电势能大于在D点的电势能D.电势差U OA=U AD【答案】A.【解析】A 、C 两点在同一等势面上,D 、A 间与D 、C 间的电势差相等,由W =qU ,将一电子由D 点分别移动到A 、C 两点,电场力做功相同,故A 正确;根据点电荷场强公式E =k 2Qr 知:A 、B 、C 三点的电场强度相等,但方向不同,电场强度不同,故B 错误;D 的电势低于B 点的电势,电子带负电,根据E p =qφ,则电子在B 点的电势能小于在D 点的电势能,故C 错误;根据点电荷场强公式E =k2Q r 知:OA 间的场强大于AD 间的场强,由U =Ed 可知:U OA >U AD .故D 错误;【考点】 电势能;电场强度;电势差.19. 一物体在竖直方向的升降机中,由静止开始竖直向上作直线运动,运动过程中小球的机械能E 与其上升高度h 关系的图象如图所示,其中0~h 1过程的图线为曲线,h 1~h 2过程中的图线为直线.根据该图象,下列说法正确的是( )A . 0~h 1过程中,小球的动能一定在增加B . 0~h 1过程中,升降机对小球的支持力一定做正功C . h 1~h 2过程中,小球的动能可能在不变D . h 1~h 2过程中,小球重力势能可能不变【答案】BC【解析】设支持力大小为F ,由功能关系得:Fh =E ,所以E ﹣h 图象的斜率的绝对值等于小球所受支持力的大小,由图可知在O ~h 1内斜率的绝对值逐渐减小,故在O ~h 1内小球所受的支持力逐渐减小.所以开始先加速运动,当支持力减小后,可能做匀速运动,也可能会减速.故A 错误,B 正确;由于小球在h 1~h 2内E ﹣h 图的斜率不变,所以小球所受的支持力保持不变,故物体可能做匀速运动,动能不变,故C 正确;由于小球在h 1~h 2内E ﹣x 图象的斜率的绝对值不变,重力势能随高度的增大而增大,所以重力势能增大,故D 错误.【考点】 功能关系.20. 如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端跨接一个定值电阻R ,导轨电阻不计,现将金属棒沿导轨由静止向右拉,若保持拉力恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率恒定,经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( )A . t 2=t 1B . t 2<t 1C . a 2=2a 1D . a 2=3a 1【答案】BD【解析】 由于两种情况下,最终棒都以速度2v 匀速运动,此时拉力与安培力大小相等,则有: F =F 安=BIL =BL •222B L v R=222B L v R 当拉力恒定,速度为v ,加速度为a 1时,根据牛顿第二定律有:F ﹣22B L v R=ma 1 由①②解得:a 1=22mB L v R . 若保持拉力的功率恒定,速度为2v 时,拉力为F ,则有:P =F •2v ,又F =F 安=222B L v R得:P =2224B L v R则当速度为v 时,拉力大小为:F 1==2224B L v R; 根据牛顿第二定律得:F 1﹣22B L v R=ma 2, 解得:a 2=223mB L v R , 所以有a 2=3a 1,故C 错误,D 正确;当拉力的功率恒定时,随着速度增大,拉力逐渐减小,最后匀速运动时拉力最小,且最小值和第一种情况下拉力相等,因此最后都达到速度2v 时,t 1>t 2,故A 错误,B 正确.【考点】导体切割磁感线时的感应电动势.21.半径为R 的圆形区域内有磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,A 、B 是磁场边界上的两点,AB 是圆的直径,在A 点有一粒子源,可以在纸面里沿各个方向向磁场里发射质量为m 、电量为q 、速度大小为v =2qBR m 的同种带正电的粒子,若某一粒子在磁场中运动的时间为t =2Rv π,忽略粒子间的相互作用,则该粒子从A 点射入时,速度与AB 间的夹角θ和粒子在磁场中运动的轨道半径r 分别为( )A . r =2R B . r =R C . θ=45° D . θ=30° 【答案】A【解析】粒子在磁场中做匀速圆周运动的半径 r =mv qB =m qB •2qBR m =2R 周期 T =2r v π=R vπ 则 t =2R v π=12T【考点】 带电粒子在匀强磁场中的运动.三、非选择题:包括必考题和选考题两部分.第22题~第25题为必考题,每个试题考生都必须作答.第36题~第38题为选考题,考生根据要求作答.(一)必考题(共129分)22. 物理小组的同学用如图所示的实验器材测定重力加速度,实验器材有:底座、带有标尺的竖直杆、光电门1和2组成的光电计时器(其中光电门1更靠近小球释放点),小型电磁铁一个(用于吸住或释放小钢珠)、网兜.实验时可用两光电门测量小球从光电门1运动至光电门2的时间t ,并从竖直杆上读出两光电门间的距离h .(1)改变光电门1的位置,保持光电门2的位置不变,小球经过光电门2的速度为v ,不考虑空气阻力,小球的加速度为重力加速度g ,则h 、t 、g 、v 四个物理量之间的关系为h = .(2)根据实验数据作出h t t-图线,若图线斜率的绝对值为k ,根据图线可求出重力加速度大小为 .【答案】(1)212vt gt -,(2)2k . 【解析】(1)小球经过光电门2的速度为v ,根据运动学公式得从开始释放到经过光电门2的时间t ′=v g, 所以从开始释放到经过光电门1的时间t ″=t ′﹣t =v t g -, 所以经过光电门1的速度v ′=gt ″=v ﹣gt ;根据匀变速直线运动的推论得:两光电门间的距离h =2122v v t vt gt '+=-. (2)根据h =212vt gt -得,12h v gt t =-, 则h t t -图线斜率的绝对值为k ,k =2g , 所以重力加速度大小g =2k .【考点】 测定匀变速直线运动的加速度.23.(9分) 某同学设计了一个如图a 所示的实验电路,用以测定电源电动势和内阻,使用的实验器材为:待测干电池组(电动势约3V )、电流表(量程0.6A ,内阻小于1Ω)、电阻箱(0~99.99Ω)、滑动变阻器(0~10Ω)、单刀双掷开关、单刀单掷开关各一个及导线若干.考虑到干电池的内阻较小,电流表的内阻不能忽略.(1)该同学按图a 连线,断开开关S ,闭合开关K ,调节滑动变阻器,使得电流表的读数为最大,然后将开关S 接C ,当电阻箱为0.20Ω时,电流表的指针指向刻度盘中点,可认为该值就是电流表内阻的测量值.则电流表内阻的真实值A .大于0.20ΩB .小于0.20ΩC .等于0.20ΩD .无法确定(2)利用图a 所示电路测量电源电动势和内阻的实验步骤是:断开开关K ,将开关S 接D ,调节电阻箱R ,记录多组电阻箱的阻值和电流表示数;图b 是由实验数据绘出的1I﹣R 图象,由此求出待测干电池组的电动势E = V ,内阻 r = Ω.(计算结果保留三位有效数字)【答案】(1)A ;(2)2.86,2.47【解析】(1)在实验中,并联电阻箱后,总电阻减小,则总电流增大,通过电阻箱的电流大于通过电流表的电流,根据欧姆定律知,电流表内阻的测量值小于实际值. 答案 :A ;(2)由闭合电路欧姆定律可得:E =I (R +R A +r ),即1A r R R I E E+=+,由上式可知:图线的斜率是电动势的倒数,图线在纵轴上的截距是A r R E+,由此可得: 2.86V 1R E I ∆==∆,0.9A r R E +=,解得r =2.47Ω. 【考点】 测定电源的电动势和内阻.24.(14分) 光滑水平面上,足够长的木板质量M =8kg ,由静止开始在水平恒力F =8N 作用下向右运动,如图所示,当速度达到1.5m/s 时,质量m =2kg 的物体轻轻放到木板的右端.已知物体与木板之间的动摩擦因数μ=0.2.取g =10m/s 2.求:(1)物体放到木板上以后,经多长时间物体与木板相对静止?在这段时间里,物体相对木板滑动的距离多大?(2)在物体与木板相对静止以后,它们之间的摩擦力多大?【答案】(1)1s 0.75m;(2) 1.6N.【解析】(1)放上物体后,由牛顿第二定律可知:物体加速度:a1=μg=2m/s2板的加速度:a2=80.22108F mgmμ--⨯⨯==0.5m/s2当两物体达速度相等后保持相对静止,故a1t=v+a2t解得:t=1s滑块的位移为:x1=a1t2=×2×12=1m木板的位移为:x2=vt+a2t2=1.5×1+×0.5×12=1.75m故相对位移为:△x=x2﹣x1=1.75m﹣1m=0.75m(2)在物体与木板相对静止后,它们之间还有相互作用的静摩擦力,否则会相对滑动;对整体,有:a=882FM m=++=0.8m/s2再隔离滑块,有f=ma=2×0.8=1.6N【考点】牛顿第二定律;匀变速直线运动的规律..25.