初二数学实数典型习题集_2

合集下载

实数的概念复习题

实数的概念复习题

实数的概念复习题实数是数学中最基础、最广泛使用的数的集合。

它包括有理数和无理数两个部分。

在这篇文章中,我们将复习实数的概念,并做一些相关的练习题。

一、实数的定义与分类实数是数轴上的每一个点所对应的数。

它既包括有理数,又包括无理数。

1. 有理数:有理数是可以表示为两个整数的比值的数,包括整数、分数和小数。

有理数可以是正数、负数或零。

例如,-2,1/2和0.75都是有理数。

2. 无理数:无理数是不能表示为两个整数的比值的数,无理数的十进制表示是无限不循环小数。

例如,π和√2都是无理数。

二、练习题复习完实数的定义与分类后,让我们来做一些练习题,以巩固概念。

1. 判断下列数是否为有理数,若是,将其写成分数形式;若不是,将其写成无理数的近似值:a) 0.3b) 1/7c) -2d) √32. 将下列数按从小到大的顺序排列,并用数轴表示:a) -5,√2,0,-1,4/3b) -√5,1/2,2/3,π/4,03. 计算下列各组数的和:a) -1/3,0.2,√5b) π,1/6,-0.4,⅔4. 解决下列方程:a) |x-2| = 5b) √(x+3) = 75. 判断下列各命题的真假:a) 有理数包括整数、分数和小数。

