上海市闸北区2016年高三数学二模(理)试卷及解析

合集下载

2016上海高三二模含答案

2016上海高三二模含答案

浦东新区二模测试试卷 高三数学2016.4.23、注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.不等式21x >的解为 .2.已知复数z 满足2)1(=+i z (i 为虚数单位),则z = .3.关于,x y 的方程22240x y x y m ++-+=表示圆,则实数m 的取值范围是 . 4.函数sin 3cos y x x =-的最大值为 . 5.若0lim =∞→nn x ,则实数x 的取值范围是 .6.已知一个关于y x ,的二元线性方程组的增广矩阵是⎪⎪⎭⎫⎝⎛-210211,则y x += . 7.双曲线1322=-y x 的两条渐近线的夹角为 . 8.已知1()y f x -=是函数3()f x x a =+的反函数,且1(2)1f -=,则实数a = .9.二项式4)2(x x +的展开式中,含3x 项系数为 .10.定义在R 上的偶函数()y f x =,在),0[+∞上单调递增,则不等式)3()12(f x f <-的解是 .11.如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E 分别是BC 、AP 的中点. 则异面直线AC 与DE 所成角的大小为 .12.若直线l 的方程为0=++c by ax (b a ,不同时为零),则下列命题正确的是 .(1)以方程0=++c by ax 的解为坐标的点都在直线l 上; (2)方程0=++c by ax 可以表示平面坐标系中的任意一条直线; (3)直线l 的一个法向量为),(b a ; (4)直线l 的倾斜角为arctan()ab-.二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.设椭圆的一个焦点为)0,3(,且b a 2=,则椭圆的标准方程为 ( )()A 1422=+y x ()B 1222=+y x ()C 1422=+x y ()D 1222=+x y 14.用1,2,3,4、5组成没有重复数字的三位数,其中是奇数的概率为 ( )()A15 ()B 25 ()C 35 ()D 4515.下列四个命题中,为真命题的是 ( )PABCDE()A 若a b >,则22ac bc > ()B 若a b >,c d >则a c b d ->-()C 若a b >,则22a b >()D 若a b >,则11a b<16.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为 ( )()A 84 ()B 78 ()C 81 ()D 96 17.等差数列}{n a 的前n 项和为n S ,若17017=S ,1197a a a ++则的值为 ( )()A 10 ()B 20 ()C 25()D 30 18.“直线l 垂直于ABC △的边AB ,AC ”是“直线l 垂直于ABC △的边BC ”的 ( )()A 充分非必要条件 ()B 必要非充分条件 ()C 充要条件()D 既非充分也非必要条件19.函数1, 0()=2ln , >0x x f x xx x ⎧-<⎪⎨⎪-+⎩的零点个数为 ( ) ()A 0 ()B 1 ()C 2 ()D 320.某股民购买一公司股票10万元,在连续十个交易日内,前五个交易日,平均每天上涨5%,后五个交易日内,平均每天下跌4.9%. 则股民的股票赢亏情况(不计其它成本,精确到元)( )()A 赚723元 ()B 赚145元 ()C 亏145元 ()D 亏723元21.已知数列{}n a 的通项公式2,n a n n N *=∈,则5231234201220134345620142015a a a a a a a a a a a a a a a a ++++= ( ) ()A 16096-()B 16104- ()C 16112-()D 16120- 22.如果函数)(x f y =在区间I 上是增函数,而函数xx f y )(=在区间I 上是减函数,那么称函数)(x f y =是区间I 上“缓增函数”,区间I 叫做“缓增区间”. 若函数2321)(2+-=x x x f 是区间I 上“缓增函数”,则“缓增区间”I 为 ( )()A ),1[∞+ ()B ]3,0[ ()C ]1,0[ ()D ]3,1[23.设θ为两个非零向量,a b 的夹角,已知对任意实数t ,||b ta -的最小值为2,则 ( )()A 若θ确定,则||a 唯一确定 ()B 若θ确定,则||b 唯一确定()C 若||a 确定,则θ唯一确定 ()D 若||b 确定,则θ唯一确定24.已知12,x x 是关于x 的方程2(21)0x mx m +-+=的两个实数根,则经过两点211(,)A x x ,222(,)B x x 的直线与椭圆221164x y +=公共点的个数是 ( ) ()A 2 ()B 1()C 0()D 不确定三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)已知函数xxy -+=11lg的定义域为集合A ,集合)1,(+=a a B . 若B A ⊆,求实数a 的取值范围. 26.(本题满分8分)如图所示,圆锥SO 的底面圆半径1||=OA ,其侧面展开图是一个圆心角为32π的扇形,求此圆锥的体积. 27.(本题满分8分)已知直线12y x =与抛物线22(0)y px p =>交于O 、A 两点(F 为抛物线的焦点,O 为坐标原点),若17AF =,求OA 的垂直平分线的方程.28.(本题满分12分,第1小题6分、第2小题6分)在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且c b =,A ∠的平分线为AD ,若.AB AD mAB AC ⋅=⋅(1)当2m =时,求cos A 的值;(2)当(1,3a b ∈时,求实数m 的取值范围.29.(本题满分13分,第1小题6分、第2小题7分)在数列{}n a ,{}n b 中,13a =,15b =,142n n b a ++=,142n n a b ++=(*n N ∈). (1)求数列{}n n b a -、{}n n a b +的通项公式;(2)设n S 为数列{}n b 的前n 项的和,若对任意*n N ∈,都有(4)[1,3]n p S n -∈,求实数p 的取值范围. 30.(本题满分8分)某风景区有空中景点A 及平坦的地面上景点B .已知AB 与地面所成角的大小为60,点A 在地面上的射影为H ,如图.请在地面上选定点M ,使得AB BMAM+达到最大值.31.(本题满分10分,第1小题4分、第2小题6分)设函数x x x f sin )(=(20π≤<x ). (1)设0,0>>y x 且2π<+y x ,试比较)(y x f +与)(x f 的大小;(2)现给出如下3个结论,请你分别指出其正确性,并说明理由.①对任意]2,0(π∈x 都有1)(cos <<x f x 成立;②对任意0,3x π⎛⎫∈ ⎪⎝⎭都有<)(x f !11!9!7!5!31108642x x x x x -+-+-成立; ③若关于x 的不等式k x f <)(在]2,0(π有解,则k 的取值范围是),2(+∞π.32.(本题满分12分,第1小题5分、第2小题7分)已知三角形ABC △的三个顶点分别为)0,1(-A ,)0,1(B ,(0,1)C .(1)动点P 在三角形ABC △的内部或边界上,且点P 到三边,,AC AB BC 的距离依次成等差数列,求点P 的轨迹方程;(2)若0a b <≤,直线l :y ax b =+将ABC △分割为面积相等的两部分,求实数b 的取值范围.浦东新区2015学年度第一学期期末质量测试高三数学参考答案及评分标准一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,O否则一律得零分.1.0x >; 2.i -1; 3.(,5)-∞; 4.2; 5.)1,1(-; 6.6; 7.3π; 8.1; 9.24; 10.(1,2)-; 11.42arccos(7arctan ); 12.(1)、(2)、(3). 二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分. 13.()A ; 14.()C ; 15.()C ; 16.()B ; 17.()D ; 18.()A ; 19.()C ; 20.()D ; 21.()A ; 22.()D ; 23.()B ; 24.()A .三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)解:集合)1,1(-=A ,……………………………………………………………………3分因为B A ⊆,所以 ⎩⎨⎧≤+-≥111a a ,01≤≤-⇒a .…………………………………6分即[]0,1-∈a . ………………………………………………………………………7分 26.(本题满分8分)解:因为1||=OA ,所以弧AB 长为π2,……………………………………………2分又因为32π=∠BSA ,则有ππ232=⋅SA ,所以3=SA .……………………4分在SOA Rt ∆中,1||=OA.h SO ==22=, …………………6分所以圆锥的体积ππ322312==h r V . ………………………………………8分27.(本题满分8分)解:OA 的方程为:12y x =. 由2212y px y x⎧=⎪⎨=⎪⎩ 得280x px -=, 所以(8,4)A p p ,……………………………………………………………………3分 由17AF =,可求得2p =.………………………………………………………5分 所以(16,8)A ,AO 中点(8,4)M .…………………………………………………6分 所以OA 的垂直平分线的方程为:2200x y +-=.………………………………8分28.(本题满分12分,第1小题6分、第2小题6分) 解:(1)由.b c = 又2.AB AD AB AC ⋅=⋅ 得A bc AAb b cos 22cos)2cos (⋅=⋅………2分 2cos 2cos 2AA ∴=…………………………………………………………………4分 1cos 2cos .2A A += 1cos .3A ∴= ……………………………………………6分(2)由.AB AD mAB AC ⋅=⋅ 得1cos 21A m =-;…………………………………8分又222cos 2b c a A bc +-==222221122b a a b b -⎛⎫=-∈ ⎪⎝⎭11(,)32,…………………10分 所以111(,)2132m ∈-,3(,2)2m ∴∈.……………………………………………12分29.(本题满分13分,第1小题6分、第2小题7分)解:(1)因为122n n b a +=+,122n n a b +=+,111()2n n n n b a b a ++-=--,即数列{}n n b a -是首项为2,公比为12-的等比数列,所以112()2n n n b a --=⋅-.…………………………………………………………3分111()42n n n n a b a b +++=++,1118(8)2n n n n a b a b +++-=+-,1180a b +-=,所以,当*n N ∈时,80n n a b +-=,即8n n a b +=.…………………………6分(2)由1812()2n n n n n a b b a -+=⎧⎪⎨-=⋅-⎪⎩ 得114()2n n b -=+-,214[1()]32n n S n =+--,21(4)[1()]32n n p p S n -=--,211[1()]332n p ≤--≤, 因为11()02n -->,所以1231131()1()22nnp ≤≤----.………………………8分 当n 为奇数时,11111()1()22n n=--+随n 的增大而增大, 且nnp )21(1332)21(11+≤≤+,2321≤≤p ,323≤≤p ;………………………10分 当n 为偶数时,11111()1()22n n=---随n 的增大而减小, 且n n p )21(1332)21(11-≤≤-,33234≤≤p ,292≤≤p . 综上,32≤≤p .…………………………………………………………………13分30.(本题满分8分)解:因为AB 与地面所成的角的大小为60,AH 垂直于地面,BM 是地面上的直线,所以60,60≥∠=∠ABM ABH .∵,sin sin sin BAMA BM M AB ==…………………………………………………………2分∴()BM B M B A M AM BM AB sin sin sin sin sin sin ++=+=+sin sin cos cos sin 1cos sin cos sin sin M B M B M BM M B B +++==+22cos 2sin cos cot sin cos sin 2B B M M M M B =+=+……………………………4分 cot 30sin cos 3sin cos 2sin(30).M M M M M ≤+=+=+……………6分当60=∠=∠B M 时,AB BMAM+达到最大值,此时点M 在BH 延长线上,HM BH =处.……………………………………8分31.(满分10分,第1小题4分、第2小题6分) 解:(1)方法一(作商比较):显然0)(>x f ,0)(>+y x f ,于是x y x x yx x y x x x x y x y x x f y x f sin sin sin cos cos sin sin )sin()()(++=⋅++=+. ………1分因为x x y x x x x y sin cos sin 00sin 1cos 0<<⇒⎭⎬⎫><<.……………………………2分又x y y x x x x x x x y y sin sin cos 0sin cos 0tan 0sin 0<<⇒⎭⎬⎫<<⇒<<<<.……3分 所以x y x x y x x y x x sin sin sin cos cos sin 0+<+<. 即)()(1)()(x f y x f x f y x f <+⇒<+.…………………………………………4分 方法二(作差比较):因为0)1(cos sin 0sin 1cos 0<-⇒⎭⎬⎫><<y x x x x y .…………………………………1分又0sin sin cos sin cos 0tan 0sin 0<-⇒⎭⎬⎫<<⇒<<<<x y y x x x x x x x y y .……2分 xy x xy x y x x x f y x f )(sin )()sin()()(++-+=-+0)()sin sin cos ()1(cos sin <+-+-=xy x x y y x x y x x .即)()(x f y x f <+.………………………………………………………………4分(2)结论①正确,因20π<<x .xx x x x x cos 1sin 1tan sin 0<<⇒<<<⇒. 1)(cos <<⇒x f x .………………………………6分结论②错误,举反例: 设=)(x g !11!9!7!5!31108642x x x x x -+-+-.(利用计算器)010*********.3)5.0()5.0(14>⨯=--g f 等………………………………8分(010493766163.3)6.0()6.0(13>⨯=--g f ,010*********.1)1()1(10>⨯=--g f ,0)9.0()9.0(,0)8.0()8.0(,0)7.0()7.0(>->->-g f f f g f 均可).结论③正确,由)()(x f y x f <+知xxx f sin )(=在区间]2,0(π上是减函数.所以ππ2)()2()(≥⇒≥x f f x f ,又1)(<x f ,所以xxx f sin )(=的值域为)1,2[π.要使不等式k x f <)(在]2,0(π有解,只要π2>k 即可.………………………10分32.(满分12分,第1小题5分、第2小题7分) 解:(1)法1:设点P 的坐标为(),x y ,则由题意可知:11222x y x y y -++-=,由于10x y -+≥,10x y +-≤,0y ≥,…2分222y =,…………………………………………………4分 化简可得:21y =2222x ≤≤5分 法2:设点P 到三边,,AC AB BC 的距离分别为123,,d d d ,其中2d y =,||2|2|2AB AC BC ===.所以 1313221221d d yy y +=⎧⎪⇒=⎨+=⎪………4分 于是点P 的轨迹方程为12-=y (2222-≤≤-x )……………………5分 (2)由题意知道01a b <≤<,情况(1)b a =.直线l :(1)y a x =+,过定点()1,0A -,此时图像如右下: 由平面几何知识可知,直线l 过三角形的重心10,3⎛⎫⎪⎝⎭,从而13b a ==.………………………………………………7分情况(2)b a >.此时图像如右下:令0y =得1bx a=-<-,故直线l 与两边,BC AC 分别相交,设其交点分别为,D E ,则直线l 与三角形两边的两个交点坐标()11,D x y 、()22,E x y 应该满足方程组:()()110y ax by x x y =+⎧⎪⎨--+-=⎪⎩. 因此,1x 、2x 是一元二次方程:()()()()()()11110a x b a x b -+-++-=的两个根.即()22212(1)(1)0a x a b x b -+-+-=, 由韦达定理得:()212211b x x a -=-而小三角形与原三角形面积比为12x x -,即1212x x =-.所以()221112b a -=--,()22112a b =--,亦即2112a b -=-再代入条件b a >,解得103a <<,从而得到113b ⎛⎫∈ ⎪ ⎪⎝⎭.……………………………………………………………11分综合上述(1)(2)得:113b ⎛⎤∈ ⎥ ⎝⎦.……………………………………………12分解法2:由题意知道01a b <≤< 情况(1)b a =.直线l 的方程为:(1)y a x =+,过定点()1,0A -, 由平面几何知识可知,直线l 应该过三角形的重心10,3⎛⎫ ⎪⎝⎭,从而13b a ==.……………………………………………………………………7分 情况(2)b a >.设直线l :y ax b =+分别与边[]:1,0,1BC y x x =-+∈,边[]:1,1,0AC y x x =+∈-的交点分别为点,D E , 通过解方程组可得:1(,)11b a b D a a -+++,1(,)11b a bE a a ----,又点(0,1)C , ∴0111112111111CDE ba b S a a b a ba a ∆-+=++----=12,同样可以推出()22112a b --=.亦即1b =-b a >,解得103a <<,从而得到1123b ⎛⎫∈- ⎪⎝⎭.………………………………………………………11分综合上述(1)(2)得:1123b ⎛⎤∈-⎥⎝⎦.………………………………………12分解法3:情况(1)b a =.直线l 的方程为:(1)y a x =+,过定点()1,0A -, 由平面几何知识可知,直线l 过三角形的重心10,3⎛⎫ ⎪⎝⎭,从而13b a ==.………………………………………………………………………7分 情况(2)b a >.令0y =,得1bx a=-<-,故直线l 与两边,BC AC 分别相交,设其交点分别为,D E ,当a 不断减小时,为保持小三角形面积总为原来的一半,则b 也不断减小.当//DE AB 时,CDE ∆与CBA ∆相似,由面积之比等于相似比的平方.可知2211=-b ,所以12b >-,综上可知1123b ⎛⎤∈- ⎥ ⎝⎦.…………………………………………………………12分2015年1月上海市奉贤区高三数学(理科)一模试卷及参考答案一、填空题(每空正确3分,满分36分)1.已知全集U R =,集合{|21}P x x =-≥,则=P .2.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽E D ACB样的方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量n = .3.设41:<≤x α,m x ≤:β,若α是β的充分条件,则实数m 的取值范围是 .4.若双曲线122=-ky x 的一个焦点是(3,0),则实数k = . 5.已知圆222:C x y r +=与直线34100x y -+=相切,则圆C 的半径r = .6.若i +1是实系数一元二次方程02=++q px x 的一个根,则=+q p .7.盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和为5”的概率是 . 8.函数⎥⎦⎤⎢⎣⎡-∈=2,2,sin ππx x y 的反函数为 . 9.在ABC∆中,已知14==,且ABC ∆的面积S =,则AC AB ⋅的值为 . 10.已知⎪⎪⎭⎫⎝⎛-βαcos 200sin 为单位矩阵,且,2παβπ⎡⎤∈⎢⎥⎣⎦、,则tan()αβ+= . 11.如图,在矩形ABCD 中,E 为边AD 的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (E 在线段AD 上).由两圆弧EB 、EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为 .12.定义函数348122()1()222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]8,1内的所有零点的和为 .二、单项选择题(每题正确3分,满分36分)13.正方体中两条面对角线的位置关系是 ( )A .平行B .异面C .相交D .平行、相交、异面都有可能14.下列命题中正确的是 ( ) A .任意两复数均不能比较大小 B .复数z 是实数的充要条件是z z =C .复数z 是纯虚数的充要条件是0Imz =D .1i +的共轭复数是1i -15.与函数y x =有相同图像的一个函数是 ( )A .y =B .log (01)a x y a a a =>≠且C .2x y x= D .log (01)xa y a a a =>≠且16.下列函数是在(0,1)上为减函数的是 ( )A .cos y x =B .2xy = C .sin y x = D .x y tan =17.在空间中,设m 、n 是不同的直线,α、β是不同的平面,且m α⊂≠,n β⊂≠,则下列命题正确的是 ( )A .若n m //,则βα//B .若m 、n 异面,则α、β平行C .若m 、n 相交,则α、β相交D .若n m ⊥,则βα⊥18.设),(b a P 是函数3)(x x f =图像上任意一点,则下列各点中一定..在该图像上的是 ( ) A .),(1b a P - B .),(2b a P -- C .),(3b a P - D .),(4b a P -19.设椭圆)0(12222>>=+b a by a x 的左、右焦点分别为1F 、2F ,上顶点为B ,若2122BF F F ==,则该椭圆的方程为 ( ) A .13422=+y x B .1322=+y x C .1222=+y x D .1422=+y x 20.在二项式()612+x 的展开式中,系数最大项的系数是 ( )A .20B .160C .240D .192 21.已知数列{}n a 的首项11a =,*13()n n a S n N +=∈,则下列结论正确的是 ( )A .数列是{}n a 等比数列B .数列23n a a a ⋅⋅⋅,,,是等比数列 C .数列是{}n a 等差数列 D .数列23n a a a ⋅⋅⋅,,,是等差数列 22.在ABC ∆中,C B C B A sin sin sin sin sin 222-+≤,则角A 的取值范围是 ( )A .06π⎛⎤ ⎥⎝⎦,B .,6ππ⎡⎫⎪⎢⎣⎭C .03π⎛⎤ ⎥⎝⎦,D .,3ππ⎡⎫⎪⎢⎣⎭23.对于使()f x M ≤成立的所有常数M 中,我们把M 的最小值叫做()f x 的上确界,若a 、b R +∈且1a b +=,则122a b--的上确界为 ( )A .92- B .92 C .41 D .4-24.定义两个实数间的一种新运算“*”:*lg(1010)x yx y =+,x 、y R ∈。