(18分)如图所示,匀强电场方向沿x轴的正方向,场强为E.在A(d,0)点有一个静止的中性微粒,由于内部作用,某一时刻突然分裂成两个质量均为m的带电微粒,其中电荷量为q的微粒1沿y轴负方向运动,经过一段时间到达(0,﹣d)点.不计重力和分裂后两微粒间的作用.试求(1)分裂时两个微粒各自的速度;(2)当微粒1到达(0,﹣d)点时,电场力对微粒1做功的瞬间功率;(3)当微粒1到达(0,﹣d)点时,两微粒间的距离.. 【答案】(1) 微粒1y 轴的负方向;微粒2的速度大小y 轴的正方向;(2)(3) .【解析】(1)微粒1在y 方向不受力,做匀速直线运动;在x 方向由于受恒定的电场力,做匀加速直线运动.所以微粒1做的是类平抛运动.设微粒1分裂时的速度为v 1,微粒2的速度为v 2则有:在y 方向上有 d =v 1t在x 方向上有a =qE m , d =12at 2 v 1速度方向沿y 轴的负方向.中性微粒分裂成两微粒时,遵守动量守恒定律,有mv 1+mv 2=0所以 v 2=﹣v 1所以 v 2的大小为 y 正方向. (2)设微粒1到达(0,﹣d )点时的速度为v B ,则电场力做功的瞬时功率为, P =qEv B cos θ=qEv Bx ,其中由运动学公式 v Bx所以 P = (3)两微粒的运动具有对称性,如图所示,当微粒1到达(0,﹣d)点时发生的位移S1,则当微粒1到达(0,﹣d)点时,两微粒间的距离为BC=2S1.【考点】功率的理解与计算;平抛运动;动量守恒定律.(二)选考题:共45分.请考生从所给出的3道物理题中任选一题作答,并把答题卡上的标志用二B铅笔涂黑.如果多做,则按第一题计分[物理一选修3-3](15分)36.(5分)(1) 下列说法正确的是()A.熵增加原理说明一切自然过程总是向着分子热运动的无序性减小的方向进行B.在绝热条件下压缩气体,气体的内能一定增加C.布朗运动是在显微镜中看到的液体分子的无规则运动D.水可以浸润玻璃,但是不能浸润石蜡,这个现象表明一种液体浸润某种固体与这两种物质的性质都有关系E.当分子间表现为斥力时,分子力和分子势能总是随着分子间距离的减小而增大【答案】BDE.【解析】熵增加原理说明一切自然过程总是向着分子热运动的无序性增加的方向进行,故A 错误;根据热力学第一定律,在绝热条件下压缩气体,气体的内能一定增加,故B正确;布朗运动是在显微镜中看到的悬浮小颗粒的无规则运动,显微镜看不到分子,故C错误;水可以浸润玻璃,但是不能浸润石蜡,这个现象表明一种液体浸润某种固体与这两种物质的性质都有关,故D正确;当分子间表现为斥力时,距离减小时要克服分子力做功,故分子势能增加;即当分子间表现为斥力时分子力和分子势能总是随着分子间距离的减小而增大;故E正确;【考点】有序、无序和熵;布朗运动;液体的表面张力现象和毛细现象..(2)(10分)物理学家帕平发明了高压锅,高压锅与普通锅不同,锅盖通过几个牙齿似的锅齿与锅体镶嵌旋紧,加上锅盖与锅体之间有橡皮制的密封圈,所以锅盖与锅体之间不会漏气,在锅盖中间有一排气孔,上面再套上类似砝码的限压阀,将排气孔堵住.当加热高压锅,锅内气体压强增加到一定程度时,气体就把限压阀顶起来,这时蒸气就从排气孔向外排出.由于高压锅内的压强大,温度高,食物容易煮烂.若已知排气孔的直径为0.3cm ,外界大气压为1.0×105Pa ,温度为20℃,要使高压锅内的温度达到120℃,则①此时锅内气体的压强为多大?②限压阀的质量应为多少?(g 取10m/s 2)【答案】① 1.34×105Pa . ② 0.024 kg .【解析】①选锅内气体为研究对象,则有:初状态:T 1=273+20=293K ,p 1=1.0×105 Pa末状态:T 2=273+120=393K , 由查理定律得:1212p p T T =, 解得:p 2=1.34×105Pa②对限压阀受力分析可得:mg =p 2S ﹣p 1S ,代入数据解得:m =0.024 kg .【考点】 理想气体的状态方程.[物理-选修3-4](15分)37. (1)一列沿x 轴传播的简谐横波,t =0时刻的波形如图所示,此时质点P 恰在波峰,质点Q 恰在平衡位置且向上振动.再过0.2s ,质点Q 第一次到达波峰,则正确的是( )A . 波沿x 轴正方向传播B . 波的传播速度为30m/sC . 1s 末质点P 的位移为零D . 质P 的振动位移随时间变化的关系式为x =0.2sin (2πt +2π)mE . 0至0.9s 时间内P 点通过的路程为0.9m【答案】ABC .【解析】由题意质点Q 恰好在平衡位置且向上振动,则知波形向右平移,波沿x 轴正方向传播.故A 正确;由题得该波的周期为 T =0.8s ,波长为 λ=24m ,则波速为:v =240.8T λ==30m/s ,故B 正确;t =1s=1T ,可知1s 末质点P 到达平衡位置,位移为零.故C 正确;图示时刻质点P 的振动位移为y =0.2m ,根据数学知识可知其振动方程是余弦方程,即为:y =0.2cos (2T πt )m=0.2sin (20.8πt +2π)m=0.2sin (2.5πt +2π)m ,故D 错误;将t =0.9s 代入y =0.2sin (2.5πt +2π)m 得:y =0.2sin (2.5π×0.9+2π)m . n ==0.90.8=118,所以0至0.9s 时间内P 点通过的路程为S=4A+10=(4×0.2+10)m >0.9m ,故E 错误. 【考点】 横波的图象;波长、频率和波速的关系(2) 直径d =1.00m ,高H =0.50m 的不透明圆桶,放在水平地面上,桶内盛有折射率n =1.60的透明液体,某人站在地面上离桶中心的距离为x =2.10m 处,他的眼睛到地面的距离y =1.70m ,问桶中液面高h 为多少时,他能看到桶底中心?(桶壁厚度不计)【答案】0.22m .【解析】设O 点发出的光经过液面上O ′点进入人眼.延长液面直线交AB 于C .△O ′ED 和△O ′AC 相似,故:2H h a d y h a x -=-+- 其中a O ′D 的长度.解得:a =(H ﹣h )说明:r =53°由折射定律:n =sin sin i r,得:sin i =,i =30° 如图中几何关系,有:h tan i =d ﹣a即3h =d ﹣(H ﹣h)解得:h=0.22m【考点】光的折射定律.[物理-选修3-5](15分)38.(1)下列说法正确的是()A.太阳辐射的能量主要来自太阳内部的核聚变反应B.汤姆孙发现电子,表明原子具有复杂结构C.卢瑟福发现了中子,查德威克发现了质子D.一束光照射到某金属上不能发生光电效应,是因为该束光的波长太短E.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减少,原子总能量增大【答案】ABE【解析】太阳辐射的能量主要来自太阳内部的核聚变反应,A正确;汤姆孙发现电子,说明电子是原子的组成部分,是比原子更基本的物质单元,B正确;卢瑟福发现了质子,查德威克发现了中子,C错误;一束光照射到某金属上不能发生光电效应是因为入射光的频率小于该金属的截止频率,D错误;按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减少,原子总能量增大,E正确.【考点】裂变反应和聚变反应;粒子散射实验;玻尔模型和氢原子的能级结构.(2) 如图所示,质量m1=0.3kg 的小车静止在光滑的水平面上,车长L=15m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10m/s2.求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过多少.【答案】(1)0.24s.(2).【解析】(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有:m2v0=(m1+m2)v…①设物块与车面间的滑动摩擦力为F,对物块应用动量定理有:﹣Ft=m2v﹣m2v0 …②其中F =μm 2g …③联立以三式解得: 1012()m v t m m gμ=+ 代入数据得:t = 0.24s…④(2)要使物块恰好不从车厢滑出,须物块滑到车面右端时与小车有共同的速度v ′,则有: m 2v ′0=(m 1+m 2)v ′…⑤由功能关系有:12m 2v ′02=12(m 1+m 2)v′2+μm 2gL …⑥代入数据解得:v故要使物块不从小车右端滑出,物块滑上小车的速度v 0′不能超过. 【考点】 动量守恒定律;功能关系.。