b) 任意两个相邻整数之间必有一个整数。

三、答案1.a) 0.3是有理数,可以写成3/10。

b) 1/7是有理数,已经是分数形式。

c) -2是有理数,可以写成-2/1。

d) √3是无理数。

2.a) -5,-1,0,4/3,√2。

b) -√5,π/4,1/2,2/3,0。

3.a) -1/3 + 0.2 + √5。

b) π + 1/6 - 0.4 + 2/3。

4.a) x = -3 或 x = 7。

b) x = 48。

5.a) 真。

b) 真。

通过以上复习题的练习,我们可以更加熟悉实数的概念,并巩固相关的知识点。

实数是数学中非常重要的概念,在几乎所有数学学科中都有应用。

因此,掌握实数的概念对于进一步学习数学具有重要意义。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

中考复习之实数题型练习超全

中考复习之实数题型练习超全

典型题型:一、单选题1.☆在实数,0,,π,中,无理数有A . 1个B . 2个C . 3个D . 4个2.☆在下列各数中 , ,|-3|,,…, , 是无理数的有A . 3个B . 4个C . 5个D . 6个3.☆下列说法中,正确的有个;①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④是2的平方根;⑤9的平方根是3 ;⑥–2是-4的平方根.A . 2B . 3C . 4D . 54.☆在实数,,,,,,,中,无理数有A . 1个B . 2个C . 3个D . 4个5.☆下列各数中:,,0,,,, ,是无理数的有A . 4个B . 3个C . 2个D . 1个6.☆在实数﹣ , 0. , , , 中,无理数有A . 1个B . 2个C . 3个D . 4个7.☆有下列说法,其中正确说法的个数是1无理数就是开方开不尽的数;2无理数是无限不循环小数;3无理数包括正无理数、零、负无理数;4无理数是无限不循环小数.A . 0B . 1C . 2D . 38.☆在﹣7,tan45°,sin60°, , ﹣ , ﹣2这六个数中,无理数有A . 1个B . 2个C . 3个D . 4个9.☆在、、、、π、这六个数中,无理数有A . 1个B . 2个C . 3个D . 4个10.☆下列几个数中,属于无理数的是A .B . 2C . 0D .典型题型:二、填空题11.☆在﹣ , π,0,, , , 中,无理数有个.12.☆在实数、π、中,无理数是13.☆如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样的点C共个.14.☆若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:15.☆请任意写出一个你喜欢的无理数16.☆在实数 , , π,﹣ , , …每两个3之间依次多一个1中,无理数的个数是个17.☆在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:注:横线上填入对应的无理数18.☆在π,﹣2,0. , , , …相邻两个5之间的7的个数逐次加1中,无理数有个.19.☆在﹣4,, 0,π,1,﹣ , 1.这些数中,是无理数的是20.☆请你写出三个大于1的无理数:21.☆写出一个大于﹣1而小于3的无理数典型题型:三、解答题22☆. 把下列各数分别填在相应的集合中:﹣ , , ﹣ , 0,﹣ , 、 , 0. ,23.☆ 500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时若1:x=x:2,那么x叫1和2的比例中项,他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:1x是整数吗为什么不是2x可能是分数吗是,能找出来吗不是,能说出理由吗亲爱的同学,你能帮他解答这些问题吗24.☆☆☆定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设,a与b 是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,n是整数,所以b2=2n2 ,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.25.☆在: , , 0,,﹣ , ﹣, …每相邻两个“1”之间依次多一个“5”中,整数集合{ …},分数集合{ …},无理数集合{ …}.26.☆国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数如果误差要求小于米,那么边长x的最大取值是多少精确到27.☆请你写出和为6的两个无理数至少写出2对.28.☆☆我们知道,无限不循环小数叫无理数.试根据无理数的意义,请你构造写出两个无理数.29.☆☆体积为3的正方体的边长可能是整数吗可能是分数吗可能是有理数吗请说明你的理由.典型题:一、单选题1.☆若一个数的算术平方根等于它的本身,则这个数是A . 1B . 0C . -1D . 0或12.☆求7的平方根,正确的表达式是A .B .C .D .3.☆如果某数的平方根是2a+3和a-12,那么这个数是A . 5B . -5C . 169D . 814.☆ 36的平方根是A . 6B . -6C . ±6D .5.☆ 4的平方根是A . ±2B . 2C . ±D .6.☆﹣22的平方根是A . ﹣2B . 2C . ±2D . 47.☆±3是9的A . 平方根B . 相反数C . 绝对值D . 算术平方根8.☆如果一个正数的平方根是a+3与2a﹣15,那么这个正数是A . 7B . 8C . 49D . 569.☆ 36的平方根是A . ﹣6B . 36C . ±D . ±610.☆将数49开平方,其结果是A . ±7典型题:二、填空题11.☆ 2015恩施州4的平方根是12.☆若的平方根是 , 则m= .13.☆若一个数的平方根是2a+1和4﹣a,则这个数是.14.☆ 5的平方根是.15.☆ 16的平方根是 . 16.☆ 3的平方根是 .17.☆ 已知:x 满足x ﹣12=9,根据平方根的意义可求得x= . 18.☆ 9的平方根是 . 19.☆ 如果x 2﹣4=0,那么x 3= . 20.☆ 9的平方根是 . 典型题:三、解答题 21.☆ 解方程:3x ﹣22=27.22.☆ 一个正数x 的平方根是3a ﹣4和1﹣6a,求x 的值. 23.☆ 已知一个正数x 的平方根是a+3和2a ﹣15,求a 和x 的值. 24.☆ 已知a+1,2a ﹣4是同一个数的平方根,求这个数. 25.☆ 求下列式中的x 的值: 32x+12=27.26.☆ 一个正数x 的平方根是3a ﹣4和1﹣6a,求x 的值. 27.☆☆ 求x 值:x ﹣12=25.28.☆ 已知一个正数的两个平方根分别是a 和2a ﹣9,求a 的值,并求这个正数. 29.☆ 求式中x 的值:3x ﹣12+1=28.典型题:一、单选题 1.☆ 4的算术平方根是A . 2B . -2C . ±2D . 4 2.☆ 9的算术平方根是 A . 3 B . -3 C .D . 813. 如果一个数的算术平方根等于它本身,那么这个数是 A . 0 B . 1 C . 0或1 D . -1或0或14.☆ 一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是 A . a+1 B . a 2+1 C .2a 1+ D .+15.☆ 一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的平方根A . a+2B 2a 2+ .C .6.☆的值是A . 4B . 2C . ±2D .7.☆的值是A . 4B . ±2C . 2D .8.☆ 4的算术平方根是A . 2B . -2C . ±2D . 169.☆小明的作业本上有以下四题:①=4a2②a③a=;-=.做错的题是A . ①B . ②C . ③D . ④10.☆下列结果错误的有B .的算术平方根是4C . 12 的算术平方根是D . ﹣π2的算术平方根是π典型题:二、填空题11. ☆计算:= .12. 的算术平方根是 .13. ☆= .14. ☆已知:a+62+=0,则2b2﹣4b﹣a的值为 .15.☆☆若+|x+y﹣2|=0,则xy=16. = .17. ☆若实数a、b满足a240b++-=,则= .18.☆的算术平方根是 .19.☆☆☆出其中规律,并将第nn≥1个等式写出来 .20.☆☆0+=,则x= , y= .典型题:三、解答题21.☆已知2a﹣1的平方根是±3,b﹣1的算术平方根是4,求a+2b的值.22.☆一个数的算术平方根为2m+5,平方根为±m﹣2,求这个数.23.☆ 长方形内有两个相邻的正方形,面积分别为4、2,求阴影部分的面积.24.☆ 已知2a ﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求4a+2b 的值.25.☆ +|2x ﹣3|=0.1求x,y 的值;2求x+y 的平方根.26.☆☆☆ 若△ABC 的三边a 、b 、c 满足|a ﹣15|+b ﹣82+=0,试判断△ABC 的形状,并说明理由.27.☆☆ 已知a,b 满足0+=,÷28.☆☆ 若x 、y 为实数,且|x+2|+=0,则求x+y 2016的值.29.☆☆ 2(31)0x y ++-= , 的值30.☆ 如图,某玩具厂要制作一批体积为100 000cm 3的长方体包装盒,其高为40cm .