安徽省2013年普通高等学校招生全国统一考试模拟(三)数学(文)试题 扫描版含答案
2013年普通高等学校招生全国统一考试数学文(新课标I卷,解析版)
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2)212(1)i i +=-( ) (A )112i -- (B )112i -+ (C )112i + (D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为则C 的渐近线方程为( ) (A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-。
(完整word版)2013年高考安徽文科数学试题及答案(word解析版),推荐文档
2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)第I 卷(选择题共50 分)10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.22 (A )( B )35【答案】D【解析】总的可能性有 10种,甲被录用乙没被录用的可能性(1)【2013年安徽,文 【答案】 (A) D 1, 5分】设i 是虚数单位,若复数 a 10 (a R)是纯虚数,3 i (C ) 1 则a 的值为(【解析】 10 10 3 i 3 i 3 i (B) (D)10 3 i 10 3 i a 10 ,所以a 3,故选D .【点评】考查纯虚数的概念,及复数的运算,属于简单题. (2)【2013年安徽,文2, 5分】知A x|x 1 0 ,B (A ) 2, 1 (B ) 2 【答案】A 2, 1,0,1 ,贝U (C R A) IB ()(C ) 1,0,1 (D)0,1 【解析】x 1 , C R A {X |X 1} , (C R A) I B { 1, 2},故选 A . 【点评】考查集合的交集和补集,属于简单题. (3)【2013年安徽,文3, 5分】如图所示,程序据图(算法流程图)的输出结果为( )(A ) 2 3 4 5 (B ) 1 (C ) 11 (D ) 25 4 612 24 【答案】C【解析】n 2,s 0,s c 1 1 0 ; n 1 1 1 4,s —,s 3 ;n 「 3 3 1 112 2 2 24 4 4 6 1n 8, s ,输出,故选C . 12【点评】本题考查算法框图的识别,逻辑思维,属于中等难题. (4)【2013年安徽,文4, 5分】“2x 1)X 0 ”是’X 0 ”的( ) iS —Oi.(A )充分不必要条件 (B )必要不充分条件 【答案】B (C )充分必要条件 (D )既不充分也不必要条件 1 【解析】(2X 1)X 0,X 0或 一,故选B . 2 【点评】考查充分条件和必要条件,属于简单题. (5)【2013年安徽,文5, 5分】若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的 机会均等,则甲或乙被录用的概率为( )、选择题:本大题共3种,乙被录用甲没被录用的可能性 3种,甲乙都被录用的可能性3种,所以最后的概率 p 3 3 3 1,故选D .10【点评】考查古典概型的概念,以及对一些常见问题的分析,简单题. (6)【2013年安徽,文6, 5分】直线X 2y 55 0被圆X 2 y 2 2X 4y 0截得的弦长为()(A ) 1 ( B ) 2( C ) 4( D ) 4 6【答案】C1+4_5+ 亦. -------【解析】圆心(1,2),圆心到直线的距离 d _______ =一=1,半径r 勇,所以弦长为2寸(冷)2 12 4,故选C .J 5(D )9 10【点评】考查解析几何初步知识,直线与圆的位置关系,点到直线的距离,简单题. (7)【2013年安徽, (A ) 6 A 文7, 5分】设S n 为等差数列 (B ) 4 a n 的前n 项和,S 8 4a 3,a 7 (C ) 2 2,则 a g ((D ) 2 【答案】 【解析】 S 8 4a 3 2 考查等差数列通项公式和前 (8)【2013年安徽,文 【点评】 8(a 1 a 8), ------------ 4a 3 a 3 a 6 a 3 , a s 0, d 2, a g a 7 2d 不同的数x ,x 2,L 【答案】 【解析】 (A) 2,3 B f (X 1) X f (X i ) n 项公式的应用,以及数列基本量的求解. 8, 5分】函数y f(x)的图像如图所示,在区间 a, ,X n ,使得空L X 1 X 2(B) 2,3,4f (x)的图像如图所示,在区间 a,b 上可找到n(n f(Xn),则n 的取值范围为( ) X n (C ) 3,4 (D) 3,4,5 x 1 0 0表示(x 1,f(^))到原点的斜率;f(X1) X i (X 1,f(X 1)),(X 2, f(X 2))丄“,f(X n ))与原点连线的斜率,而 上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有 考查数学中的转化思想,对函数的图像认识. (9)【2013年安徽, (f(x 2) L f(Xj 表示 X 2 X n (X, f (Xj),(X 2, f (X 2)),L ,(X n , f (Xj)在曲线图像 3个,故选B . 【点评】 则角C 文9,5分】设ABC 的内角 )A, B,C 所对边的长分别为 a,b,c ,右 b c 2a,3sin A 5sin B , 【答案】(A) 3 I B2 (B) 23(C) 34 【解析】 Q 3sin A 5sin B 由正弦定理,所以 3a 5 5b,即a b ;因为b c 3 2a ,所以c a 2 b 22ab 1 -,所以C 22 3 考查正弦定理和余弦定理,属于中等难度. cosC 故选 【点评】(1 0)【20 1 3年安徽,文1 0, 5分】已知函数f (x) 于x 的方程3(f (X)) 2af(x) b 0的不同实根个数为((A )- 3 A 2 ax bx (C ) 【答案】 【解析】 【点评】 c 有两个极值点X ,X 2 , ) 若f(x) X X 2,则关 (D) 0f '(x) 3x 2 2ax b , x 1,x 2 是方程 3x 2 2ax b 则又两个f (x)使得等式成立,x 1 f (x 1) , x 2 如图则有3个交点,故选 A . 考查函数零点的概念,以及对嵌套型函数的理解. 共100分)第口卷(非选择题二、填空题:本大题共 5小题,每小题5分,共 (11)【2013年安徽, 11, 5分】函数y ln(1 【答案】 【解析】 0,1 1 1 0x 1 X 2【点评】 由 3(f(x))2 2af(x) 0的两根, X f(x),其函数图象如下: b25分.把答案填在答题卡的相应位置. 0或X1,求交集之后得考查函数定义域的求解,对数真数位置大于(12)【2013年安徽,文12, 5分】若非负数变量―)<1 x 2的定义域为X X 的取值范围 °」.0.0,分母不为0,偶次根式底下大于等于x,y 满足约束条件 x y1,则x y 的最大值为x 2y 4【答案】 【解析】 4由题意约束条件的图像如下:当直线经过取得最大值. 考查线性规划求最值的问题, z 取最大. (13)【2013年安徽,文13, 5分】(4,0)时,z x y【点评】要熟练掌握约束条件的图像画法, rr a 3 ba 若非零向量a ,b 满足 【答案】【解析】 的余弦值为_ 13 等式平方得:4、jI•'J厶7 ■i 卫 1T以及判断何时 2b ,则a,b 夹角 【点评】 r 2 9b r 24b 4a b 则 r 2 4b ir r 4|a||b|cos ,即 r 20 4 b 4 3b|2cos ,13考查向量模长,向量数量积的运算,向量最基本的化简. 得cos (14)【2013年安徽,文14,5分】定义在R 上的函数f (x )满足f (x 1) 2f (x ).若当0 x 1时.f (x ) 0 时,f (x ) .x(1 x),【答案】 则当1 xx(x 1) 【解析】 所以f (x )0 ,则 0 x x(x 1) 1 1,故 f (x 1) (x 1)(1 x 1) x(x 1),又 f (x 1) 2f (x), 2 考查抽象函数解析式的求解. 【点评】 (15)【2013年安徽,文15, 5分】如图,正方体 ABCD AB iG D ,的棱长为1 , P 为BC 的中点,Q 为线段CG 上的动点,过点 A,P,Q 的平面截该正方体所得的截面记为 S ,则下列命题正确的是 _________ (写出所有正确命题的编号) ①当0 CQ 1时,S 为四边形;②当CQ 2 1时,S 为等腰梯形; 2 ③当CQ -时,S 与C 1D 1的 4 A交点R 满足C 1R1 ;④当3 3 4 CQ 1 时, S 为六边形;⑤当 CQ 1时,S 的面积为 62 【答案】①②③⑤ 【解析】(1) CQ S 等腰梯形, ②正确,图(1)如下;(2)CQ 1, S 是菱形,面积为 226,⑤正确,图如下;(3)CQ 3,画图(3)如下: 4,③正确;是五边形,④不正确;(5) CQ 图(1) 图(5) 丄,如下图(5),是四边形,故①正确.2(4) 3 CQ 1,如图(4)40 图(4) 图(2) 【点评】考查立体几何中关于切割的问题,以及如何确定平面. 三、解答题:本大题共 6题,共75分•解答应写出文字说明,演算步骤或证明过程•解答写在答题卡上的指定 区域内. (16)【2013年安徽,文16, 12分】设函数f(x) si nx sin(x ^).解:(1 )设甲校高三年级学生总人数为 n •由题意知,30 0.05,即n 600 .样本中甲校高三年级学生数学成n绩不及格人数为5 •据此估计甲校高三年级此次联考数学成绩及格率为1 — 5 ._ _30 6 (2)设甲、乙两校样本平均数分别为 为,冷.根据样本茎叶图可知,30 xr xr30$ 30x 27 555 8 1424 12 6526 24 7922 202 49 53 77 2 92 15 .因此为沁 0.5 .故为沁的估计值为0.5分.【点评】考查随机抽样与茎叶图等统计学基本知识,考查用样本估计总体的思想性以及数据分析处理能力. (18)【2013年安徽,文18,12分】如图,四棱锥 P ABCD 的底面ABCD 是边长为2的菱形,BAD 60o .已知 PB PD 2,PA 6 . (1) 证明:PC BD ; (2)若E 为PA 的中点,求三菱锥 P BCE 的体积.] 解:(1)连接AC ,交BD 于O 点,连接PO .因为底面 ABCD 是菱形,AC BD ,BO DO .由 PB PD 知,PO BD .再由 POI AC O 知,BD 面 APC ,因此 BD PC . =1 1(2)因为 E 是 PA 的中点,所以 v P BCE V C PEBV C PAB V B APC .