2015高考物理一轮精品复习之创新演练20Word版含答案

2015高考物理一轮精品复习之创新演练20Word版含答案

1.如图1所示,将光滑斜面上物体的重力mg分解为F1、F2两个力,下列结论正确的是()A.F1是斜面作用在物体上使物体下滑的力,F2是物体对斜面的正压力B.物体受mg、F N、F1、F2四个力作用图1C.物体只受重力mg和弹力F N的作用D.力F N、F1、F2三个力的作用效果跟mg、F N两个力的作用效果相同解析:物体受到重力的施力物体是地球;支持力的施力物体是斜面。

F1、F2是将重力按效果分解所得的两个分力,实际不存在。

答案:CD2.以下说法中正确的是()A.2 N的力可以分解成6 N和3 N的两个分力B.10 N的力可以分解成5 N和4 N的两个分力C.2 N的力可以分解成6 N和5 N的两个分力D.10 N的力可以分解成10 N和10 N的两个分力解析:该题可以反过来用力的合成做。

例如A项,6 N和3 N的两个力的合力范围3~9 N,不可能是2 N,所以2 N的力也就不能分解成6 N和3 N的两个力,其他选项同理。

答案:CD3.将物体所受重力按力的效果进行分解,图2中错误的是()图2解析:A项中物体重力分解为垂直于斜面使物体压紧斜面的分力G1和沿斜面向下使物体向下滑的分力G2;B项中物体的重力分解为沿两条细绳使细绳张紧的分力G1和G2,A、B项画得正确。

C项中物体的重力应分解为垂直于两接触面使物体紧压两接触面的分力G1和G2,故C项画错。

D项中物体的重力分解为水平向左压紧墙的分力G1和沿绳向下使绳张紧的分力G2,故D项画得正确。

答案:C4.如图3所示,大小分别为F1、F2、F3的三个力恰好围成封闭的直角三角形(顶角为直角)。

下列四个图中,这三个力的合力最大的是()图3解析:由三角形定则,两个力首尾相连,从第一个力的“首”到第二个力的“尾”的有向线段为其合力。

因此在A中F3与F2的合力与F1相同,三个力合力为2F1;在B中F2与F3的合力与F1等值反向,三个力合力为0;在C中F1与F3的合力与F2相同,三个力的合力为2F2;在D中F2与F1的合力与F3相同,三个力的合力为2F3。

2015年山东省高考物理试卷答案与解析(最新整理)

2015年山东省高考物理试卷答案与解析(最新整理)

2015 年ft东省高考物理试卷参考答案与试题解析一、选择题(共7 小题,每小题6 分,共42 分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6 分,选对但不全的得3 分,有选错的得0 分。