按设计需要,底面应做成正方形.求底面边长应是多少典型题:一、单选题 1.☆ -8的立方根是A . 2B . 2或-2C . -2D . -3 2.☆ 8的立方根为A . -2B . 4C . 2D . ±2 3☆. 一个数的立方根等于它本身,这个数是A . 0B . ±1C . 1D . 0,±1 4.☆ -27的立方根是A . 3B . -3C . ±3D . ±95.☆的立方根是A . ±4B . -4C .D .6.☆下列说法正确的是A . 25的平方根是5B . ﹣22的算术平方根是2C . 的立方根是D . 是的一个平方根7.☆﹣8的立方根是A . 2B . -2C . ±2D .8.☆若一个有理数的平方根与立方根是相等的,则这个有理数一定是A . 0B . 1C . 0或1D . 0和±19.☆下列说法错误的是A . 9的算术平方根是3B . 16的平方根是±4C . 27的立方根是±3D . 立方根等于﹣1的实数是﹣110.☆下列说法中,不正确的是A . 2是﹣22的算术平方根B . ±2是﹣22的平方根C . ﹣2是﹣22的算术平方根D . ﹣2是﹣23的立方根典型题:二、填空题11.☆已知=,则= .12.☆ 16的平方根是.,9的立方根是.13.☆的立方根是.14.☆的平方根是.,-的相反数是.15.☆ 4的算术平方根是.;9的平方根是;64的立方根是.16.☆ a+3的立方根是2,3a+b﹣1的平方根是±4,则a+2b的平方根是.17.☆的算术平方根是.,﹣8的立方根是.18.☆方程x﹣13﹣8=0的根是.19.☆若实数x满足等式x+43=﹣27,则 x= .20.☆ - 的立方根是.典型题:三、综合题21.☆求下列各式的值:1 .2322.☆☆☆数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗请你按下面的问题试一试:1 103=1000,1003=1000000,你能确定59319的立方根是几位数吗答:位数.2 由59319的个位数是9,你能确定59319的立方根的个位数是几吗答:3 如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗答:.因此59319的立方根是.4 现在换一个数185193,你能按这种方法说出它的立方根吗答:①它的立方根是位数,②它的立方根的个位数是, ③它的立方根的十位数是, ④185193的立方根是.四、解答题23.☆某居民生活小区需要建一个大型的球形储水罐,需储水立方米,那么这个球罐的半径r为多少米球的体积V= ,π取,结果精确到米24.☆请根据如图所示的对话内容回答下列问题.1求该魔方的棱长;2求该长方体纸盒的长.25.☆求下列各式中x的值.14x2﹣=0;23x+23﹣1=.26.☆求x的值:1x+33=﹣27216x﹣12﹣25=0.27.☆求下列x的值.12x3=﹣16 2x﹣12=4.28. ☆求下列各式中的x.14x2﹣16=0227x﹣33=﹣64.29.☆已知一个正方体的体积是1000cm3 , 现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3 , 问截得的每个小正方体的棱长是多少30.☆用计算器计算:+﹣﹣结果精确到知识点5难度要求典型题:一、单选题1.☆若m=+1,则估计m的值的取值范围是A . 2<m<3B . 3<m<4C . 4<m<5D . 5<m<62.☆下列各式比较大小正确的是A . -<-B . ->-C . -π<D . ->-33.☆估算的值应在A . ~之间B . ~之间C . ~之间D . ~之间4.☆估算的值在A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间5.☆下列说法正确的是A . |﹣3|=﹣3B . 0的倒数是0C . 9的平方根是3D . ﹣4的相反数是46.☆实数﹣3的绝对值是A . 3B . -3C . 0D .7.☆☆如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是A .B . -C .D . -8.☆如图,数轴上的点Q所表示的数可能是A .B .C .D .109.☆的值是在A . 3和4之间B . 4和5之间C . 5和6之间D . 6和7之间10.☆估计A . 6到7之间B . 7到8之间C . 8到9之间D . 9到10之间典型题:二、综合题11.☆☆已知实数x和﹣分别与数轴上的A、B两点对应.1 直接写出A、B两点之间的距离用含x的代数式表示.2 求出当x= ﹣时,A、B两点之间的距离结果精确到.3 若x= ,请你写出大于﹣,且小于x的所有整数,以及2个无理数12.☆阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为﹣2.请解答:1 如果的小数部分为a , 的整数部分为b , 求a+b的值;2 已知:10+ =x+y , 其中x是整数,且0<y<1,求x﹣y的相反数.13.☆把下列各数分别填在表示它所属的括号里:0,﹣, ,﹣,﹣2, ,﹣1 正有理数:{… }2 整数:{… }3 负分数:{ …}.14.☆已知a、b分别是6﹣的整数部分和小数部分.1 分别写出a、b的值;2 求3a﹣b2的值.15.☆☆阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,所得的差就是其小数部分﹣1,根据以上的内容,解答下面的问题:1 的整数部分是 , 小数部分是;2 1+ 的整数部分是 , 小数部分是;3 1+ + 整数部分是 , 小数部分是;4 若设2+ 整数部分是x,小数部分是y,求x﹣y的值.三、填空题10-116.☆比较大小:.选填“>”“=”“<”83-8, 无理数17.☆在实数0, , ﹣,…每两个1之间的0的个数依次增加1, ,3有个,有理数有个,负数有个.18.☆数的相反数是.19.☆的整数部分是20.☆☆如图,在数轴上点A表示的实数是.四、解答题21.☆清明节某校组织学生到距离离学校10km的烈士陵园扫墓,学生王争因事没能赶上学现王争身上仅有14元,他乘出租车到烈士陵园的车费够吗22.☆比较大小要有具体过程:1和4;和.2223.☆☆☆问:你能比较两个数和的大小吗为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,比较n n+1与n+1n的大小n为正整数,从分析n=1,n=2,n=3…的情形入手,通过归纳,发现规律,猜想出结论.1比较各组数的大小①12和21;②23和32;③34和43;④45和542由1猜想出nn+1与n+1n的大小关系是3由2可知:与 ;的大小24.☆☆已知a是的整数部分,b是的小数部分,求2a﹣b.25.☆☆已知a是的整数部分,b是的小数部分,求ab﹣2的值.26.☆☆已知a、b分别是-1的整数部分和小数部分,1求a、b的值;2求3a+2b的值.27.☆☆☆阅读下列材料:“为什么不是有理数”.假是有理数,那么存在两个互质的正整数m,n,使得= , 于是有2m2=n2.∵2m2是偶数,∴n2也是偶数,∴n是偶数.设n=2tt是正整数,则n2=2m,∴m也是偶数∴m,n都是偶数,不互质,与假设矛盾.∴假设错误∵不是有理数有类似的方法,请证明不是有理数.28.☆☆化简:|﹣|﹣|3﹣|.29.☆☆已知x=12,y=﹣2,求x﹣y的相反数.30.☆☆解方程:|x﹣|=1.典型题:一、单选题1.☆下面计算正确的是2.☆化简| ﹣π|﹣π得A .B . ﹣C . 2π﹣D . ﹣2π3.☆将1、、、按如图方式排列,若规定m,n表示第m排从左向右第n个数,则6,5与13,6表示的两数之积是A .B . 6C .D .4.☆下列各式计算正确的是5.☆下列运算正确的是A . =+B . ﹣2=3C . 3a﹣a=3D . a23=a5典型题:二、综合题6.☆计算:1 .2 结果精确到. .7.☆计算题8.☆如图,将1、、三个数按图中方式排列,若规定a,b表示第a排第b列的数,则1 5,3=2 8,2与2014,2014表示的两个数的积是.三、填空题9.☆计算﹣﹣12= ;10.☆计算:﹣1﹣= ;11.☆请你写出:两个无理数的积等于1的等式:.12.☆化简:× +4 = .13.☆对于任意不相等的两个实数a,b.定义运算※如下:a※b= ,如3※2= = ,那么8※4= .四、解答题14.☆计算:﹣12+﹣﹣3+÷2﹣π0.15.☆计算:﹣22++3+π0﹣|﹣3|.16.☆计算:﹣|﹣3|﹣﹣π0+2015.17.☆ 1计算:|﹣|+2;2求式子中的x:1﹣x3=64.18.☆设a、b为实数,且 =0,求a2﹣2 的值.19.☆一堆玩具分给若干个小朋友,若每人分3件,则剩余4件;若前面每人分4件,则最后一人能得到的玩具不足3件,求小朋友的人数及玩具数.20.☆已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.五、计算题21.☆计算:22.☆化简17﹣32|1﹣|+|﹣|+|2﹣|23.☆计算:.24.☆计算题典型题:一、单选题1.☆若是二次根式,则x的取值范围是A . x>2B . x≥2C . x<2D . x≤22.☆若为二次根式,则m的取值为A . m≤3B . m<3C . m≥3D . m>33.☆下列关于的说法中,错误的是A . 是无理数B . 是15的算术平方根C . 15的平方根是D .3<544.☆下列说明错误的是A . 4的平方根是±2B . 是分数C . 是有理数D . 是无理数5.