上海市四区2016届高三二模数学试卷

上海市四区2016届高三二模数学试卷

上海市四区2016届高三二模数学试卷2016.04一. 填空题1. 设集合{|||2,}A x x x R =<∈,2{|430,}B x x x x R =-+≥∈,则A B =2. 已知i 为虚数单位,复数z 满足11zi z -=+,则||z = 3. 设0a >且1a ≠,若函数1()2x f x a -=+的反函数的图像经过定点P ,则点P 的坐标是4. 计算:222lim(1)n nn P C n →∞+=+ 5. 在平面直角坐标系内,直线:220l x y +-=,将l 与两条坐标轴围成的封闭图形绕y 轴 旋转一周,所得几何体的体积为 6. 已知sin 2sin 0θθ+=,(,)2πθπ∈,则tan 2θ=7. 设定义在R 上的偶函数()y f x =,当0x ≥时,()24xf x =-,则不等式()0f x ≤的解 集是8. 在平面直角坐标系xOy 中,有一定点(1,1)A ,若OA 的垂直平分线过抛物线2:2C y px = (0p >)的焦点,则抛物线C 的方程为9.(文)已知x 、y 满足约束条件420y xx y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最小值为(理)直线115x y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)与曲线sin cos sin cos x y θθθθ=⋅⎧⎨=+⎩(θ为参数)的公共点的坐标为10.(文)在26()k x x+(k 为实常数)的展开式中,3x 项的系数等于160,则k =(理)记1(2)nx x+(*n N ∈)展开式中第m 项系数为m b ,若342b b =,则n =11.(文)从棱长为1的正方体的8个顶点中任取3个点,则以这三点为顶点的三角形的面 积等于12的概率是 (理)从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点 所构成的三角形的面积,则其数学期望E ξ=12.(文)已知数列{}n a 满足212...3n a a a n n +++=+(*n N ∈),则22212 (231)n a a a n +++=+(理)已知各项均为正数的数列{}n a 2...3n n =+(*n N ∈),则12 (231)n a a a n +++=+ 13.(文)甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对 得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项 不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为 (理)甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对 得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项 不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为14.(文)对于函数()f x =,其中0b >,若()f x 的定义域与值域相同,则非零 实数a 的值为(理)已知0a >,函数()af x x x=-([1,2]x ∈)的图像的两个端点分别为A 、B ,设M 是函数()f x 图像上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若||1MN ≤恒成立,则a 的最大值是二. 选择题15. “sin 0α=”是“cos 1α=”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 16. 下列命题正确的是( )A. 若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ;B. 若直线l 上有两个点到平面α的距离相等,则l ∥α;C. 直线l 与平面α所成角的取值范围是(0,)2π;D. 若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l ;17. 已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足()()0c a c b -⋅-=,则||c的最大值是( )A. 1B. 2 D. 218.(文)已知直线:2l y x b =+与函数1y x=的图像交于A 、B 两点,设O 为坐标原点, 记OAB ∆的面积为S ,则函数()S f b =是( )A. 奇函数且在(0,)+∞上单调递增B. 偶函数且在(0,)+∞上单调递增C. 奇函数且在(0,)+∞上单调递减D. 偶函数且在(0,)+∞上单调递减(理)已知函数3|log |03()sin()3156x x f x x x π<<⎧⎪=⎨≤≤⎪⎩,若存在实数1x 、2x 、3x 、4x 满足 1234()()()()f x f x f x f x ===,其中1234x x x x <<<,则1234x x x x 取值范围是( )A. (60,96)B. (45,72)C. (30,48)D. (15,24)三. 解答题19. 如图,在直三棱柱111ABC A B C -中,ABC ∆是等腰直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点;(文)(1)求证:AC ⊥平面11BCC B ;(2)求异面直线1B D 与AC 所成角的大小; (理)(1)求证:BC ⊥平面11ACC A ;(2)求二面角11B CD C --的大小; (结果用反三角函数值表示)20.(文)已知函数()2cos 21f x x x =+-(x R ∈);(1)写出函数()f x 的最小正周期和单调递增区间;(2)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,试求b 的值;(理)已知函数()cos()cos()133f x x x x ππωωω=+++--(0ω>,x R ∈),且 函数()f x 的最小正周期为π; (1)求函数()f x 的解析式;(2)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,试求b 的值;21. 定义在D 上的函数()f x ,若满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤ 成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界; (1)设()1x f x x =+,判断()f x 在11[,]22-上是否有界函数,若是,请说明理由,并写出 ()f x 的所有上界的值的集合,若不是,也请说明理由;(2)(文)若函数11()1()()24x xg x a =+⋅+在[0,)+∞上是以3为上界的有界函数,求实数a 的取值范围;(理)若函数()124xxg x a =++⋅在[0,2]x ∈上是以3为上界的有界函数,求实数a 的取 值范围;22.(文)设椭圆2222:1x y a bΓ+=(0a b >>)的右焦点为(1,0)F ,短轴的一个端点B 到F的距离等于焦距;(1)求椭圆Γ的标准方程;(2)设C 、D 是四条直线x a =±,y b =±所围成的矩形在第一、第二象限的两个顶点,P 是椭圆Γ上任意一点,若OP mOC nOD =+,求证:22m n +为定值;(3)过点F 的直线l 与椭圆Γ交于不同的两点M 、N ,且满足于BFM ∆与BFN ∆的面 积的比值为2,求直线l 的方程;(理)如图,设F 是椭圆22134x y +=的下焦点,直线4y kx =-(0k >)与椭圆相交于A 、 B 两点,与y 轴交于点P ;(1)若PA AB =,求k 的值; (2)求证:AFP BFO ∠=∠; (3)求面积ABF ∆的最大值;23.(文)已知数列{}n a 、{}n b 满足:114a =,1n n ab +=,121n n n b b a +=-; (1)求1b 、2b 、3b 、4b ; (2)求证:数列1{}1n b -是等差数列,并求{}n b 的通项公式; (3)设12231...n n n S a a a a a a +=+++,若不等式4n n aS b <对任意*n N ∈恒成立,求实数a的取值范围;(理)已知正项数列{}n a 、{}n b 满足:对任意*n N ∈,都有n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,且110a =,215a =;(1)求证:数列是等差数列; (2)求数列{}n a 、{}n b 的通项公式; (3)设12111...n n S a a a =+++,如果对任意*n N ∈,不等式22n n nb aS a <-恒成立,求实 数a 的取值范围;参考答案一. 填空题1. (2,1]-2. 13. (3,1)4.32 5. 23π7. (,2][0,2]-∞- 8. 24y x = 9.(理)(0,1)(文)6-10.(理)5(文)2 11.(文)3712. 226n n +13.(理){48,51,54,57,60}(文){24,27,30} 14.(理)6+4-二. 选择题15. B 16. D 17. C 18.(理)B (文)B三. 解答题19.(文)(1)略;(2)2arccos3;(理)(1)略;(2)2arccos 3; 20.(文)(1)()2sin(2)16f x x π=+-,T π=,增区间[,]36k k ππππ-+;(2)3B π=,3ac =,4a c +=,b =;(理)(1)()2sin(2)16f x x π=+-;(2)3B π=,b =;21.(1)有界,{|1}M M ≥;(2)(文)[5,1]-;(理)11[,]28--;22.(文)(1)22143x y +=;(2)2212m n +=;(3)(1)2y x =±-;(理)(1)4y x =-;(2)0FA FB k k +=,略;(3; 23.(文)(1)134b =,245b =,356b =,467b =;(2)23n n b n +=+;(3)1a ≤; (理)(1)略;(2)(3)(4)2n n n a ++=,2482n n b n =++;(3)1a ≤;四区理科参考答案 一.填空题(每小题4分,满分56分)1.]1,2(- 2.1 3.)1,3( 4.235.32π6.3 7.]2,0[]2,( --∞ 8.x y 42= 9.)1,0( 10.5 11.5326+ 12.n n 622+ 13.{48,51,54,57,60} 14.246+二.选择题(每小题5分,满分20分)15.B 16.D 17.C 18.B三.解答题(本大题共有5题,满分74分) 19.(本题共有2个小题,第1小题满分5分,第2小题满分7分)(1)因为底面△ABC 是等腰直角三角形,且BC AC =,所以,BC AC ⊥,…(2分) 因为⊥1CC 平面111C B A ,所以BC CC ⊥1, ………………………………………(4分) 所以,⊥BC 平面11A ACC . ……………………………………………………(5分) (2)以C 为原点,直线CA ,CB ,1CC 为x ,y ,z 轴,建立空间直角坐标系, 则)0,0,0(C ,)0,0,2(A ,)0,2,0(B ,)2,0,0(1C ,)2,2,0(1B ,)1,0,2(D , 由(1),)0,2,0(=是平面11A ACC 的一个法向量, ………………………(2分))2,2,0(1=CB ,)1,0,2(=CD ,设平面CD B 1的一个法向量为),,(z y x n =,则有 ⎪⎩⎪⎨⎧=⋅=⋅,0,01n CB n 即⎩⎨⎧=+=+,02,022z x z y 令1=x ,则2-=z ,2=y , 所以)2,2,1(-=n, …………………………………………(5分)设与n 的夹角为θ,则32324||||cos =⨯=⋅=n CBθ, …………………(6分) 由图形知二面角11C CD B --的大小是锐角,所以,二面角11C CD B --的大小为32arccos . ……………………………(7分)20.(本题共有2个小题,第1小题满分6分,第2小题满分8分) (1)16sin 21cos sin 3)(-⎪⎭⎫ ⎝⎛+=-+=πωωωx x x x f , ………………(3分)又π=T ,所以,2=ω, ………………………………………………(5分)所以,162sin 2)(-⎪⎭⎫ ⎝⎛+=πx x f . …………………………………………………(6分)(2)0162sin 2)(=-⎪⎭⎫ ⎝⎛+=πB B f ,故2162sin =⎪⎭⎫ ⎝⎛+πB ,所以,6262πππ+=+k B 或65262πππ+=+k B (Z ∈k ), 因为B 是三角形内角,所以3π=B .……(3分)而23cos =⋅=⋅B ac ,所以,3=ac , …………………………(5分) 又4=+c a ,所以,1022=+c a ,所以,7cos 2222=-+=B ac c a b ,所以,7=b . …………………………………(8分)21.(本题共有2个小题,第1小题满分6分,第2小题满分8分) (1)111)(+-=x x f ,则)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数,故⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-21)(21f x f f , 即31)(1≤≤-x f , ……………………………………………(2分) 故1|)(|≤x f ,所以)(x f 是有界函数. ……………………………………………(4分) 所以,上界M 满足1≥M ,所有上界M 的集合是),1[∞+. ……………………(6分)(2)因为函数)(x g 在]2,0[∈x 上是以3为上界的有界函数,故3|)(|≤x g 在]2,0[∈x 上恒成立,即3)(3≤≤-x g ,所以,34213≤⋅++≤-xxa (]2,0[∈x ), ……(2分)所以⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛--x x x x a 21422144(]2,0[∈x ), 令x t 21=,则⎥⎦⎤⎢⎣⎡∈1,41t ,故t t a t t -≤≤--2224在⎥⎦⎤⎢⎣⎡∈1,41t 上恒成立,所以,min 2max 2)2()4(t t a t t -≤≤--(⎥⎦⎤⎢⎣⎡∈1,41t ), ………………………(5分)令t t t h --=24)(,则)(t h 在⎥⎦⎤⎢⎣⎡∈1,41t 时是减函数,所以2141)(max -=⎪⎭⎫ ⎝⎛=g t h ;(6分)令t t t p -=22)(,则)(t p 在⎥⎦⎤⎢⎣⎡∈1,41t 时是增函数,所以8141)(min -=⎪⎭⎫ ⎝⎛=h t p .…(7分)所以,实数a 的取值范围是⎥⎦⎤⎢⎣⎡--81,21. ……………………………………(8分)22.(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)(1)由⎪⎩⎪⎨⎧-==+4,14322kx y y x 得03624)43(22=+-+kx x k ,所以△0)4(1442>-=k , 设),(11y x A ,),(22y x B ,则4324221+=+k k x x ,4336221+=k x x , ………………(2分) 因为=,所以122x x =,代入上式求得556=k . ………………………(4分)(2)由图形可知,要证明BFO AFP ∠=∠,等价于证明直线AF 与直线BF 的倾斜角互补, 即等价于0=+BF AF k k . ………………………………………………………(2分)21212122112211)(3211323311x x x x k x x k x kx x kx x y x y k k BF AF +-=⎪⎪⎭⎫ ⎝⎛+-=-+-=+++=+ 022433643243222=-=++⋅-=k k k k k k . …………………………………………(5分)所以,BFO AFP ∠=∠. …………………………………………………(6分) (3)由△0>,得042>-k ,所以21221214)(321||||21x x x x x x PF S S S PAF PBF ABF -+⋅⋅=-⋅=-=∆∆∆ 4341822+-=k k , ………………………………………………………………(3分)令42-=k t ,则0>t ,1634322+=+t k 故tt t t k k S ABF163181631843418222+=+=+-=∆433163218=⋅≤(当且仅当t t 163=,即3162=t ,3212=k 取等号). ………(5分) 所以,△ABF 面积的最大值是433. ……………………………………………(6分) 23.(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)(1)由已知,12++=n n n a a b ① 121++=n n n b b a ②, ………………(1分)由②可得,11++=n n n b b a ③, ……………………………(2分) 将③代入①得,对任意*N ∈n ,2≥n ,有112+-+=n n n n n b b b b b ,即112+-+=n n n b b b ,所以{}nb 是等差数列. …………………………(4分)(2)设数列{}nb 的公差为d ,由101=a ,152=a,得2251=b ,182=b ,……(1分) 所以2251=b ,232=b ,所以2212=-=b b d , ……………………(3分) 所以,)4(2222)1(225)1(1+=⋅-+=-+=n n d n b b n , ………………(4分)所以,2)4(2+=n b n ,2)4(2)3(2212+⋅+==-n n b b a n n n , ……………………(5分)2)4)(3(++=n n a n . …………………………………………………………(6分) (3)解法一:由(2),⎪⎭⎫ ⎝⎛+-+=++=41312)4)(3(21n n n n a n , ……………(1分) 所以,⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=414124131615151412n n n S n ,……(3分) 故不等式n n n a b aS -<22化为34241414++-<⎪⎭⎫ ⎝⎛+-n n n a , 即)3()4)(2(+++<n n n n a 当*N ∈n 时恒成立, …………………………………………(4分)令)3(2312131121342)3()4)(2()(+++++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++⋅+=+++=n n n n n n n n n n n n n n n f , 则)(n f 随着n 的增大而减小,且1)(>n f 恒成立. ………………………………(7分) 故1≤a ,所以,实数a 的取值范围是]1,(-∞. …………………………………(8分)解法二:由(2),⎪⎭⎫ ⎝⎛+-+=++=41312)4)(3(21n n n n a n , ……………………(1分) 所以,⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-=414124131615151412n n n S n ,……(3分)故不等式n n n a b aS -<22化为34241414++-<⎪⎭⎫ ⎝⎛+-n n n a , 所以,原不等式对任意*N ∈n 恒成立等价于08)2(3)1(2<--+-n a n a 对任意*N ∈n 恒成立, ……………………………………(4分) 设8)2(3)1()(2--+-=n a n a n f ,由题意,01≤-a ,当1=a 时,083)(<--=n n f 恒成立; …………………………(5分) 当1<a 时,函数8)2(3)1()(2--+-=x a x a x f 图像的对称轴为01223<--⋅-=a a x , )(x f 在),0(∞+上单调递减,即)(n f 在*N 上单调递减,故只需0)1(<f 即可,由0154)1(<-=a f ,得415<a ,所以当1≤a 时,n n b aS <4对*N ∈n 恒成立. 综上,实数a 的取值范围是]1,(-∞. …………………………(8分)。