由 PB PD AB AD 2 22(1 )求f (x)的最小值,并求使f(x)取得最小值的x 的集合; (2)不画图,说明函数 y 解:(1) f(x)sin x sin x cos —3 J (3)2 (当)2 sin(xf (x)的图像可由y sinx 的图象经过怎样的变化得到.cosx2cosxs in — sinx 1si nx 芒cosx 3 2 2 3 . sinx 2此时x {x|x64 32k 【点评】2k , ,k Z}.—)、;3si n(x —),当 sin(x4 x2k ,(k Z),所以,31时, f (x)min : 3 ,f (x)的最小值为.3,此时x 的集合y sinx 横坐标不变,纵坐标变为原来的 3倍,得y .3sin x ;然后y3sin x 向左平移—个单位,6得 f (x)3sin(x) • 6本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.能力,中等难度. 考查逻辑推理和运算求解甲乙7 4 5 5 3 3 2 5 3 3 8 554333100 6 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 0 7 0022233669 7 5 4 4 2 8 115 5 8 2 0 9 0 求甲校高三年级学生总人数, 0.05, (1) 若甲校高三年级每位学生被抽取的概率为 次联考数学成绩的及格率(60分及60分以上为及格);(2) 设甲、乙两校高三年级学生这次联考数学平均成绩分别为 (17)【2013年安徽,文17, 12分】为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样, 从这两校中各抽取 30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:并估计甲校高三年级这 x ( ,X 2,估计 x x 2的值. 92知,ABD也PBD .因为BAD60,所以PO AO43,AC 2运,BO 1 .r又PA恵,PO2AO22PA,即POAC,故SAPC1-PO AC 3 .2JT ■ *>1L'v.y P 11/l- * \、由(1)知,BO 面APC,因此V p BCE1—V B APC111BO S APC一 .E Z/ A1JF■ II. \M ' .I' J-'二二 X;;沙2 2 24 A 484【点评】考查空间直线与直线,直线与平面的位置,三棱锥体积等基础知识和基本技能,考查空间观念,推理论 证能力和运算能力. (19 ) 【2013年安徽,文19, 13分】设数列a n 满足a 1 2 , a ? a 4f (x) (a n a n 1 a n 2)x a n 1 cosx a n 2 sinx 满足 f \—) 0 . (1)求数列a n 的通项公式; (2)右b n 2(a n 1),求数列b n 的前n 项和£ . 2 n)由 a 1 2, a 2 a 4 8, f (x) (a n a n 1 a n 2)x a n 1 cosx a n 2 sinx , 解:(1 8,且对任意n N* ,函数f ( X ) a n a n 1 a n 2 a n 1 si nx a n 2 cosx , a n 是等差数列.而 a i 2, a 3f '(?) a n a n a n 1 a n 2 a n 1 0 , 所以 2a n 1 a na n 2(n-1) 1 n 1. (2)b n 2(a n1 利)2 n 1) 2 土) —=1 - 2【点评】考查函数的求导法则和求导公式,等差、 运算能力. (20)【2013年安徽,文20, 13分】设函数 n 2 3n等比数列的性质和数列基本量的求解.并考查逻辑推理能力和 f (x) ax 2 2、.(1 a )x ,其中 a 0,区间 | x| f(x) 0 . (1) 求I 的长度(注:区间 (2) 给定常数k 0,1,当 (,)的长度定义为 1 k a 1 k 时,求 I 长度的最小值. 解:(1 )因为方程 ax 2 2(1 a )x 0(a 0)有两个实根 X 1 0, x 2 ,故f x 0的解集为{x|X 1 X 2},因此区间 a_1 a2 d a 单调递增;当1 (2)设 d a a区间长度为 一 1 a2鑰,令d a k 时,d a 0,得a 1.由于0 k 1,当1 k a 1 时,d 小值必定在a 1 k 或a k 处取得.而 因此当a 1 k 时,d a 单调递减.因此当1 k 1 k1 1 k 21 k 1 1 k2 1a 1 k 时,d a 的最 2 k k 2 k 2 k 3<1,故 d(1 k) d(1 k). 【点评】考查二次不等式的求解, 能力.在区间[1 k,1 k ]上取得最小值 2 2k k 并考查分类讨论思想和综合运用数学知识解决问题的 以及导数的计算和应用, 2 (21)【2013年安徽,文21, 13分】已知椭圆c :笃 a 2 yb 2 1(a b 0)的焦距为4,且过点P( 2, 3). (1) 求椭圆C 的方程;(2) 设Q(X o , yoX^y 。
安徽省2013届高三省级示范高中联考数学(文)试题扫描版含解析
2013安徽省省级示范高中名校高三联考数学(文科)试题参考答案1.A 解析:由已知可得{1,3,4}B =,所以AB ={1}. 2.B 解析:2222i i== ⎪⎝⎭,32∴===, 所以其对应点位于第二象限.3.B 解析:对结论否定的同时量词对应改变.4.D 解析:第一步:2=1+2=3<12a ,第二步:2321112a =+=<,第三步:211212312a =+=>,输出123.5.B 解析:由图及频率分布直方图的意义知4×(0.02+0.03+0.03+0.08+x )=1,解得x=0.09,∴样本数据落在[6,14)内的频数为1000×4×(0.08+0.09)=680.6.C 解析:122112////,a b a b l l ⇔=⇔m n 故选C.7.A 解析:从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30,所以通项为2130)1(309-=-+=n n a n ,由13021450,n ≤-≤得22471,3030n ≤≤即115,n ≤≤115n =;由7502130451≤-≤n ,即302125302215≤≤n , 16,17,,25,n =⋅⋅⋅所以210,n =37,n =故选A.8.C 解析:过 A 作AD x ⊥轴于D ,令FD m =,则2,22,2,FA m mm m =+==所以112OAF AD S ∆==⋅⋅=. 9.D 解析: 圆心角ACB ∠最小时,所对弧最小,从而弦AB 也最小.易知当直线l ⊥CM 时,弦AB 最小,此时直线l 的倾斜角为2π. 10.C 解析: 如图,分别取另三条棱的中点,,A B C 将平面LMN 延展为平面正六边形AMBNCL ,因为PQ∥AL,PR∥AM ,且PQ与PR相交,AL 与AM 相交,所以平面PQR //平面AMBNCL ,即平面LMN ∥平面PQR .11.0 解析:作出210101x y x y -+≥⎧⎪≤≤⎨⎪≤≤⎩的可行域,当直线y x u =+过点(1,1)时,u 取最小值0.12.45︒解析:由正弦定理得sin sin A B b a =⋅==60,a b A B =>=∴=︒>Q B ∴为锐角,故B =45︒.解析: |AB →|·|AC →|=2,AD →=12(AB →+AC →),所以|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)≥14(2|AB →|·|AC →|+2)= 32,当且仅当|AB →|=|AC →|时取等号,所以|AD →|14.16π 解析 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为()22324221642πππ⋅⨯⋅+⋅=. 15.①③④ 解析:将25x y =两边取常用对数得lg 2lg 5,x y =即lg 2lg 5;x y = ①因为()(),0,0x y =满足25x y =,所以()0,0是一个可能的P 点;②因为()(),lg 2,lg 5x y =不满足lg 2lg 5x y =,所以()lg 2,lg 5P 不满足25x y =; ③由lg 2lg 5x y =,知x 与y 同号,所以0xy ≥;④因为(),P x y 满足()()lg 2lg 50,x y -=所以(),P x y 构成的图形为一直线;⑤若,x y 同时为正整数,则2x 为偶数,5y 为奇数,这与25x y =矛盾,因此,x y 不可以同 时为正整数,故选①③④.16.解析:(Ⅰ)1()sin 2222f x x x x =+-1sin 222x x =26x π⎛⎫=+ ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ==. ……………… 3分 令()262x k k πππ+=+∈Z ,得()26k x k ππ=+∈Z , 故()f x 的图象的对称轴方程为()26k x k ππ=+∈Z . ……………… 5分 (II )将函数()f x 的图象向右平移3π个长度单位,得到函数()2236g x x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象,即()2g x x =.………7分当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,33x ππ⎡⎤∈-⎢⎥⎣⎦,得1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦. ………………8分所以2x ⎡∈⎢⎣,即函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域是⎡⎢⎣. ……………… 12分17.解析:(Ⅰ)(),f x ax b '=+由题意:(1)0,f '-≤即,b a ≤而(,)a b 共有(2,1),(2,3),(4,1),(4,3)四种,满足b a ≤的有三种,故概率为3;4……… 6分 (Ⅱ)由(Ⅰ)可知:函数()f x 共有4种可能,从中随机抽取两个,有6种抽法; ∵函数()f x 在1(1))f (,处的切线的斜率为(1),f a b '=+∴这两个函数的a 与b 之和应该相等,而只有(2,3),(4,1)这一组满足, 所以概率为1.6…………………… 12分18.