)1.(6 分)(2015•ft东)距地面高5m 的水平直轨道上A、B 两点相距2m,在B 点用细线悬挂一小球,离地高度为h,如图.小车始终以4m/s 的速度沿轨道匀速运动,经过A 点时将随车携带的小球由轨道高度自由卸下,小车运动至B 点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10m/s2.可求得h 等于()A.1.25m B.2.25m C.3.75m D.4.75m考点:平抛运动.专题:平抛运动专题.分析:经过A 点时将随车携带的小球由轨道高度自由卸下后,小球做平抛运动,小车运动至B 点时细线被轧断,则B 处的小球做自由落体运动,根据平抛运动及自由落体运动基本公式抓住时间关系列式求解.解答:解:经过A 点,将球自由卸下后,A 球做平抛运动,则有:H=解得:,小车从A 点运动到B 点的时间,因为两球同时落地,则细线被轧断后B 出小球做自由落体运动的时间为t3=t1﹣t2=1﹣0.5=0.5s,则h=故选:A点评:本题主要考查了平抛运动和自由落体运动基本公式的直接应用,关键抓住同时落地求出B 处小球做自由落体运动的时间,难度不大,属于基础题.2.(6 分)(2015•ft东)如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1 建立空间站,使其与月球同周期绕地球运动,以a1、a2 分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是()A.a2>a3>a1 B.a2>a1>a3 C.a3>a1>a2 D.a3>a2>a1考点:同步卫星.专题:人造卫星问题.分析:由题意知,空间站在L1点能与月球同步绕地球运动,其绕地球运行的周期、角速度等于月球绕地球运行的周期、角速度,由a n=r,分析向心加速度a1、a2 的大小关系.根据a=分析a3 与a1、a2 的关系.解答:解:在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,根据向心加速度a n=r,由于拉格朗日点L1 的轨道半径小于月球轨道半径,所以a2>a1,同步卫星离地高度约为36000 公里,故同步卫星离地距离小于拉格朗日点L1的轨道半径,根据a=得a3>a2>a1,故选:D.点评:本题比较简单,对此类题目要注意掌握万有引力充当向心力和圆周运动向心加速度公式的联合应用.3.(6 分)(2015•ft东)如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A(A、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑.已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A 与B 的质量之比为()A.B.C.D.考点:共点力平衡的条件及其应用;摩擦力的判断与计算.专题:共点力作用下物体平衡专题.分析:对A、B 整体和B 物体分别受力分析,然后根据平衡条件列式后联立求解即可.解答:解:对A、B 分析,受重力、支持力、推力和最大静摩擦力,根据平衡条件,有:F=μ2(m1+m2)g ①再对物体B 分析,受推力、重力、向左的支持力和向上的最大静摩擦力,根据平衡条件,有:水平方向:F=N竖直方向:m2g=f其中:f=μ1N联立有:m2g=μ1F ②联立①②解得:=故选:B点评:本题关键是采用整体法和隔离法灵活选择研究对象,受力分析后根据平衡条件列式求解,注意最大静摩擦力约等于滑动摩擦力.4.(6 分)(2015•ft东)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动考点:导体切割磁感线时的感应电动势;电势.专题:电磁感应与电路结合.分析:将金属圆盘看成由无数金属幅条组成,根据右手定则判断感应电流的方向,从而判断电势的高低,当没有磁通量变化时,就没有感应电流产生.解答:解:A、将金属圆盘看成由无数金属幅条组成,根据右手定则判断可知:圆盘上的感应电流由边缘流向圆心,所以靠近圆心处电势高,所以A 正确;B、根据右手定则可知,产生的电动势为BLv,所以所加磁场越强,产生的电动势越大,电流越大,受到的安培力越大,越易使圆盘停止转动,所以B 正确;C、若所加磁场反向,只是产生的电流反向,根据楞次定律可知,安培力还是阻碍圆盘的转动,所以圆盘还是减速转动,所以C 错误;D、若所加磁场穿过整个圆盘时,圆盘的磁通量不再变化,没有感应电流产生,没有安培力的作用,圆盘将匀速转动,所以D 正确;故选:ABD点评:本题关键要掌握右手定则、安培定则,并能正确用来分析电磁感应现象,对于这两个定则运用时,要解决两个问题:一是什么条件下用;二是怎样用.5.(6 分)(2015•ft东)直角坐标系xOy 中,M、N 两点位于x 轴上,G、H 两点坐标如图.M、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为()A.,沿y 轴正向B.,沿y 轴负向C.,沿y 轴正向D.,沿y 轴负向考点:电势差与电场强度的关系;电场强度.专题:电场力与电势的性质专题.分析:根据点电荷的场强公式和场强叠加的原理,可以知道在G 点的时候负电荷在G 点产生的合场强与正电荷在G 点产生的场强大小相等反向相反,在H 点同意根据场强的叠加来计算合场强的大小即可.解答:解:G 点处的电场强度恰好为零,说明负电荷在G 点产生的合场强与正电荷在G 点产生的场强大小相等反向相反,根据点电荷的场强公式可得,正电荷在G 点的场强为,负电荷在G 点的合场强也为,当正点电荷移到G 点时,正电荷与H 点的距离为2a,正电荷在H 点产生的场强为,方向沿y 轴正向,由于GH 对称,所以负电荷在G 点和H 点产生的场强的相等方向相反,大小为,方向沿y 轴负向,所以H 点处场合强的大小为,方向沿y 轴负向,所以B 正确;故选:B点评:本题是对场强叠加原理的考查,同时注意点电荷的场强公式的应用,本题的关键的是理解G 点处的电场强度恰好为零的含义.. . . .A B C D 6.(6 分)(2015•ft 东)如图甲,R 0 为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为 T 0 的正弦交流电源上,经二极管整流后,通过 R 0 的电流 i 始终向左,其 大小按图乙所示规律变化.规定内圆环 a 端电势高于b 端时,a 、b 间的电压u ab 为正,下列 u ab ﹣t 图象可能正确的是( )考点:法拉第电磁感应定律;闭合电路的欧姆定律. 专题:电磁感应与电路结合.分析:由图乙可知,电流为周期性变化的电流,故只需分析 0.5T 0 内的感应电流即可;通过分析电流的变化明确磁场的变化,根据楞次定律即可得出电动势的图象.解答:解:在第一个 0.25T 0 时间内,通过大圆环的电流为瞬时针增加的,由楞次定律可判断内球内 a 端电势高于 b 端,因电流的变化率逐渐减小故内环的电动势逐渐减小,同理可知,在 0.25T 0~0.5T 0 时间内,通过大圆环的电流为瞬时针逐渐减小;则由楞次定律可知,a 环内电势低于 b 端,因电流的变化率逐渐变大,故内环的电动势变大;故只有 C 正确;故选:C .点评:本题考查楞次定律的应用,要注意明确楞次定律解题的基本步骤,正确掌握并理解“增反减同”的意义,并能正确应用;同时解题时要正确审题,明确题意,不要被复杂的电路图所迷或!7.(6 分)(2015•ft 东)如图甲,两水平金属板间距为 d ,板间电场强度的变化规律如图乙所示.t=0 时刻,质量为 m 的带电微粒以初速度为 v 0 沿中线射入两板间,0~时间内微 粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为 g .关于微粒在 0~T 时间内运动的描述,正确的是( )A .末速度大小为 v 0B .末速度沿水平方向C.重力势能减少了mgd D.克服电场力做功为mgd考点:匀强电场中电势差和电场强度的关系.专题:电场力与电势的性质专题.分析:0~时间内微粒匀速运动,重力和电场力相等,~内,微粒做平抛运动,~T 时间内,微粒竖直方向上做匀减速运动,水平方向上仍然做匀速直线运动,结合牛顿第二定律和运动学公式进行求解.解答:解:A、0~时间内微粒匀速运动,则有:qE0=mg,~内,微粒做平抛运动,下降的位移,~T 时间内,微粒的加速度a=,方向竖直向上,微粒在竖直方向上做匀减速运动,T 时刻竖直分速度为零,所以末速度的方向沿水平方向,大小为v0,故A 错误,B 正确.C、微粒在竖直方向上向下运动,位移大小为,则重力势能的减小量为,故C正确.D、在~内和~T 时间内竖直方向上的加速度大小相等,方向相反,时间相等,则位移的大小相等,为,整个过程中克服电场力做功为,故D 错误.故选:BC.点评:解决本题的关键知道微粒在各段时间内的运动规律,抓住等时性,结合牛顿第二定律和运动学公式进行求解.知道在~内和~T 时间内竖直方向上的加速度大小相等,方向相反,时间相等,位移的大小相等.二、非选择题:必做题8.(10 分)(2015•ft东)某同学通过下述实验验证力的平行四边形定则.实验步骤:①将弹簧秤固定在贴有白纸的竖直木板上,使其轴线沿竖直方向.②如图甲所示,将环形橡皮筋一端挂在弹簧秤的秤钩上,另一端用圆珠笔尖竖直向下拉,直到弹簧秤示数为某一设定值时,将橡皮筋两端的位置标记为O1、O2,记录弹簧秤的示数F,测量并记录O1、O2间的距离(即橡皮筋的长度l).每次将弹簧秤示数改变0.50N,测出所对应的l,部分数据如表所示:F(N)0 0.50 1.00 1.50 2.00 2.50l(cm)l010.97 12.02 13.00 13.98 15.05OO′④在秤钩上涂抹少许润滑油,将橡皮筋搭在秤钩上,如图乙所示.用两圆珠笔尖成适当角度同时拉橡皮筋的两端,使秤钩的下端达到O 点,将两笔尖的位置为A、B,橡皮筋OA 段的拉力记为F OA,OB 段的拉力记为F OB.完成下列作图和填空:(1)利用表中数据在给出的坐标系上(见答题卡)画出F﹣l 图线,根据图线求得l0= 10.0 cm.(2)测得OA=6.00cm,OB=7.60cm,则F OA 的大小为 1.80 N.(3)根据给出的标度,在答题卡上作出F OA 和F OB 的合力F′的图示.(4)通过比较F′与F oo′的大小和方向,即可得出实验结论.考点:验证力的平行四边形定则.专题:实验题.分析:(1)根据表中数据利用描点法得出对应的数据,图象与横坐标的交点即为l0;(2)橡皮筋两端拉力相等,根据题意求得总长度即可求得皮筋上的拉力;(3)通过给出的标度确定力的长度,根据平行四边形得出图象如图所示;(4)根据实验原理可明确应比较实验得出的拉力与通过平行四边形定则得出的合力.解答:解:(1)根据表格中数据利用描点法作出图象如图所示;由图可知,图象与横坐标的交点即为l0;由图可知l0=10.0cm;(2)AB 的总长度为6.00+7.60cm=13.60cm;由图可知,此时两端拉力F=1.80N;(3)根据给出的标度,作出合力如图所示;(4)只要作出的合力与实验得出的合力F00'大小和方向在误差允许的范围内相等,即可说明平行四边形定则成立;故答案为:(1)如图所示;10.0;(2)1.80N;(3)如图所示;(4)点评:本题考查验证平行四边形定则的实验,要注意通过认真分析题意掌握实验原理,注意本题中橡皮筋挂在钩上时,两端的拉力大小相等;根据总长度即可求得拉力大小.9.(8 分)(2015•ft东)如图甲所示的电路中,恒流源可为电路提供恒定电流I0,R 为定值电阻,电流表、电压表均可视为理想电表.