上海市四区2016届高三二模数学试卷

上海市四区2016届高三二模数学试卷

上海市四区2016届高三二模数学试卷2016.04一. 填空题1. 设集合{|||2,}A x x x R =<∈,2{|430,}B x x x x R =-+≥∈,则A B =2. 已知i 为虚数单位,复数z 满足11zi z-=+,则||z = 3. 设0a >且1a ≠,若函数1()2x f x a -=+的反函数的图像经过定点P ,则点P 的坐标是4. 计算:222lim (1)n nn P C n →∞+=+5. 在平面直角坐标系内,直线:220l x y +-=,将l 与两条坐标轴围成的封闭图形绕y 轴 旋转一周,所得几何体的体积为6. 已知sin 2sin 0θθ+=,(,)2πθπ∈,则tan 2θ=7. 设定义在R 上的偶函数()y f x =,当0x ≥时,()24xf x =-,则不等式()0f x ≤的解集是8. 在平面直角坐标系xOy 中,有一定点(1,1)A ,若OA 的垂直平分线过抛物线2:2C y px = (0p >)的焦点,则抛物线C 的方程为9.(文)已知x 、y 满足约束条件420y xx y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最小值为(理)直线11x y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数)与曲线sin cos sin cos x y θθθθ=⋅⎧⎨=+⎩(θ为参数)的公共点的坐标为 10.(文)在26()k x x+(k 为实常数)的展开式中,3x 项的系数等于160,则k = (理)记1(2)nx x+(*n N ∈)展开式中第m 项系数为m b ,若342b b =,则n =11.(文)从棱长为1的正方体的8个顶点中任取3个点,则以这三点为顶点的三角形的面 积等于12的概率是 (理)从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点 所构成的三角形的面积,则其数学期望E ξ=12.(文)已知数列{}n a 满足212...3n a a a n n +++=+(*n N ∈),则22212 (231)n a a a n +++=+(理)已知各项均为正数的数列{}n a 2...3n n +=+(*n N ∈),则12 (231)n a a a n +++=+ 13.(文)甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对 得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项 不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为 (理)甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对 得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项 不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为14.(文)对于函数()f x =0b >,若()f x 的定义域与值域相同,则非零实数a 的值为(理)已知0a >,函数()af x x x=-([1,2]x ∈)的图像的两个端点分别为A 、B ,设M 是函数()f x 图像上任意一点,过M 作垂直于x 轴的直线l ,且l 与线段AB 交于点N ,若||1MN ≤恒成立,则a 的最大值是二. 选择题15. “sin 0α=”是“cos 1α=”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 16. 下列命题正确的是( )A. 若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ;B. 若直线l 上有两个点到平面α的距离相等,则l ∥α;C. 直线l 与平面α所成角的取值范围是(0,)2π;D. 若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l ;17. 已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足()()0c a c b -⋅-=,则||c 的最大值是( )A. 1B. 2C.D.218.(文)已知直线:2l y x b =+与函数1y x=的图像交于A 、B 两点,设O 为坐标原点, 记OAB ∆的面积为S ,则函数()S f b =是( )A. 奇函数且在(0,)+∞上单调递增B. 偶函数且在(0,)+∞上单调递增C. 奇函数且在(0,)+∞上单调递减D. 偶函数且在(0,)+∞上单调递减(理)已知函数3|log |03()sin()3156x x f x x x π<<⎧⎪=⎨≤≤⎪⎩,若存在实数1x 、2x 、3x 、4x 满足 1234()()()()f x f x f x f x ===,其中1234x x x x <<<,则1234x x x x 取值范围是( )A. (60,96)B. (45,72)C. (30,48)D. (15,24)三. 解答题19. 如图,在直三棱柱111ABC A B C -中,ABC ∆是等腰直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点;(文)(1)求证:AC ⊥平面11BCC B ;(2)求异面直线1B D 与AC 所成角的大小; (理)(1)求证:BC ⊥平面11ACC A ;(2)求二面角11B CD C --的大小; (结果用反三角函数值表示)20.(文)已知函数()2cos21f x x x +-(x R ∈); (1)写出函数()f x 的最小正周期和单调递增区间;(2)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,试求b 的值;(理)已知函数()cos()cos()133f x x x x ππωωω=+++--(0ω>,x R ∈),且 函数()f x 的最小正周期为π; (1)求函数()f x 的解析式;(2)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,试求b 的值;21. 定义在D 上的函数()f x ,若满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤ 成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界; (1)设()1x f x x =+,判断()f x 在11[,]22-上是否有界函数,若是,请说明理由,并写出 ()f x 的所有上界的值的集合,若不是,也请说明理由;(2)(文)若函数11()1()()24x xg x a =+⋅+在[0,)+∞上是以3为上界的有界函数,求实数a 的取值范围;(理)若函数()124x x g x a =++⋅在[0,2]x ∈上是以3为上界的有界函数,求实数a 的取 值范围;22.(文)设椭圆2222:1x y a bΓ+=(0a b >>)的右焦点为(1,0)F ,短轴的一个端点B 到F的距离等于焦距;(1)求椭圆Γ的标准方程;(2)设C 、D 是四条直线x a =±,y b =±所围成的矩形在第一、第二象限的两个顶点,P 是椭圆Γ上任意一点,若OP mOC nOD =+,求证:22m n +为定值;(3)过点F 的直线l 与椭圆Γ交于不同的两点M 、N ,且满足于BFM ∆与BFN ∆的面 积的比值为2,求直线l 的方程;(理)如图,设F 是椭圆22134x y +=的下焦点,直线4y kx =-(0k >)与椭圆相交于A 、 B 两点,与y 轴交于点P ;(1)若PA AB =,求k 的值; (2)求证:AFP BFO ∠=∠; (3)求面积ABF ∆的最大值;23.(文)已知数列{}n a 、{}n b 满足:114a =,1n n a b +=,121n n nb b a +=-; (1)求1b 、2b 、3b 、4b ; (2)求证:数列1{}1n b -是等差数列,并求{}n b 的通项公式; (3)设12231...n n n S a a a a a a +=+++,若不等式4n n aS b <对任意*n N ∈恒成立,求实数a 的取值范围;(理)已知正项数列{}n a 、{}n b 满足:对任意*n N ∈,都有n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,且110a =,215a =;(1)求证:数列是等差数列; (2)求数列{}n a 、{}n b 的通项公式; (3)设12111...n n S a a a =+++,如果对任意*n N ∈,不等式22n n nb aS a <-恒成立,求实 数a 的取值范围;参考答案一. 填空题1. (2,1]-2. 13. (3,1)4.32 5. 23π 6. 7. (,2][0,2]-∞- 8. 24y x = 9.(理)(0,1)(文)6-10.(理)5(文)2 11.(文)37 12. 226n n +13.(理){48,51,54,57,60}(文){24,27,30} 14.(理)6+4-二. 选择题15. B 16. D 17. C 18.(理)B (文)B三. 解答题19.(文)(1)略;(2)2arccos3;(理)(1)略;(2)2arccos 3; 20.(文)(1)()2sin(2)16f x x π=+-,T π=,增区间[,]36k k ππππ-+;(2)3B π=,3ac =,4a c +=,b =(理)(1)()2sin(2)16f x x π=+-;(2)3B π=,b =21.(1)有界,{|1}M M ≥;(2)(文)[5,1]-;(理)11[,]28--;22.(文)(1)22143x y +=;(2)2212m n +=;(3)1)y x =-;(理)(1)4y x =-;(2)0FA FB k k +=,略;(3 23.(文)(1)134b =,245b =,356b =,467b =;(2)23n n b n +=+;(3)1a ≤; (理)(1)略;(2)(3)(4)2n n n a ++=,2482n n b n =++;(3)1a ≤;四区理科参考答案 一.填空题(每小题4分,满分56分)1.]1,2(- 2.1 3.)1,3( 4.235.32π6.3 7.]2,0[]2,( --∞ 8.x y 42= 9.)1,0( 10.5 11.5326+ 12.n n 622+ 13.{48,51,54,57,60} 14.246+二.选择题(每小题5分,满分20分)15.B 16.D 17.C 18.B三.解答题(本大题共有5题,满分74分) 19.(本题共有2个小题,第1小题满分5分,第2小题满分7分)(1)因为底面△ABC 是等腰直角三角形,且BC AC =,所以,BC AC ⊥,…(2分) 因为⊥1CC 平面111C B A ,所以BC CC ⊥1, ………………………………………(4分) 所以,⊥BC 平面11A ACC . ……………………………………………………(5分) (2)以C 为原点,直线CA ,CB ,1CC 为x ,y ,z 轴,建立空间直角坐标系, 则)0,0,0(C ,)0,0,2(A ,)0,2,0(B ,)2,0,0(1C ,)2,2,0(1B ,)1,0,2(D , 由(1),)0,2,0(=CB 是平面11A ACC 的一个法向量, ………………………(2分))2,2,0(1=CB ,)1,0,2(=CD ,设平面CD B 1的一个法向量为),,(z y x n =,则有 ⎪⎩⎪⎨⎧=⋅=⋅,0,01CD n CB n 即⎩⎨⎧=+=+,02,022z x z y 令1=x ,则2-=z ,2=y , 所以)2,2,1(-=n, …………………………………………(5分)设CB 与n 的夹角为θ,则32324||||cos =⨯=⋅=n CB CBθ, …………………(6分) 由图形知二面角11C CD B --的大小是锐角,所以,二面角11C CD B --的大小为32arccos . ……………………………(7分)20.(本题共有2个小题,第1小题满分6分,第2小题满分8分) (1)16sin 21cos sin 3)(-⎪⎭⎫⎝⎛+=-+=πωωωx x x x f , ………………(3分) 又π=T ,所以,2=ω, ………………………………………………(5分)所以,162sin 2)(-⎪⎭⎫ ⎝⎛+=πx x f . …………………………………………………(6分) (2)0162sin 2)(=-⎪⎭⎫ ⎝⎛+=πB B f ,故2162sin =⎪⎭⎫ ⎝⎛+πB ,所以,6262πππ+=+k B 或65262πππ+=+k B (Z ∈k ), 因为B 是三角形内角,所以3π=B .……(3分)而23cos =⋅=⋅B ac BC BA ,所以,3=ac , …………………………(5分) 又4=+c a ,所以,1022=+c a ,所以,7cos 2222=-+=B ac c a b ,所以,7=b . …………………………………(8分)21.(本题共有2个小题,第1小题满分6分,第2小题满分8分) (1)111)(+-=x x f ,则)(x f 在⎥⎦⎤⎢⎣⎡-21,21上是增函数,故⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-21)(21f x f f , 即31)(1≤≤-x f , ……………………………………………(2分) 故1|)(|≤x f ,所以)(x f 是有界函数. ……………………………………………(4分) 所以,上界M 满足1≥M ,所有上界M 的集合是),1[∞+. ……………………(6分)(2)因为函数)(x g 在]2,0[∈x 上是以3为上界的有界函数,故3|)(|≤x g 在]2,0[∈x 上恒成立,即3)(3≤≤-x g ,所以,34213≤⋅++≤-xxa (]2,0[∈x ), ……(2分)所以⎪⎭⎫⎝⎛-≤≤⎪⎭⎫ ⎝⎛--x x x x a 21422144(]2,0[∈x ), 令x t 21=,则⎥⎦⎤⎢⎣⎡∈1,41t ,故t t a t t -≤≤--2224在⎥⎦⎤⎢⎣⎡∈1,41t 上恒成立,所以,min 2max 2)2()4(t t a t t -≤≤--(⎥⎦⎤⎢⎣⎡∈1,41t ), ………………………(5分)令t t t h --=24)(,则)(t h 在⎥⎦⎤⎢⎣⎡∈1,41t 时是减函数,所以2141)(max -=⎪⎭⎫ ⎝⎛=g t h ;(6分)令t t t p -=22)(,则)(t p 在⎥⎦⎤⎢⎣⎡∈1,41t 时是增函数,所以8141)(min -=⎪⎭⎫ ⎝⎛=h t p .…(7分)所以,实数a 的取值范围是⎥⎦⎤⎢⎣⎡--81,21. ……………………………………(8分)22.(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)(1)由⎪⎩⎪⎨⎧-==+4,14322kx y y x 得03624)43(22=+-+kx x k ,所以△0)4(1442>-=k , 设),(11y x A ,),(22y x B ,则4324221+=+k k x x ,4336221+=k x x , ………………(2分) 因为AB PA =,所以122x x =,代入上式求得556=k . ………………………(4分)(2)由图形可知,要证明BFO AFP ∠=∠,等价于证明直线AF 与直线BF 的倾斜角互补, 即等价于0=+BF AF k k . ………………………………………………………(2分)21212122112211)(3211323311x x x x k x x k x kx x kx x y x y k k BF AF +-=⎪⎪⎭⎫ ⎝⎛+-=-+-=+++=+ 022433643243222=-=++⋅-=k k k k kk . …………………………………………(5分) 所以,BFO AFP ∠=∠. …………………………………………………(6分)(3)由△0>,得042>-k ,所以21221214)(321||||21x x x x x x PF S S S PAF PBF ABF -+⋅⋅=-⋅=-=∆∆∆ 4341822+-=k k , ………………………………………………………………(3分) 令42-=k t ,则0>t ,1634322+=+t k 故tt t t k k S ABF163181631843418222+=+=+-=∆ 433163218=⋅≤(当且仅当t t 163=,即3162=t ,3212=k 取等号). ………(5分) 所以,△ABF 面积的最大值是433. ……………………………………………(6分) 23.(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)(1)由已知,12++=n n n a a b ① 121++=n n n b b a ②, ………………(1分)由②可得,11++=n n n b b a ③, ……………………………(2分)将③代入①得,对任意*N ∈n ,2≥n ,有112+-+=n n n n n b b b b b ,即112+-+=n n n b b b ,所以{}nb 是等差数列. …………………………(4分)(2)设数列{}nb 的公差为d ,由101=a ,152=a,得2251=b ,182=b ,……(1分) 所以2251=b ,232=b ,所以2212=-=b b d , ……………………(3分) 所以,)4(2222)1(225)1(1+=⋅-+=-+=n n d n b b n , ………………(4分)所以,2)4(2+=n b n ,2)4(2)3(2212+⋅+==-n n b b a n n n , ……………………(5分)2)4)(3(++=n n a n . …………………………………………………………(6分)(3)解法一:由(2),⎪⎭⎫ ⎝⎛+-+=++=41312)4)(3(21n n n n a n , ……………(1分)所以,⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=414124131615151412n n n S n ,……(3分)故不等式n n n a b aS -<22化为34241414++-<⎪⎭⎫ ⎝⎛+-n n n a , 即)3()4)(2(+++<n n n n a 当*N ∈n 时恒成立, …………………………………………(4分)令)3(2312131121342)3()4)(2()(+++++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++⋅+=+++=n n n n n n n n n n n n n n n f , 则)(n f 随着n 的增大而减小,且1)(>n f 恒成立. ………………………………(7分) 故1≤a ,所以,实数a 的取值范围是]1,(-∞. …………………………………(8分)解法二:由(2),⎪⎭⎫ ⎝⎛+-+=++=41312)4)(3(21n n n n a n , ……………………(1分)所以,⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=414124131615151412n n n S n ,……(3分)故不等式n n n a b aS -<22化为34241414++-<⎪⎭⎫ ⎝⎛+-n n n a , 所以,原不等式对任意*N ∈n 恒成立等价于08)2(3)1(2<--+-n a n a 对任意*N ∈n 恒成立, ……………………………………(4分) 设8)2(3)1()(2--+-=n a n a n f ,由题意,01≤-a ,当1=a 时,083)(<--=n n f 恒成立; …………………………(5分) 当1<a 时,函数8)2(3)1()(2--+-=x a x a x f 图像的对称轴为01223<--⋅-=a a x , )(x f 在),0(∞+上单调递减,即)(n f 在*N 上单调递减,故只需0)1(<f 即可, 由0154)1(<-=a f ,得415<a ,所以当1≤a 时,n n b aS <4对*N ∈n 恒成立. 综上,实数a 的取值范围是]1,(-∞. …………………………(8分)。

2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】

2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】

2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【2016新课标Ⅱ(理)】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A.()31-,B.()13-,C.()1,∞+D.()3∞--,【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .【2016新课标Ⅱ(理)】已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B = A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B = ,,,, 故选C .【2016新课标Ⅱ(理)】已知向量(1,)(3,2)a m b =- ,=,且()a b b +⊥,则m = A.8- B.6- C.6 D.8【答案】D【解析】 ()42a b m +=-,, ∵()a b b +⊥ ,∴()122(2)0a b b m +⋅=--=解得8m =, 故选D .【2016新课标Ⅱ(理)】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=A.43-B.34- D.2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .【2016新课标Ⅱ(理)】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B .【2016新课标Ⅱ(理)】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28πD.32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .【2016新课标Ⅱ(理)】若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 A.()ππ26k x k =-∈Z B.()ππ26k x k =+∈Z C.()ππ212Z k x k =-∈ D.()ππ212Z k x k =+∈ 【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =A.7B.12C.17D.34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=,故选C .【2016新课标Ⅱ(理)】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=A.725B.15C.15-D.725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .【2016新课标Ⅱ(理)】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为A.4n m B.2n m C.4m n D.2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .【2016新课标Ⅱ(理)】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D.2 【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====--- 故选A .【2016新课标Ⅱ(理)】已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A.0B.mC.2mD.4m【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.【2016新课标Ⅱ(理)】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4c o s 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =.【2016新课标Ⅱ(理)】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),【2016新课标Ⅱ(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =-∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤.【2016新课标Ⅱ(理)】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.【2016新课标Ⅱ(理)】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.【2016新课标Ⅱ(理)】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅===u r u u ru r u u r∴sin θ=【2016新课标Ⅱ(理)】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.【2016新课标Ⅱ(理)】(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞ ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++>⑵ ()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x-++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号【2016新课标Ⅱ(理)】如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠ DF CFDG BC= ∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆. (Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.【2016新课标Ⅱ(理)】选修4—4:坐标系与参数方程在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB l的斜率.【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k =【2016新课标Ⅱ(理)】选修4—5:不等式选讲已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+, 证毕.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏) 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【2016新课标Ⅱ(理)】已知z=(m+3)+(m ﹣1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(﹣3,1) B .(﹣1,3) C .(1,+∞) D .(﹣∞,﹣3)2.【2016新课标Ⅱ(理)】已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1} B.{1,2} C.{0,1,2,3} D.{﹣1,0,1,2,3}3.【2016新课标Ⅱ(理)】已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.84.【2016新课标Ⅱ(理)】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.25.【2016新课标Ⅱ(理)】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.96.【2016新课标Ⅱ(理)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.【2016新课标Ⅱ(理)】若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)8.【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.【2016新课标Ⅱ(理)】若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣10.【2016新课标Ⅱ(理)】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.B.C.D.11.【2016新课标Ⅱ(理)】已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.212.【2016新课标Ⅱ(理)】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.【2016新课标Ⅱ(理)】△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.14.【2016新课标Ⅱ(理)】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)15.【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.16.【2016新课标Ⅱ(理)】若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【2016新课标Ⅱ(理)】S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.【2016新课标Ⅱ(理)】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.【2016新课标Ⅱ(理)】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.20.【2016新课标Ⅱ(理)】已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.【2016新课标Ⅱ(理)】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选修4-4:坐标系与参数方程]23.【2016新课标Ⅱ(理)】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l 的斜率.[选修4-5:不等式选讲]24.【2016新课标Ⅱ(理)】已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.。

上海市2016年高考最后冲刺模拟(二)数学理试题 Word版含答案

上海市2016年高考最后冲刺模拟(二)数学理试题 Word版含答案

上海市高考最后冲刺模拟卷(二)数学理2016.5.18一、填空题:(每小题4分,满分56分)1、设集合{||2|1},{|}A x x B x x a =-<=>,若A B A = ,则实数a 的取值范围是 1a ≤;2、复数z 满足23(z z i i +=-是虚数单位),则z z ⋅= 2 ;3、函数2()21x f x x +=+的反函数为1()y f x -=,则1(2)f -= 0 ; 4、(2)n ax +展开式中所有项的二项式系数和为32,含2x 项的系数为320,则a 2± ;5、双曲线C 与椭圆22195x y +=有公共焦点,且C 的一条渐近线方程为0x =,则C 的方程为 2213x y -= ; 6、圆锥的母线与底面所成角为30,高为2。

则过圆锥顶点的平面截圆锥所得截面面积的最大值为 8 ; 7、若2a =,用a 表示12log 3= 11a+ ; 8、有A 、B 、C 、D 、E 五列火车停在某车站并行的5条火车轨道上。

如果快车A 不能停在第3道上,慢车B 不能停在第1道上,那么这五列火车的停车方法共有 78 种(用数字作答);9、ABC ∆三个顶点A B C 、、在平面α同侧,B C 、两点到平面α的距离都为2,A 到平面α的距离为4。

则ABC ∆的重心G 到平面α的距离等于83; 10、随机变量ξ的分布律如下表:若10E ξ=,则D ξ= 35 ;11、曲线12cos :([0,2),sin x C y b θθπθθ=⎧∈⎨=⎩为参数,0)b >与曲线21cos :(2sin x t C t y t ϕϕ=-+⎧⎨=+⎩是参数,[0,))ϕπ∈恒有公共点,则b 的取值范围是 )3+∞ ; 12、平面几何中,若一个n 边形存在内切圆,将内切圆的圆心与n 边形顶点连接,可将此n 边形分割成n 个等高的三角形,n 边形的周长为l ,面积为S ,内切圆半径为r ,那么2Sr l=。

专项训练:带电粒子在电场中的平衡问题(较难层次))

专项训练:带电粒子在电场中的平衡问题(较难层次))

专项训练:带电粒子在电场中的平衡问题(较难层次)一、单选题1.(2020·浙江定海·舟山中学)如图所示,一倾角为30︒的粗糙绝缘斜面固定在水平面上,在斜面的底端A和顶端B分别固定等量的同种负电荷。

质量为m、带电荷量为−q的物块从斜面上的P点由静止释放,物块向下运动的过程中经过斜面中点O时速度达到最大值v m,运动的最低点为Q(图中没有标出),则下列说法正确的是()A.P、Q两点场强相同B.U PO = U OQC.P到Q的过程中,物体先做加速度减小的加速,再做加速度增加的减速运动D.物块和斜面间的动摩擦因数12μ=2.(2016·上海市闸北区上法进修学校高三二模)如图,长为L、倾角为θ(θ<450)的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球,以初速度v0由斜面底端的A点开始沿斜面上滑,到达斜面顶端的速度仍为v0。