☆已知=0,则x为A . x>3B . x<-3C . x=-3D . x的值不能确定6.☆若是整数,则自然数n的值有个.A . 7B . 8C . 9D . 107.☆已知是整数,则满足条件的最小正整数n为A . 2B . 3C . 4D . 58.☆x≥其中一定是二次根式的有A . 1个B . 2个C . 3个D . 4个9.☆下列各式中:,其中是二次根式的有A . 1个B . 2个C . 3个D . 4个10.☆,正整数n的最小值是A . 0B . 2C . 3D . 4典型题:二、填空题-可以合并,则a= .11.☆若两个最简二次根式与44a12.☆当x=﹣6时,二次根式.13.☆当x=﹣2时,的值为.14.☆当x=﹣2时,二次根式的值是.15.☆二次根式,则m= .16.☆当x取.时,2-,最大值是.17.☆当.时是二次根式.18.☆是二次根式,则m,n应满足的条件分别是..19.☆当a=﹣2时,二次根式的值是.20.☆已知n是正整数,则n的最小值是.典型题型:一、单选题1.☆若使二次根式在实数范围内有意义,则x的取值范围是A .☆x≥2B . x>2C . x<2D . x≤22.☆若二次根式在实数范围内有意义,则x的取值范围是A . x≠5B . x<5C . x≥5D . x≤53.☆要使代数式有意义,必须A . x≤2B . x≥2C . x≤-2D . x≥-24.☆x的取值范围是A . x≥B . x≤C . x<D . x>5.☆ 2015徐州使有意义的x的取值范围是A . x≠1B . x≥1C . x>1D . x≥06.☆ 2015甘孜州使二次根式的有意义的x的取值范围是A . x>0B . x>1C . x≥1D . x≠17.☆若为二次根式,则m的取值为A . m≤3B . m<3C . m≥3D . m>38.☆若二次根式1x-有意义,则x的取值范围是A . x≥﹣B . x≠1C . x>1D . x≥﹣且x≠19.☆若,则x的取值范围是A . x>0B . x>3C . x≥3D . x≤3典型题型:二、填空题10☆. 2015有意义的x的取值范围是.11.☆☆若x、y为实数,且y=++3,则y x的值为.12.☆要使代数式有意义,则x的取值范围是.13.☆已知x是实数且满足x﹣3=0,则相应的代数式x2+2x﹣1的值为.14.☆☆已知4++,.15.☆,则x的取值范围是.16.☆已知1y=++,则3x+y= .17.☆有意义,则x的取值范围是.18.☆要使2x-在实数范围内有意义, 应满足的条件是19☆. 有意义,那么字母x的取值范围是.典型题型:三、解答题20.☆☆已知x、y都是实数,且3y=++ , 求y x的平方根.21.☆☆若a,b为实数,且11ba++=+, 求22.☆☆已知x,y为实数,且4y=++.求xy+3的值.23.☆☆已知x,y为实数,且4y=++, +24.☆☆求值1已知a、b满足0b+-=, 解关于x的方程a+2x+b2=a﹣1.2已知x、y都是实数,且4y=++, 求y x的平方根.25.☆☆已知a,b是有理数,4b+=+ , 求a和b的值.26.☆☆已知,3yx+=+求2x+y的算术平方根.27.☆☆若x、y为实数,且12yx++=+, 求•28. ☆☆已知a、b为一个等腰三角形的两条边长,并满足:b=2++5,求此等腰三角形的周长.29.☆☆已知+有意义,求2221x axa ax-+-+的值.知识点9难度要求典型题:一、单选题1.☆已知x、y +y2﹣6y+9=0,则y2x的值是A .☆B . 9C . 6D .典型题:二、填空题2. 代数式 的最大值是 . 典型题:三、综合题3.☆ 完成下列问题: 1 若 是关于 的方程220x mx n ++= 的根,求的值;2 已知 , 为实数,且 25523yx x =-+-- 求2xy 的值.经典题型:一、单选题1☆. k 、m 、n 为三整数,===则下列有关于k 、m 、n 的大小关系,哪个正确A . k <m=nB . m=n <kC . m <n <kD . m <k <n 2.☆ 下列各式中,是最简二次根式的是 A .B .2a b C .22a b - D .3.☆ 下列根式中,不是最简二次根式的是 A .B .C .D .4☆. 下列式子为最简二次根式的是 A .B .C .29x - D .23x y5.☆ 当a <0,b <0时,把化为最简二次根式,得A .1ab bB 1ab b -.C . 1ab b-- -D . b6.☆ 在根式,221a b a b --,3ab ,261,232a b 中,最简二次根式有A . 1个B . 2个C . 3个D . 4个 7.☆ 下列二次根式中,属于最简二次根式的是 A .B .C .D .8.☆ 二次根式 化为最简二次根式是9.☆ 下列根式中属最简二次根式的是10☆. 下列二次根式中,最简二次根式是典型题型:二、解答题 11.☆☆ 探索规律 先观察下列各式,再回答问题..1根据上面三个等式提供的消息,,不用验证;2按照上面各等式反映的规律,试写出用含n 的式子表示的等式n 为正整数,不用验证. 12.☆☆ 已知实数x 满足求x 的取值范围.13.☆☆ 1已知8yx =++,2当﹣4<x <1时,-14.☆☆易错题 已知a,b,c 为实数,且它们在数轴上的对应点的位置如图所示,化简:222()()2b a b c a c a -++---.15.☆ 设a,b,c 为△ ABC 的三边,化简:+++16.☆☆ 求使13x ++-x 的取值范围.典型题型:三、填空题 17.☆☆ += .18.☆☆☆ 计算.= ;19.☆ 将化成最简二次根式的结果为 .20.☆ 下列二次根式,不能与12合并的是填写序号即可.21.☆☆ 已知关于x 的一次函数y=mx+n 的图象如图所示,则n m --可化简为 .22.☆☆ 当a= 时,|a ﹣2a .23.☆ 如果﹣1,则a 的取值范围是 .24.☆25.☆☆ 当a <0时a -=.26.☆ 当a <0时, = . 典型题型:四、计算题27.☆ 当2<m <3时,化简﹣3|m ﹣4|.典型题型:五、综合题 28.☆☆ 探究题:23=3,20.5=,26=6,23()4= ,20=0.根据以上算式,回答: a 吗如果不是,那么= ;2 利用你总结的规律,计算: ①若x <2,则= ;= .3 若a,b,c 为三角形的三边长,化简:++.29.☆☆ 化简30.☆☆☆ 我们知道平方运算和开方运算是互逆运算,如:a 2±2ab+b 2=a±b 2 , 那么22(2)a ab b ±+ =|a±b|,那么如何将双重二次根式 2a b ±a >0,b >0,a±2>0化简呢如能找到两个数m,nm >0,n >0,使得2+2=a 即m+n=a,且使 =即mn=b,那么a±2 =2+2±2 = ± 2∴2a b ±=|± |,双重二次根式得以化简; 例如化简: 322+;∵3=1+2 且2=1×2,∴3+2=2+2+2 × ∴322+=1+由此对于任意一个二次根式只要可以将其化成,且能找到m,nm >0,n>0使得m+n=a,且mn=b,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题: 1 = ;= ; 2 3 计算:.+典型题型:一、单选题 1. 1-的正确结果是 A . 2+ B . 2-C . 2+D . 2-2.☆☆ 分母有理化后得A . 4bB . 2C .D .2b b3.☆☆ +的有理化因式是+--+4.☆☆ 若2x y =+=则x 与y 关系是A . x>yB . x=yC . x<yD . xy=1 5.☆☆ 下列各式中,与2﹣的积为有理数的是 A . 2B . 2-C . -2+D . 2+6.☆☆ 已知a=+ , b=253-, 则a 与b 的关系是A . a=bB . ab=1C . a=﹣bD . ab=﹣57.☆☆ 已知:a b ==, 则a 与b 的关系是A . ab=1B . a+b=0C . a ﹣b=0D .22a b =8.☆☆ 结果正确的是A . 3+2B . 3-C . 17+12D . 17﹣129.☆☆ 与2﹣ 相乘,结果是1的数为A .B . 2﹣C . ﹣2+D . 2+10.☆☆ 已知x= +1,y= ﹣1,则代数式22x y + 的值为A .☆☆ 2B . 2C . 4D .±2典型题型:二、解答题11.☆☆☆阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.12.☆☆☆观察下列等式:13.☆☆☆阅读下面问题:14.☆☆☆阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰,其实我们可以将典型题型:三、综合题15.☆☆☆16.☆☆☆17.☆☆☆阅读材料:18.☆☆☆19.☆☆☆ 阅读下面的材料,并解答问题:20.☆☆☆ 知识链接 有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式. 例如:的有理化因式是;1﹣21a + 的有理化因式是1+21a + .分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:典型题型:四、填空题21.☆☆ 若a =,则a ﹣12= .22.☆☆ 已知一个无理数与 +1的积为有理数,这个无理数为 .23.☆☆==-1-==-,并利用这一规律计算.2222...++++•+= 24.☆☆1=;1== ;25.☆☆11=-1=-...1)++++•+=26.☆☆的有理化因式为.27.☆填空:﹣1的倒数为.28.