某同学利用该电路研究滑动变阻器R L 消耗的电功率.改变R L 的阻值,记录多组电流、电压的数值,得到如图乙所示的U﹣I 关系图线.回答下列问题:(1)滑动触头向下移动时,电压表示数减小(填“增大”或“减小”).(2)I0= 1.0 A.(3)R L 消耗的最大功率为 5 W(保留一位有效数字).考点:测定电源的电动势和内阻;闭合电路的欧姆定律;电功、电功率.专题:恒定电流专题.分析:(1)分析电路结构,根据并联电路规律可知R 分流的变化,再由欧姆定律可得出电压表示数的变化;(2)由图象及并联电路的规律可分析恒定电流的大小;(3)由功率公式分析得出对应的表达式,再由数学规律可求得最大功率.解答:解:(1)定值电阻与滑动变阻器并联,当R 向下移动时,滑动变阻器接入电阻减小,由并联电路规律可知,电流表示数增大,流过R 的电压减小,故电压表示数减小;(2)当电压表示数为零时,说明R L 短路,此时流过电流表的电流即为I0;故I0 为1.0A;(3)由图可知,当I0 全部通过R 时,I0R=20;解得:R=4由并联电路规律可知,流过R L 的电流为:I=;则R L 消耗的功率为:P=I2R L==;则由数学规律可知,最大功率为:P=5W;故答案为;(1)减小;(2)1.0;(3)5点评:本题考查闭合电路欧姆定律在实验中的应用,要注意明确:一、图象的应用,能从图象得出对应的物理规律;二是注意功率公式的变形以及数学规律的正确应用.10.(18 分)(2015•ft东)如图甲所示,物块与质量为m 的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接,物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l.开始时物块和小球均静止,将此时传感装置的示数记为初始值,现给小球施加一始终垂直于l 段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25 倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6 倍,不计滑轮的大小和摩擦,重力加速度的大小为g,求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.考点:动能定理的应用;共点力平衡的条件及其应用.专题:动能定理的应用专题.分析:(1)分别对开始及夹角为60 度时进行受力分析,由共点力平衡列式,联立可求得物块的质量;(2)对最低点由向心力公式进行分析求解物块的速度,再对全过程由动能定理列式,联立可求得克服阻力做功.解答:解:(1)设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件可得:对小球:T1=mg对物块,F1+T1=Mg当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T2,传感装置的示数为F2,根据题意可知,F2=1.25F1,由平衡条件可得:对小球:T1=mgcos60°对物块:F2+T2=Mg联立以上各式,代入数据可得:M=3m;(2)设物块经过最低位置时速度大小为v,从释放到运动至最低位置的过程中,小球克服阻力做功为W f,由动能定理得:mgl(1﹣cos60°)﹣W f=mv2在最低位置时,设细绳的拉力大小为T1,传感装置的示数为F3,据题意可知,F3=0.6F1,对小球,由牛顿第二定律得:T3﹣mg=m对物块由平衡条件可得:F3+T3=Mg联立以上各式,代入数据解得:W f=0.1mgl.答:(1)物块的质量为3m;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功为0.1mgl.点评:本题考查动能定理及共点力的平衡条件的应用,要注意正确选择研究对象,做好受力分析及过程分析;进而选择正确的物理规律求解;要注意在学习中要对多个方程联立求解的方法多加训练.11.(20 分)(2015•ft东)如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O为圆心,GH 为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上级板开有一小孔.一质量为m,电量为+q 的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)带电粒子在电场中做加速运动;根据动能定理可求得电场强度的大小;(2)明确两种可能的相切情况,即可求得半径;根据洛仑兹充当向心力求解磁感应强度;(3)分析粒子在磁场中的运动,根据运动周期明确经过的圆心角,再由圆的性质明确对应的路程.解答:解:(1)设极板间电场强度大小为E,对粒子在电场中的加速运动,由动能定理可得:qE=mv2解得:E=(2)设I 区内磁感应强大小为B,粒子做圆周运动的半径为R,由牛顿第二定律得:qvB=m如图甲所示,粒子的运动轨迹与小圆相切有两种情况,若粒子轨迹与小圆外切,由几何关系可得:R=;解得:B= ;若粒子轨迹与小圆内切,由几何关系得:R= ;解得:B=(3)设粒子在I 区和II 区做圆周运动的半径分别为R1、R2,由题意可知,I 区和II 内的磁感应强度大小分别为B1=;B2=;由牛顿第二定律可得:qvB1=m ,qvB2=m代入解得:R1= ,R2= ;设粒子在I 区和II 区做圆周运动的周期分别为T1、T2,由运动学公式得:T1=,T2=由题意分析,粒子两次与大圆相切的时间间隔的运动轨迹如图乙所示,由对称性可知,I区两段圆弧所对圆心角相同,设为θ1,II 区内所对圆心角设为θ2,圆弧和大圆的两个切点与圆心O 连线间的夹角为α,由几何关系可得:θ1=120°θ2=180°α=60°粒子重复上述交替运动到H 点,设粒子I 区和II 区做圆周运动的时间分别为t1、t2,可得:t1=×T1,t2=×T2设粒子运动的路程为s,由运动学公式可得s=v(t1+t2)联立解得:s=5.5πD答:(1)极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,Ⅰ区磁感应强度的大小或;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H 点,这段时间粒子运动的路程5.5πD.点评:本题考查带电粒子在磁场和电场中的运动,要注意明确洛仑兹力充当向心力的应用,同时要注意分析可能的运动过程,特别是具有对称性的性质要注意把握.【物理3-3】12.(4 分)(2015•ft东)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的考点:布朗运动.专题:布朗运动专题.分析:布朗运动是悬浮微粒永不停息地做无规则运动,用肉眼看不到悬浮微粒,只能借助光学显微镜观察到悬浮微粒的无规则运动,肉眼看不到液体分子;布朗运动的实质是液体分子不停地做无规则撞击悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动.解答:解:A、碳素墨水滴入清水中,观察到的布朗运动是液体分子不停地做无规则撞击碳悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动,不是由于碳粒受重力作用,故A 错误;B、混合均匀的过程中,水分子做无规则的运动,碳粒的布朗运动也是做无规则运动.故B 正确;C、当悬浮微粒越小时,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡表现的越强,即布朗运动越显著,所以使用碳粒更小的墨汁,混合均匀的过程进行得更迅速.故C 正确;D、墨汁的扩散运动是由于微粒受到的来自各个方向的液体分子的撞击作用不平衡引起的.故D 错误.故选:BC点评:该题中,碳微粒的无规则运动是布朗运动,明确布朗运动的实质是解题的关键,注意悬浮微粒只有借助显微镜才能看到.13.(8 分)(2015•ft东)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图,截面积为S 的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K,压强为大气压强p0.当封闭气体温度上升至303K 时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为p0,温度仍为303K,再经过一段时间内,内部气体温度恢复到300K.整个过程中封闭气体均可视为理想气体.求:(Ⅰ)当温度上升到303K 且尚未放气时,封闭气体的压强;(Ⅱ)当温度恢复到300K 时,竖直向上提起杯盖所需的最小力.考点:理想气体的状态方程.专题:理想气体状态方程专题.分析:(I)分析初末状态的气体状态参量,由查理定律可求得后来的压强;(II)对开始杯盖刚好被顶起列平衡方程;再对后来杯内的气体分析,由查理定律及平衡关系列式,联立求解最小力.解答:解:(I)以开始封闭的气体为研究对象,由题意可知,初状态温度T0=300K,压强为P0,末状态温度T1=303,压强设为P1,由查理定律得:=代入数据解得:P1=P0;(II)设杯盖的质量为m,刚好被顶起时,由平衡条件得:P1S=P0S+mg放出少许气体后,以杯盖内的剩余气体为研究对象,由题意可知,初状态温度为T2=303K,压强P2=P0;末状态温度T3=300K,压强设为P3,由查理定律得=设提起杯盖所需的最小力为F,由平衡条件得:F+P3S=P0S+mg联立以上各式,代入数据得:F= P0S;答:(I)当温度上升到303K 且尚未放气时,封闭气体的压强为P0;(Ⅱ)当温度恢复到300K 时,竖直向上提起杯盖所需的最小力为P0S;点评:本题考查气体实验定律及共点力的平衡条件应用,要注意明确前后气体质量不同,只能分别对两部分气体列状态方程求解.【物理3-4 】14.(2015•ft 东)如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动.以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m.t=0 时刻,一小球从距物块h 高处自由落下:t=0.6s 时,小球恰好与物块处于同一高度.取重力加速度的大小g=10m/s2.以下判断正确的是()A.h=1.7mB.简谐运动的周期是0.8sC.0.6s 内物块运动的路程是0.2mD.t=0.4s 时,物块与小球运动方向相反考点:简谐运动的振动图象.专题:简谐运动专题.分析:由振动公式可明确振动的周期、振幅及位移等;再结合自由落体运动的规律即可求得h 高度;根据周期明确小球经历0.4s 时的运动方向.解答:解:A、由振动方程式可得,t=0.6s 物体的位移为y=0.2sin(2.5π×0.6)=﹣0.1m;则对小球有:h+ =gt2解得h=1.7m;故A 正确;B、由公式可知,简谐运动的周期T===0.8s;故B 正确;C、振幅为0.1m;故0.6s 内物块运动的路程为3A=0.3m;故C 错误;D、t=0.4s= ,此时物体在平衡位置向下振动,则此时物块与小球运动方向相同,故D错误;故选:AB.点评:本题考查简谐运动的位移公式,要掌握由公式求解简谐运动的相关信息,特别是位移、周期及振幅等物理量.15.(2015•ft东)半径为R、介质折射率为n 的透明圆柱体,过其轴线OO′的截面如图所示.位于截面所在平面内的一细束光线,以角i0由O 点射入,折射光线由上边界的A 点射出.当光线在O 点的入射角减小至某一值时,折射光线在上边界的B 点恰好发生反射.求A、B 两点间的距离.。