解析:(Ⅰ)1111410,2,,.233AA FC C F CF AC CC CF S ===∴==直角梯形 由已知可得ABC ∆的高为3且等于四棱锥ACF A B 1-的高.39103310311=⨯⨯=∴-ACF A B V ,即多面体1ABCFA 的体积为.3910………… 5分 (Ⅱ)将侧面11B BCC 展开到侧面11ACC A 得到矩形11A ABB ,连结B A 1,交C C 1于点F ,此时点F 使得BF F A +1最小.此时FC 平行且等于A A 1的一半,F ∴为C C 1的中点. ……7分过点E 作F A EG 1//交BF 于G ,则G 是BF 的中点,112EG A F ==.过点G 作,BC GH ⊥交BC 于H ,则.2121==FC GH 又,3=AH 于是在AGH Rt ∆中, ;21322=+=GH AH AG 在1ABA Rt ∆中,.2=AE在AEG ∆中,222=AE GE AG +,,AE EG ∴⊥ ∴1.AE A F ⊥…………………… 13分19.解析:(Ⅰ)因为D d +=,所以()()a c a c ++-=,解得a =,因为222a b c =+,3c =,所以 3b =,所以椭圆的方程为221189x y +=.……………… 5分 (Ⅱ)由椭圆的中心对称性得,OA OB =,依题意得,OM ON ⊥,四边形2OMF N 为平行四边形,所以22AF BF ⊥,所以△2ABF 是直角三角形,所以226AB OF ==. 所以线段AB 的长是定值6. ……………… 12分20.解析:(Ⅰ)()()2211'()3n n n n f x a a x a a +++=---. 由题意知()()()211'130n n n n f a a a a +++=---=,所以()()21113n n n n a a a a +++-=-. …………………… 4分 所以数列{}1n n a a +-是以213a a -=为首项,13为公比的等比数列. 故11133n n n a a -+⎛⎫-=⨯ ⎪⎝⎭. …………………… 6分所以213a a -=,32133a a -=⨯,243133a a ⎛⎫-=⨯ ⎪⎝⎭,…, 21133n n n a a --⎛⎫-=⨯ ⎪⎝⎭()2,n n *≥∈N , 以上式子累加得22111119131133323n n n a a --⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=⨯+++⋯+=-⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 故11191223n n a -⎛⎫=- ⎪⎝⎭. …………………… 9分 (Ⅱ)11119312213n n S n ⎛⎫- ⎪⎝⎭=-⨯-27111274324n n ⎛⎫=⨯+- ⎪⎝⎭. …………………… 13分21.解析:(Ⅰ)1()(0)mx f x x x-'=>.当m=0时,()ln f x x =在()0,+∞上单调递增;当m <0时,1()0mx f x x-'=>,所以()f x 在()0,+∞上单调递增; 当m >0时,令1()>0mx f x x -'=得10x m <<,所以()f x 在10,m ⎛⎫ ⎪⎝⎭上单调递增, 令1()0mx f x x -'=<得,1x m >,所以()f x 在1,m ⎛⎫+∞ ⎪⎝⎭上单调递减. ……………6分 (Ⅱ)当m ≤0时,()f x 在()0,+∞上单调递增,且()f x -∞<<+∞,所以()0f x ≤在()0,+∞上不恒成立;当m >0时,由(Ⅰ)得max 1()ln 10f x f m m m ⎛⎫==--+≤⎪⎝⎭, 令()ln 1g m m m =--+,()111m g m m m-'=-=,所以()0,1m ∈,()0g m '<,()1,m ∈+∞,()0g m '>,()min (1)0g m g ==,所以m=1.综上,m 的取值范围是m=1. ……………… 13分。
2013年普通高等学校招生全国统一考试文科数学(新课标I卷)Word版无答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b= (A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考文科数学安徽卷-答案
2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】21010(3i)10(3i)10(3i)(3i)(3)i 3i (3i)(3i)9i 10a a a a a a +++-=-=-=-=-+=----+-,所以3a =,故选D . 【提示】先利用复数的运算法则将复数化为i(,)x y x y +∈R 的形式,再由纯虚数的定义求a 【考点】复数的基本概念. 2.【答案】A【解析】1x >-,{|1}A x x =≤-R ð,(){1,2}A B =--R I ð,故选A . 【提示】解不等式求出集合A ,进而得A R ð,再由集合交集的定义求解. 【考点】集合的交集和补集运算. 3.【答案】C【解析】1120022n s s ===+=,,;111342244n s s ===+=,,;33111644612n s s ===+=,,; 11812n s ==,,输出,故选C . 【提示】利用框图的条件结构和循环结构求解. 【考点】条件语句、循环语句的程序框图. 4.【答案】B【解析】1(21)002x x x -==,或,故选B .【提示】先解一元二次方程(21)0x x -=,再利用充分条件、必要条件的定义判断. 【考点】充分条件和必要条件. 5.【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++==,故选D . 【提示】把所求事件转化为求其对立事件,然后求出概率.【考点】随机事件与概率. 6.【答案】C【解析】圆心(1,2),圆心到直线的距离d =,半径r =,所以弦长为4,故选C .【提示】把圆的一般方程化为标准方程,求出圆心和半径,然后利用勾股定理求弦长. 【考点】直线与圆的相交方程,点到直线距离公式.【考点】等差数列的基本性质. 8.【答案】B【解析】1111()()00f x f x x x -=-表示11(,())x f x 到原点的斜率;1212()()()n nf x f x f x x x x ===L 表示 1122(,()),(,())(,())n n x f x x f x x f x L ,,与原点连线的斜率,而1122(,()),(,()),(,())n n x f x x f x x f x L ,在曲线图像上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有3个,故选B . 【提示】利用()f x x的几何意义,将所求转化为直线与曲线的交点个数问题并列用数形结合求解. 【考点】斜线公式,直线与曲线相交. 9.【答案】B【解析】3sin 5sin A B =Q 由正弦定理,所以5353a b a b ==即;因为2b c a +=,所以73c a =,2221cos 22a b c C ab +-==-,所以2π3C =,故选B . 【提示】利用正弦定理、余弦定理和解三角形的基本知识,将三角形中正弦关系转化为边的关系,进而利用余弦定理求解角的大小.【考点】正弦定理和余弦定理的基本运算. 10.【答案】A【解析】2()32f x x ax b '=++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象:如图则有3个交点,故选A .【提示】先求给定函数的导函数,由极值点的定义及题意,得出1()f x x =或2()f x x =,再利用数形结合确定这两个方程实数根的个数. 【考点】函数的单调性、极值.第Ⅱ卷二、填空题11.【答案】(0,1]【解析】2110011011x x x x x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(0,1].【提示】列出函数有意义的限制条件,解不等式组. 【考点】复合函数的定义域. 12.【答案】4【解析】由题意约束条件的图像如下:当直线经过(4,0)时,404z x y =+=+=, 取得最大值.【提示】先画出可行线,再画目标函数线过原点时的直线,向上平移,寻找满足条件的最优解,代入即可得所求.【考点】二元线性规划求目标函数最值. 13.【答案】13-【解析】等式平方得:2222||9||||4||4a b a b a b ==++r r r r r r g 则222||||4||4||||cos a a b a b θ=++r r r r rg ,即 2204||43||cos b b θ=+r rg ,得1cos 3θ=-.【提示】根据两个向量的夹角公式,利用向量模的转化求出两向量夹角余弦值. 【考点】向量的线性运算,平面向量的数量积.【解析】当10x -≤≤,则011x ≤+≤,故(1)(1)(11)(1)f x x x x x +=+--=-+,又(1)2()f x f x +=, 所以(1)()2x x f x +=-. 【提示】根据题意把整体代入,再根据(1)2()f x f x +=求出()f x 【考点】函数解析式. 15.【答案】①②③⑤ 【解析】(1)12CQ =,S 等腰梯形,②正确,图(1)如下;图1(2)1CQ =,S 2)如下;图2(3)34CQ =,画图(3)如下:113C R =,③正确;图3(4)314CQ <<,如图(4)是五边形,④不正确;图4(5)102CQ <<,如下图(5),是四边形,故④正确.图5【提示】利用平面的基本性质结合特殊四边形的判定与性质求解. 【考点】空间立体图形截面的基本性质. 三、解答题16.【答案】(1)ππ13()sin sin coscos sin sin sin sin 3322f x x x x x x x x x =++=+=+ππ66x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,当πsin 16x ⎛⎫+=- ⎪⎝⎭时,min ()f x = 此时π3π2π62x k +=+,4π2π,()3x k k ∴=+∈Z ,所以,()f x 的最小值为x 的集合4π2π,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .(2)sin y x =横坐标不变,倍,得y x ;然后y x =向左平移π6个单位,得π()6f x x ⎛⎫=+ ⎪⎝⎭.【提示】把目标函数通过恒等变换转换为三角函数标准式得到结果,结合三角函数解析式,考查三角函数图象的平移伸缩变换等基础知识和基本技能. 【考点】三角函数的图象及性质,三角恒等变换.17.【答案】解:(1)设甲校高三年级学生总人数为n .由题意知,300.05n=,即600n =.样本中甲校高三年级学生数学成绩不及格人数为5.据此估计甲校高三年级此次联考数学成绩及格率为551306-=.