☆☆==-1=-,1=.利用以上提供的方法化简下式:...++++29.☆= ;30.☆☆写出的一个有理化因式 ;典型题型:一、单选题1.☆在二次根式:①;②;③;④中,与是同类二次根式的是A . ①和③B . ②和③C . ①和④D . ③和④2.☆下列二次根式中,与是同类二次根式的是A .B .C .D .3.☆下列二次根式中与是同类二次根式的是A .B .C .D .4.☆下列二次根式中,与是同类二次根式的是A .B .C .D .5.☆下列二次根式中与是同类二次根式的是A .B .C .D .6.☆下列各式中能与合并的是A .B 12.C 12. D 2a.7.☆下列二次根式中,与能够合并的是A .B .C .20D .8.☆下列二次根式中,与能合并的是9.☆下列二次根式中与是同类二次根式的是10.☆下列二次根式中,能与合并的是A .B .12C 18.D .11.☆下列二次根式中,不能与合并的是A .12B .C .12D . 1812.☆下列根式中,不能与合并的是1典型题型:二、填空题13.☆在根式、、中,与是同类二次根式的是.14. ☆☆如果最简二次根式,则a= .15.☆☆与最简二次根式1m+能合并,则m= .16.☆☆如果最简二次根式与42a-是同类二次根式,那么a= 17.☆在,12 ,18中与是同类二次根式是.18.☆☆☆若最简二次根式与,则b的值是.19.☆☆已知最简二次根式72a-与2 可以合并,则a的值是.20.☆下列二次根式,不能与合并的是填写序号即可.②;③2.21.☆☆如果最简二次根式38a-与的被开方数相同,则a= ;22.☆若一个数与是同类二次根式,则这个数可以是.23.☆☆最简二次根式,则a= .24.☆☆最简二次根式,则a= .25.☆,可以是.26.☆☆如果最简二次根式,那么a= .27.☆下列二次根式,不能与②;④2;28.☆☆已知最简二次根式21a+与可以合并,则a的值是.29.☆写出一个与是同类二次根式的式子:.典型题型:三、解答题30.☆☆已知最简二次根式是同类二次根式,求关于x的方程2典型题型:一、解答题1.☆☆若a,b为有理数,且181828a b++=+,求的值;2.☆计算:3-3. ☆已知1化简这四个数;2把这四个数,通过适当运算后使得结果为2.请列式并写出运算过程.4.☆ 2014大连计算:1﹣++﹣1 .5.☆先化简:, 再从﹣1≤x≤1中选取一个适当的整数求值.6.☆计算:2015﹣π0+|﹣2|+÷+﹣1 .7.☆解方程:4x2﹣8x﹣3=0.8.☆ 1计算:2化简:3﹣+2﹣;3解不等式组, 并把解集在数轴上表示出来.9.☆ 1计算:2-+.2先化简,再求值:,其中a=-1.10.☆化简1﹣2×﹣62+﹣+2.二、计算题11.☆计算:1﹣4﹣3﹣22 .12.☆计算13.☆计算12 +12017﹣12016 .14.☆计算下列各题:123 2 +320072 ﹣32008 .15.☆计算:.16.☆计算题12 .17.☆计算.18.☆计算或化简19.☆计算1 5+ ﹣22 | ﹣|+|2 ﹣3 |﹣﹣3 + .20.☆计算:三、综合题21.☆计算:22.☆计算23.☆计算:24.☆计算:25.☆计算:26.☆计算题:27.☆计算:28.☆☆☆阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2 =1+ 2 , 我们来进行以下的探索:设a+b =m+n 2其中a,b,m,n都是正整数,则有a+b =m2+2n2+2mn ,∴a=m+2n2 , b=2mn, 这样就得出了把类似a+b 的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:1 当a,b,m,n都为正整数时,若a﹣b =m﹣n2 , 用含m,n的式子分别表示a,b,得a= , b= ;2 利用上述方法,找一组正整数a,b,m,n填空:﹣= ﹣ 23 a﹣4 =m﹣n 2且a,m,n都为正整数,求a的值.29.☆计算下列各式:30.☆☆计算下列各式:知识点14难度要求典型题型:一、计算题共10题;共55分1. ☆☆请化简式子,再取一个能使原式有意义,而你又喜欢的m的值代入化简后的式子中求值.2. ☆☆已知的平方根.3. 1☆☆先化简,再求且x为偶数.4. ☆☆已知a=3+2 ,b=3﹣2 ,求a2b+ab2的值.5. ☆☆已知a=5+ ,b=5﹣2 ,求a2﹣3ab+b2的值.6. ☆☆若x2﹣3x+1=0,求的值.7. ☆☆已知x,y都是有理数,并且满足的值.8. ☆☆先化简,后求值:x2+y2﹣2x+2y+2,其中x= +1,y= ﹣1.9. ☆☆已知a+b=﹣4,ab=2.求的值.10. ☆☆已知x=2﹣,求代数式7+4 x2+2+ x+ 的值.典型题型:二、解答题11. ☆☆化简求值:其中x=2+.12. ☆☆已知:a+=1+ ,求的值.13. ☆☆已知 xy=6,x+y=﹣4,求x +y的值.14. ☆☆已知:的值.15. ☆☆已知x= -1,y= +1,求的值.16. ☆☆已知的值.17. ☆☆已知:a= ﹣2,b= +2,分别求下列代数式的值:18. ☆☆已知:x= +1,y= ﹣1,求代数式x2+2xy+y2的值.19. ☆☆已知a= +1,b= ﹣1,求a2+ab+b2.20. ☆☆先化简,再求值:,其中,x= +1.典型题型:三、综合题21. ☆☆解答1 已知x= +2,求代数式9﹣4 x2+2﹣x+ 的值.2 先化简,再求值: ,其中a= +2,b= ﹣2.22. v☆☆化简求值已知x=2﹣,y=2+ ,求下列各式的值.1 x2﹣y2;2 x2+xy+y2.23. ☆☆计算:1 已知m=1+ ,n=1﹣,求代数式m2+2mn﹣n2的值;2 已知x+ = 10,求代数式x﹣的值.24. ☆☆综合题;25. ☆☆已知:.求值:26. ☆☆已知x= + ,y= ﹣,求下列各式的值.27. ☆☆计算下面各题28. ☆☆已知:x= +1,y= ﹣1,求下列代数式的值.1 x2﹣xy+y22 x2﹣y2.29. ☆☆已知x= + ,y= ﹣.求:1 x3y+xy3;2 3x2﹣5xy+3y2的值.30. ☆☆已知x=2﹣,y=2+ ,求下列代数式的值:1 x2+2xy+y2;22典型题型:一、单选题1. ☆☆等腰三角形的两条边分别为2 和3 ,则这个三角形的周长为A . 4 +3B . 2 +6C . 4 +3 或2 +6D . 4 +6 或2 +62. 和则这个三角形的周长为A .B . 或C .D .3. ☆☆某校的校园内有一块尺寸如图所示的三角形空地,现计划将这块空地建成一个花园.已知每平方米的造价为30元.则学校建这个花园需要投资 ,A . 7794元B . 7820元C . 7822元D . 7921元4. ☆☆在直角三角形中,那么这个直角三角形的斜边长为A . 6B . 7C . 2D . 25. ☆☆△ABC的两边长分别为2和2 ,第三边上的高等于,则△ABC的面积是A .B . 2C . 或2D . 不能确定6. ☆☆☆将一组数,2, , , 10,…, 按下面的方式进行排列:,2, , , 23; ,V4, , ;…若的位置记为1,4,14的位置记为2,2,则这组数中最大的有理数的位置记为A . 7,2B . 7,5C . 6,2D . 6,37. ☆☆现有一个体积为252 cm3的长方体纸盒,该纸盒的长为3 cm,宽为2 cm,则该纸盒的高为A . 2 cmB . 2 cmC . 3 cmD . 3 cm8. ☆☆在△ABC中,BC=4 cm,BC边上的高为2 cm,则△ABC的面积为A . 3 cm2B . 2 cm2C . 8 cm2D . 16 cm29. ☆☆如图,在数学课上,老师用5个完全相同的小正方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为27、宽为12,下列是四位同学对该大长方形的判断,其中不正确的是A . 大长方形的长为6B . 大长方形的宽为5C . 大长方形的周长为11D . 大长方形的面积为9010. ☆☆如图,在数学课上,老师用5个完全相同的小长方形的无重叠的情况下拼成了一个大长方形,已知小长方形的长为3 10、宽为210 ,下列是四位同学对该大长方形的判断,其中不正确的是A . 大长方形的长为大长方形的宽为C . 大长方形的长为大长方形的面积为300典型题型:二、解答题11. ☆☆矩形的两条边长分别是+和-求该矩形的面积和对角线的长.12. ☆☆如图,在四边形ABCD中,∠A=∠BCD=90°,∠B=45°,==.求四边形ABCD的面积.AB CD26,313. ☆☆一个直角三角形的两条直角边的长分别为cm与10 cm,求这个直角三角形的面积和周长.14. ☆☆已知三角形的三边a,b,c的长分别是cm,16 cm,25cm,求这个三角形的周长和面积.15. ☆☆要做一个面积为18的矩形,使它的长宽之比为3:2,求长为多少+和求16. ☆☆如右图,已知直角三角形的两条直角边a,b的长分别为22122-1斜边c的长.17. ☆☆如图,B地在A地的正东方向,两地相距km.A,B两地之间有一条东北走向的高速公路,且A,B两地到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向P处,至上午8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为110km/h.问:该车是否超速行驶18. ☆☆如图,在水塔O的东北方向10m处有一抽水站A,在水塔的东南方向20 m处有一建筑工地B,在AB间铺设一条直通的水管,求水管的长.。