重力加速度为g。

则()A.小球在B点的电势大于A点的电势B.A、B两点的电势差为mgL qC.若电场是匀强电场,则该电场的场强最小值为tan mgqθD.若电场是带正电的点电荷产生的电场,则该点电荷不能放在C点3.(2019·江西高安中学)如图所示,一电荷量q=+3×10-5C的小球,用绝缘细线悬挂于竖直放置足够大的平行金属板中的O点,开关S合上后,小球静止时细线与竖直方向的夹角θ=37°.已知两板间距d=0.1m,电源电动势E=15V,内阻r=0.5Ω,电阻R1=3Ω,R2=R3=R4=8Ω,.取g=10m/s2,已知sin37°=0.6,cos37°=0.8.则以下说法正确的是( )A.电源的输出功率为14WB.两板间的电场强度的大小为140V/mC.带电小球的质量5.6毫克D.若增加R1的大小,会有瞬时电流从右向左流过R44.(2019·新疆兵团第二师华山中学高二一模)在竖直平面内有水平向右、场强为E=1×104N/C的匀强电场。

上海市闸北区2016届高三上学期期末练习数学(理)试卷

上海市闸北区2016届高三上学期期末练习数学(理)试卷

上海市闸北区2016届高三一模数学理试卷2015.12一. 填空题(本大题共9题,每题6分,共54分)1. 2521(2)(1)x x+-的展开式中常数项为 ; 2. 函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ; 3.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是 ;4. 在菱形ABCD 中,1AB =,60DAB ︒∠=,E 为CD 的中点,则AB AE ⋅的值是 ; 5. 如图,靠山有一个水库,某人先从水坝的底部A 测得水坝对面的山顶P 的仰角为40︒,再沿坝面向上走80米到水坝的顶部B 测得56ABP ︒∠=,若坝面与水平面所成的锐角为30︒,则山高为 米;(结果四舍五入取整)6. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 ;(用数字作答)7. 等差数列{}n a 的公差为d ,关于x 的不等式2120dx a x +≥的解集为[0,9],则使数列{}n a 的前n 项和n S 最大的正整数n 的值是 ;8.过点0)M y 作圆22:1O x y +=的切线,切点为N ,如果6OMN π∠≥,那么0y 的取值范围是 ;9. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为x ([0,])x π∈,OP 所经过的在正方 形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:①()3f π=;② 对任意[0,]2x π∈,都有()()422f x f x ππ-++=;③ 对任意12,(,)2x x ππ∈,且12x x ≠,都有1212()()0f x f x x x -<-;其中所有正确结论的序号是 ;二. 选择题(本大题共3题,每题6分,共18分)10. “抛物线2y ax =的准线方程为2y =”是“抛物线2y ax =的焦点与双曲线2213y x -=的焦点重合”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11. 已知,m n 是两条不同直线,,αβ是两个不同平面,给出下列四个命题: ① 若,αβ垂直于同一平面,则α与β平行; ② 若,m n 平行于同一平面,则m 与n 平行;③ 若,αβ不平行,则在α内不存在与β平行的直线; ④ 若,m n 不平行,则m 与n 不可能垂直于同一平面 其中真命题的个数为( )A. 4B. 3C. 2D. 112. 已知i 和j是互相垂直的单位向量,向量n a 满足:n i a n ⋅= ,21n j a n ⋅=+ ,*n N ∈,设n θ为i 和n a的夹角,则( )A. n θ随着n 的增大而增大B. n θ随着n 的增大而减小C. 随着n 的增大,n θ先增大后减小D. 随着n 的增大,n θ先减小后增大三. 解答题(本大题共4题,共18+20+20+20=78分)13. 如图,在平面直角坐标系xOy 中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且[,)42ππα∈,将角α的终边绕原点逆时针方向旋转3π,交单位圆 于点B ,过B 作BC y ⊥轴于点C ;(1)若点A B 的横坐标; (2)求△AOC 的面积S 的最大值;14. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴;为迎接2015年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行 促销;经调查测算,该促销产品在“双十一”的销售量p (万件)与促销费用x (万元)满足231p x =-+(其中0x a ≤≤,a 为正常数),已知生产该产品还需投入成本102p +万 元(不含促销费用),每一件产品的销售价格定为20(4)p+元,假定厂家的生产能力完全能满足市场的销售需求;(1)将该产品的利润y (万元)表示为促销费用x (万元)的函数; (2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值;15. 如图,已知动直线l 交圆22(3)9x y -+=于坐标原点O 和点A ,交直线6x =于点B ;(1)若||OB =,求点A 、点B 的坐标;(2)设动点M 满足OM AB =,其轨迹为曲线C ,求曲线C 的方程(,)0F x y =;(3)请指出曲线C 的对称性、顶点和图形范围,并说明理由;(4)判断曲线C 是否存在渐近线,若存在,请直接写出渐近线方程;若不存在,说明理由;16. 已知数列{}n a 的前n 项和为n S ,且点(,)n n S *()n N ∈在函数122x y +=-的图像上;(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:10b =,1n n n b b a ++=,求{}n b 的通项公式;(3)在第(2)问的条件下,若对于任意的*n N ∈,不等式1n n b b λ+<恒成立,求实数λ的取值范围;参考答案一. 填空题1. 3;2.单调递增,奇函数;3.; 4. 1; 5. 176; 6. 96; 7. 5; 8. [1,1]-; 9. ①②;二. 选择题10. A ; 11. D ; 12. B ;三. 解答题13.(1)12-;(214.(1)4161y x x =--+;(2)1x =,max 13y =; 15.(1)2412(,)55A ±,(6,3)B ±;(2)326x y x =-;(3)关于x 轴对称;顶点(0,0);[0,6)x ∈,y R ∈;(4)6x =;16.(1)2nn a =;(2)n 为奇数,223n n b -=;n 为偶数,223n n b +=;(3)1λ>;。

上海市闸北区高三二模数学(理)试题(含解析)

上海市闸北区高三二模数学(理)试题(含解析)

2013年上海市闸北区高考数学二模试卷(理科)一、填空题(54分)本大题共有9题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.(6分)(2013•闸北区二模)设为虚数单位,集合A={1,﹣1,i,﹣i},集合,则A∩B={﹣1,i} .=2.(6分)(2013•闸北区二模)函数的反函数为.(﹣∵函数==sinx)3.(6分)(2008•四川)(1+2x)3(1﹣x)4展开式中x2的系数为﹣6 .4.(6分)(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ= 1 .个球,得到黑球的概率是可得到黑球的个数;利用“从袋个球,得到黑球的概率是,∴黑球的个数为,则其对立事件﹣.解得=,==.=15.(6分)(2013•闸北区二模)半径为r的球的内接圆柱的最大侧面积为2πr2.)h=2R•=4r6.(6分)(2013•闸北区二模)设M(x,y,z)为空间直角坐标系内一点,点M在xOy平面上的射影P的极坐标为(ρ,θ)(极坐标系以O为极点,以x轴为极轴),则我们称三元数组(ρ,θ,z)为点M的柱面坐标.已知M点的柱面坐标为,则直线OM与xOz平面所成的角为.点的柱面坐标为中,∠PON=,OP=ONcos=3PN=ONsin=3,=,==故答案为:7.(6分)(2013•闸北区二模)设y=f(x)为R上的奇函数,y=g(x)为R上的偶函数,且g(x)=f(x+1),g(0)=2.则f(x)= 2sin.(只需写出一个满足条件的函数解析式即可).8.(6分)(2013•闸北区二模)某商场在节日期间举行促销活动,规定:(1)若所购商品标价不超过200元,则不给予优惠;(2)若所购商品标价超过200元但不超过500元,则超过200元的部分给予9折优惠;(3)若所购商品标价超过500元,其500元内(含500元)的部分按第(2)条给予优惠,超过500元的部分给予8折优惠.某人来该商场购买一件家用电器共节省330元,则该件家电在商场标价为2000 .9.(6分)(2013•闸北区二模)设,,x∈[1,2),且,则函数的最大值为0 .,,且,==,时,函数二、选择题(18分)本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得6分,否则一律得零分.11.(6分)(2013•闸北区二模)设函数f(x)=lg(a x﹣b x)(a>1>b>0),若f(x)取正值的充要条件是x∈[1,+∞),则a,b满足(),得()),由于()>12.(6分)(2013•闸北区二模)在xOy平面上有一系列的点P1(x1,y1),P2(x2,y2),…,P n(x n,y n),…,对于所有正整数n,点P n位于函数y=x2(x≥0)的图象上,以点P n为圆心的⊙P n与x轴相切,且⊙P n与⊙P n+1又彼此外切,若x1=1,且x n+1<x n.则=()间的距离就等于两半径之和进而得到=2=y整理可得,三、解答题(本题满分78分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.13.(14分)(2005•山东)已知向量和,θ∈(π,2π),且,求的值.+,然后表示出+的模,利用同角三角函数间的基本关让模等于)的方程,两边平方即可得到)的值,根据二倍角的余弦函),得到++)的正负,开方即可求出值.,得.,∴.14.(14分)(2013•闸北区二模)某粮仓是如图所示的多面体,多面体的棱称为粮仓的“梁”.现测得底面ABCD是矩形,AB=16米,AD=4米,腰梁AE、BF、CF、DE分别与相交的底梁所成角均为60°.(1)请指出所有互为异面的且相互垂直的“梁”,并说明理由;(2)若不计粮仓表面的厚度,该粮仓可储存多少立方米粮食?,AM=DN=4cos60°=2,答:该粮仓可储存15.(16分)(2013•闸北区二模)和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.在空间直角坐标系O﹣xyz中,空间曲面的方程是一个三元方程F(x,y,z)=0.设F1、F2为空间中的两个定点,|F1F2|=2c>0,我们将曲面Γ定义为满足|PF1|+|PF2|=2a(a >c)的动点P的轨迹.(1)试建立一个适当的空间直角坐标系O﹣xyz,求曲面Γ的方程;(2)指出和证明曲面Γ的对称性,并画出曲面Γ的直观图.两边平方,整理得,得的方程为16.(16分)(2013•闸北区二模)设数列{a n}与{b n}满足:对任意n∈N*,都有,.其中S n为数列{a n}的前n项和.(1)当b=2时,求数列{a n}与{b n}的通项公式;(2)当b≠2时,求数列{a n}的前n项和S n.时,说明时,利用,通过,利用是以为首项,,且两式相减得即于是=又,所以故知,,再由.=,,数列为首项,以故,时,时,∵∴令,即由∴是以为首项,∴17.(18分)(2013•闸北区二模)在平面直角坐标系xOy中,已知曲线C1为到定点的距离与到定直线的距离相等的动点P的轨迹,曲线C 2是由曲线C1绕坐标原点O按顺时针方向旋转30°形成的.(1)求曲线C1与坐标轴的交点坐标,以及曲线C2的方程;(2)过定点M0(m,0)(m>2)的直线l2交曲线C2于A、B两点,已知曲线C2上存在不同的两点C、D关于直线l2对称.问:弦长|CD|是否存在最大值?若存在,求其最大值;若不存在,请说明理由.答:.,)和,化为又焦点到的距离为.方程为,即=构造函数,,当,即。

2016届上海市高三(二模模拟)检测理科数学试题及答案

2016届上海市高三(二模模拟)检测理科数学试题及答案

2016届上海市高三(二模模拟)检测理科数学试题及答案核准通过,归档资料。

未经允许,请勿外传~2014届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分(2cos,,sin2cos2,,,,,1.若,则a,1,bia,bi2.若,其中都是实数,是虚数单位,则= a,bi1,im,7n,9XY3.现在某类病毒记作,其中正整数m,n(,)可以任mnm,n意选取,则都取到奇数的概率为52MF,Mxy(,)yx,24.抛物线的焦点为,点在此抛物线上,且,F002x,则______ 05.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒3mgm/物)的数据(单位:)分别为115,125,132,128,125,则该组数据的方差为,,,,,,,,,,,,,,,,6.平行四边形中,=(1,0),=(2,2),则等于ABCDACABADBD,an7.已知关于的二项式展开式的二项式系数之和为32,常x,(x)3x数项为80,则的值为 a8.在?中,角所对的边分别为,已知,,ABCa,2c,3ABC,,abc,,,则= B,:60b29.用半径为cm,面积为cm的扇形铁皮制作一个无盖的圆1021002,锥形容器(衔接部分忽略不计),则该容器盛满水时的体积是22xy31,10.已知椭圆()右顶点与右焦点的距离为,,,1a,b,022ab短轴长为22椭圆方程为,x,011.设为实常数,是定义在R上的奇函数,当时,yfx,()a2a若“对于任意,fxa()1,,”是假命题,则的取,,x,0,,,afxx()97,,,x 值范围为pp3,,3q,,,aa,tan3qa12.已知,等比数列中,,,数列的a,1,,,,,,n4n1669,, 前2014项的和为0,则的值为 q[x]x,0f(x),,a13.表示不超过x的最大整数,若函数,当时,[x]f(x)xa有且仅有3个零点,则的取值范围为 .22xOyP(1,2)14.在平面直角坐标系中,已知圆O:xy,,16,点,M,N,,,,,,,,,,,,,,,,,,,,,,,,,,PMPN,,0为圆O上不同的两点,且满足(若,则的最PQPMPN,,PQ小值为二( 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分(x15.如图,在复平面内,点表示复数,则图中表示的共轭复数的zzAAC点是OyBDCA( B. C( D( ABDanlim,limaAbB,,16.“”是“”的 limnn存在,,,,nnn,,bnA.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件.x17.已知函数,将函数图象上所有点的横坐标缩yfx,()fxx()sin,,,R21倍(纵坐不变),得到函数的图象,则关于有短为原来的gx()fxgx()(),2 下列命题,其中真命题的个数是?函数是奇函数; yfxgx,,()()?函数不是周期函数; yfxgx,,()()?函数yfxgx,,()()的图像关于点(π,0)中心对称;3?函数yfxgx,,()()的最大值为 3A.1B.2C.3D.4ABBC18.如图,、分别为棱长为1的正方体的棱、的中点,EF1111D GACDD点、分别为面对角线和棱上的动HC1GAB EFGH,点(包括端点),则下列关于四面体的HD1C1 体积正确的是 F A1B 1E A此四面体体积既存在最大值,也存在最小值;B此四面体的体积为定值;C此四面体体积只存在最小值;D此四面体体积只存在最大值。

2016年高考全国Ⅱ理科数学试题及答案(word解析版)

2016年高考全国Ⅱ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国II )数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅱ,理1,5分】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 取值范围是( ) (A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--, 【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A . (2)【2016年全国Ⅱ,理2,5分】已知集合{}1,23A =,,{}|(1)(2)0B x x x x =+-<∈Z ,,则A B = ( )(A ){}1 (B ){12}, (C ){}0123,,, (D ){}10123-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,,∴{}01B =,,{}0123A B = ,,,,所以选C .(3)【2016年全国Ⅱ,理3,5分】已知向量()()1,3,2a m b ==- ,,且()a b b +⊥,则m =( )(A )8- (B )6- (C )6 (D )8 【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关. (4)【2016年全国Ⅱ,理4,5分】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a =( )(A )43- (B )34- (C (D )2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .(5)【2016年全国Ⅱ,理5,5分】如图,小明从街道的E 处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则 小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法,故选B . (6)【2016年全国Ⅱ,理6,5分】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l ==,21π2S r ch cl =++表4π16π8π=++28π=,故选C .(7)【2016年全国Ⅱ,理7,5分】若将函数2sin 2y x =的图像向左平移π12个单位长度,则平移后图象的对称轴为( )(A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212k x k =-∈Z (D )()ππ212k x k =+∈Z【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(8)【2016年全国Ⅱ,理8,5分】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =( ) (A )7 (B )12 (C )17 (D )34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=,第三次运算:62517s =⨯+=,故选C .(9)【2016年全国Ⅱ,理9,5分】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725 (B )15 (C ) 15- (D )725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .(10)【2016年全国Ⅱ,理10,5分】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为( )(A )4n m (B )2n m(C )4m n (D )2m n【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的 阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .(11)【2016年全国Ⅱ,理11,5分】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为( )(A(B )32(C(D )2【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 3sin sin 13F F M e MF MF F F ====---,故选A . (12)【2016年全国Ⅱ,理12,5分】已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点 '0i i x x += '=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2016年全国Ⅱ,理13,5分】ABC △的内角A B C ,,的对边分别为a b c ,,,若4c o s 5A =,5cos 13C =,1a =,则b =______.【答案】2113【解析】∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =. (14)【2016年全国Ⅱ,理14,5分】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 【答案】②③④ 【解析】. (15)【2016年全国Ⅱ,理15,5分】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_______. 【答案】()1,3【解析】由题意得:丙不拿()2,3,若丙()1,2,则乙()2,3,甲()1,3满足,若丙()1,3,则乙()2,3,甲()1,2不满足,故甲()1,3. (16)【2016年全国Ⅱ,理16,5分】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = _______.【答案】1ln2-【解析】ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为: ()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x = 212x =-,∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2016年全国Ⅱ,理17,12分】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.解:(1)设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===.(2)记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. ∴1000091902900311893T =⨯+⨯+⨯+⨯=.(18)【2016年全国Ⅱ,理18,12分】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保(1(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率. (3)求续保人本年度的平均保费与基本保费的比值. 解:(1)设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (2)设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===. (30.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.(19)【2016年全国Ⅱ,理19,12分】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆的位置OD '=(1)证明:DH'⊥平面ABCD ; (2)求二面角B D A C '--的正弦值.解:(1)∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥, ∴EF D H ⊥,∴EF DH '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=,∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (2)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,, ()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r,,,设面'ABD 法向量()1n x y z =,,u r ,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩, 取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r ,,, ∴1212cos n n n nθ⋅===u r u u r u r u u r sin θ=. (20)【2016年全国Ⅱ,理20,12分】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E的左顶点,斜率为(0)k k > 的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥. (1)当4t =,AM AN =时,求AMN ∆的面积;(2)当2AM AN =时,求k 的取值范围.解:(1)当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=,解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++,因为AM AN ⊥,所以21212413341AN k k k =⎛⎫++⋅- ⎪⎝⎭,因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =. 所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. (2)直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=,解得x =x =AM ==所以3AN k k =+,因为2AM AN =,所以23k k=+,整理得, 23632k k t k -=-.因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-,2k <.(21)【2016年全国Ⅱ,理21,12分】(1)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>;(2)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a的值域.解:(1)()2e 2x x f x x -=+,()()()22224e e 222x xx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞ ,时,()0f x '>, ∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. (2)()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x xx x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+ ⎪+⎝⎭= [)01a ∈, 由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+, ∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号. (22)【2016年全国Ⅱ,理22,10分】(选修4-1:几何证明选讲)如图,在正方形ABCD ,E ,G分别在边DA ,DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F . (1)证明:B C G F ,,,四点共圆;(2)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.解:(1)∵DF CE ⊥,∴Rt Rt DEF CED △∽△,∴GDF DEF BCF ∠=∠=∠,DF CFDG BC=, ∵DE DG =,CD BC =,∴DF CFDG BC=,∴GDF BCF △∽△,∴CFB DFG ∠=∠, ∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒,∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆.(2)∵E 为AD 中点,1AB =,∴12DG CG DE ===,∴在Rt GFC △中,GF GC =,连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.(23)【2016年全国Ⅱ,理23,10分】(选修4-4:坐标系与参数方程)在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A B 、两点,AB =l 的斜率.解:(1)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(2)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:22369014k k =+,整理得253k =,则k = (24)【2016年全国Ⅱ,理24,10分】(选修4-5:不等式选讲)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(1)求M ;(2)证明:当a ,b M ∈时,1a b ab +<+.解:(1)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(2)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+,即1a b ab +<+,证毕.。