(2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知,()121230()3030(75)(55814)241265(262479)(2220)92x x x x '-'='-'=-++-+--+--+-+249537729215=+--++=.因此120.5x x '-'=.故12x x -的估计值为0.5分.【提示】利用样本估计总体的思想,从茎叶图中得出数据进行平均数计算. 【考点】随机抽样,茎叶图.18.【答案】(1)连接AC ,交BD 于O 点,连接PO .因为底面ABCD 是菱形,AC BD ∴⊥,BO DO =.由PB PD =知,PO BD ⊥.再由PO AC O =I 知,BD ⊥面APC ,因此BD PC ⊥(2)因为E 是PA 的中点,所以1122P BCE C PEB C PAB B APC V V V V ----===.由2PB PD AB AD ==== 知,ABD PBD △≌△.因为60BAD ∠=︒,所以PO AO ==AC =1BO =.又PA =,222PO AO PA +=,即PO AC ⊥,故132APC S PO AC ==g △. 由(1)知,BO ⊥面APC ,因此11112232P BCE B APCAPC V V BO S --===g g g △. 【提示】根据线面垂直得到线线垂直;根据四棱锥体积求出体积. 【考点】点、直线、平面之间的位置关系,四棱锥体积公式.19.【答案】(1)由12a =,248a a +=,1212()()cos sin n n n n n f x a a a x a x a x ++++=-++-gg , 1212sin cos n n n n n f x a a a a x a x ++++'=-+-⋅-⋅(),121π02n n n n f a a a a +++⎛⎫'=-+-= ⎪⎝⎭,所以122n n n a a a ++=+{}n a ∴是等差数列.而12a =,34a =,1d =,2111n a n n ∴=+-=+g ().(2)11112212(1)222n n n a n n b a n n +⎛⎫⎛⎫=+=++=++ ⎪ ⎪⎝⎭⎝⎭,()112221212(21)11=(3)1312122n n n n n n S n n n n ++=+++-=++---.【提示】根据()f x 的导函数证明n a 为等差数列,然后根据首项、公差得到通项公式;把{}n a 通项公式代入{}n b ,求出结果.【考点】等差数列,等比数列的基本性质. 20.【答案】(1)21aa + (2)2122kk k --+【解析】(1)因为方程22100()()ax a x a -+=>有两个实根10x =,221ax a=+,故()0f x >的解集为12{|}x x x x <<,因此区间20,1a a I ⎛⎫⎪+⎝⎭=,区间长度为21a a +. (2)设2()1ad a a=+,则222()11a a d a -(+')=,令()0d a '=,得1a =.由于01k <<,当11k a -≤<时,()0d a '>, ()d a 单调递增;当11a k <≤+时,()0d a '<,()d a 单调递减.因此当11k a k -≤≤+时,()d a 的最小值必定在1a k =-或1a k =+处取得.而22123112311112<112k k k k d k k k d k k k -+(-)++(+)(-)--==(+)-+,故()1)1(d k d k -<+. 因此当1a k =-时,()d a 在区间1,]1[k k -+上取得最小值2122kk k--+. 【提示】利用导数求函数单调区间、最值. 【考点】一元二次方程,导函数.21.【答案】(1)22184x y +=(2)见解析【解析】(1)因为焦距为4,所以224a b -=.又因为椭圆C过点P ,所以22231a b+=,故28a =,24b =,从而椭圆C 的方程为22184x y +=. (2)由题意,E 点坐标为0(),0x .设0(),D D x,则0(,AE x =-u u u r,(,D AD x =-u u u r.再由AD AE ⊥知,0AE AD =u u u r u u u rg ,即080D x x +=.由于000x y ≠,故08D x x =-.因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫⎪⎝⎭.故直线QG 的斜率000028008G x Q k y x y x x =--=. 又因00()Q x y ,在C 上,所以220028x y +=④从而002QG x k y -=.故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭④将④代入C 方程,得22220000216640(1)6x y x x x y +-+-=.④再将④代入④,化简得220020x x x x -+=.解得0x x =,0y y =,即直线QG 与椭圆C 一定有唯一的公共点.【提示】根据焦距和点P 求出椭圆的标准方程;联立直线与椭圆方程求证公共点个数. 【考点】椭圆的标准方程及其几何性质,直线与椭圆的位置关系.。
2013年普通高等学校招生全国统一考试数学文试题(新课标II卷,解析版1)
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( ) (A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,选C.2、21i=+( )(A)(B )2 (C(D )1 【答案】C 【解析】22(1)2(1)11(1)(1)2i i i ii i --===-+-+,所以21i=+ C.3、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由z=2x-3y 得3y=2x-z ,即233z y x =-。
作出可行域如图,平移直线233z y x =-,由图象可知当直线233z y x =-经过点B 时,直线233z y x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4、A B C ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则A B C ∆的面积为( )(A)2 (B1 (C)2 (D1 【答案】B 【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sinsin64b c ππ=,解得c =所以三角形的面积为117sin 22212b c A π=⨯⨯.因为7231si n s i ()()12342222222ππ=+⨯+=+,所以1231s 22()32222b c =+=+,选B. 5、设椭圆2222:1x y C ab+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212P F F F ⊥,1230P F F ∠=,则C 的离心率为( )(A6(B )13(C )12(D3【答案】D【解析】因为21212,30P F F F P F F ⊥∠=,所以212tan 30,33P F c P F ===。
2013年高考文科数学安徽卷word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(安徽卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013安徽,文1)设i 是虚数单位,若复数103ia --(a ∈R )是纯虚数,则a 的值为( ). A .-3 B .-1 C .1 D .3 答案:D解析:由已知,得1010(3i)10(3i)3i (3i)(3)10a a a ++-=-=---+=a -3-i , ∵复数103ia --为纯虚数,∴a -3=0,即a =3. 2.(2013安徽,文2)已知A ={x |x +1>0},B ={-2,-1,0,1},则(R A )∩B =().A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1} 答案:A解析:∵A ={x |x >-1},∴R A ={x |x ≤-1},∴(R A )∩B ={-2,-1}.3.(2013安徽,文3)如图所示,程序框图(算法流程图)的输出结果为( ).A .34 B .16 C .1112 D .2524答案:C解析:开始,2<8,s =0+12,n =2+2=4; 返回,4<8,113244s =+=,n =4+2=6; 返回,6<8,31114612s =+=,n =6+2=8;返回,8<8不成立,输出1112s =.4.(2013安徽,文4)“(2x -1)x =0”是“x =0”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:B解析:由(2x -1)x =0,得x =12或x =0. 故(2x -1)x =0是x =0的必要不充分条件.5.(2013安徽,文5)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ).A .23B .25C .35D .910答案:D解析:五人录用三人共有10种不同方式,分别为:{丙,丁,戊},{乙,丁,戊},{乙,丙,戊},{乙,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,乙,戊},{甲,乙,丁},{甲,乙,丙}.其中含甲或乙的情况有9种,故选D .6.(2013安徽,文6)直线x +2y -50被圆x 2+y 2-2x -4y =0截得的弦长为( ).A .1B .2C .4 D.答案:C解析:由圆的一般方程可化为圆的标准方程:(x -1)2+(y -2)2=5,可知圆心坐标为(1,2)1=,2=.故弦长为4.7.(2013安徽,文7)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ).A .-6B .-4C .-2D .2 答案:A解析:由S 8=4a 3知:a 1+a 8=a 3,a 8=a 3-a 1=2d =a 7+d ,所以a 7=d =-2.所以a 9=a 7+2d =-2-4=-6.8.(2013安徽,文8)函数y =f (x )的图象如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得11f x x ()=22f x x ()=…=n n f x x (),则n 的取值范围为( ).A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}答案:B 解析:11f x x ()=22f x x ()=…=n n f x x ()可化为1100f x x ()--=2200f x x ()--=…=00n n f x x ()--,所以可以理解为图象上一点与坐标原点确定的斜率相等.