实数的练习题带答案

实数的练习题带答案

实数的练习题带答案实数是数学中的一个重要概念,是整数、有理数和无理数的集合。

在数学学习中,实数概念的掌握是非常重要的,因为它涉及到我们日常生活中很多实际问题的解决。

下面,我将给大家带来一些实数的练习题,并附上答案,希望可以帮助大家更好地理解实数的概念和应用。

一、选择题1. 下列哪个数是有理数?A. √3B. 2πC. 0.618D. e答案:C2. 已知a、b是实数,且a>b,那么下列哪个不等式成立?A. a+b < aB. a/b > 1C. |a| > |b|D. a-b < 0答案:D3. 下列哪个数是无理数?A. 0.5B. -2C. 4/5D. √2答案:D4. 已知a是整数,b是有理数但不是整数,那么a+b一定是:A. 整数B. 有理数但不是整数C. 无理数D. 不能确定答案:B二、填空题1. 若x是实数,那么方程2x+1=5的解为______。

答案:x=22. 实数-√3的绝对值是______。

答案:√33. 若a是有理数,且a的平方等于4,那么a的值可能为______。

答案:±24. 若x是实数,那么不等式x-3 > 2的解集为______。

答案:(3, +∞)三、计算题1. 计算(√5+1)(√5-1)的值。

答案:(√5+1)(√5-1) = (√5)^2 - 1 = 5 - 1 = 42. 计算下列各式的值:√7 + √7 - √7 + √7 - √7答案:√7 + √7 - √7 + √7 - √7 = √73. 若a、b是实数,且a的平方+b的平方=29,且ab=6,求a和b的值。

答案:由第一个条件可得a^2 + b^2 = 29,由第二个条件可得ab = 6。

将第一个等式两边同时平方得到(a^2 + b^2)^2 = (29)^2,即a^4 + 2a^2b^2 + b^4 = 841。

将第二个等式代入,得到a^4 + 2(6^2) + b^4 = 841,即a^4 + 72 + b^4 = 841。

实数知识点及例题

实数知识点及例题

实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。

初二数学实数练习题

初二数学实数练习题

初二数学实数练习题一、填空题(每题2分,共30分)1. 一个无理数减去一个有理数一定是(有理数/无理数/整数/自然数)。

2. 若x是有理数,y是无理数,则x+y一定是(有理数/无理数/整数/自然数)。

3. 实数-7的绝对值是(-7/0/7/无穷大)。

4. 若a为整数,b为有理数,且ab=0,则a一定是(0/有理数/无理数/整数)。

5. 若x是正有理数,则-x一定是(正无理数/负有理数/负无理数/正有理数)。

6. 若√2是一个数的平方根,则这个数一定是(2/2的奇数次方/2的偶数次方/2的负整数次方)。

7. 有理数的相反数是(自己/自然数/整数/无理数)。

8. √9的值是(-3/3/±3/0)。

9. 所有整数的绝对值都是(有理数/无理数/整数/负数)。

10. 0是(有理数/无理数/整数/自然数)的一员。

11. 若x是一个正有理数,则1/x一定是(负有理数/正有理数/负无理数/正无理数)。

12. 若x是一个负有理数,则|x|一定是(负有理数/负无理数/正无理数/正有理数)。

13. 若x是一个负有理数,则-|x|一定是(负有理数/负无理数/正无理数/正有理数)。

二、选择题(每题4分,共40分)1. 下列数中,不是无理数的是(1/√2/3/π)。

A. 1B. √2C. 3D. π2. 下列哪个不是实数?A. 0B. -√5C. 1/2D. 2i3. 有理数的运算结果一定是(有理数/整数/自然数/无理数)。

A. 有理数B. 整数C. 自然数D. 无理数4. 若a是无理数,b是有理数,且ab=0,则a一定是(无理数/0/有理数/整数)。

A. 无理数B. 0C. 有理数D. 整数5. 若x是正有理数,则-x一定是(正无理数/负有理数/负无理数/正有理数)。

A. 正无理数B. 负有理数C. 负无理数D. 正有理数6. 若√16=4,那么√(-16)的值是(4/0/±4/无解)。

A. 4B. 0C. ±4D. 无解7. 下列数中,不是整数的是(0/1/2/√3)。

初中数学实数练习题(附答案)

初中数学实数练习题(附答案)

初中数学实数练习题(附答案)【知识积累】概念:1、平方根一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

一个数有两个平方根,他们互为相反数;0的平方根是0;负数没有平方根。

正数a的平方根记作“a”,也叫做这个数的算术平方根。

求一个数a的平方根的运算,叫做开平方。

2、算术平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。

a的算术平方根记为a,读作“根号a”,a叫做被开方数。

规定:0的算术平方根是03、立方根一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,这就是说,如果x3=a,那么x叫做a的立方根。

一个正数有一个正的立方根;一个负数有一个负的立方根(三次根号内的负号可以移到根号外面);0的立方根是0。

求一个数的立方根的运算,叫做开立方。

4、实数(1)有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。

有限小数和无限循环小数也属于有理数。

(2)无理数无理数包括正无理数和负无理数。

无限不循环小数属于无理数。

形式包括:①开方开不尽的数,如2、7等;②有特定意义的数,如化简后含π的数;③有特定结构的数,如0.1010010001······等。

5、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,0的相反数是0),从数轴上看,互为相反数的两个数对应的点关于原点对称,如果a与b 互为相反数,则有a+b=0,a=—b,反之亦成立。

6、绝对值一个数的绝对值就是表示这个数的点与原点的距离,用“||”表示,|b—a|或|a—b|表示数轴上表示a的点和表示b的点之间的距离。

一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0。

即:|a|=a(当a>0时);|a|=0(当a=0时);|a|=—a(当a<0时)。

7、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

八年级数学实数习题含答案

八年级数学实数习题含答案
■. 3x
的取值范围是
)。
x>
x>
、x>
17、计算
3
A、
D、
)。
、土
18、有一个数的相反数、
身,这个数是(
A、一1B
D、土1
19、下列命题中,
38的值是
平方根、立方根都等于它本
)。
正确的是(
)。
A、无理数包括正无理数、0和负无理数
理数不是实数
c、无理数是带根号的数
、无
无理数是无限不循环小数
20、下列命题中,正确的是(
填空题:
(本题共10小题,每小题2分,共
20分)
1、
2
的算术平方根是
13、若x,y都是实数,且
”2x
2x y
4,则xy的值
)。
A、0
、不能
2、3
确定
14、下列说法中,
错误的是(
)。
3、2的平方根是
4、实数a,b,c在数轴上的对应点如图所示
-6
C
A、
4的算术平方根是
B、
,81的平方根是土
化简a
a b
C、8的立方根是土2
d、立方根等于
5、若m、n互为相反数,则
—1的实数是一1
15、64的立方根是(
A、土4
D、16
6
则m=
16、已知(a
3)
则込的值是
b
7、

a,则a.
)。
,21的相反数是
A、
9、
D、
10、绝对值小于n的整数有
选择题:
(本题共10小题,每小题3分,共30
分)
11、代数式x2

初二数学实数练习题

初二数学实数练习题

初二数学实数练习题1. 已知数集A={-3, -2, -1, 0, 1, 2, 3},数集B={0, 1, 2, 3, 4, 5},数集C={-5, -4, -3, -2, -1, 0},求下列集合的并集和交集:(1) A∪B(2) A∪C(3) B∩C解析:(1) A∪B代表集合A和集合B的并集,即两个集合中所有的元素放在一起,去重复后的结果。