2016年上海高考数学真题(理科)试卷(word解析版)

 2016年上海高考数学真题(理科)试卷(word解析版)

绝密★启用前 2016年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________. 4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米).5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.10.设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩,无解,则b a +的取值范围是____________. 11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意N n *∈,{}3,2∈n S ,则k 的最大值为________.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是_____________.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为如图的是( ).(A )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O的同侧.(1)求三棱锥111C O A B 的体积;(2)求异面直线1B C 与1AA 所成的角的大小.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a 都具有性质P”的充要条件为“{}nb是常数列”.考生注意:1. 本试卷共4页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.【答案】(2,4) 【解析】试题分析:由题意得:1x 31-<-<,解得2x 4<<. 考点:绝对值不等式的基本解法.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.【答案】-3 【解析】 试题分析:32i23,Im z= 3.i z i +==--考点:1.复数的运算;2.复数的概念.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________.【解析】试题分析:利用两平行线间的距离公式得d ===.考点:两平行线间距离公式.4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 【答案】2log (1)x -【解析】试题分析: 将点(3,9)代入函数()xf x 1a =+中得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:反函数的概念以及指、对数式的转化.6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.【答案】【解析】试题分析:连结BD,则由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=.考点:线面角7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .【答案】566ππ, 【解析】试题分析:化简3sinx 1cos 2x =+得:23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),又[]0,2πx ∈,所以566x ππ=或. 考点:二倍角公式及三角函数求值.8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】试题分析:由二项式定理得:所有项的二项式系数之和为n2,即n2256=,所以n 8=,又二项展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,所以r 2=,所以3T 112=,即常数项为112.考点:二项式定理.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【解析】试题分析:利用余弦定理可求得最大边7所对应角的余弦值为22235712352+-=-⨯⨯,所以此角的正弦值2R=,所以R=.考点:正弦、余弦定理.10.设.0,0>>ba若关于,x y的方程组11ax yx by+=⎧⎨+=⎩,无解,则ba+的取值范围是____________.【答案】2+∞(,)【解析】试题分析:将方程组中上面的式子化简得y1ax=-,代入下面的式子整理得(1ab)x1b-=-,方程组无解应该满足1ab0-=且1b0-≠,所以ab1=且b1≠,所以由基本不等式得a b2+>=,即ba+的取值范围是2+∞(,).考点:方程组的思想以及基本不等式的应用.11.无穷数列{}na由k个不同的数组成,nS为{}na的前n项和.若对任意Nn*∈,{}3,2∈nS,则k的最大值为________.【答案】4考点:数列的项与和.12.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线21xy-=上一个动点,则BABP⋅的取值范围是_____________.【答案】【解析】试题分析:由题意设(cos ,sin )P αα, ,则(cos ,1sin )BP αα=+,又,所以π=cos sin )+1[0,14BP BA ααα⋅+++∈+.考点:1.数量积的运算;2.数形结合的思想.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4【解析】试题分析:当2a =时,5sin(3)sin(32)sin(3)333πππx x πx -=-+=+,5(,)(3,)3πb c =,又4sin(3)sin[(3)]sin(3)333πππx πx x -=--=-+,4(,)(3,)3πb c =-,注意到[0,2)c π∈,所以只有2组:5(23,)3π,, 4(23,)3π-,满足题意;当2a =-时,同理可得出满足题意的()c b a ,,也有2组,故共有4组.考点:三角函数14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:[0,π]α∈(1,1)BA =共有2828C =种基本事件,其中使点P 落在第一象限的情况有2325C +=种,故所求概率为528.考点:古典概型三、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(B )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以“1>a ”是“12>a ”的充分非必要条件,选A.考点:充要条件17.下列极坐标方程中,对应的曲线为如图的是( ).(B )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 【答案】D【解析】试题分析:依次取30,,,22ππθπ=,结合图形可知只有65sin ρθ=-满足,选D.考点:极坐标方程18.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B考点:1.数列的极限;2.等比数列求和.18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题【答案】D 【解析】 试题分析:因为[()g(x)][()(x)][g()(x)]()2f x f x h x h f x +++-+=,所以[(+)g(+)][(+)(+)][g(+)(+)](+)2f x T x T f x T h x T x T h x T f x T +++-+=,又()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,所以[()g()][()()][g()()](+)=()2f x x f x h x x h x f x T f x +++-+=,所以()f x 是周期为T 的函数,同理可得()g x 、()h x 均是以T 为周期的函数,②正确;()f x 、()g x 、()h x 中至少有一个增函数包含一个增函数、两个减函数;两个增函数、一个减函数;三个增函数,其中当三个函数中一个为增函数、另两个为减函数时,由于减函数加减函数一定为减函数,所以①不正确.选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B长为3π,其中1B 与C 在平面11AAOO 的同侧. (1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.【答案】(1;(2)π4.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =,1113π∠A O B =,再由三角形面积公式计算111S ∆O A B 后即得.(2)设过点1B 的母线与下底面交于点B ,根据11//BB AA ,知1C ∠B B或其补角为直线1CB 与1AA 所成的角,再结合题设条件确定πC 3∠OB =,C 1B =.得出1πC 4∠B B =即可.试题解析:(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 的长为π3,可知111π3∠A O B =.11111111111sin 2S ∆O A B =O A ⋅O B ⋅∠A O B =111111C 1V 3S h -O A B ∆O A B =⋅=.从而直线1C B 与1AA 所成的角的大小为π4.考点:1.几何体的体积;2.空间角.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(3)求菜地内的分界线C 的方程;(4)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.【答案】(1)24y x =(02y <<);(2)矩形面积为52,五边形面积为114,五边形面积更接近于1S 面积的“经验值”.【解析】试题分析:(1)由C 上的点到直线EH 与到点F 的距离相等,知C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分.(2)通过计算矩形面积,五边形面积,以及计算矩形面积与“经验值”之差的绝对值,五边形面积与“经验值”之差的绝对值,比较二者大小即可.试题解析:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 考点:1.抛物线的定义及其标准方程;2.面积计算.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.【答案】(1)y =;(2).【解析】 试题分析:(1)设(),x y A A A ,根据题设条件得到()24413b b +=,从而解得2b 的值.(2)设()11,x y A ,()22,x y B ,直线:l ()2y k x =-与双曲线方程联立,得到一元二次方程,根据l 与双曲线交于两点,可得230k -≠,且()23610k ∆=+>.再设AB 的中点为(),x y M M M ,由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,从而得到1F 1kk M⋅=-,进而构建关于k 的方程求解即可. 试题解析:(1)设(),x y A A A .由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430kx k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.设AB 的中点为(),x y M M M .由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,知1F M ⊥AB ,故1F 1k k M⋅=-.而2122223x x k x k M +==-,()2623k y k x k M M =-=-,1F 2323k k k M =-,所以23123k k k ⋅=--,得235k =,故l 的斜率为155±. 考点:1.双曲线的几何性质;2.直线与双曲线的位置关系;3.平面向量的数量积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1)()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭;(2)(]{}1,23,4;(3)2,3⎡⎫+∞⎪⎢⎣⎭.【解析】试题分析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,从而得解.(2)将其转化为()()24510a x a x -+--=,讨论当4a =、3a =时,以及3a ≠且4a ≠时的情况即可.(3)讨论()f x 在()0,+∞上的单调性,再确定函数()f x 在区间[],1t t +上的最大值与最小值之差,从而得到()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 试题解析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>, 解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x +=-+-,()()24510a x a x -+--=,当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意.当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠.1x 是原方程的解当且仅当11a x +>,即2a >; 2x 是原方程的解当且仅当21a x +>,即1a >.于是满足题意的(]1,2a ∈.综上,a 的取值范围为(]{}1,23,4.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.考点:1.对数函数的性质;2.函数与方程;3.二次函数的性质.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)16;(2){}n a 不具有性质P ,理由见解析;(3)见解析.【解析】 试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解即可.(2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193nn n n a b c n -=+=-+.通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P .(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =.(2){}n b 的公差为20,{}n c 的公比为13,所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193nn n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P .[证](3)充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得πm b >,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.祝福语祝你考试成功!。