由数形结合可得:曲线①为n =2,曲线②为n =3,曲线③为n =4.9.(2013安徽,文9)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( ).A .π3 B .2π3 C .3π4 D .5π6答案:B解析:∵3sin A =5sin B , ∴3a =5b . ① 又b +c =2a, ②∴由①②可得,a =53b ,c =73b , ∴cos C =222222257335223b b b b ac ab b ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭=⨯=12-.∴C =23π.10.(2013安徽,文10)已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( ).A .3B .4C .5D .6 答案:A解析:由f ′(x )=3x 2+2ax +b =0,得 x =x 1或x =x 2,即3(f (x ))2+2af (x )+b =0的根为f (x )=x 1或f (x )=x 2的解,由题可知f (x )的草图为:由数形结合及x 1<x 2可知满足f (x )=x 1的解有2个,满足f (x )=x 2的解仅有1个,因此3(f (x ))2+2af (x )+b =0的不同实数根个数为3.第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效...........二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(2013安徽,文11)函数1ln 1y x ⎛⎫=++ ⎪⎝⎭__________. 答案:(0,1]解析:由2110,10x x ⎧+>⎪⎨⎪-≥⎩⇒10,11x x x <->⎧⎨-≤≤⎩或⇒0<x ≤1. ∴该函数的定义域为(0,1].12.(2013安徽,文12)若非负变量x ,y 满足约束条件124,x y x y -≥-⎧⎨+≤⎩则x +y 的最大值为__________.答案:4解析:约束条件表示的可行域如图阴影部分.由线性规划知识得最优解为(4,0),令z =x +y ,则z max=4+0=4.13.(2013安徽,文13)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为__________.答案:13-解析:∵|a |=3|b |=|a +2b |, ∴|a |2=9|b |2=|a |2+4|b |2+4a ·b , ∴a ·b =-|b |2,∴cos 〈a ,b 〉=22||1||||3||3⋅-==-a b b a b b . 14.(2013安徽,文14)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=__________.答案:12-x (x +1) 解析:∵-1≤x ≤0,∴0≤x +1≤1, ∴f (x )=12f (x +1)=12(x +1)[1-(x +1)] =12-x (x +1). 15.(2013安徽,文15)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形 ②当CQ =12时,S 为等腰梯形 ③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13④当34<CQ <1时,S 为六边形⑤当CQ =1时,S答案:①②③⑤解析:当CQ =12时,D 1Q 2=D 1C 12+C 1Q 2,AP 2=AB 2+BP 2,所以D 1Q =AP .又因为AD 1∥PQ ,AD 1=2PQ ,所以②正确;当0<CQ <12时,截面为APQM ,所以为四边形,故①也正确,如图①所示.图①如图②,当CQ =34时,由△QCN ∽△QC 1R 得 11C Q C R CQ CN =,即114314C R=,C 1R =13,故③正确.图②如图③所示,当CQ =1时,截面为APC 1E . 可知AC 1EP且APC 1E 为菱形,1APC E S 四边形=2,故⑤正确. 当34<CQ <1时,截面为五边形APQMF . 所以④错误.图③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(2013安徽,文16)(本小题满分12分)设函数f (x )=sin x +πsin 3x ⎛⎫+⎪⎝⎭. (1)求f (x )的最小值,并求使f (x )取得最小值的x 的集合;(2)不画图,说明函数y =f (x )的图象可由y =sin x 的图象经过怎样的变化得到.解:(1)因为f (x )=sin x +12sin x x=32sin x x πsin 6x ⎛⎫+ ⎪⎝⎭.所以当x +π6=2k π-π2,即x =2k π-2π3(k ∈Z )时,f (x )取最小值.此时x 的取值集合为2π2π,3x x k k ⎧⎫=-∈⎨⎬⎩⎭Z .(2)先将y =sin x 倍(横坐标不变),得y x 的图象;再将y sin x 的图象上所有的点向左平移π6个单位,得y =f (x )的图象. 17.(2013安徽,文17)(本小题满分12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -值. 解:(1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600. 样本中甲校高三年级学生数学成绩不及格人数为5.据此估计甲校高三年级此次联考数学成绩及格率为551306-=. (2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知,121230()3030x x x x '-'='-'=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此120.5x x '-'=.故12x x -的估计值为0.5分.18.(2013安徽,文18)(本小题满分12分)如图,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD=60°.已知PB =PD =2,P A .(1)证明:PC ⊥BD ;(2)若E 为P A 的中点,求三棱锥P -BCE 的体积. (1)证明:连接AC ,交BD 于O 点,连接PO . 因为底面ABCD 是菱形,所以AC ⊥BD ,BO =DO .由PB =PD 知,PO ⊥BD .再由PO ∩AC =O 知,BD ⊥面APC ,因此BD ⊥PC . (2)解:因为E 是P A 的中点,所以V P -BCE =V C -PEB =12V C -P AB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD ≌△PBD . 因为∠BAD =60°,所以PO =AO AC =BO =1.又P A ,PO 2+AO 2=P A 2,即PO ⊥AC , 故S △APC =12PO ·AC =3. 由(1)知,BO ⊥面APC ,因此V P -BCE =12V B -APC =12·13·BO ·S △APC =12.19.(2013安徽,文19)(本小题满分13分)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a a +2sin x 满足π'02f ⎛⎫=⎪⎝⎭. (1)求数列{a n }的通项公式; (2)若b n =212nn a a ⎛⎫+⎪⎝⎭,求数列{b n }的前n 项和S n . 解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈N *,π'2f ⎛⎫⎪⎝⎭=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8,解得{a n }的公差d =1,所以a n =2+1·(n -1)=n +1.(2)由b n =212nn a a ⎛⎫+⎪⎝⎭=21112n n +⎛⎫++ ⎪⎝⎭=2n +12n+2知, S n =b 1+b 2+…+b n =2n +2·12n n (+)+11122112n⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦-=n 2+3n +1-12n.20.(2013安徽,文20)(本小题满分13分)设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}.(1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值.解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,221ax a=+,故f (x )>0的解集为{x |x 1<x <x 2},因此区间I =20,1a a ⎛⎫ ⎪+⎝⎭,区间长度为21a a +. (2)设d (a )=21aa+,则d ′(a )=22211a a -(+), 令d ′(a )=0,得a =1.由于0<k <1,故 当1-k ≤a <1时,d ′(a )>0,d (a )单调递增; 当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.因此当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而23223211211<111211kd k k k k k d k k k k -(-)--+(-)==+(+)-++(+), 故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k,1+k ]上取得最小值2122kk k --+.21.(2013安徽,文21)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的焦距为4,且过点P,.(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点.过点Q 作x 轴的垂线,垂足为E .取点A(0,),连接AE .过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG .问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P),所以22231a b+=,故a 2=8,b 2=4,从而椭圆C 的方程为22184x y +=. (2)由题意,E 点坐标为(x 0,0).设D (x D,0),则AE =(x 0,-),AD =(x D,-). 再由AD ⊥AE 知,AE ·AD =0,即x D x 0+8=0. 由于x 0y 0≠0,故x D =08x -. 因为点G 是点D 关于y 轴的对称点,所以点G 08,0x ⎛⎫⎪⎝⎭. 故直线QG 的斜率k QG =000200088y x y x x x =--. 又因Q (x 0,y 0)在椭圆C 上,所以 x 02+2y 02=8.① 从而k QG =02x y -. 故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭.② 将②代入椭圆C 方程,得(x 02+2y 02)x 2-16x 0x +64-16y 02=0.③ 再将①代入③,化简得 x 2-2x 0x +x 02=0.解得x =x 0,y =y 0,即直线QG 与椭圆C 一定有唯一的公共点.。