A∪B = {-3, -2, -1, 0, 1, 2, 3, 4, 5}(2) A∪C代表集合A和集合C的并集。

A∪C = {-5, -4, -3, -2, -1, 0, 1, 2, 3}(3) B∩C代表集合B和集合C的交集,即两个集合中共有的元素。

B∩C = {0}2. 已知数集D={x | -3 ≤ x ≤ 3},数集E={x | -4 < x < 2},数集F={x | -2 ≤ x < 4},判断下列命题的真假:(1) D⊆E(2) F⊆E(3) E⊆F解析:(1) D⊆E代表集合D是集合E的子集,即D中的所有元素也同时属于E。

由题可知,D中的元素范围是-3 ≤ x ≤ 3,而E中的元素范围是-4 < x < 2。

所以D⊆E是成立的,即D是E的子集。

(2) F⊆E代表集合F是集合E的子集,即F中的所有元素也同时属于E。

由题可知,F中的元素范围是-2 ≤ x < 4,而E中的元素范围是-4 < x < 2。

尽管F的范围是包含了E的范围,但F中的元素-2是不属于E的元素,所以F⊆E是不成立的。

(3) E⊆F代表集合E是集合F的子集,即E中的所有元素也同时属于F。

由题可知,E中的元素范围是-4 < x < 2,而F中的元素范围是-2 ≤ x < 4。

所以E⊆F是成立的,即E是F的子集。

总结:根据数学实数集合的概念和范围比较,我们可以准确地求解出集合的并集和交集,以及判断集合之间的子集关系。

初二实数典型练习题

初二实数典型练习题

初二实数典型练习题1. 在数轴上,有一点A和一点B,已知点A的坐标为-5,点B的坐标为3,请计算点A和点B之间的距离。

解析:由于A和B之间的距离为正数,所以不考虑坐标的正负。

可以使用绝对值来计算两点之间的距离。

解答:点A和点B之间的距离为|3 - (-5)| = |8| = 8。

2. 设实数x满足条件|x - 3| > 5,请写出x可能的取值范围。

解析:对于绝对值不等式,可以将其拆分成两个条件,并分别解得解集,再根据条件的关系进行合并。

解答:对于条件|x - 3| > 5,可以拆分成x - 3 > 5或者x - 3 < -5。

解这两个不等式得到x > 8或者x < -2。

合并解集可得x < -2或者x > 8。

3. 若实数x满足|x + 2| + |3 - x| = 2,请写出x可能的取值范围。

解析:针对绝对值方程,可以根据绝对值的定义进行分类讨论求解。

解答:对于方程|x + 2| + |3 - x| = 2,可以拆分成四种情况并求解:- 当x + 2 ≥ 0 且 3 - x ≥ 0 时,方程简化为x + 2 + 3 - x = 2,解得x = 1。

但是该解不满足初始条件x + 2 ≥ 0,所以此情况无解。

- 当x + 2 ≥ 0 且 3 - x < 0 时,方程简化为x + 2 - (3 - x) = 2,解得x= 2。

该解满足初始条件,所以x = 2是一个解。

- 当x + 2 < 0 且 3 - x ≥ 0 时,方程简化为-(x + 2) + 3 - x = 2,解得x = -1。

该解满足初始条件,所以x = -1是一个解。

- 当x + 2 < 0 且 3 - x < 0 时,方程简化为-(x + 2) - (3 - x) = 2,解得x = -6。

但是该解不满足初始条件x + 2 < 0,所以此情况无解。

综上所述,x = 2或者x = -1是方程的解。

实数复习题

实数复习题

实数复习题实数是数学中最基本的数系之一,包括有理数和无理数。

在实数的复习中,我们通常会涉及以下几个方面:1. 实数的定义:实数是所有有理数和无理数的集合,包括正数、负数和零。

2. 实数的性质:实数具有有序性、连续性、完备性等性质。

有序性指的是实数可以按照大小顺序排列;连续性指的是实数之间没有“空隙”;完备性则是指任何实数序列都有一个极限。

3. 实数的分类:实数可以分为有理数和无理数。

有理数可以表示为两个整数的比,而无理数则不能表示为分数形式。

4. 实数的运算:实数的四则运算规则与有理数相同,包括加、减、乘、除。

在进行除法运算时,需要注意除数不能为零。

5. 绝对值:实数的绝对值是指该数与零的距离,表示为非负数。

绝对值的计算公式为:|x| = x (x ≥ 0) 或 |x| = -x (x < 0)。

6. 幂运算:实数的幂运算包括正整数次幂、负整数次幂和零次幂。

正整数次幂遵循乘法规律,负整数次幂是正整数次幂的倒数,而任何非零实数的零次幂都等于1。

7. 开方:实数的开方是求一个数的平方根或立方根等,例如√x表示x的平方根。

8. 实数的数轴表示:实数可以在数轴上表示,数轴是一条直线,正数位于零的右侧,负数位于零的左侧。

9. 实数的比较:实数的大小比较遵循基本的数学规则,正数大于零,零大于所有负数。

10. 实数的应用:实数在日常生活中有广泛的应用,如物理、工程、经济等领域的计算。

通过这些复习点,我们可以更好地理解和掌握实数的概念、性质和运算规则。

在解决实际问题时,这些知识将发挥重要作用。

希望这次的复习能够帮助你巩固对实数的理解。

初二实数练习题大全

初二实数练习题大全

初二实数练习题大全一、填空题(每题2分,共20分)1. 3.14是一个近似值,它是圆周率的值的________。

2. 将下列有理数由小到大排列:-0.8,1.5,0,-1.2,0.5。

3. √(-4)的值是________。

4. 7/10是一个________数。

5. 两个互为倒数的有理数相乘,其积是________。

6. 5的相反数是________。

7. 解方程:x + 3 = 7。

8. 解方程:2x + 5 = 11。

9. 下列哪个数是无理数:-√9,2/3,√5,5/2。

10. 计算:(-3) × (-4)。

二、选择题(每题4分,共20分)1. 若x > 0,则下列等式中不正确的是:A. -x^2 = -x × xB. x^2 = x × xC. -x^2 = x × xD. x^2 = (-x) × (-x)2. 下列哪一个数是有理数:A. √8B. -√7C. √(-5)D. 2/33. 若 a < b,c < 0,下列不等式成立的是:A. ac < bcB. ac > bcC. ac < bc < 0D. 不能确定4. 半径为r的圆的周长比半径为R的圆的周长多出来的部分等于:A. r - RB. 2π(r - R)C. π(r - R)^2D. 2π(R - r)5. 下列四个数中,能用两个有理数的和表示的是:A. √2 + √3B. √2 - √3C. √2 + √3 - √5D. √2 × √3三、计算题(每题10分,共30分)1. 计算:(2/5 + 1/10) ÷ (1/2 - 1/4)。

2. 用加减法计算:7.5 -3.6 + 1.2 -4.8 +5.4 - 2.3。

3. 计算:√3 ÷ (√6 + √2)。

4. 计算:3/5 × (-15/7) ÷ (-9/2)。

八年级数学_实数习题精选(含答案)

八年级数学_实数习题精选(含答案)