2015年安徽高考物理试卷(含解析)

2015年安徽高考物理试卷(含解析)

2015年高考物理试卷一.选择题(共7小题)1.如图示是α粒了(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是()A.M点B.N点C.P点D.Q点2.由库仑定律可知,真空中两个静止的点电荷,带电量分别为q1和q2,其间距离为r 时,它们之间相互作用力的大小为F=k,式中k为静电力常量.若用国际单位制的基本单位表示,k的单位应为()A.kg•A2•m3B.kg•A﹣2•m3•s﹣4C.kg•m2•C﹣2D.N•m2•A﹣23.图示电路中,变压器为理想变压器,a、b接在电压有效值不变的交流电流两端,R0为定值电阻,R为滑动变阻器,现将变阻器的滑片从一个位置滑动到另一位置,观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,则下列说确的是()A.电压表V1示数增大B.电压表V2,V3示数均增大C.该变压器起升压作用D.变阻器滑片是沿c→d的方向滑动4.一根长为L、横截面积为S的金属棒,其材料的电阻率为ρ,棒单位体积自由电子数为n,电子的质量为m,电荷量为e,在棒两端加上恒定的电压时,棒产生电流,自由电子定向运动的平均速率为v,则金属棒的电场强度大小为()A.B.C.ρnev D.5.如图所示,一束单色光从空气入射到棱镜的AB面上,经AB和AC两个面折射后从AC 面进入空气,当出射角i′和入射角i相等时,出射光线相对于入射光线偏转的角度为θ,已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为()A.B.C.D.6.如图所示,abcd为水平放置的平行“⊂”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为7.已知均匀带电的无穷大平面在真空中激发电场的场强大小为,其中σ为平面上单位面积所带的电荷量,ɛ0为常量,如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q,不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为()A.和B.和C.和D.和二.解答题(共5小题)8.在“验证力的平行四边形定则”实验中,某同学用图钉把白纸固定在水平放置的木板上,将橡皮条的一端固定在板上一点,两个细绳套系在橡皮条的另一端,用两个弹簧测力计分别拉住两个细绳套,互成角度地施加拉力,使橡皮条伸长,结点到达纸面上某一位置,如图所示,请将以下的实验操作和处理补充完整:①用铅笔描下结点位置,记为O;②记录两个弹簧测力计的示数F1和F2,沿每条细绳(套)的方向用铅笔分别描出几个点,用刻度尺把相应的点连成线;③只用一个弹簧测力计,通过细绳套把橡皮条的结点仍拉到位置O,记录测力计的示数F 3,;④按照力的图示要求,作出拉力F1,F2,F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较的一致程度,若有较大差异,对其原因进行分析,并作出相应的改进后再次进行实验.9.某同学为了测量一节电池的电动势和阻,从实验室找到以下器材:一个满偏电流为100μA、阻为2500Ω的表头,一个开关,两个电阻箱(0~999.9Ω)和若干导线.(1)由于表头量程偏小,该同学首先需将表头改装成量程为50mA的电流表,则应将表头与电阻箱(填“串联”或“并联”),并将该电阻箱阻值调为Ω.(2)接着该同学用改装的电流表对电池的电动势及阻进行测量,实验电路如图1所示,通过改变电阻R测相应的电流I,且作相关计算后一并记录如表:1 2 3 4 5 6R(Ω)95.0 75.0 55.0 45.0 35.0 25.0 I(mA)15.0 18.7 24.8 29.5 36.0 48.0 IR(V) 1.42 1.40 1.36 1.33 1.26 1.20 ①根据表中数据,图2中已描绘出四个点,请将第5、6两组数据也描绘在图2中,并画出IR﹣I图线;②根据图线可得电池的电动势E是V,阻r是Ω.10.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;(3)求物块在反向运动过程中克服摩擦力所做的功W.11.在xOy平面,有沿y轴负方向的匀强电场,场强大小为E(图象未画出),由A点斜射出一质量为m、带电量为+q的粒子,B和C是粒子运动轨迹上的两点,如图所示,其中l0为常数,粒子所受重力忽略不计,求:(1)粒子从A到C过程中电场力对它做的功;(2)粒子从A到C过程所经历的时间;(3)粒子经过C点时的速率.12.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.2015年高考物理试卷参考答案与试题解析一.选择题(共7小题)1.如图示是α粒了(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是()A.M点B.N点C.P点D.Q点分析:根据粒子轨迹的弯曲方向,可以判定粒子受力的方向;再根据受力的方向,判定α粒子在电场中运动时,粒子的加速度的方向.解答:解:根据轨迹弯曲的方向,可以判定粒子受力的方向大体向上,与粒子和重金属原子核的点的连线的方向相反,故M、N、P、Q是轨迹上的四点的加速度的方向中,只有P点标出的方向是正确的.故选:C2.由库仑定律可知,真空中两个静止的点电荷,带电量分别为q1和q2,其间距离为r 时,它们之间相互作用力的大小为F=k,式中k为静电力常量.若用国际单位制的基本单位表示,k的单位应为()A.kg•A2•m3B.kg•A﹣2•m3•s﹣4C.kg•m2•C﹣2D.N•m2•A﹣2分析:力学单位制规定了物理量的单位,同时根据物理量间的公式也可以分析单位之间的关系.解答:解:根据F=k可得:k=,由于F=ma,q=It,所以k=根据质量的单位是kg,加速度的单位m/s2,距离的单位是m,电流的单位是A,时间的单位s,可得k的单位是kg•A﹣2•m3•s﹣4 故选:B3.图示电路中,变压器为理想变压器,a、b接在电压有效值不变的交流电流两端,R0为定值电阻,R为滑动变阻器,现将变阻器的滑片从一个位置滑动到另一位置,观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,则下列说确的是()A.电压表V1示数增大B.电压表V2,V3示数均增大C.该变压器起升压作用D.变阻器滑片是沿c→d的方向滑动分析:根据欧姆定律分析负载电阻的变化,图中变压器部分等效为一个电源,变压器右侧其余部分是外电路,外电路中,R0与滑动变阻器R串联;然后结合闭合电路欧姆定律和串并联电路的电压、电流关系分析即可.解答:解:A、观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,即副线圈电流增大,由于a、b接在电压有效值不变的交流电流两端,匝数比不变,所以副线圈电压不变,即V1,V2示数不变,根据欧姆定律得负载电阻减小,所以变阻器滑片是沿c→d的方向滑动,故A错误,D正确,B、由于R0两端电压增大,所以滑动变阻器R两端电压减小,即电压表V3示数减小,故B错误;C、观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,即原线圈电流增大量小于副线圈电流增大量,根据电流与匝数成反比,所以该变压器起降压作用,故C错误;故选:D.4.一根长为L、横截面积为S的金属棒,其材料的电阻率为ρ,棒单位体积自由电子数为n,电子的质量为m,电荷量为e,在棒两端加上恒定的电压时,棒产生电流,自由电子定向运动的平均速率为v,则金属棒的电场强度大小为()A.B.C.ρnev D.专题:电场力与电势的性质专题.分析:利用电流的微观表达式求的电流,由电阻的定义式求的电阻,由E=求的电场强度解答:解:导体中的电流为I=neSv导体的电阻为R=导体两端的电压为U=RI场强为E=联立解得E=ρnev故选:C5.如图所示,一束单色光从空气入射到棱镜的AB面上,经AB和AC两个面折射后从AC 面进入空气,当出射角i′和入射角i相等时,出射光线相对于入射光线偏转的角度为θ,已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为()A.B.C.D.分析:由几何关系可明确在AB边入射时的入射角和折射角,再由折射定律可求得折射率.解答:解:由折射定律可知,n=;因入射角和出射角相等,即i=i′故由几何关系可知,β=;vvi=+β=;故折射率n=;故选:A.6.如图所示,abcd为水平放置的平行“⊂”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为分析:由导体切割磁感线公式可求得感应电动势的大小,由安培力公式F=BIL可求得安培力以;由P=FV即可求得功率;注意公式中的l均为导轨间的距离.解答:解:A、电路中感应电动势的大小E=Blv;公式中的l为切割的有效长度,故电动势E=Blv;故A错误;B、感应电流i==;故B正确;C、安培力的大小F=BIL=;故C错误;D、功率P=FV=;故D错误;故选:B.7.已知均匀带电的无穷大平面在真空中激发电场的场强大小为,其中σ为平面上单位面积所带的电荷量,ɛ0为常量,如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q,不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为()A.和B.和C.和D.和分析:由题意可明确两极板单独在极板部形成的场强大小,根据电场的叠加可明确合场强;相互作用力可看作极板在对方场强中的受力,即F=Eq.解答:解:两极板均看作无穷大导体板,极板上单位面积上的电荷量σ=;则单个极板形成的场强E0==,两极板间的电场强度为:2×=;两极板间的相互引力F=E0Q=;故选:D.二.解答题(共5小题)8.在“验证力的平行四边形定则”实验中,某同学用图钉把白纸固定在水平放置的木板上,将橡皮条的一端固定在板上一点,两个细绳套系在橡皮条的另一端,用两个弹簧测力计分别拉住两个细绳套,互成角度地施加拉力,使橡皮条伸长,结点到达纸面上某一位置,如图所示,请将以下的实验操作和处理补充完整:①用铅笔描下结点位置,记为O;②记录两个弹簧测力计的示数F1和F2,沿每条细绳(套)的方向用铅笔分别描出几个点,用刻度尺把相应的点连成线;③只用一个弹簧测力计,通过细绳套把橡皮条的结点仍拉到位置O,记录测力计的示数F3,记下细绳的方向;④按照力的图示要求,作出拉力F1,F2,F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较力F3与F的大小和方向的一致程度,若有较大差异,对其原因进行分析,并作出相应的改进后再次进行实验.分析:该实验采用了等效替代的方法,因此要求两次拉橡皮筋要使橡皮筋的形变相同,即将橡皮筋拉到同一点,力是矢量,因此在记录时要记录大小和方向,步骤③中要记下细绳的方向,才能确定合力的方向,步骤⑥比较力F′与F的大小和方向,看它们是否相同,得出结论.解答:解:步骤③中要记下细绳的方向,才能确定合力的方向,从而用力的图示法画出合力;步骤⑥比较力F3与F的大小和方向,看它们的一致程度,得出结论.故答案为:记下细绳的方向;力F3与F的大小和方向.9.某同学为了测量一节电池的电动势和阻,从实验室找到以下器材:一个满偏电流为100μA、阻为2500Ω的表头,一个开关,两个电阻箱(0~999.9Ω)和若干导线.(1)由于表头量程偏小,该同学首先需将表头改装成量程为50mA的电流表,则应将表头与电阻箱并联(填“串联”或“并联”),并将该电阻箱阻值调为 5.0 Ω.(2)接着该同学用改装的电流表对电池的电动势及阻进行测量,实验电路如图1所示,通过改变电阻R测相应的电流I,且作相关计算后一并记录如表:1 2 3 4 5 6R(Ω)95.0 75.0 55.0 45.0 35.0 25.0 I(mA)15.0 18.7 24.8 29.5 36.0 48.0 IR(V) 1.42 1.40 1.36 1.33 1.26 1.20 ①根据表中数据,图2中已描绘出四个点,请将第5、6两组数据也描绘在图2中,并画出IR﹣I图线;②根据图线可得电池的电动势E是 1.53 V,阻r是 2.0 Ω.分析:(1)由电表的改装原理可明确应并联一个小电阻分流来扩大电流表量程,根据并联电路规律可求得对应的电阻;(2)由描点法得出图象;再由闭合电路欧姆定律求出表达式,由图象即可求出电动势和电阻.解答:解:(1)电流表量程扩大于50mA,即扩大=500倍,则应并联一个小电阻,其分流应为表头电流的499倍,则有:R=≈5Ω;(2)根据描点法作出5、6两点,再由直线将各点相连即得出对应的图象如图所示;(3)因IR即表示电源的路端电压,则有;IR=E﹣I(r+R A),则由图象可知,对应的电动势为1.53V,阻为:r=﹣5=2.0Ω故答案为:(1)并联,5;(2)①如图所示;②1.53,2.010.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;(3)求物块在反向运动过程中克服摩擦力所做的功W.分析:(1)对物块应用动能定理可以求出动摩擦因数.(2)对物块应用动量定理可以求出作用力大小.(3)应用动能定理可以求出物块反向运动过程克服摩擦力做的功.解答:解:(1)物块从A到B过程,由动能定理得:﹣μmgs AB=mv B2﹣mv02,代入数据解得:μ=0.32;(2)以向右为正方向,物块碰撞墙壁过程,由动量定理得:Ft=mv﹣mv B,即:F×0.05=0.5×(﹣6)﹣0.5×7,解得:F=﹣130N,负号表示方向向左;(3)物块向左运动过程,由动能定理得:W=mv2=×0.5×62=9J;答:(1)物块与地面间的动摩擦因数μ为0.32;(2)若碰撞时间为0.05s,碰撞过程中墙面对物块平均作用力的大小F为130N;(3)物块在反向运动过程中克服摩擦力所做的功W为9J.11.在xOy平面,有沿y轴负方向的匀强电场,场强大小为E(图象未画出),由A点斜射出一质量为m、带电量为+q的粒子,B和C是粒子运动轨迹上的两点,如图所示,其中l0为常数,粒子所受重力忽略不计,求:(1)粒子从A到C过程中电场力对它做的功;(2)粒子从A到C过程所经历的时间;(3)粒子经过C点时的速率.分析:(1)由电场力做功的特点可明确W=Uq,而U=Ed,求得沿电场线方向上的距离即可求得功;(2)粒子在x轴方向上做匀速直线运动,根据水平位移可明确AO、BO及BC时间相等,由竖直方向的匀变速直线运动可求得时间;(3)由类平抛运动规律可求得水平和竖直竖直,再由运动的合成与分解求得合速度.解答:解:(1)粒子从A到C电场力做功为W=qE(y A﹣y C)=3qEl0(2)根据抛体运动的特点,粒子在x轴方向做匀速直线运动,由对称性可知,轨迹是最高点D在y轴上,可令t A0=t oB=T,t BC=T;由Eq=ma得:a=又y=aT2 y b+3l0=a(2T)2 解得:T=则A到C过程所经历的时间t=3;(3)粒子在DC段做类平抛运动,则有:2l0=v Cx(2T);v cy=a(2T)v c==答:(1)粒子从A到C过程中电场力对它做的功3qEl 0(2)粒子从A到C过程所经历的时间3;(3)粒子经过C点时的速率为.12.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.分析:(1)(2)由万有引力定律,分别求出单个的力,然后求出合力即可.(3)C与B的质量相等,所以运行的规律也相等,然后结合向心力的公式即可求出C的轨道半径;(4)三星体做圆周运动的周期T相等,写出C的西西里岛表达式即可求出.解答:解:(1)由万有引力定律,A星受到B、C的引力的大小:方向如图,则合力的大小为:(2)同上,B星受到的引力分别为:,,方向如图;沿x方向:沿y方向:可得:=(3)通过对于B的受力分析可知,由于:,,合力的方向经过BC的中垂线AD的中点,所以圆心O一定在BC的中垂线AD的中点处.所以:(4)由题可知C的受力大小与B的受力相同,对C星:整理得:答:(1)A星体所受合力大小是;(2)B星体所受合力大小是;(3)C星体的轨道半径是;(4)三星体做圆周运动的周期T是.。