2016年上海市十三校联考高考数学二模试卷(理科)含详解

2016年上海市十三校联考高考数学二模试卷(理科)含详解

2016年上海市十三校联考高考数学二模试卷(理科)一、填空题(共14小题,每小题5分,满分70分)1.(5分)若行列式,则x=.2.(5分)二次项(2x﹣)6展开式中的常数项为.3.(5分)若椭圆的焦点在x轴上,焦距为2,且经过,则椭圆的标准方程为.4.(5分)若集合A={x||x﹣3|<2},集合B={x|},则A∩B=.5.(5分)△ABC中,,BC=3,,则∠C=.6.(5分)从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学至少有一名女同学的概率是.7.(5分)若不等式a2+b2≥2kab对任意a、b∈R都成立,则实数k的取值范围是.8.(5分)已知直角坐标系中,曲线C参数方程为(0≤α≤2π),现以直角坐标系的原点为极点,以x轴正半轴为极轴,建立极坐标系,则曲线C的极坐标方程是.9.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为2,点E为棱AA1的中点,则点C1到平面BDE的距离为.10.(5分)函数f(x)=()x+x﹣5的零点为x1、x2,函数g(x)=log x+x﹣5的零点为x3、x4,则x1+x2+x3+x4的值为.11.(5分)对于数列{a n}满足:a1=1,a n+1﹣a n∈{a1,a2,…,a n}(n∈N+),其前n项和为S n,记满足条件的所有数列{a n}中,S5的最大值为a,最小值为b,则a﹣b=.12.(5分)定义在R上的奇函数f(x)在区间(﹣∞,0)上单调递减,且f(2)=0,则不等式xf(x﹣1)≥0的解集为.13.(5分)已知正四面体A1A2A3A4,点A5,A6,A7,A8,A9,A10分别是所在棱的中点,如图,则当1≤i≤10,1≤j≤10,且i≠j时,数量积的不同数值的个数为.14.(5分)设函数f(x)的定义域为D,记f(X)={y|y=f(x),x∈X⊆D},f﹣1(Y)={x|f(x)∈Y,x∈D},若f(x)=2sin(ωx+)(ω>0),D=[0,π],且f(f﹣1([0,2])=[0,2],则ω的取值范围是.二、选择题(共4小题,每小题5分,满分20分)15.(5分)二元一次方程组存在唯一解的必要非充分条件是()A.系数行列式D≠0B.比例式C.向量不平行D.直线a1x+b1y=c1,a2x+b2y=c2不平行16.(5分)设M、N为两个随机事件,如果M、N为互斥事件,那么()A.是必然事件B.M∪N是必然事件C.与一定为互斥事件D.与一定不为互斥事件17.(5分)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8C.25,16,9D.24,17,9 18.(5分)点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到定点A的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线三、解答题(共5小题,满分60分)19.(12分)用铁皮制作一个容积为cm3的无盖圆锥形容器,如图,若圆锥的母线与底面所称的角为45°,求制作该容器需要多少面积的铁皮(铁皮街接部分忽略不计,结果精确到0.1cm2)20.(12分)已知复数z1=2sinθ﹣i,z2=1+(2cosθ)i,i为虚数单位,θ∈[,].(1)若z1•z2为实数,求sec2θ的值;(2)若复数z1,z2对应的向量分别是,,存在θ使等式(λ﹣)•(﹣λ)=0成立,求实数λ的取值范围.21.(12分)已知{a n}是等差数列,a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)设c n=b n cosnπ,求数列{c n}的前n项和S n,并判断是否存在正整数m,使得S m=2016?若存在,求出m的值;若不存在,说明理由.22.(12分)已知抛物线ρ:x2=4y,P(x0,y0)为抛物线ρ上的点,若直线l经过点P且斜率为,则称直线l为点P的“特征直线”.设x1、x2为方程x2﹣ax+b=0(a,b∈R)的两个实根,记r(a,b)=.(1)求点A(2,1)的“特征直线”l的方程(2)已知点G在抛物线ρ上,点G的“特征直线”与双曲线经过二、四象限的渐进线垂直,且与y轴的交于点H,点Q(a,b)为线段GH上的点.求证:r(a,b)=2(3)已知C、D是抛物线ρ上异于原点的两个不同的点,点C、D的“特征直线”分别为l1、l2,直线l1、l2相交于点M(a,b),且与y轴分别交于点E、F.求证:点M在线段CE上的充要条件为r(a,b)=(其中x c为点C的横坐标).23.(12分)已知μ(x)表示不小于x的最小整数,例如μ(0.2)=1.(1)设A={x|μ(x+log2x)>m},B=(,2),若A∩B≠∅,求实数m的取值范围;(2)设g(x)=μ(xμ(x)),g(x)在区间(0,n)(n∈N+)上的值域为M n,集合M n中的元素个数为a n,求证:;(3)设g(x)=x+a,h(x)=,若对于x1,x2(2,4],都有g(x1)>h(x2),求实数a的取值范围.2016年上海市十三校联考高考数学二模试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)若行列式,则x=2.【考点】O1:二阶矩阵.【专题】11:计算题.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:2【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.2.(5分)二次项(2x﹣)6展开式中的常数项为﹣20.【考点】DA:二项式定理.【专题】38:对应思想;4O:定义法;5P:二项式定理.【分析】根据二次项展开式的通项公式,写出含x项的指数,令指数为0求出r 的值,再计算二项展开式中的常数项.【解答】解:二次项(2x﹣)6展开式中的通项公式为:T r+1=•(2x)6﹣r•=•26﹣r••x6﹣2r,由6﹣2r=0得:r=3;∴二项展开式中的常数项为:•23•=﹣20.故答案为:﹣20.【点评】本题考查了二项式系数的性质问题,利用二项展开式的通项公式求出r的值是解题的关键,是基础题.3.(5分)若椭圆的焦点在x轴上,焦距为2,且经过,则椭圆的标准方程为.【考点】K3:椭圆的标准方程.【专题】11:计算题.【分析】先根据椭圆的焦点位置,求出半焦距,经过的椭圆的长半轴等于,可求短半轴,从而写出椭圆的标准方程.【解答】解:由题意知,椭圆的焦点在x轴上,c=1,a=,∴b2=4,故椭圆的方程为为故答案为:.【点评】本题考查椭圆的性质及标准方程的求法等基础知识,考查运算求解能力,考查数形结合思想,属于基础题.用待定系数法求椭圆的标准方程是一种常用的方法.4.(5分)若集合A={x||x﹣3|<2},集合B={x|},则A∩B=[4,5).【考点】1E:交集及其运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式变形得:﹣2<x﹣3<2,解得:1<x<5,即A=(1,5),由B中不等式变形得:x(x﹣4)≥0,且x≠0,解得:x<0或x≥4,即B=(﹣∞,0)∪[4,+∞),则A∩B=[4,5),故答案为:[4,5)【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.(5分)△ABC中,,BC=3,,则∠C=.【考点】HP:正弦定理.【专题】11:计算题.【分析】由A的度数,求出sinA的值,设a=BC,c=AB,由sinA,BC及AB的值,利用正弦定理求出sinC的值,由c小于a,根据大边对大角得到C小于A的度数,得到C的范围,利用特殊角的三角函数值即可求出C的度数.【解答】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C 的范围.6.(5分)从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学至少有一名女同学的概率是.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】先求出基本事件总数,由选到的2名同学至少有一名女同学的对立事件为选到的2名同学都是男同学,利用对立事件概率计算公式能求出选到的2名同学至少有一名女同学的概率.【解答】解:从3名男同学,2名女同学中任意2人参加体能测试,基本事件总数n=,选到的2名同学至少有一名女同学的对立事件为选到的2名同学都是男同学,∴选到的2名同学至少有一名女同学的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.7.(5分)若不等式a2+b2≥2kab对任意a、b∈R都成立,则实数k的取值范围是[﹣1,1] .【考点】7F:基本不等式及其应用.【专题】11:计算题;33:函数思想;49:综合法;5T:不等式.【分析】化简a2+b2﹣2kab=(a﹣kb)2+b2﹣k2b2,从而可得b2﹣k2b2≥0恒成立,从而解得.【解答】解:∵a2+b2﹣2kab=(a﹣kb)2+b2﹣k2b2,∴对任意k,b,都存在a=kb;∴不等式a2+b2≥2kab对任意a、b∈R都成立可化为:b2﹣k2b2≥0恒成立,即1﹣k2≥0成立,故k∈[﹣1,1],故答案为:[﹣1,1].【点评】本题考查了学生的化简运算能力及恒成立问题的应用.8.(5分)已知直角坐标系中,曲线C参数方程为(0≤α≤2π),现以直角坐标系的原点为极点,以x轴正半轴为极轴,建立极坐标系,则曲线C的极坐标方程是ρ=4sinθ.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】求出C的直角坐标系方程,然后根据极坐标方程进行转化即可.【解答】解:,曲线C的标准方程为x2+(y﹣2)2=4,即x2+y2﹣4y+4=4,则x2+y2﹣4y=0,则ρ2﹣4ρsinθ=0即ρ=4sinθ,故答案为:ρ=4sinθ【点评】本题主要考查参数方程,极坐标方程和普通方程之间的转化,根据相应的转化公式是解决本题的关键.9.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为2,点E为棱AA1的中点,则点C1到平面BDE的距离为.【考点】MK:点、线、面间的距离计算.【专题】15:综合题;34:方程思想;49:综合法;5F:空间位置关系与距离.【分析】连接AC,与BD交于O,连接OE,作C1F⊥OE,证明C1O即为所求.【解答】解:如图所示,连接AC,与BD交于O,连接OE,作C1F⊥OE.∵BD⊥平面A1C1CA,BD⊂平面BDE∴平面BDE⊥平面A1C1CA,∵平面BDE∩平面A1C1CA=OE,C1F⊥OE,∴C1F⊥平面BDE.△C1OE中,C1E=3,C1O=,EO=,∴C1O2+EO2=C1E2,∴C1O⊥OE,即O,F重合,∴点C1到平面BDE的距离为.故答案为:.【点评】本题考查点C1到平面BDE的距离的计算,考查学生分析解决问题的能力,属于中档题.10.(5分)函数f(x)=()x+x﹣5的零点为x1、x2,函数g(x)=log x+x﹣5的零点为x3、x4,则x1+x2+x3+x4的值为10.【考点】53:函数的零点与方程根的关系.【专题】31:数形结合;35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由函数与方程的关系转化为图象的交点问题,根据同底的指数函数和对数函数互为反函数,图象关于y=x对称的性质进行转化求解.【解答】解:由f(x)=()x+x﹣5=0得()x=5﹣x,由g(x)=log x+x﹣5的得log x=5﹣x分别作出函数y=()x,y=5﹣x和y=log x的图象,∵y=()x和y=log x的图象关于y=x对称,则()x=5﹣x,与log x=5﹣x的根关于y=x对称,由得,即两直线的交点坐标为(,),则=,=,即x1+x3=5,x2+x4=5,则x1+x2+x3+x4=10,故答案为:10.【点评】本题主要考查函数与零点的应用,结合指数函数和对数函数的对称性是解决本题的关键.综合性较强,有一定的难度.11.(5分)对于数列{a n}满足:a1=1,a n+1﹣a n∈{a1,a2,…,a n}(n∈N+),其前n项和为S n,记满足条件的所有数列{a n}中,S5的最大值为a,最小值为b,则a﹣b=16.【考点】8I:数列与函数的综合.【专题】32:分类讨论;48:分析法;55:点列、递归数列与数学归纳法.【分析】由a1=1,a n+1﹣a n∈{a1,a2,…,a n}(n∈N+),分别令n=2,3,4,5,求得{a n}的前5项,观察得到最小值b=1+2+3+4+5,a=1+2+4+8+16,计算即可得到a﹣b的值.【解答】解:由a1=1,a n+1﹣a n∈{a1,a2,…,a n}(n∈N+),可得a2﹣a1=a1,解得a2=2a1=2,又a3﹣a2∈{a1,a2},可得a3=a2+a1=3或2a2=4,又a4﹣a3∈{a1,a2,a3},可得a4=a3+a1=4或5;a4=a3+a2=5或6;或a4=2a3=6或8;又a5﹣a4∈{a1,a2,a3,a4},可得a5=a4+a1=5或6或7;a5=a4+a2=6或7或8;a5=a4+a3=7或8或9或10或12;a5=2a3=8或10或12或16.综上可得S5的最大值a=1+2+4+8+16=31,最小值为b=1+2+3+4+5=15.则a﹣b=16.故答案为:16.【点评】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.12.(5分)定义在R上的奇函数f(x)在区间(﹣∞,0)上单调递减,且f(2)=0,则不等式xf(x﹣1)≥0的解集为[﹣1,0]∪[1,3] .【考点】3N:奇偶性与单调性的综合.【专题】15:综合题;32:分类讨论;44:数形结合法;51:函数的性质及应用.【分析】根据奇函数的性质求出f(﹣2)=0,由条件画出函数图象示意图,结合图象并对x分类列出不等式组,分别利用函数的单调性求解即可求出不等式的解集.【解答】解:∵f(x)为奇函数,且f(2)=0,在(﹣∞,0)是减函数,∴f(﹣2)=﹣f(2)=0,f(x)在(0,+∞)内是减函数,函数图象示意图:其中f(0)=0,∵xf(x﹣1)≥0,∴或,解得﹣1≤x≤0或1≤x≤3,∴不等式的解集是[﹣1,0]∪[1,3],故答案为:[﹣1,0]∪[1,3].【点评】本题考查函数的奇偶性、单调性的综合应用,正确画出函数的示意图是解题的关键,考查分类讨论思想和数形结合思想.13.(5分)已知正四面体A1A2A3A4,点A5,A6,A7,A8,A9,A10分别是所在棱的中点,如图,则当1≤i≤10,1≤j≤10,且i≠j时,数量积的不同数值的个数为9.【考点】9S:数量积表示两个向量的夹角.【专题】15:综合题;32:分类讨论;44:数形结合法;5A:平面向量及应用.【分析】设出已知正四面体的棱长,求出四个面上的每一个顶点与对边中点的连线长,每一对相对棱的中点连线得长,然后分别求i=1,j自1取到10,所得数量积的不同数值,同理求得i=2,j自1取到10,所得数量积的不同数值,…i=10,j自1取到10,所得数量积的不同数值,比较结果后得答案.【解答】解:∵四面体A1A2A3A4是正四面体,∴四面体的所有棱长相等,设为a,四个面上的每一个顶点与对边中点的连线长均为,每一对相对棱的中点连线相等均为.当i=1,j自1取到10,所得数量积的不同数值有:=a2,,,,,,,,.当i=2,j自1取到10时,依次求得数量积的不同数值,…i=10,j自1取到10,依次求得数量积的不同数值,比较结果后得数量积的不同数值有,0,共9个.故答案为:9.【点评】本题考查向量在几何体中的应用,考查了平面向量的数量积运算,考查空间想象能力和思维能力,属中档题.14.(5分)设函数f(x)的定义域为D,记f(X)={y|y=f(x),x∈X⊆D},f﹣1(Y)={x|f(x)∈Y,x∈D},若f(x)=2sin(ωx+)(ω>0),D=[0,π],且f(f﹣1([0,2])=[0,2],则ω的取值范围是[,+∞).【考点】H2:正弦函数的图象.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】由题意可得≤ωx+≤ωπ+,2sin(ωx+)∈[0,2],可得ωπ+≥2π+,由此求得ω的范围.【解答】解:由题意得,D=[0,π],f(x)=2sin(ωx+)(ω>0)的定义域为D,∵f﹣1([0,2])={x|f(x)∈[0,2],x∈R},故2sin(ωx+)∈[0,2].∵ω>0,x∈[0,π],∴≤ωx+≤ωπ+,∴由2sin(ωx+)∈[0,2],可得ωπ+≥2π+,∴ω≥,故答案为:[,+∞).【点评】本题考查了对应关系的应用,以及函数的定义域与值域的关系的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)15.(5分)二元一次方程组存在唯一解的必要非充分条件是()A.系数行列式D≠0B.比例式C.向量不平行D.直线a1x+b1y=c1,a2x+b2y=c2不平行【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用二元一次方程组存在唯一解时,系数行列式不等于0,即可得到A,B,C为充要条件,对于选项的,直线分共面和异面两种情况.【解答】解:当两直当两直线共面时,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组存在唯一解当两直线异面,直线a1x+b1y=c1,a2x+b2y=c2不平行,二元一次方程组无解,故直线a1x+b1y=c1,a2x+b2y=c2不平行是二元一次方程组存在唯一解的必要非充分条件.故选:D.【点评】本题考查二元一次方程组的解,解题的关键是利用二元一次方程组存在唯一解时,系数行列式不等于0,以及空间两直线的位置关系,属于基础题.16.(5分)设M、N为两个随机事件,如果M、N为互斥事件,那么()A.是必然事件B.M∪N是必然事件C.与一定为互斥事件D.与一定不为互斥事件【考点】C1:随机事件;C4:互斥事件与对立事件.【专题】5I:概率与统计.【分析】有M、N是互斥事件,作出相应的示意图,即可得.【解答】解:因为M、N为互斥事件,如图:,无论哪种情况,是必然事件.故选:A.【点评】本题考查借助示意图判断事件间的关系,考查互斥事件的定义,属于基础题17.(5分)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8C.25,16,9D.24,17,9【考点】B4:系统抽样方法.【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到003号,以后每隔12个号抽到一个人,则分别是003、015、027、039构成以3为首项,12为公差的等差数列,故可分别求出在001到300中有25人,在301至495号中共有17人,则496到600中有8人.故选:B.【点评】本题主要考查系统抽样方法.18.(5分)点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到定点A的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【考点】J3:轨迹方程.【专题】16:压轴题;39:运动思想.【分析】根据题意“点P到图形C上每一个点的距离的最小值称为点P到图形C 的距离”,将平面内到定圆C的距离转化为到圆上动点的距离,再分点A现圆C的位置关系,结合圆锥曲线的定义即可解决.【解答】解:排除法:设动点为Q,1.当点A在圆内不与圆心C重合,连接CQ并延长,交于圆上一点B,由题意知QB=QA,又QB+QC=R,所以QA+QC=R,即Q的轨迹为一椭圆;如图.2.如果是点A在圆C外,由QC﹣R=QA,得QC﹣QA=R,为一定值,即Q的轨迹为双曲线的一支;3.当点A与圆心C重合,要使QB=QA,则Q必然在与圆C的同心圆,即Q的轨迹为一圆;则本题选D.故选:D.【点评】本题主要考查了轨迹方程,以及分类讨论的数学思想,属于中档题.三、解答题(共5小题,满分60分)19.(12分)用铁皮制作一个容积为cm3的无盖圆锥形容器,如图,若圆锥的母线与底面所称的角为45°,求制作该容器需要多少面积的铁皮(铁皮街接部分忽略不计,结果精确到0.1cm2)【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】31:数形结合;44:数形结合法;5Q:立体几何.【分析】求出圆锥的侧面积即为答案.【解答】解:设圆锥形容器的底面半径为r,则圆锥的高为r,圆锥的母线为.∵V==,∴r=10cm.∴圆锥形容器的侧面积S==100cm2≈444.3cm2.【点评】本题考查了圆锥的结构特征,面积,体积计算,属于基础题.20.(12分)已知复数z1=2sinθ﹣i,z2=1+(2cosθ)i,i为虚数单位,θ∈[,].(1)若z1•z2为实数,求sec2θ的值;(2)若复数z1,z2对应的向量分别是,,存在θ使等式(λ﹣)•(﹣λ)=0成立,求实数λ的取值范围.【考点】%A:面积、复数、向量、解析几何方法的应用;A4:复数的代数表示法及其几何意义;A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;59:不等式的解法及应用;5A:平面向量及应用;5N:数系的扩充和复数.【分析】(1)利用复数的乘法化简复数,通过复数是实数求出θ,然后求解即可.(2)化简复数z1,z2对应的向量分别是,,然后利用向量的数量积求解即可.【解答】解:复数z1=2sinθ﹣i,z2=1+(2cosθ)i,i为虚数单位,θ∈[,].(1)z1•z2=2sinθ+2cosθ+(4sinθcosθ﹣)i,z1•z2为实数,可得4sinθcosθ﹣=0,sin2θ=,解得θ=.sec2θ==﹣2.(2)复数z1=2sinθ﹣i,z2=1+(2cosθ)i,复数z1,z2对应的向量分别是,,=(2sinθ,﹣),=(1,2cosθ),(λ﹣)•(﹣λ)=0,∵2+2=(2sinθ)2+(﹣)2+1+(2cosθ)2=8,•=(2sinθ,﹣)•(1,2cosθ)=2sinθ﹣2cosθ,∴(λ﹣)•(﹣λ)=λ(2+2)﹣(1+λ2)•=8λ﹣(1+λ2)(2sinθ﹣2cosθ)=0,化为sin(θ﹣)=,∵θ∈[,],∴(θ﹣)∈[0,],∴sin(θ﹣)∈[0,].∴0≤≤,解得λ≥或0<λ≤2﹣.实数λ的取值范围是(0,2﹣]∪[2+,+∞).【点评】熟练掌握z1•z2∈R⇔虚部=0、复数的几何意义、向量的数量积、一元二次不等式的解法是解题的关键21.(12分)已知{a n}是等差数列,a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)设c n=b n cosnπ,求数列{c n}的前n项和S n,并判断是否存在正整数m,使得S m=2016?若存在,求出m的值;若不存在,说明理由.【考点】84:等差数列的通项公式;88:等比数列的通项公式;8E:数列的求和.【专题】11:计算题;32:分类讨论;4M:构造法;54:等差数列与等比数列.【分析】(1)可求得d==3,{b n﹣a n}是等比数列,公比q=2,从而求数列{a n}和{b n}的通项公式;(2)化简c n=b n cosnπ=(3n+2n﹣1)cosnπ,从而分类讨论以确定数列{c n}的前n 项和S n,可求得S n=,从而讨论即可.【解答】解:(1)∵{a n}是等差数列,a1=3,a4=12,∴d==3,∴a n=3n,∵{b n﹣a n}是等比数列,且b1﹣a1=4﹣3=1,b4﹣a4=20﹣12=8,∴q=2,∴b n﹣a n=1•2n﹣1,∴b n=3n+2n﹣1;(2)c n=b n cosnπ=(3n+2n﹣1)cosnπ,故①当n为奇数时,S n=﹣(3+1)+(6+2)﹣(9+4)+…+(3(n﹣1)+2n﹣2)﹣(3n+2n﹣1)=(﹣3+6﹣9+…+3(n﹣1))﹣3n+(﹣1+2﹣4+…﹣2n﹣1)=3×﹣3n+[(﹣2)n﹣1]=﹣(n+1)+[(﹣2)n﹣1]=﹣[(n+1)+(2n+1)],②当n为偶数时,S n=﹣(3+1)+(6+2)﹣(9+4)+…﹣(3(n﹣1)+2n﹣2)+(3n+2n﹣1)=(﹣3+6﹣9+…﹣3(n﹣1)+3n)+(﹣1+2﹣4+…+2n﹣1)=3×+[(﹣2)n﹣1]=n+(2n﹣1),综上所述,S n=,若S m=2016,故m一定是偶数,故m+(2m﹣1)=2016,故(2m﹣1)=2016﹣m,而(214﹣1)>2016,(212﹣1)<2016﹣×12,故m值不存在.【点评】本题考查了等差数列与等比数列的应用,同时考查了数列前n项和的求法及分类讨论的思想应用.22.(12分)已知抛物线ρ:x2=4y,P(x0,y0)为抛物线ρ上的点,若直线l经过点P且斜率为,则称直线l为点P的“特征直线”.设x1、x2为方程x2﹣ax+b=0(a,b∈R)的两个实根,记r(a,b)=.(1)求点A(2,1)的“特征直线”l的方程(2)已知点G在抛物线ρ上,点G的“特征直线”与双曲线经过二、四象限的渐进线垂直,且与y轴的交于点H,点Q(a,b)为线段GH上的点.求证:r(a,b)=2(3)已知C、D是抛物线ρ上异于原点的两个不同的点,点C、D的“特征直线”分别为l1、l2,直线l1、l2相交于点M(a,b),且与y轴分别交于点E、F.求证:点M在线段CE上的充要条件为r(a,b)=(其中x c为点C的横坐标).【考点】K8:抛物线的性质.【专题】23:新定义;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)求得特征直线的斜率,哟哟点斜式方程即可得到所求方程;(2)求出双曲线的渐近线方程,可得点G的“特征直线”的斜率为2,求得G的坐标,解方程可得较大的根,进而得到证明;(3)设C(m,n),D(s,t),求得直线l1、l2的方程,求得交点M,解方程可得两根,再由向量共线的坐标表示,即可得证.【解答】解:(1)由题意可得直线l的斜率为1,即有直线l的方程为y﹣1=x﹣2,即为y=x﹣1;(2)证明:双曲线的渐近线为y=±x,可得点G的“特征直线”的斜率为2,即有G的横坐标为4,可设G的坐标为(4,4),可得点G的“特征直线”方程为y﹣4=2(x﹣4),即为y=2x﹣4,点Q(a,b)为线段GH上的点,可得b=2a﹣4,(0≤a≤4),方程x2﹣ax+b=0的根为x=,即有较大的根为===2,可得r(a,b)=2;(3)设C(m,n),D(s,t),即有直线l1:y+n=mx,l2:y+t=sx,联立方程,由n=m2,t=s2,解得x=(m+s),y=ms,即有a=(m+s),b=ms,则方程x2﹣ax+b=0的根为x1=m,x2=s.可得E(0,﹣m2),点M在线段CE上,则b=ma﹣m2=ms,则=λ(λ≥0),即(m+s)﹣m=λ(0﹣(m+s)),即有(s﹣m)(m+s)≤0,即s2≤m2,即|s|≤|m|,则r(a,b)=;以上过程均可逆,即有点M在线段CE上的充要条件为r(a,b)=.【点评】本题考查新定义的理解和运用,考查抛物线的切线的方程的求法和运用,考查向量共线的坐标表示,化简整理的运算能力,属于中档题.23.(12分)已知μ(x)表示不小于x的最小整数,例如μ(0.2)=1.(1)设A={x|μ(x+log2x)>m},B=(,2),若A∩B≠∅,求实数m的取值范围;(2)设g(x)=μ(xμ(x)),g(x)在区间(0,n)(n∈N+)上的值域为M n,集合M n中的元素个数为a n,求证:;(3)设g(x)=x+a,h(x)=,若对于x1,x2(2,4],都有g(x1)>h(x2),求实数a的取值范围.【考点】3R:函数恒成立问题.【专题】23:新定义;35:转化思想;48:分析法;51:函数的性质及应用;54:等差数列与等比数列.【分析】(1)根据μ(x)的定义,A∩B≠∅,可得μ(x+log2x)的最大值为3,可得m<3;(2)由g(x)=μ(xμ(x)),依次求出数列{a n}的前5项,再归纳出a n=a n﹣1+n,利用累加法求出a n,运用数列的极限的计算公式,即可得证;(3)对于x1,x2∈(2,4],都有g(x1)>h(x2),即有g(x1)>h(x2)max,由二次函数的最值和正弦函数的值域,可得g(x)的最大值为4,讨论x∈(2,3],当x∈(3,4],结合新定义和分离参数,由二次函数的最值的求法,即可解得a的范围.【解答】解:(1)由题意可得x>0,且x+log2x在(,2)递增,即有﹣1<x+log2x<3,可得μ(x+log2x)的最大值为3,由A∩B≠∅,可得m<μ(x+log2x)的最大值,即有m<3,即m的范围是(﹣∞,3);(2)证明:由题意易知:当n=1时,x∈(0,1],所以μ(x)=1,所以μ(xμ(x))=1,所以M1={1},a1=1;当n=2时,x∈(1,2],所以μ(x)=2,所以μ(xμ(x))∈(2,4],所以M2={1,3,4},a2=3;当n=3时,x∈(2,3],所以μ(x)=3,所以μ(xμ(x))=μ(3x)∈(6,9],所以M3={1,3,4,7,8,9},a3=6;当n=4时,因为x∈(3,4],所以μ(x)=4,所以μ(xμ(x))=μ(4x)}∈(12,16],所以M4={1,3,4,7,8,9,13,14,15,16},a4=10;当n=5时,因为x∈(4,5],所以μ(x)=5,所以μ(xμ(x))=μ(5x)∈(20,25],所以M5={1,3,4,7,8,9,13,14,15,16,21,22,23,24,25},a5=15,由此类推:a n=a n﹣1+n,所以a n﹣a n﹣1=n,即a2﹣a1=2,a3﹣a2=3,a4﹣a3=4,…,a n﹣a n﹣1=n,以上n﹣1个式子相加得,a n﹣a1=,解得a n=,可得===;(3)对于x1,x2∈(2,4],都有g(x1)>h(x2),即有g(x1)>h(x2)max,由g(x)=,当x=时,x2﹣5x+7取得最小值,sinπx+2取得最大值1+2=3,即有g(x)取得最大值4.当x∈(2,3],有μ(x)=3,可得x+﹣2>4,即有3a>x(6﹣x),当x=3时,x(6﹣x)取得最大值9,可得3a>9,即为a>3:当x∈(3,4],有μ(x)=3,可得x+﹣2>4,即有4a>x(6﹣x),当x=3时,x(6﹣x)取得9,可得4a>9,即为a>.综上可得a>3.【点评】本题考查新定义的理解和应用,归纳推理,累加法求数列的通项公式,以及不等式恒成立问题的解法,难度较大.。

上海市闸北区高三二模数学(理)试题(含解析)

上海市闸北区高三二模数学(理)试题(含解析)