2013年高考文科数学安徽卷考试试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(安徽卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013安徽,文1)设i 是虚数单位,若复数103ia --(a ∈R )是纯虚数,则a 的值为( ). A .-3 B .-1 C .1 D .32.(2013安徽,文2)已知A ={x |x +1>0},B ={-2,-1,0,1},则(R A )∩B =( ).A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1} 3.(2013安徽,文3)如图所示,程序框图(算法流程图)的输出结果为( ).A .34B .16C .1112D .25244.(2013安徽,文4)“(2x -1)x =0”是“x =0”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.(2013安徽,文5)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ).A .23B .25C .35 D .9106.(2013安徽,文6)直线x +2y -50被圆x 2+y 2-2x -4y =0截得的弦长为( ).A .1B .2C .4 D.7.(2013安徽,文7)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ).A .-6B .-4C .-2D .28.(2013安徽,文8)函数y =f (x )的图象如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得11f x x ()=22f x x ()=…=n n f x x (),则n 的取值范围为( ).A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}9.(2013安徽,文9)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( ).A .π3B .2π3C .3π4D .5π610.(2013安徽,文10)已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( ).A .3B .4C .5D .6二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(2013安徽,文11)函数1ln 1y x ⎛⎫=+ ⎪⎝⎭__________.12.(2013安徽,文12)若非负变量x ,y 满足约束条件124,x y x y -≥-⎧⎨+≤⎩则x +y 的最大值为__________.13.(2013安徽,文13)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为__________. 14.(2013安徽,文14)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=__________.15.(2013安徽,文15)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形 ②当CQ =12时,S 为等腰梯形 ③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13④当34<CQ <1时,S 为六边形⑤当CQ =1时,S 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(2013安徽,文16)(本小题满分12分)设函数f (x )=sin x +πsin 3x ⎛⎫+ ⎪⎝⎭.(1)求f (x )的最小值,并求使f (x )取得最小值的x 的集合;(2)不画图,说明函数y =f (x )的图象可由y =sin x 的图象经过怎样的变化得到.17.(2013安徽,文17)(本小题满分12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -值.18.(2013安徽,文18)(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°.已知PB=PD=2,PA.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.(1)证明:连接AC,交BD于O点,连接PO.因为底面ABCD是菱形,所以AC⊥BD,BO=DO.由PB=PD知,PO⊥BD.再由PO∩AC=O知,BD⊥面APC,因此BD⊥PC.19.(2013安徽,文19)(本小题满分13分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n-a n+1+a n+2)x+a n+1cos x-a a+2sin x满足π'02f⎛⎫=⎪⎝⎭.(1)求数列{a n}的通项公式;(2)若b n=212nn aa⎛⎫+⎪⎝⎭,求数列{b n}的前n项和S n.20.(2013安徽,文20)(本小题满分13分)设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}.(1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值.21.(2013安徽,文21)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的焦距为4,且过点P ,.(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点.过点Q 作x 轴的垂线,垂足为E .取点A (0,,连接AE .过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG .问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.2013年普通高等学校夏季招生全国统一考试数学文史类(安徽卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:D解析:由已知,得1010(3i)10(3i)3i(3i)(3)10a a a++-=-=---+=a-3-i,∵复数103ia--为纯虚数,∴a-3=0,即a=3.2.答案:A解析:∵A={x|x>-1},∴R A={x|x≤-1},∴(R A)∩B={-2,-1}.3.答案:C解析:开始,2<8,s=0+12,n=2+2=4;返回,4<8,113244s=+=,n=4+2=6;返回,6<8,31114612s=+=,n=6+2=8;返回,8<8不成立,输出1112s=.4.答案:B解析:由(2x-1)x=0,得x=12或x=0.故(2x-1)x=0是x=0的必要不充分条件.5.答案:D解析:五人录用三人共有10种不同方式,分别为:{丙,丁,戊},{乙,丁,戊},{乙,丙,戊},{乙,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,乙,戊},{甲,乙,丁},{甲,乙,丙}.其中含甲或乙的情况有9种,故选D.6.答案:C解析:由圆的一般方程可化为圆的标准方程:(x-1)2+(y-2)2=5,可知圆心坐标为(1,2)1=,2=.故弦长为4.7.答案:A解析:由S8=4a3知:a1+a8=a3,a8=a3-a1=2d=a7+d,所以a7=d=-2.所以a9=a7+2d=-2-4=-6.8.答案:B 解析:11f x x ()=22f x x ()=…=n n f x x ()可化为1100f x x ()--=2200f x x ()--=…=00n n f x x ()--,所以可以理解为图象上一点与坐标原点确定的斜率相等.由数形结合可得:曲线①为n =2,曲线②为n =3,曲线③为n=4.9. 答案:B解析:∵3sin A =5sin B , ∴3a =5b . ① 又b +c =2a, ②∴由①②可得,a =53b ,c =73b , ∴cos C =222222257335223b b b b ac ab b ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭=⨯=12-.∴C =23π.10. 答案:A解析:由f ′(x )=3x 2+2ax +b =0,得 x =x 1或x =x 2,即3(f (x ))2+2af (x )+b =0的根为f (x )=x 1或f (x )=x 2的解,由题可知f (x )的草图为:由数形结合及x 1<x 2可知满足f (x )=x 1的解有2个,满足f (x )=x 2的解仅有1个,因此3(f (x ))2+2af (x )+b =0的不同实数根个数为3.第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效...........二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.答案:(0,1]解析:由2110,10x x ⎧+>⎪⎨⎪-≥⎩⇒10,11x x x <->⎧⎨-≤≤⎩或⇒0<x ≤1. ∴该函数的定义域为(0,1].12.答案:4 解析:约束条件表示的可行域如图阴影部分.由线性规划知识得最优解为(4,0),令z =x +y ,则z max =4+0=4.13.