2015高考物理一轮复习 阶段性效果检测题11(含解析)

2015高考物理一轮复习 阶段性效果检测题11(含解析)

2015高中物理一轮复习阶段性效果检测题11一、选择题(本大题共10小题,每小题7分,共70分。

多选题已在题号后标出,选不全得4分)1.(2013·江门模拟)在已接电源的闭合电路中,关于电源的电动势、内电压、外电压的关系应是( )A.如果外电压增大,则内电压增大,电源电动势也会随之增大B.如果外电压减小,内电阻不变,内电压也就不变,电源电动势也随外电压减小C.如果外电压不变,则内电压减小时,电源电动势也随内电压减小D.如果外电压增大,则内电压减小,电源电动势始终为二者之和,保持恒定2.(多选)(2013·绍兴模拟)电动势为E,内阻为r的电源,向可变电阻R供电,关于路端电压说法正确的是( )A.因为电源电动势不变,所以路端电压也不变B.因为U=IR,所以当I增大时,路端电压也增大C.因为U=E-Ir,所以当I增大时,路端电压减小D.若外电路断开,则路端电压为E3.有a、b、c、d四个电阻,它们的U -I 关系如图所示,其中电阻最小的是( )4.(2013·福州模拟)一电池外电路断开时的路端电压为3 V,接上8 Ω的负载电阻后路端电压降为V,则可以判定电池的电动势E和内电阻r为( )= V,r=1 Ω=3 V,r=2 Ω= V,r=2 Ω=3 V,r=1 Ω5.有四盏灯,如图所示连接在电路中,L 1和L2都标有“220 V 100 W”字样,L3和L4都标有“220 V 40 W”字样,把电路接通后,最暗的是( )6.(2013·厦门模拟)在如图所示的电路中,E为电源电动势,r为电源内阻,R 1和R3均为定值电阻,R2为滑动变阻器。

当R2的滑动触头在a端时合上开关S,此时三个电表A1、A2和V的示数分别为I1、I2和U。

现将R2的滑动触头向b端移动,则三个电表示数的变化情况是( )增大,I2不变,U增大减小,I2增大,U减小增大,I2减小,U增大减小,I2不变,U减小7.(多选)(2013·青岛模拟)如图所示,电阻R1=20 Ω,电动机绕线电阻R2=10 Ω,当开关S断开时,电流表的示数是I1=0.5 A;当开关S闭合后,电动机转动起来,电路两端的电压不变,此时电流表的示数I和电路消耗的电功率P应满足( )=1.5 A <1.5 A=15 W <15 W8.如图所示,电源电动势为6 V,当开关S接通时,灯泡L1和L2都不亮,用电压表测得各部分电压是U ad=0,U cd=6 V,U ab=6 V,由此可判定( )和L2的灯丝都断了的灯丝断了的灯丝断了D.变阻器R断路9.(多选)(2013·济南模拟)如图所示的电路,a、b、c为三个相同的灯泡,其电阻大于电源内阻,当滑动变阻器R的滑片P向上移动时,下列判断中正确的是( )灯中电流变化值小于c灯中电流变化值、b两灯变亮,c灯变暗C.电源输出功率增大D.电源的供电效率增大10.如图所示的电路中,电源电动势E=3 V,内电阻r=1 Ω,定值电阻R1=3 Ω,R2=2 Ω,电容器的电容C=100 μF,则下列说法正确的是( )A.闭合开关S,电路稳定后电容器两端的电压为 VB.闭合开关S,电路稳定后电容器所带电荷量为×10-4 CC.闭合开关S,电路稳定后电容器极板a所带电荷量为3×10-4 CD.先闭合开关S,电路稳定后断开开关S,通过电阻R1的电荷量为×10-4 C二、计算题(本大题共2小题,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元评估检测(十二)第十三章(60分钟 100分)一、选择题(本大题共10小题,每小题6分,共60分。

每小题至少一个答案正确,选不全得4分)1.(2013·梧州模拟)如图所示,单匝矩形线圈在匀强磁场中匀速转动,其转动轴线OO′与磁感线垂直。

已知匀强磁场的磁感应强度B=1T,线圈所围面积S=0.1m2,转速为12r/min。

若从中性面开始计时,则线圈中产生的感应电动势的瞬时值表达式应为( )A.e=12πsin120t(V)B.e=24πsin120πt(V)C.e=0.04πsin0.4πt(V)D.e=0.4πcos2πt(V)2.(2013·绍兴模拟)某交流发电机给灯泡供电,产生正弦式交变电流的图像如图所示,下列说法中正确的是( )A.交变电流的频率为0.02 HzB.交变电流的瞬时表达式为i=5cos50πt(A)C.在t=0.01s时,穿过交流发电机线圈的磁通量最大D.若发电机线圈电阻为0.4Ω,则其产生的热功率为5 W3.关于电磁波和电磁场,下列叙述中正确的是( )A.均匀变化的电场在它的周围空间产生均匀变化的磁场B.电磁波中每一处的电场强度和磁感应强度总是互相垂直的,且与波的传播方向垂直C.电磁波和机械波一样依赖媒介传播D.只要空间中某个区域有振荡的电场或磁场,就能产生电磁波4.(2013·贺州模拟)在真空中传播的电磁波,当它的频率增加时,它的传播速度及其波长( )A.速度不变,波长减小B.速度不变,波长增大C.速度减小,波长变大D.速度增大,波长不变5.(2013·临沂模拟)随着社会经济的发展,人们对能源的需求也日益扩大,节能变得越来越重要。

某发电厂采用升压变压器向某一特定用户供电,用户通过降压变压器用电,若发电厂输出电压为U1,输电导线总电阻为R,在某一时段用户需求的电功率为P0,用户的用电器正常工作的电压为U2。