上海市闸北区高三二模数学(理)试题(含解析)一、填空题(54分)本大题共有9题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.(6分)(2013•闸北区二模)设为虚数单位,集合A={1,﹣1,i,﹣i},集合,则A∩B={﹣1,i} .考点:虚数单位i及其性质;交集及其运算.专题:计算题.分析:利用复数的运算法则化简集合B,再利用交集即可得到A∩B.解答:解:对于集合B:由i10=i2=﹣1,1﹣i4=1﹣1=0,(1+i)(1﹣i)=1+1=2,=.∴B={﹣1,0,2,i}.∴A∩B={﹣1,i}.故答案为{﹣1,i}.点评:熟练掌握复数的运算法则和交集的运算性质是解题的关键.2.(6分)(2013•闸北区二模)函数的反函数为.考点:反三角函数的运用.专题:三角函数的图像与性质.分析:由原函数的解析式求得 x=arcsin(﹣),再把x、y互换,并注明反函数的定义域(即原函数的值域),即可得原函数的反函数.解答:解:∵函数,∴=﹣sinx,y∈(0,1),即﹣=sinx,∴x=arcsin(﹣),故原函数的反函数为,故答案为.点评:本题主要考查求一个函数的反函数的方法,注意反函数的定义域是原函数的值域,属于中档题.3.(6分)(2008•四川)(1+2x)3(1﹣x)4展开式中x2的系数为﹣6 .考点:二项式定理.专题:计算题.分析:利用乘法原理找展开式中的含x2项的系数,注意两个展开式的结合分析,即分别为第一个展开式的常数项和第二个展开式的x2的乘积、第一个展开式的含x项和第二个展开式的x项的乘积、第一个展开式的x2的项和第二个展开式的常数项的乘积之和从而求出答案.解答:解:∵(1+2x)3(1﹣x)4展开式中x2项为C3013(2x)0•C4212(﹣x)2+C3112(2x)1•C4113(﹣x)1+C3212(2x)2•C4014(﹣x)0∴所求系数为C30•C42+C31•2•C41(﹣1)+C32•22•C4014=6﹣24+12=﹣6.故答案为:﹣6.点评:此题重点考查二项展开式中指定项的系数,以及组合思想,重在找寻这些项的来源.4.(6分)(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ= 1 .考点:离散型随机变量的期望与方差.专题:概率与统计.分析:由条件从袋中任意摸出1个球,得到黑球的概率是可得到黑球的个数;利用“从袋中任意摸出2个球,至少得到1个白球的”的对立事件“从袋中任意摸出2个球都不是白球”即可得出;由题意白球的个数随机变量ξ的取值为0,1,2,利用古典概型的概率计算公式和数学期望的计算公式即可得出Eξ.解答:解:∵从袋中任意摸出1个球,得到黑球的概率是,∴黑球的个数为=4.设白球的个数为x个,则红球的个数为6﹣x.设“从袋中任意摸出2个球,至少得到1个白球”为事件A,则其对立事件为“从袋中任意摸出2个球都不是白球”,由题意得P(A)=1﹣=1﹣=.解得x=5.可知白球的个数为5个,则红球的个数为1个.由题意白球的个数随机变量ξ的取值为0,1,2.∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.随机变量ξ的分布列见右图∴Eξ==1.故答案为1.点评:正确理解概率的意义、互为对立事件的概率之间的关系、古典概型的概率计算公式和数学期望计算公式是解题的关键.5.(6分)(2013•闸北区二模)半径为r的球的内接圆柱的最大侧面积为2πr2.考点:球内接多面体;旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:由题意圆柱的底面为球的截面,由球的截面性质可得出圆柱的高为h、底面半径为R 与球的半径为r的关系,再用h和R表示出圆柱的侧面积,利用基本不等式求最值即可.解答:解:如图为轴截面,令圆柱的高为h,底面半径为R,侧面积为S,则()2+R2=r2,即h=2 .∵S=2πRh=4πR•=4π ≤4π=2πr2,取等号时,内接圆柱底面半径为r,高为r.故答案为:2πr2点评:本题考查球与圆柱的组合体问题、以及利用基本不等式求最值问题,难度一般.6.(6分)(2013•闸北区二模)设M(x,y,z)为空间直角坐标系内一点,点M在xOy平面上的射影P的极坐标为(ρ,θ)(极坐标系以O为极点,以x轴为极轴),则我们称三元数组(ρ,θ,z)为点M的柱面坐标.已知M点的柱面坐标为,则直线OM与xOz平面所成的角为.考点:柱坐标刻画点的位置;直线与平面所成的角.专题:空间位置关系与距离.分析:根据题意:“M点的柱面坐标为,”作出立体图形,如图所示.利用长方体模型进行计算即可.在长方体OM中,∠PON=,ON=6,MN=1,直线OM与xOz平面所成的角为∠MOQ,利用长方体的性质得到对角线的长,再在直角三角形MOQ 中,求出sin∠MOQ,从而得出则直线OM与xOz平面所成的角的大小.解答:解:根据题意作出立体图形,如图所示.在长方体OM中,∠PON=,ON=6,MN=1,直线OM与xOz平面所成的角为∠MOQ,在直角三角形OPN中,OP=ONcos=3,PN=ONsin=3,∴OM===,在直角三角形MOQ中,sin∠MOQ===.∴则直线OM与xOz平面所成的角∠MOQ为.故答案为:.点评:本题考查直线与平面所成的角和线面角,本题解题的关键是构造长方体,属于中档题.7.(6分)(2013•闸北区二模)设y=f(x)为R上的奇函数,y=g(x)为R上的偶函数,且g(x)=f(x+1),g(0)=2.则f(x)= 2sin.(只需写出一个满足条件的函数解析式即可)考点:函数解析式的求解及常用方法.专题:综合题;函数的性质及应用.分析:根据f(x)、g(x)的奇偶性可推出f(x)的周期,由f(x)的周期性、奇偶性即可找到满足条件的一个函数.解答:解:因为f(x)是奇函数,g(x)是偶函数,所以f(x+1)=g(x)=g(﹣x)=f(﹣x+1)=﹣f(x﹣1),所以f(x+1)=﹣f(x﹣1),令t=x+1,则x=t﹣1,所以f(t)=﹣f(t﹣2)=f(t﹣4),所以f(x)是一个周期为4的周期函数,同时为奇函数,而满足条件,故答案为:2sin.点评:本题考查函数的奇偶性、周期性及函数解析式的求解,属中档题,解决本题的关键是运用函数的奇偶性推出函数f(x)的周期.8.(6分)(2013•闸北区二模)某商场在节日期间举行促销活动,规定:(1)若所购商品标价不超过200元,则不给予优惠;(2)若所购商品标价超过200元但不超过500元,则超过200元的部分给予9折优惠;(3)若所购商品标价超过500元,其500元内(含500元)的部分按第(2)条给予优惠,超过500元的部分给予8折优惠.某人来该商场购买一件家用电器共节省330元,则该件家电在商场标价为2000 .考点:函数模型的选择与应用.专题:函数的性质及应用.分析:由购买一件家用电器共节省330元可知,该家电的标价应超过200元,进一步分析应超过500元,根据两段价格的优惠和等于330元列式即可求得该家电在商场的标价.解答:解:由题意知,若该家电大于200元但不超过500元,优惠的钱数为300﹣300×0.9=30元,因为该家电优惠330元,所以该家电一定超过500元,设该家电在商场的标价为x元,则优惠钱数为(300﹣300×0.9)+(x﹣500)×(1﹣0.8)=330.解得:x=2000.所以,若某人来该商场购买一件家用电器共节省330元,则该件家电在商场标价为2000元.故答案为2000.点评:本题考查了函数模型的选择与应用,解答的关键是明确如何计算优惠数额,每一段的优惠数等于标价数减去实际支付数,属中档题.9.(6分)(2013•闸北区二模)设,,x∈[1,2),且,则函数的最大值为0 .考点:数量积判断两个平面向量的垂直关系;函数的值域.专题:函数的性质及应用;平面向量及应用.分析:先根据数量积判断两个平面向量的垂直关系,得出x与a的关系式,再将其代入函数f(x)的解析式,化简后画出函数的简图,数形结合得出函数的单调性,从而求出函数的最大值.解答:解:∵,,且,∴x2+2(a﹣x)=0,∴a=,x∈[1,2),则函数=====,故f(x)=,x∈[1,2),作出其函数的图象,如图所示.由图可得,当x=1时,函数的最大值为0.故答案为:0.点评:本小题主要考查数量积判断两个平面向量的垂直关系、函数单调性的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于难题.二、选择题(18分)本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得6分,否则一律得零分.10.(6分)(2013•闸北区二模)命题“对任意的x∈R,f(x)>0”的否定是()A.对任意的x∈R,f(x)≤0B.对任意的x∈R,f(x)<0C.存在x0∈R,f(x0)>0 D.存在x0∈R,f(x0)≤0考点:命题的否定.专题:规律型.分析:根据命题“∀x∈R,p(x)”的否定是“∃x0∈R,¬p(x)”,即可得出答案.解答:解:根据命题“∀x∈R,p(x)”的否定是“∃x0∈R,¬p(x)”,∴命题:“对任意的x∈R,f(x)>0”的否定是“∃x0∈R,f(x0)≤0”.故选D.点评:掌握全称命题的否定是特称命题是解题的关键.11.(6分)(2013•闸北区二模)设函数f(x)=lg(a x﹣b x)(a>1>b>0),若f(x)取正值的充要条件是x∈[1,+∞),则a,b满足()A.a b>1 B.a﹣b>1 C.a b>10 D.a﹣b>10考点:充要条件.专题:证明题.分析:由a x﹣b x>0,可得函数的定义域为(0,+∞),然后由定义法证函数为增函数,进而可得f(x)≥f(1),只需f(1)>0,解之可得.解答:解:由a x﹣b x>0,得()x>1=()0,由于()>1,所以x>0,故f(x)的定义域为(0,+∞),任取x1,x2∈(0,+∞),且x1<x2∴f(x1)=lg(a x1﹣b x1),f(x2)=lg(a x2﹣b x2)而f(x1)﹣f(x2)=(a x1﹣b x1)﹣(a x2﹣b x2)=(a x1﹣a x2)+(b x2﹣b x1)∵a>1>b>0,∴y=a x在R上为增函数,y=b x在R上为减函数,∴a x1﹣a x2<0,b x2﹣b x1<0,∴(a x1﹣b x1)﹣(a x2﹣b x2)<0,即(a x1﹣b x1)<(a x2﹣b x2)又∵y=lgx在(0,+∞)上为增函数,∴f(x1)<f(x2)∴f(x)在[0,+∞)上为增函数,一方面,当a﹣b>1时,由f(x)>0可推得,f(x)的最小值大于0,而当x∈[1,+∞),f(x)>0,故只需x∈[1,+∞);另一方面,当a﹣b>1时,由f(x)在[0,+∞)上为增函数,可知当x∈[1,+∞)时,有f(x)>f(1)>0,即f(x)取正值,故当a﹣b>1时,f(x)取正值的充要条件是x∈[1,+∞),故选B点评:本题考查充要条件的判断,涉及函数定义域和单调性,属基础题.12.(6分)(2013•闸北区二模)在xOy平面上有一系列的点P1(x1,y1),P2(x2,y2),…,P n(x n,y n),…,对于所有正整数n,点P n位于函数y=x2(x≥0)的图象上,以点P n为圆心的⊙P n与x轴相切,且⊙P n与⊙P n+1又彼此外切,若x1=1,且x n+1<x n.则=()A.0B.0.2 C.0.5 D.1考点:数列的极限;数列的函数特性;圆与圆的位置关系及其判定.专题:计算题;点列、递归数列与数学归纳法.分析:由圆Pn与P(n+1)相切,且P(n+1)与x轴相切可知R n=y n,R(n+1)=y(n+1),且两圆心间的距离就等于两半径之和进而得到=整理可得,=2,结合等差数列的通项公式可求x n,进而可求极限解答:解:∵圆Pn与P(n+1)相切,且P(n+1)与x轴相切,所以,R n=y n,R(n+1)=y(n+1),且两圆心间的距离就等于两半径之和,即=y n+y n+1整理可得,=2∴=2n﹣1∴=故选C点评:本题主要考查了数列在实际中的应用,解题的关键是寻求相切的性质.三、解答题(本题满分78分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.13.(14分)(2005•山东)已知向量和,θ∈(π,2π),且,求的值.考点:两角和与差的余弦函数;向量的模;同角三角函数基本关系的运用.专题:综合题.分析:根据向量的坐标运算求出+,然后表示出+的模,利用同角三角函数间的基本关系、两角和的余弦函数公式及特殊角的三角函数值化简后,让模等于,列出关于cos(θ+)的方程,两边平方即可得到cos(θ+)的值,根据二倍角的余弦函数公式化简cos(θ+),得到的值,然后根据θ的范围求出+的范围,进而判断出cos(+)的正负,开方即可求出值.解答:解:,==.=由已知,得.又,所以.∵π<θ<2π,∴,∴.∴.点评: 此题考查学生会求向量的模,灵活运用两角和与差的余弦函数公式及同角三角函数间的基本关系化简求值,灵活运用二倍角的余弦函数公式及特殊角的三角函数值化简求值,是一道综合题. 14.(14分)(2013•闸北区二模)某粮仓是如图所示的多面体,多面体的棱称为粮仓的“梁”.现测得底面ABCD 是矩形,AB=16米,AD=4米,腰梁AE 、BF 、CF 、DE 分别与相交的底梁所成角均为60°.(1)请指出所有互为异面的且相互垂直的“梁”,并说明理由; (2)若不计粮仓表面的厚度,该粮仓可储存多少立方米粮食?考点:异面直线及其所成的角;棱柱、棱锥、棱台的体积. 专题:空间位置关系与距离. 分析: (1)利用平行线的性质、异面直线所成的角、平行四边形的判定和性质即可得出; (2)利用线面与面面垂直的判定和性质定理及四棱锥和直棱锥的条件计算公式即可得出. 解答: 解:(1)EF 与AD ,EF 与BC ,DE 与BF ,AE 与CF , 由已知EF∥AB,∵AB⊥AD,∴EF⊥AD. 同理,有EF⊥B C .过点E 作EK∥FB 交AB 点K ,则∠DEK 为异面直线DE 与FB 所成的角,∵DE=FB=4,AK=2×(4cos60°)=4,, ∴∠DEK=90°,即DE⊥BF, 同理AE⊥CF.(2)过点E 分别作EM⊥AB 于点M ,EN⊥CD 于点N ,连接MN ,则AB⊥平面EMN , ∴平面ABCD⊥平面EMN ,过点E 作EO⊥MN 于点O ,则EO⊥平面ABCD 由题意知,AE=DE=AD=4,AM=DN=4cos60°=2,, ∴O 为MN 中点, ∴即四棱锥E ﹣AMND 的高,同理,再过点F 作FP⊥AB 于点P ,EN FQ⊥CD 于点Q ,连接PQ ,原多面体被分割为两个全等的四棱锥和一个直棱柱,且MP=16﹣2﹣2=12, ∴,答:该粮仓可储存立方米的粮食.点评: 熟练掌握平行线的性质、异面直线所成的角、平行四边形的判定和性质、线面与面面垂直的判定和性质定理及四棱锥和直棱锥的条件计算公式是解题的关键. 15.(16分)(2013•闸北区二模)和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.在空间直角坐标系O ﹣xyz 中,空间曲面的方程是一个三元方程F (x ,y ,z )=0.设F 1、F 2为空间中的两个定点,|F 1F 2|=2c >0,我们将曲面Γ定义为满足|PF 1|+|PF 2|=2a (a >c )的动点P 的轨迹.(1)试建立一个适当的空间直角坐标系O ﹣xyz ,求曲面Γ的方程; (2)指出和证明曲面Γ的对称性,并画出曲面Γ的直观图.考点: 轨迹方程. 专题: 计算题;证明题;新定义;圆锥曲线的定义、性质与方程. 分析:(1)以直线F 1F 2为x 轴,线段F 1F 2的垂直平分线为x 轴,以与xoy 平面垂直的直线为z 轴,建立空间直角坐标系如图.设P 的坐标为(x ,y ,z ),根据两点间的距离公式,以a 、c 为参数建立关于x 、y 、z 的等式,再移项、平方,化简整理得二次方程为,即为所求曲面Γ的方程;(2)根据空间关于原点、坐标轴和坐标平面对称的公式,分别对(1)求出的方程加以验证,可得曲面Γ是关于原点对称、关于三条坐标轴对称,也关于三个坐标平面对称的图形.因此不难作出它的直观图,如图所示. 解答: 解:(1)以两个定点F 1,F 2的中点为坐标原点O ,以F 1,F 2所在的直线为y 轴,以线段F 1F 2的垂直平分线为x 轴,以与xoy 平面垂直的直线为z 轴,建立空间直角坐标系O ﹣xyz ,如图所示 则F 1(0,c ,0),F 2(0,﹣c ,0),设P 的坐标为(x ,y ,z ),可得|F1F2|=2c>0,,∴,移项得两边平方,得∴,两边平方,整理得令,得.①因此,可得曲面Γ的方程为.(2)对称性:由于点(x,y,z)关于坐标原点O的对称点(﹣x,﹣y,﹣z)也满足方程①,说明曲面Γ关于坐标原点O对称;由于点(x,y,z)关于x轴的对称点(x,﹣y,﹣z)也满足方程①,说明曲面Γ关于x轴对称;同理,曲面Γ关于y轴对称;关于z轴对称.由于点(x,y,z)关于xOy平面的对称点(x,y,﹣z)也满足方程①,说明曲面Γ关于xOy平面对称;同理,曲面Γ关于xOz平面对称;关于yOz平面对称.由以上的讨论,可得曲面Γ的直观图如右图所示.点评:本题给出空间满足到两个定点距离之和为定值的点,求该点的轨迹.着重考查了椭圆的定义、轨迹方程求法和曲线与方程的性质等知识,属于中档题.16.(16分)(2013•闸北区二模)设数列{a n}与{b n}满足:对任意n∈N*,都有,.其中S n为数列{a n}的前n项和.(1)当b=2时,求数列{a n}与{b n}的通项公式;(2)当b≠2时,求数列{a n}的前n项和S n.考数列递推式;等差数列的通项公式;等比数列的通项公式;数列的求和.点:专计算题;等差数列与等比数列.题:分(1)通过已知表达式,求出,当b=2时,说明是首项析:为1,公比为2的等比数列,然后求数列{a n}与{b n}的通项公式;(2)当b≠2时,利用,推出,通过b=0,1,≠0,1分别求解数列{a n}的前n项和S n.另解通过求出a1,b=0,1与b≠0,1,利用是以为首项,为公比的等比数列,求出数列的和即可.解解:由题意知a1=2,且,答:两式相减得即①(1)当b=2时,由①知于是=又,所以是首项为1,公比为2的等比数列.故知,,再由,得.(2)当b≠2时,由①得=若b=0,若b=1,,若b≠0、1,数列是以为首项,以b为公比的等比数列,故,,b=1时,符合上式所以,当b≠0时,当b=0时,另解:当n=1时,S 1=a 1=2 当n≥2时,∵∴∴若b=0,若b≠0,两边同除以2n得令,即由得∴是以为首项,为公比的等比数列∴,所以,当b≠0时,点评: 本题考查数列的递推关系式的应用,数列求和,等比数列的判定,考查分析问题解决问题的能力. 17.(18分)(2013•闸北区二模)在平面直角坐标系xOy 中,已知曲线C 1为到定点的距离与到定直线的距离相等的动点P 的轨迹,曲线C 2是由曲线C 1绕坐标原点O 按顺时针方向旋转30°形成的. (1)求曲线C 1与坐标轴的交点坐标,以及曲线C 2的方程;(2)过定点M 0(m ,0)(m >2)的直线l 2交曲线C 2于A 、B 两点,已知曲线C 2上存在不同的两点C 、D 关于直线l 2对称.问:弦长|CD|是否存在最大值?若存在,求其最大值;若不存在,请说明理由.考点:直线与圆锥曲线的关系;旋转变换. 专题:圆锥曲线的定义、性质与方程. 分析: (1)利用两点间的距离公式和抛物线的定义可知曲线C 1为抛物线,由抛物线C 1的对称轴、焦点、准线可知:C 2是以(1,0)为焦点,以x=﹣1为准线的抛物线,得出即可;(2)由于曲线C 2上存在不同的两点C 、D 关于直线l 2对称,设出直线l 2的斜率可得直线CD 的方程,与抛物线方程联立,联立根与系数的关系即可得出弦长|CD|,通过换元利用二次函数的单调性即可得出. 解答:解:(1)设P (x ,y ),由题意,可知曲线C 1为抛物线,并且有,化简,得抛物线C 1的方程为:.令x=0,得y=0或, 令y=0,得x=0或,∴曲线C 1与坐标轴的交点坐标为(0,0)和,.由题意可知,曲线C 1为抛物线,过焦点与准线垂直的直线为,化为.可知此对称轴过原点,倾斜角为30°.又焦点到的距离为.∴C 2是以(1,0)为焦点,以x=﹣1为准线的抛物线,其方程为:y 2=4x . (2)设C (x 1,y 1),D (x 2,y 2),由题意知直线l 2的斜率k 存在且不为零,设直线l 2的方程为y=k (x ﹣m ),则直线CD 的方程为,则得y 2+4ky ﹣4kb=0,∴△=16k(k+b )>0①∴y 1+y 2=﹣4k ,y 1•y 2=﹣4kb ,设弦CD 的中点为G (x 3,y 3),则y 3=﹣2k ,x 3=k (b+2k ). ∵G(x 3,y 3)在直线l 2上,﹣2k=k (bk+2k 2﹣m ),即②将②代入①,得0<k 2<m ﹣2,==设t=k 2,则0<t <m ﹣2. 构造函数,0<t <m ﹣2.由已知m >2,当,即2<m≤3时,f (t )无最大值,所以弦长|CD|不存在最大值.当m >3时,f (t )有最大值2(m ﹣1),即弦长|CD|有最大值2(m ﹣1).点评: 熟练掌握抛物线的定义及其性质、直线与抛物线相交问题转化为一元二次方程的根与系数的关系、弦长公式、换元法、二次函数的单调性、分类讨论的思想方法是解题的关键.。