答案:13-解析:∵|a |=3|b |=|a +2b |,∴|a |2=9|b |2=|a |2+4|b |2+4a ·b ,∴a ·b =-|b |2,∴cos 〈a ,b 〉=22||1||||3||3⋅-==-a b b a b b .14.答案:12-x (x +1)解析:∵-1≤x ≤0,∴0≤x +1≤1, ∴f (x )=12f (x +1)=12(x +1)[1-(x +1)] =12-x (x +1). 15.答案:①②③⑤解析:当CQ =12时,D 1Q 2=D 1C 12+C 1Q 2,AP 2=AB 2+BP 2,所以D 1Q =AP .又因为AD 1∥PQ ,AD 1=2PQ ,所以②正确;当0<CQ <12时,截面为APQM ,所以为四边形,故①也正确,如图①所示.图①如图②,当CQ =34时,由△QCN ∽△QC 1R 得 11C Q C R CQ CN =,即114314C R=,C 1R =13,故③正确.图②如图③所示,当CQ =1时,截面为APC 1E . 可知AC 1,EP且APC 1E 为菱形,1APC E S 四边形=2当34<CQ <1时,截面为五边形APQMF . 所以④错误.图③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.解:(1)因为f (x )=sin x +12sin x+2cos x=32sin x+2cos xπsin 6x ⎛⎫+ ⎪⎝⎭.所以当x +π6=2k π-π2,即x =2k π-2π3(k ∈Z )时,f (x )取最小值此时x 的取值集合为2π2π,3x x k k ⎧⎫=-∈⎨⎬⎩⎭Z.(2)先将y =sin x倍(横坐标不变),得yx 的图象;再将ysin x 的图象上所有的点向左平移π6个单位,得y =f (x )的图象. 17.解:(1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600. 样本中甲校高三年级学生数学成绩不及格人数为 5.据此估计甲校高三年级此次联考数学成绩及格率为551306-=. (2)设甲、乙两校样本平均数分别为1x ',2x '.根据样本茎叶图可知,121230()3030x x x x '-'='-'=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此120.5x x '-'=.故12x x -的估计值为0.5分.18.(1)证明:连接AC ,交BD 于O 点,连接PO . 因为底面ABCD 是菱形,所以AC ⊥BD ,BO =DO .由PB =PD 知,PO ⊥BD .再由PO ∩AC =O 知,BD ⊥面APC ,因此BD ⊥PC . (2)解:因为E 是PA 的中点,所以V P -BCE =V C -PEB =12V C -PAB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD ≌△PBD . 因为∠BAD =60°,所以PO =AOAC=BO =1. 又PA,PO 2+AO 2=PA 2,即PO ⊥AC ,故S △APC =12PO ·AC =3. 由(1)知,BO ⊥面APC ,因此V P -BCE =12V B -APC =12·13·BO ·S △APC =12.19.解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈N *,π'2f ⎛⎫⎪⎝⎭=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8,解得{a n }的公差d =1,所以a n =2+1·(n -1)=n +1.(2)由b n =212nn a a ⎛⎫+⎪⎝⎭=21112n n +⎛⎫++ ⎪⎝⎭=2n +12n+2知, S n =b 1+b 2+…+b n =2n +2·12n n (+)+11122112n⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦-=n 2+3n +1-12n .20.解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,221ax a =+,故f (x )>0的解集为{x |x 1<x <x 2},因此区间I =20,1a a ⎛⎫ ⎪+⎝⎭,区间长度为21a a +.(2)设d (a )=21aa +,则d ′(a )=22211a a -(+),令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增; 当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.因此当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而23223211211<111211kd k k k k k d k k kk -(-)--+(-)==+(+)-++(+), 故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k,1+k ]上取得最小值2122kk k --+.21.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P),所以22231a b +=,故a 2=8,b 2=4,从而椭圆C 的方程为22184x y +=. (2)由题意,E 点坐标为(x 0,0).设D (x D,0),则AE =(x 0,-),AD =(x D,-). 再由AD ⊥AE 知,AE ·AD =0,即x D x 0+8=0. 由于x 0y 0≠0,故x D =08x -. 因为点G 是点D 关于y 轴的对称点,所以点G 08,0x ⎛⎫⎪⎝⎭. 故直线QG 的斜率k QG =000200088y x y x x x =--. 又因Q (x 0,y 0)在椭圆C 上,所以 x 02+2y 02=8.① 从而k QG =02x y -. 故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭.②将②代入椭圆C 方程,得(x 02+2y 02)x 2-16x 0x +64-16y 02=0.③ 再将①代入③,化简得 x 2-2x 0x +x 02=0.解得x =x 0,y =y 0,即直线QG 与椭圆C 一定有唯一的公共点.。
安徽高考真题2013:文科数学卷(完整版)【3】
安徽高考真题2013:文科数学卷(完整版)【3】第Ⅱ卷 (非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
二.填空题:本大题共5小题,每小题5分,共25分。
把答案填在答题卡的相应位置。
(11) 函数y=ln(1+1/x)+ 的定义域为_____________。
(12)若非负数变量x、y满足约束条件,则x+y的最大值为__________。
(13)若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为_______。
(14)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时。
f(x)=x(1-x),则当-1≤x≤0时,f(x)=________________。
(15)如图,正方体ABCD-A1B1C1D1的棱长为1,p为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的洁面记为S,则下列命题正确的是 (写出所有正确命题的编号)。
①当0②当CQ=1/2时,S为等腰梯形③当CQ=3/4时,S与C1D1的交点R满足C1R=1/3④当3/4⑤当CQ=1时,S的面积为 /2(16)(本小题满分12分)设函数f(x)=sinx+sin(x+π/3)。
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(Ⅱ)不画图,说明函数y=f(x)的图像可由y=sinx的图象经过怎样的变化的到。
(17)(本小题满分12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中为各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲乙7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 58 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 97 5 4 4 2 8 1 1 5 5 82 0 9 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1-x2 的值。
【恒心】2013年普通高等学校招生全国统一考试(安徽卷)数学【文科】试题及名师剖析【纯word版】
绝密★启用前2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)(RR(【说明】考查集合的交集和补集,属于简单题。
A.34B.16C.1112D.2524【答案】C【解析】开始,2<8,s =0+12,n =2+2=4; 返回,4<8,113244s =+=,n =4+2=6; 返回,6<8,31114612s =+=,n =6+2=8;返回,8<8不成立,输出11A .-6B .-4C .-2D .2 【答案】A【解析】由S 8=4a 3知:a 1+a 8=a 3,a 8=a 3-a 1=2d =a 7+d ,所以a 7=d =-2.所以a 9=a 7+2d =-2-4=-6.【说明】考查等差数列通项公式和前n 项公式的应用,以及数列基本量的求解。
8.函数y =f (x )的图象如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得11f x x ()=22f x x ()=…=n nf x x (),则n 的取值范围为( ).∴C =3π.【说明】考查正弦定理和余弦定理,属于中等难度。
10.已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( ).A .3B .4C .5D .6 【答案】A【解析】由f ′(x )=3x 2+2ax +b =0,得x=x1或x=x2,即3(f(x))2+2af(x)+b=0的根为f(x)=x1或f(x)=x2的解,由题可知f(x)的草图为:【说明】考查线性规划求最值的问题,要熟练掌握约束条件的图像画法,以及判断何时z取最大。
13.若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为__________.【答案】1 3 -【解析】∵|a|=3|b|=|a+2b|,∴|a|2=9|b|2=|a|2+4|b|2+4a·b,∴a·b=-|b|2,∴cos〈a,b〉=22||1 ||||3||3⋅-==-a b ba b b.【说明】考查向量模长,向量数量积的运算,向量最基本的化简。