在满足用户正常用电的情况下,下列说法正确的是( )A.输电线上损耗的功率为错误!未找到引用源。

B.输电线上损耗的功率为错误!未找到引用源。

C.若要减少输电线上损耗的功率可以采用更高的电压输电D.采用更高的电压输电会降低输电的效率6.为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L1、L2,电路中分别接了理想交流电压表V1、V2和理想交流电流表A1、A2,导线电阻不计,如图所示。

当开关S闭合后下列说法正确的是( )A.A1示数变大,A1与A2示数的比值不变B.A1示数变大,A1与A2示数的比值变大C.V2示数变小,V1与V2示数的比值变大D.V2示数不变,V1与V2示数的比值不变7.(2013·济南模拟)如图所示,理想变压器原、副线圈的匝数比为10∶1,电压表和电流表均为理想电表,R为副线圈的负载电阻。

现在原线圈a、b两端加上交变电压u,其随时间变化的规律u=220错误!未找到引用源。

sin100πtV,则( )A.副线圈中产生的交变电流频率为50HzB.电压表的示数为22错误!未找到引用源。

VC.若电流表示数为0.1A,则原线圈中的电流为1 AD.若电流表示数为0.1A,则1 min内电阻R上产生的焦耳热为132J8.(2013·南宁模拟)如图甲所示,矩形金属线框绕与磁感线垂直的转轴在匀强磁场中匀速转动,输出交流电的电动势图像如图乙所示,经原、副线圈的匝数比为1∶10的理想变压器给一灯泡供电,如图丙所示,副线圈电路中灯泡额定功率为22W。

现闭合开关,灯泡正常发光。

则( )A.t=0.01s时刻穿过线框回路的磁通量为零B.交流发电机的转速为50r/sC.变压器原线圈中电流表示数为1AD.灯泡的额定电压为220错误!未找到引用源。

V9.(2012·江苏高考)某同学设计的家庭电路保护装置如图所示,铁芯左侧线圈L1由火线和零线并行绕成。

当右侧线圈L2中产生电流时,电流经放大器放大后,使电磁铁吸起铁质开关K,从而切断家庭电路。

仅考虑L1在铁芯中产生的磁场,下列说法正确的有( )A.家庭电路正常工作时,L2中的磁通量为零B.家庭电路中使用的电器增多时,L2中的磁通量不变C.家庭电路发生短路时,开关K将被电磁铁吸起D.地面上的人接触火线发生触电时,开关K将被电磁铁吸起10.(2013·淄博模拟)面积为S的两个电阻相同的线圈,分别放在如图所示的磁场中,图甲中是磁感应强度为B0的匀强磁场,线圈在磁场中以周期T绕OO′轴匀速转动,图乙中磁场变化规律为B=B0cos错误!未找到引用源。

,从图示位置开始计时,则( )A.两线圈的磁通量变化规律相同B.两线圈中感应电动势达到最大值的时刻不同C.经相同的时间t(t>T),两线圈产生的热量相同D.从此时刻起,经错误!未找到引用源。

时间,流过两线圈横截面的电荷量相同二、实验题(本大题共2小题,共15分)11.(2013·玉林模拟)(5分)用示波器观察交流信号时,在显示屏上显示出一个完整的波形,如图所示。

经下列四组操作之一,使该信号显示出两个完整的波形,且波形幅度增大。

此组操作是( )A.调整X增益旋钮和竖直位移旋钮B.调整X增益旋钮和扫描微调旋钮C.调整扫描微调旋钮和Y增益旋钮D.调整水平位移旋钮和Y增益旋钮12.(10分)示波器面板如图所示,图甲为一信号源。

(1)若要观测此信号源发出的正弦交流信号的波形(正弦交流信号的电流i随时间t做周期性变化的图像如图乙所示),应将信号源的a端与示波器面板上的接线柱相连,b端与接线柱相连。

(2)若示波器所显示的输入波形如图丙所示,要将波形上移,应调节面板上的旋钮;要使此波形横向展宽,应调节旋钮;要使屏上能够显示出3个完整的波形,应调节旋钮。

三、计算题(本大题共2小题,共25分。

要有必要的文字说明和解题步骤,有数值计算的要注明单位)13.(12分)交流发电机的发电原理是矩形线圈在匀强磁场中绕垂直于磁场的轴OO′匀速转动。

一小型发电机的线圈共220匝,线圈面积S=0.05 m2,线圈转动的频率为50Hz,线圈内阻不计,磁场的磁感应强度B=错误!未找到引用源。

T。

为用此发电机所发出交变电流带动两个标有“220V,11 kW”的电机正常工作,需在发电机的输出端a、b与电机之间接一个理想变压器,电路如图所示,求:(1)发电机的输出电压有效值为多少?(2)变压器原、副线圈的匝数比为多少?(3)与变压器原线圈串联的交流电流表的示数为多大?14.(2013·百色模拟)(13分)水力发电具有防洪、防旱、减少污染等多项功能,是功在当代、利在千秋的大事,现在水力发电已经成为我国的重要能源之一。

某小河水流量为40 m3/s,现在欲在此河段上筑坝安装一台发电功率为1 000 kW的发电机发电。

(1)设发电机输出电压为500V,在输送途中允许的电阻为5Ω,许可损耗总功率的5%,则所用升压变压器原、副线圈匝数比应是多大?(2)若所用发电机总效率为50%,要使发电机能发挥它的最佳效能,则拦河坝至少要建多高?(g取10m/s2)答案解析1.【解析】选C。

矩形线圈在匀强磁场中匀速转动产生感应电动势的最大值为E m=BSω=BS〃2πn=1×0.1×0.4π(V)=0.04π(V)角速度:ω=2πn=2π×错误!未找到引用源。

rad/s=0.4πrad/s从中性面开始计时,则感应电动势瞬时值表达式为e=E m sin(ωt)=0.04πsin0.4πt(V),只有C项正确。

2.【解析】选D。

由题图可知交流电的周期T=0.02s,所以频率f=错误!未找到引用源。

=50Hz,A错误;角速度ω=2πf=100πrad/s,最大值I m=5 A,瞬时表达式应为i=5cos100πt(A),B错误;t=0.01 s时,感应电流最大,磁通量为零,C错误;由P=I2R=错误!未找到引用源。

R知,D正确。

3.【解析】选B、D。

根据麦克斯韦电磁场理论可知,均匀变化的电场在它的周围产生稳定的磁场,故A错误。

因电磁波中每一处的电场强度和磁感应强度总是互相垂直的,且与波的传播方向垂直,所以电磁波是横波,故B正确。

电磁波可以在真空中传播,故C错误。

只要空间中某个区域有振荡的电场或磁场,就在周期性变化的电场周围产生同周期变化的磁场,周期性变化的磁场周围产生同周期变化的电场,这样由近及远传播,形成了电磁波,故D正确。

4.【解析】选A。

电磁波在真空中的传播速度始终为3×108m/s,与频率无关。

由v=λf知,波速不变,频率增加,波长减小,故B、C、D错误,A 正确。

5.【解析】选C。

设发电厂输出功率为P,则输电线上损耗的功率ΔP=P-P0,ΔP=I2R=错误!未找到引用源。

,A、B两项错误;采用更高的电压输电,可以减小导线上的电流,故可以减少输电线上损耗的功率,C项正确;采用更高的电压输电,输电线上损耗的功率减少,则发电厂输出的总功率减少,故可提高输电的效率,D项错误。

6.【解析】选A、D。

原电压U1不变,变压器匝数比不变,故U2不变;闭合开关S,副线圈所在电路中的总电阻变小,I2变大,由I1=错误!未找到引用源。

I2可知,I1变大,但错误!未找到引用源。

=错误!未找到引用源。

比值不变,选项A、D正确。

【总结提升】理想变压器动态分析的两种类型(1)匝数比不变,原、副线圈的电压U1、U2不变,电流I1、I2,功率P1、P2随负载电阻的变化而变化。

(2)负载电阻不变,原线圈的电压U1不变,副线圈两端的电压U2、电流I1、I2,功率P1、P2随匝数比的变化而变化。

7.【解析】选A、D。

副线圈中产生的交变电流频率与原线圈交变电流频率一样,均为f=错误!未找到引用源。

,T=错误!未找到引用源。

=错误!未找到引用源。

s=错误!未找到引用源。

s,A对;电压表的示数为有效值,应该等于20V,B错;若电流表示数为0.1A,则原线圈中的电流为0.01 A,原线圈的输入功率P=220×0.01W=2.2 W,由于是理想变压器,所以副线圈的输出功率也是2.2W,1min内电阻R上产生的焦耳热为132J,C错D对。

8.【解析】选B、C。

由题图知t=0.01s时e=0,此时线圈平面位于中性面,磁通量最大,A错;周期T=0.02s,所以n=错误!未找到引用源。

=50r/s,B对;由理想变压器原理得:错误!未找到引用源。

=错误!未找到引用源。

,其中U1=错误!未找到引用源。

V,得U L=220V,I L=错误!未找到引用源。

=0.1A,而错误!未找到引用源。

=错误!未找到引用源。

,得I1=1A,C对;灯泡的额定电压为交流电压的有效值220V,D错。

相关文档
最新文档