上海闸北区高三数学二模(理)答案

上海闸北区高三数学二模(理)答案

闸北区2010学年度第二学期高三数学(理科)期中练习卷2011.4考生注意:1.本次测试有试题纸和答题纸,作答必须在答题纸上,写在试题纸上的解答无效2.答卷前,考生务必在答题纸上将姓名、学校、考试号,以及试卷类型等填写清楚3.本试卷共有20道试题,满分150分.考试时间120分钟.一、填空题(本题满分55分)本大题共有11题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.已知z和三'都是纯虚数,那么Z二.1 -i2. _________________________________________________________ 函数y =sin x—cos(二-x) (x :二R)的单调递增区间为___________________________________ .3.某高中共有在读学生430人,其中高二160人,高一人数是高三人数的2倍.为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中有高二学生32人,则该样本中的高三学生人数为_________ .4.在极坐标系中,圆___________________ -2 si nr的圆心的极坐标为.(写出一个即可)5.下列三个命题:①若|a • b|=|a -b |,则a b = 0 ;②若a = 0, a b二a c,则b = c ;③若| a b | =| a || b |,则a 〃b .其中真命题有 ________ .(写出所有真命题的序号)6. _____________________ 有一公园的形状为厶ABC,测得AC二3千米,AB =1千米,/ B=60〔则该公园的占地面积为平方千米.7.设一个正方体的各个顶点都在一个表面积为12二的球面上,则该正方体的体积为.&设f(x)是R上的奇函数,g (x)是R上的偶函数,若函数f(x) • g (x)的值域为[1,3), 则f (x) - g (x)的值域为_________________________ .9.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,记抽取到红球的个数为,则随机变量的数学期望E = __________ . 10. ______________________________________________________________ 若函数f(x)=2|x_J3—log a x+1无零点,则a的取值范围为 _________________________ .11 .设log a x = log b y = -2, a,b=2,则x y 的取值范围为_______________ .二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分. 12.设a,b • R,则“ a b ” 是“ a3b3” 的【】A .充分不必要条件B .必要不充分条件C.充要条件 D .不充分也不必要条件13.以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为【】A . 4 B. 3 C . 2 D . 114. 一林场现有树木两万棵,计划每年先砍伐树木总量的10%,然后再种植2500棵树.经过若干年如此的砍伐与种植后,该林场的树木总量大体稳定在【】A . 22000 颗B . 23500 颗C . 25000 颗D . 26500 颗15.已知A(2, -1) , B(-1,1) , O为坐标原点,动点P满足OP二mOA • nOB,其中m、n • R,且2m2- n2=2,则动点P的轨迹是【】A.焦距为3 的椭圆 B .焦距为2后的椭圆C.焦距为3的双曲线 D .焦距为2 3的双曲线6三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(满分12分)本题有2小题,第1小题5分,第2小题7分.设函数f(x) =log2(2x 1), x R.(1)求f (x)的反函数f J(x);(2)解不等式2f (x)乞f J(x log25).17.(满分14分)本题有2小题,第1小题6分,第2小题8分.某分公司经销某种品牌产品,每件产品的成本为2元,并且每件产品需向总公司交a元(2 ma乞6)的管理费,预计当每件产品的销售价为x元(7乞x^9)时,一年的销售量为(12 — x)万件.(1)求该分公司一年的利润L (万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,该分公司一年的利润L最大,并求L的最大值Q(a).18.(满分15分)本题有2小题,第1小题9分,第2小题6分.如图,平面:-上定点F到定直线l的距离FA =2,曲线C是平面上到定点F和到定直线l的距离相等的动点P的轨迹.设FB _ :,且FB =2.(1)若曲线C上存在点F0,使得P0B _ AB , 试求直线P0B与平面壽所成角的大小;(2)对(1)中F0,求点F到平面ABP o的距离19.(满分16分)本题有2小题,第1小题7分,第2小题9分.在数列{aj 中,a1 = 5 , a* 1 =3a n -4n • 2,其中n • N* .(1)设0二a. - 2n,求数列{0}的通项公式;2(2)记数列{a n}的前n项和为S n,试比较S n与n 2011n的大小.20.(满分18分)本题有2小题,第1小题9分,第2小题9分.在二ABC中,A、B为定点,C为动点,记一A、一B、一C的对边分别为a、b、c ,C已知c = 2,且存在常数■ (•:;.0),使得ab cos2—二,.2(1)求动点—的轨迹,并求其标准方程;(2)设点O为坐标原点,过点B作直线l与(1)中的曲线交于M , N两点,若OM_ON , 试确定'的范围.高三数学(理科)期中练习卷评分标准与参考答案(2011.4)3 二二一、1. 2i ;2. [2k兀-- 2k兀十一],Z - 3. 18 ;4463兀、,兀、43 4. (1,3)或(1,:)或(T,;)等;5①③;6.2 2227. 8;8.(一3,-1];59.6二、 12. C ; 13. B ; 14. C ; 15. D .三、 16.解:(1) f 」(X )=log 2(2x 一1) , X (0, ::) . .......................... 5 分 (2)由 2f(xHi f J (x log 25),得x log 2 5 0,且 2log 2(2X 1)叮og 2(2X log25-1), .(2X )2 -3 222 ^0,......................................................................................... 5 分 .1 < 2^12,二 0 _ x _1综上,得0乞X 乞1 .......................................................................................... 2分17•解:(1)该分公司一年的利润 L (万元)与每件产品的售价 x 的函数关系式为:L (x —a —2)(12 —x),x [7,9]. ........................................................................... 6 分 (2)当2乞a :::4时,此时,8 -丄上:::9 ,2所以,当 x = ? 14 时,L 的最大值 Q(a)二(―- a^ ,............................................ 3分24当4岂a 乞6时,此时,9 <<10 ,2所以,当x =9时,L 的最大值Q(a)=3(7_a) . .......................................................................... 3分答:若2乞a :::4,则当每件产品售价为 4元时,该分公司一年的利润 L 最大,最大值2(10 -a)Q(a);若4乞a 乞6,则当每件产品售价为 9元时,该分公司一年的利润L 最4大,最大值Q(a) = 3(7 - a) ................................................................................ 2分2由 F0B _ AB ,得 2(1 —匕)4 =0二 y =2、.3,二 P(3,2. 3,0) ............................... 2 分41 J 3 所以,直线F 0 B 与平面口所成角的大小为arctan —(或arcsin — )........... 2分2 3【解法二】如图,以点 A 为原点O ,以线段FA 所在的直线为x 轴,建立空间直角坐标系O - xyz . .............................................................所以,A(0,0,0) , B(2,0,2) , F(2,0,0),并设 P(x, y,0),f 222PB 2 +AB 2= AP 2, .............................................................................................................................................................................................................................................PF = PE.18•解:(1)【解法一】如图,以线段FA 的中点为原点O ,建立空间直角坐标系 O 「xyz . ............................... 1分 由题意,曲线C 是平面「上以原点O 为顶点, 由于在xOy 平面内,C 是以O 为顶点,以x 轴 为对称轴的抛物线,其方程为y 2 =4x ,2因此,可设P((,y,0) ...................................... 2分4A(-1,0,0) , B(1,0,2),所以,AB= (2,0,2) , PB-y,2).由题意,以线段FA 所在的直线为x 轴, R-722分(x -2)2+ y2+4 +8 =x2+ y2二P(3,2 3,0) .............................................../ c\2 + 2 2(x -2) y 二X .2 21 J 3 所以,直线P 0 B 与平面:•所成角的大小为arctan —(或arcsin -).23(2)【解法一】由(1),得 ABP 的面积为S.ABP =2.10 , ..........................AFP【解法二】 AB=(2,0,2) , AP =(4,2 一 3,0),设向量 n =(x,y,z) '2x +2z =0,4x +2w'3y = 0所以,平面 ABP 0的一个法向量n 0 = (3, —2・.3,—3), u |AF 恳 I V30 h =In 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闸北区2015学年度第二学期高三数学(理科)期中练习卷一、填空题(60分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.设函数()(01xxf x a a a a -=+>≠且),且(1)3f =,则(0)(1)(2)f f f ++的值是 . 2.已知集合{||2|}A x x a =-<,2{|230}B x x x =--<,若B A ⊆,则实数a 的取值范围是 . 3.如果复数z 满足||1z =且2za bi =+,其中,ab R ∈,则a b +的最大值是 .4.在直角坐标系xoy 中,已知三点(,1),(2,),(3,4)A a B b C ,若向量OA u u u r ,OB uuu r 在向量OC u u u r方向上的投影相同,则34a b -的值是 .5.某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a 为首项,2为公比的等比数列,相应的奖金分别是以7000元、5600元、4200元,则参加此次大赛获得奖金的期望是 元.6.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆上一点,且12PF PF ⊥u u u r u u u u r,若12PF F ∆的面积为9,则b = .7.ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边且222ac cb a +=-,若ABC ∆最大边长sin 2sin C A =,则ABC ∆最小边的边长为 .8.在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________. 9.如右图,A 、B 是直线l 上的两点,且2AB =,两个半径相等的动圆分别与l 相切于A 、B 两点,C 是这两个圆的公共点,则圆弧AC ,圆弧CB 与线段AB 围成图形面积S 的取值范围是 .10.设函数2()1f x x =-,对任意⎪⎭⎫⎢⎣⎡+∞∈,23x ,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 .二、选择题(15分)本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.已知a r 与b r 均为单位向量,其夹角为θ,则命题:P ||1a b ->r r 是命题5:[,)26Q ππθ∈的( )CBAlD 1 . A 1CEABCD B 1A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分且非必要条件12.已知,,,SA B C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB == BC =O 的表面积等于( )A .π4B .π3C .π2D .π13.已知数列{}n a 的前n 项和为n S ,对任意正整数n ,13n n a S +=,则下列关于{}n a 的论断中正确的是( )A .一定是等差数列B .一定是等比数列C .可能是等差数列,但不会是等比数列D .可能是等比数列,但不会是等差数列三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.14.(本题满分12分,第(1)小题5分,第(2)小题7分)在长方体1111ABCD A B C D -中,2AB =,1AD =,11AA =,点E 在棱AB 上移动. (1)探求AE 等于何值时,直线1D E 与平面11AA D D 成45o角;(2)点E 移动为棱AB 中点时,求点E 到平面11A DC 的距离.15、(本题满分14分,第(1)小题6分,第(2)小题8分)某公司生产的某批产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足42+=x P (其中a x ≤≤0,a 为正常数).已知生产该批产品还需投入成本)1(6PP +万元(不含促销费用),产品的销售价格定为)204(P+元/件.(1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)当促销费用投入多少万元时,该公司的利润最大? 16.(本题满分15分,第(1)小题7分,第(2)小题8分)已知函数()sin()f x x ωϕ=+(0,0)ωϕπ><<的周期为π,图象的一个对称中心为π,04⎛⎫⎪⎝⎭.将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移2π个单位长度后得到函数()g x 的图象. (1)求函数()f x 与()g x 的解析式;(2)求证:存在0(,)64x ππ∈,使得0()f x ,0()g x ,00()()f x g x ⋅能按照某种顺序....成等差数列.17.(本题满分16分,第(1)小题8分,第(2)小题8分)若动点M 到定点(0,1)A 与定直线:3l y =的距离之和为4.(1)求点M 的轨迹方程,并在答题卡所示位置画出方程的曲线草图;(2)记(1)得到的轨迹为曲线C ,问曲线C 上关于点(0,)()B t t R ∈对称的不同点有几对?请说明理由.18.(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)已知数列{}n a ,n S 为其前n 项的和,满足(1)2nn n S +=. (1)求数列{}n a 的通项公式;(2)设数列1{}na 的前n 项和为n T ,数列{}n T 的前n 项和为n R ,求证:当2,*n n N ≥∈时1(1)n n R n T -=-;(3)已知当*n N ∈,且6n ≥时有1(1)()32n m m n -<+,其中1,2,,m n =L ,求满足34(2)(3)n a n n n n n a ++++=+L 的所有n 的值.高三数学(理科)期中练习卷参考答案一、填空题1、122、3a ≥ 3 4、2 5、50006、37、18、1+9、(0,2]2π-10、2m ≤-或2m ≥填空题详解:1、解:22122(2)()2(1)37f a aa a f --=+=+-=-=,∴原式23712=++=2、解:{|22}A x a x a =-<<+,{|13}B x x =-<<,B A ⊆Q2123a a -≤-⎧∴⎨+≥⎩⇒3a ≥ 3、解:由||1z =可知2||1z =,221a b ∴+= 222()2()2a b a b ∴+≤+=2a b ==取等a b ∴+≤4、解:<法一>:向量OA u u u r ,OB uuu r 在向量OC u u u r 方向上的投影分别为||OA OB OC ⋅u u u r u u u r u u ur ,||OB OCOC ⋅u u u r u u u ru u u r ,由条件OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r,即3464a b +=+,342a b ∴-=<法二>:向量OA u u u r ,OB uuu r 在向量OC u u u r方向上的投影相同,AB OC ∴⊥,即0AB OC ⋅=u u u r u u u r3(2)4(1)0a b ∴-+-=,即342a b -=5、解:设获得的奖金为ξ元,则ξ=7000,5600,4200(7000)P a ξ==,(5600)2P a ξ==,(4200)4P a ξ==,71a =Q 17a ∴=1247000560042005000777E ξ∴=⨯+⨯+⨯=6、解:12PF PF ⊥u u u r u u u u r ,12PF F ∆的面积为9,12121||||9,||||182PF PF PF PF ∴⋅⋅=∴⋅=u u ur u u u u r u u u r u u u u r 由椭圆定义,222121122||||2||2||||||4PF PF a PF PF PF PF a +=⇒++=u u u r u u u u r u u u r u u u r u u u u r u u u u r 2221212,||||(2)PF PF PF PF c ⊥∴+=u u u r u u u u r u u u r u u u u r Q 代入上式得,2212(2)2||||(2)c PF PF a +=u u u r u u u u r ,2212(2)(2)2||||a c PF PF ∴-=u u u r u u u u r ,2121||||92b PF PF ∴==u u u r u u u u r ,3b ∴=7、解:Q 222ac c b a +=- 1cos 2B ∴=-,23B π∴=,最大边为b又sin 2sin C A =Q ,2c a =,∴最小边为a由余弦定理2221422()2a a a a =+-⋅⋅⋅-解得1a =8、解:联立方程组得(2)21ρρρ-=⇒=±0ρ≥,故所求为1+9、解:两圆半径r →∞时,点C 趋向直线AB ,此时0S →两圆外切时,1r =,2=14S π∴⋅扇形,=2-2=2-42S ππ∴⋅,0,2-]2S π∴∈(10、解:依据题意得22222214(1)(1)14(1)x m x x m m ---≤--+-在3[,)2x ∈+∞上恒定成立,即22213241m m x x -≤--+在3[,)2x ∈+∞上恒成立。

当32x =时函数2321y x x =--+取得最小值53-,所以221543m m -≤-,即22(31)(43)0m m +-≥,解得m ≤或m ≥ 二、选择题:11、B 12、A 13、C选择题详解:11、解:由向量几何意义知||1(,)3a b πθπ->⇒∈r r 若5[,)||126a b ππθ∈⇒->r r12、解:.由已知,球O 的直径为22R SC ==,∴表面积为244R ππ=13、解:2n ≥时有1133n nn n a S a S +-=⎧⎨=⎩,则113()n n n n a a S S +--=-,于是13n n n a a a +-=,即14n n a a += 又213a S =,即213a a =,∴数列{}n a 一定不是等比数列。

若10a =,则对任意正整数n ,有0n a =,它不是等比数列但它是等差数列 三、解答题 14、(本题满分12分,第(1)小题5分,第(2)小题7分)解:(1)法一:长方体1111ABCD A B C D -中,因为点E 在棱AB 上移动,所以EA ⊥平面11AA D D ,从而1ED A ∠为直线1D E 与平面11AA D D 所成的平面角,1Rt ED A ∆中,145ED A ∠=o 1AE AD ⇒==法二:以D 为坐标原点,射线1,,DA DC DD 依次为,,x y z 轴轴,建立空间直角坐标系,则点1(0,0,1)D ,平面11AA D D 的法向量为(0,2,0)DC =u u u r,设(1,,0)E y ,得1(1,,1)D E y =-u u u u r ,由11sin 4D E DC D E DCπ⋅=u u u u r u u u ru uu u r u u u r,得y =,故AE =(2)以D 为坐标原点,射线1,,DA DC DD 依次为,,x y z 轴,建立空间直角坐标系,则点(1,1,0)E ,1(1,0,1)A , 1(0,2,1)C ,从而1(1,0,1)DA =u u u u r ,1(0,2,1)DC =u u u u r,(1,1,0)DE =u u u r设平面11DA C 的法向量为(,,)n x y z =r ,由1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩r u u u u rr u u u u r 020x z y z +=⎧⇒⎨+=⎩ 令1(1,,1)2n =--r ,所以点E 到平面11A DC 的距离为n DE d n⋅=r u u u r r1=.15、(本题满分14分,第(1)小题6分,第(2)小题8分) 解:(1)由题意知, )1(6)204(pp x p p y +--+= 将42+=x P 代入化简得: x x y 2322419-+-= (0x a ≤≤). (2)10)2(216322)2216(2322=+⨯+-≤+++-=x x x x y , 上式当且仅当2216+=+x x ,即2=x 时,取等号。

相关文档
最新文档