1 / 3八年级数学_实数习题精选(含答案)填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。

2、ππ-+-43= _____________。

3、2的平方根是__________。

4、实数a,b,c 在数轴上的对应点如图所示 化简cb c b a a ---++2=________________。

5、若m 、n 互为相反数,则n m +-5=_________。

6、若2)2(1-+-n m =0,则m =________,n =_________。

7、若a a -=2,则a______0。

8、12-的相反数是_________。

9、38-=________,38-=_________。

10、绝对值小于π的整数有__________________________。

一、 选择题:(本题共10小题,每小题3分,共30分) 11、代数式12+x,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个 12、若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥3713、若x,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0B 、21C 、2D 、不能确定 14、下列说法中,错误的是( )。

A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。

A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba3的值是( )。

A 、 41B 、- 41C 、433D 、4317、计算33841627-+-+的值是( )。

A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

初二数学练习题(实数)

初二数学练习题(实数)

初二数学 练习题(实 数)一.平方根1、下列命题中,正确的个数有( ) ①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零; ④-4没有算术平方根. A.1个 B.2个 C.3个 D.4个2、(-3)2的平方根是( ) A.3 B.-3 C.±3 D.±93、x 是16的算术平方根,那么x 的算术平方根是 D.±44、36的算术平方根是______,36的算术平方根是_____.5、如果a 3=3,那么a=______. 那么a=_______.6、一个正方体的表面积是78,则这个正方体的棱长是_______.7、算术平方根等于它本身的数是_______. 8的算术平方根是________. 9、求满足下列各式的非负数x 的值: (1)169x 2=100 (2)x 2-3=010求2x+5的算术平方根. 二、立方根1、下列说法中正确的是( )A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-2、若m <0,则m 的立方根是( )A.3m B.-3m C.±3m D.3m -3、下列说法中,正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1 4、364的平方根是______. 5、求下列各数的立方根(1)729 (2)-42717 (3)-216125 (4)(-5)36、已知643+a +|b 3-27|=0,求(a -b )b 的立方根.三、实数1_________.2的相反数是的相反数是________.3、π|=________. 4、比较大小.5、大于_______.6、设a 是最小的自然数数,b 是最大负整数,c 是绝对值最小的实数,则a+b+c=______.7、下列命题中正确的是( )A.有限小数不是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应8、下列四个实数中是无理数的是( ) A.2.5 B.103C.πD.1.4149、有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根,其中正确的有( ) A.0个 B.1个 C.2个 D.3个 10、在实数范围内,下列各式一定不成立的有( )=0; (4)12a -=0.A.1个B.2个C.3个D.4个11、把下列各数分别填在相应的集合中: -11.4π,..0.23,3.14有理数集合 无理数集合12、 (1)13、已知一个正数的平方根是32x -和56x +,则这个数是 .14、阅读下面的文字,解答问题. 是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部地写出来,-1的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,的整数部分是1,•将这个数减去其整数部分,差就是小数部分. 请解答:已知其中x 是整数,且0<y<1,求x-y 的相反数.四.二次根式1...,则x 的取值范围是( ) A . 2x ≥ B .2x > C .2x < D .2x ≤2、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x ≥3 C 、 x>4 D 、x ≥3且x ≠43、下列根式中,不是..最简二次根式的是( ) ABCD4、下面计算正确的是( )A . 3333=+B . 3327=÷C . 532=⋅D .24±=5、若x y ==xy 的值是( )A. B. C .m n +D .m n -6、若()2240a c -+-=,则=+-c b a . 7、计算:2484554+-+ 8、计算:2332326-- 9、化简:⎪⎪⎭⎫⎝⎛--+108311451510|2|(2π)+-. 11、计算:⎛÷ ⎝12、计算:.若代数式||112x x -+有意义,则x 的取值范围是什么?13、计算:若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学 实数典型习题集
一、选择题:(40分)
1、在实数70107.08
1
221.03、、、、
- 。

π中,其中无理数的个数为( ) A 、1 B 、2 C 、3 D 、4
2、16的算术平方根为( )
A 、4
B 、4±
C 、2
D 、2± 3、下列语句中,正确的是( )
A 、无理数都是无限小数
B 、无限小数都是无理数
C 、带根号的数都是无理数
D 、不带根号的数都是无理数 4、若a 为实数,则下列式子中一定是负数的是( )
A 、2a -
B 、2)1(+-a
C 、2a -
D 、)1(+--a
5、下列说法中,正确的个数是( )
(1)-64的立方根是-4;(2)49的算术平方根是7±;(3)271的立方根为31;(4)41是16
1的平方根。

A 、1
B 、2
C 、3
D 、 6.估算728-的值在
A. 7和8之间
B. 6和7之间
C. 3和4之间
D. 2和3之间 7、下列说法中正确的是( )
A 、若a 为实数,则0≥a
B 、若a 为实数,则a 的倒数为
a
1 C 、若y x 、为实数,且y x =,则y x = D 、若a 为实数,则02≥a
8、若10<<x ,则x x x x 、、、1
2中,最小的数是( )
A 、x
B 、x
1
C 、x
D 、2x
9、下列各组数中,不能作为一个三角形的三边长的是( )
A 、1、1000、1000
B 、2、3、5
C 、222543、、
D 、3
3364278、、
10. 观察图8寻找规律,在“?”处填上的数字是( ) (A)128 (B)136
(C)162
(D)188
二、填空题:(40分)
1. 和数轴上的点一一对应.
2 2

8 14
26
48 88

图8
2.若实数a b ,满足
0a b a b +=,则________ab ab
=. 3、如果2a =,3b =,那么2a b 的值等于 .
4.有若干个数,依次记为123n a a a a ,,,,若11
2
a =-,从第2个数起,每个数都等于1与它前
面的那个数的差的倒数,则2005a = . 5.比较大小:23- 0.02-;
6. 如图,数轴上的两个点A B ,所表示的数 分别是a b ,,在
a b +,a b -,ab ,a b -中,是正数的有 个.
7.若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y=________. 8、计算:2)4(3-+-ππ的结果是______。

9.用“*”定义新运算:对于任意实数a ,b ,都有a *21b b +=.那么5*3 = ;当m 为
实数时,m*(m*2)=

10.右图是小李发明的填图游戏,游戏规则是:把5,6,7,8四个数分别填入图中的空格内,使得网格中每行、每列的数字从左至右和从上到下都按从小到大的顺序排列.那么一共有
种不同的填法.
三、解答题 (40分)
1. 计算:2
20071(1)22-⎛⎫
-+-⨯
-- ⎪⎝⎭ (8分)
2.实数b a 、在数轴上的位置如图所示,化简:2a b a --. (10分)
3. 如图,数轴上点A 表示,点A 关于原点的对称点为B ,设点
B 所表示的数为x
,求
(0
x 的值.
(10分)
1 2 4
3
9
B
A
x
b
a
4.已知某数的平方根为1523-+a a 和,求这个数的是多少?(8分)
5、阅读题(4分)
先阅读理解,再回答下列问题:
因为2112=+,且221<<,所以112+的整数部分为1; 因为6222=+,且362<<,所以222+的整数部分为2; 以此类推,我们会发现n n n (2+为正整数)的整数部分为______。

初二数学 实数典型习题集答案:
一、选择题
1、B
2、C
3、A
4、D
5、C 6.D 7、D 8、D 9、C 10、C
二、填空题
1.实数
2.-1
3.12或12-
4. 1
2
-
5. <;>
6. 1
7. 1
8.1
9. 10,
26
10.
三、 解答题
1. 答案:解: 原式= -1+4×1-2 (上面四个数中每计算正确一个得1分)= -1+4-2 。

2. -b
3. 答案:解: 点A
B 与点A 关于原点对称,
∴点B
表示的数是
x =
00(((121x ==-=-.
4. 49
5.n。

相关文档
最新文档