2013年普通高等学校招生全国统一考试数学文试题(安徽卷)
2013年普通高等学校招生全国统一考试(安徽卷文科)[试卷总评]2013年安徽文科卷相对于2012年安徽文科卷的难度来说有所加大。
从试卷命题特点方面:(1)对主干知识(函数、数列、圆锥曲线、立体几何、三角函数、概率统计)的重点考查,尤其是函数,考了四道小题,一道大题,而且函数小题两道是以压轴题的形式出现;(2)注重能力的考查:一方面在知识的交汇处命题,如第19题;另一方面重视对数学能力和思想方法的考查,如计算能力考查(第9,13,17,21题),转化思想的考查(第8,10,20题),数形结合的考查(第6,8,10题)等等;(3)注重理论联系实际,如第17题概率统计;(4)注重对创新意识的考查,如第21题。
从试卷难度方面:选择填空跟以往的试卷一样从易到难,但在做的过程中不是那么顺畅。
第1题考查复数,难度不大;第2题考查集合的交与补以及不等式求法;第3题程序框图,简单;第4题充分必要条件,容易题;第5题古典概型,只要考生能够理解题意,基本没问题;第6题直线与圆的方程,考查圆中弦长的求法,第7题等差数列基本量的求解,简单;第11题考查函数定义域的求法,简单;第12题常规的线性规划题,难度不大;第14题,抽象函数解析式的求解,难度中等。
选择题第8,9,10题,填空题第13,15题难度加大。
第8题考查函数转化思想以及数形结合,难度很大,考生不一定能想到方法;第9题三角函数,对正弦余弦定理的考查,计算量大;第10题函数零点的考查,难度很大,不容易做好;第13题平面向量,数量积的运算,需要细心;第15题立体几何的截面问题,是考生平时学习中最不容易弄明白的地方。
大题第16题三角函数:容易,主要考查恒等变形,三角函数图像变换,考生需注意图像变换时语言的描叙;大题第17题概率统计:难度不大,对计算的要求很高,在那种高压环境下必须有个良好的心态才能做好;大题第18题立体几何:难度中等,常规性的考查了三棱锥体积的求法,在选择顶点的过程中,需要考生注意看清垂直关系;大题第19题数列:综合性强,将函数求导利用到数列求通项中,只要学生能够细心,拿下这道题还是没有问题的;大题第20题函数:题型新颖,考查考生对新问题冷静处理的能力,对区间长度的准确理解;大题第21题:难度较大,计算量大,点比较多,也容易把考生绕进去,要将这题做好,需要一定的计算基本功。
安徽省高三数学联考 文(扫描版)
安徽省2013届高三数学联考文(扫描版)2013年安徽省“江南十校”高三联考数学(文科)参考答案一、选择题:本大题共10小题,每小题5分,共50分.1.B 2.B 3.A 4.B 5.A6.A 7.C 8.D 9.D 10.A二、填空题:本大题共5小题,每小题5分,共25分.11.()()0,11,--∞- 12.31 13.2 14.1511 15.①②④ 三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.解析:(Ⅰ)∵)6sin(23312)4(sin 2)(πππ+=+-⎥⎦⎤⎢⎣⎡-+=x x x g ………2分 ∴13sin 23124sin 264=+-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛πππππg f ……………………5分 (Ⅱ)∵)6sin(2)(π+=x x g ∴当)(,226z k k x ∈+=+πππ即)(,23z k k x ∈+=ππ时,()g x 取得最大值. B x = 时()g x 取得最大值,又(0,)B π∈, ∴3π=B ………………7分 而ac c a ac c a b -+=-+=222223cos 2πac ac c a 3163)(2-=-+= 41216)2(3162=-=+⋅-≥c a ……………………………………………10分 ∴2≥b , 又4b a c <+=∴b 的取值范围是[)4,2 …………………………………………………………12分17.解析:(Ⅰ)由题意,被调查的男性人数为52n ,其中有5n 人的休闲方式是运动;被调查的女性人数应为3n ,其中有n 人的休闲方式是运动,则22⨯列联表如下: …………………4分 (Ⅱ)由表中数据,得36535253525552522n n n n n n n n n n k =⋅⋅⋅⎪⎭⎫ ⎝⎛⋅-⋅=,要使在犯错误的概率不超过05.0 的前提下,认为“性别与休闲方式有关”,则841.32≥k .所以841.336≥n 解得276.138≥n . 又*N n ∈且*5N n ∈,所以140≥n 即本次被调查的人数至少有140人. …………………………………………9分(Ⅲ)由(Ⅱ)可知:5652140=⨯,即本次被调查的人中,至少有56人的休闲方式是运动. ………………………………………………………………………12分18.解析:(Ⅰ)证明:取EF 中点M ,连GM 、MC ,则1//2GM AE , 又等腰梯形ABCD 中,1,3BC AD ==,∴1//.2BC AE ∴//GM BC ,∴四边形BCMG 是平行四边形, ∴//.BG CM 又CM FCE ⊂平面 ∴BG //FCE 平面 …………………6分 (Ⅱ)∵平面⊥FCE 平面ABCE ,平面 FCE 平面CE ABCE =又⊂EF 平面FCE ,CE FE ⊥,FE ABCE ∴⊥平面 …………………8分 又∵1122F BEG B GEF B AEF F ABE V V V V ----=== …………………………………10分 ∵11221=⨯⨯=∆ABC S , ∴61113121=⨯⨯⨯=-BEG F V ………………………12分 19.解析:(Ⅰ)设),(y x M MP MD 2= , ),2(y xP ∴ 又P 在圆1C 上,1)2(22=+∴y x ,即2C 的方程是 1422=+y x …………5分 (Ⅱ)解法一:当直线l 的斜率不存在时,点B 与A 重合,此时点T 坐标为⎪⎪⎭⎫ ⎝⎛0,554,显然不在圆1C 上,故不合题意; ……………………………………………6分 所以直线l 的斜率存在.设直线l 的方程为)2(-=x k y ,由⎪⎩⎪⎨⎧=+-=14)2(22y x x k y 得 041616)41(2222=-+-+k x k x k 解得224128k k x B +-= ,∴2414k k y B +-= 即⎪⎪⎭⎫ ⎝⎛+-+-222414,4128k k k k B ………………8分⎪⎪⎭⎫ ⎝⎛+-+=+∴222414,4116k k k k ⎪⎪⎭⎫ ⎝⎛+-+=∴222414,411655k k k k …………10分 因为T 在圆1C 上,所以141441165122222=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+k k k k 化简得,052417624=--k k 解得412=k 或4452-=k (舍去) …………12分 21±=∴k 故存在满足题意的直线l ,其方程为)2(21-±=x y ………13分 解法二:当直线l 的斜率为0时,点B 坐标为()0,2-,此时0=+OB OA ,点T 坐标为()0,0,显然不在圆1C 上,故不合题意; ………………………………………6分 设直线l 的方程为R t ty x ∈+=,2.A B C EF GM由⎪⎩⎪⎨⎧=++=14222y x ty x 得 ()04422=++ty y t . 解得442+-=t t y B , ∴42822+-=t t x B ,即⎪⎪⎭⎫ ⎝⎛+-+-44,428222t t t t B …………………8分 由)(55+=得⎪⎭⎫ ⎝⎛+-+=44,4165522t t t …………………10分 因为T 在圆1C 上,所以,144416512222=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+t t t化简得,017624524=-+t t ,解得42=t 或5442-=t (舍去) ………………12分 2±=∴t . 故存在满足题意的直线l ,其方程为22+±=y x ……………………13分20.解析:(Ⅰ)由已知得()()()x f e ef x f x +-'='01,所以()()()1011+-'='f f f , 即()10=f . …………………………………………………………………………2分又()()ef f 10'=,所以()e f ='1. 从而()221x x e x f x +-=. ………………………………………………………4分 显然()x e x f x +-='1在R 上单调递增且0)0(='f ,故当()0,∞-∈x 时,()0<'x f ; 当()+∞∈,0x 时,()0>'x f .∴()x f 的单调递减区间是()0,∞-,单调递增区间是()+∞,0. ………………7分(Ⅱ)由()()x g x f =得x e a x-=.令()x e x h x -=,则()1-='x e x h . 由()0='x h 得0=x . …………………………………………………………9分 当()0,1-∈x 时,()0<'x h ;当()2,0∈x 时,()0>'x h .()x h ∴在()0,1-上单调递减,在()2,0上单调递增.又()()()22,111,102-=+=-=e h eh h 且()()21h h <- …………11分 ∴两个图像恰有两个不同的交点时,实数a 的取值范围是⎥⎦⎤ ⎝⎛+e 11,1. …………13分 21.解析:(Ⅰ)圆n C 的圆心到直线n l 的距离n d n =,半径n a r n n +=2n n n n n n n a n n a d r B A a 2)2(212221=-+=-=⎪⎭⎫ ⎝⎛=∴+ ………………4分 又11=a 12-=∴n n a ……………………………………………6分 (Ⅱ)当n 为偶数时,)()(42131n n n b b b b b b T +++++++=-)222()]32(51[13-++++-+++=n n41)21(22)1(--+-=n n n)12(3222-+-=n n n . ………………………………9分 当n 为奇数时,1+n 为偶数,)12(322)1()1(121-++-+=++n n n n T )12(32212-++=+n n n 而n n n n n T b T T 211+=+=++,∴)22(3122-++=n n n n T . ………………12分 ⎪⎪⎩⎪⎪⎨⎧-++-+-=∴)()22(312)()12(32222为奇数为偶数n nn n n n T n nn ………………………………………13分。