江苏江阴澄西中学2014-2015学年第一学期初三期中考试数学试题
【精品】2015年江苏省无锡市江阴市利港中学九年级上学期期中数学试卷带解析答案
2014-2015学年江苏省无锡市江阴市利港中学九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列关于x的方程:2x2﹣=0,x2=0,(x﹣1)(x﹣2)=3,x+2x2+1=0,(x﹣1)(2x+2)=2x2,ax2+x﹣3=0中,一元二次方程有()A.6个 B.5个 C.4个 D.3个2.(3分)已知三角形两边的长分别是2和4,第三边的长是方程x2﹣4x+3=0的解,则这个三角形的周长为()A.7或9 B.19或9 C.9 D.73.(3分)在Rt△ABC中,如果各边长度都扩大3倍,那么锐角A的各个三角函数值()A.都缩小B.都不变C.都扩大3倍D.无法确定4.(3分)已知x:y=2:3,则(x+y):y的值为()A.2:5 B.5:2 C.5:3 D.3:55.(3分)下列各组数中,成比例的是()A.﹣7,﹣5,14,5 B.﹣6,﹣8,3,4 C.3,5,9,12 D.2,3,6,126.(3分)菱形ABCD的对角线AC=10cm,BD=6cm,那么tan为()A.B.C.D.7.(3分)如图,已知D、E分别是ABC的AB、AC边上一点,DE∥BC,且S△ADE:S四边形DBCE=1:3,那么AD:AB等于()A.B.C.D.8.(3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,9.(3分)如图,已知在△MBC中,AD∥BC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对10.(3分)如图,△ACD∽△ABC,则下列式子:①CD2=AD•DB;②AC2=AD•AB;③=.其中一定成立的有()A.3个 B.1个 C.2个 D.0个二、填空题(每空2分,共18分)11.(2分)方程x2=x的根是.12.(2分)若x=0是方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则m=.13.(4分)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x1+x2=,x1•x2=.14.(2分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.15.(2分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则cos∠CPB的值是.16.(2分)已知,关于x的方程x2+2(m+2)x+9m=0,方程的左边是一个完全平方式,则m=.17.(2分)如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD的最小值等于.18.(2分)在Rt△BAC中,∠BAC=90°,cos∠ACB=,点D在BC 上,AC=AD=4,将△ABC以点C为旋转中心顺时针旋转到△EFC的位置,若点E落在AD的延长线上,连接BF交AD延长线于点G,那么BG=.二、解答题(共82分)19.(4分)计算:﹣|﹣3|﹣2sin60°+(﹣1+)0.20.(8分)解方程:(1)x(x﹣6)=2 (用配方法)(2)(2x+1)2=3(2x﹣1)21.(8分)如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2)(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)=3:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.22.(8分)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC的长.(小明的身高不计,结果精确到0.1米)23.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.24.(8分)已知平行四边形ABCD中,AB=5,BC=,E为AB中点,F是BC边上的一动点.(1)如图①,若∠B=90°,作FG⊥CE交AD于点G,作GH⊥BC,垂足为H.求FH的长;(2)如图②,若sinB=,连接FA交CE于M,当BF为多少时,FA⊥CE?25.(8分)在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,AD∥BC,坝高10m,迎水坡面AB 的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度.(1)求原方案中此大坝迎水坡AB的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC方向拓宽2.7m,求坝底将会沿AD方向加宽多少米?26.(10分)阅读下面的短文,并回答下列问题我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图,甲、乙是两个不同的立方体,立方体都是相似体,它们的一切对应线段之比都等于相似比(a:b).设S甲、S乙分别表示这两个立方体的表面积,则,又设V甲、V乙分别表示这两个立方体的体积,则.(1)下列几何体中,一定属于相似体的是A、两个球体B、两个圆锥体C、两个圆柱体D、两个长方体.(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长度的比等于;②相似体表面积的比等于;③相似体体积的比等于.(3)寒假里,康子帮母亲到市场去买鱼,鱼摊上有一种鱼,个个都长得非常相似,现有大小两种不同的价钱,如下图所示,鱼长10厘米的每条10元,鱼长13厘米的每条15元.康子不知道买哪种更好些,你能否帮他出出主意.27.(10分)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA <OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.28.(10分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E 在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.2014-2015学年江苏省无锡市江阴市利港中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列关于x的方程:2x2﹣=0,x2=0,(x﹣1)(x﹣2)=3,x+2x2+1=0,(x﹣1)(2x+2)=2x2,ax2+x﹣3=0中,一元二次方程有()A.6个 B.5个 C.4个 D.3个【解答】解:2x2﹣=0,x2=0,x+2x2+1=0,符合一元二次方程的定义,属于一元二次方程;由(x﹣1)(x﹣2)=3得到:x2﹣3x=0,符合一元二次方程的定义,属于一元二次方程;由(x﹣1)(2x+2)=2x2得到:x﹣2=0,不含二次项,属于一元一次方程;在ax2+x﹣3=0中,当a=0时,它不是一元二次方程.综上所述,一元二次方程的个数是4个.故选:C.2.(3分)已知三角形两边的长分别是2和4,第三边的长是方程x2﹣4x+3=0的解,则这个三角形的周长为()A.7或9 B.19或9 C.9 D.7【解答】解:x2﹣4x+3=0(x﹣3)(x﹣1)=0,所以x1=3,x2=1,当x=3时,三角形的周长为2+4+3=9;当x=1时,1+2<4,不符合三角形三边的关系,应舍去.故选:C.3.(3分)在Rt△ABC中,如果各边长度都扩大3倍,那么锐角A的各个三角函数值()A.都缩小B.都不变C.都扩大3倍D.无法确定【解答】解:由题意可知:如果各边长度都扩大3倍,那么锐角A的各个三角函数值不变.故选:B.4.(3分)已知x:y=2:3,则(x+y):y的值为()A.2:5 B.5:2 C.5:3 D.3:5【解答】解:设x=2k,y=3k,则(x+y):y=(2k+3k):3k=5:3.故选:C.5.(3分)下列各组数中,成比例的是()A.﹣7,﹣5,14,5 B.﹣6,﹣8,3,4 C.3,5,9,12 D.2,3,6,12【解答】解:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.故选:B.6.(3分)菱形ABCD的对角线AC=10cm,BD=6cm,那么tan为()A.B.C.D.【解答】解:由题意得,AO⊥BO,AO=AC=5cm,BO=BD=3cm,则tan=tan∠BAO==.故选:A.7.(3分)如图,已知D、E分别是ABC的AB、AC边上一点,DE∥BC,且S△ADE:S四边形DBCE=1:3,那么AD:AB等于()A.B.C.D.【解答】解:∵S△ADE :S四边形DBCE=1:3,∴S△ADE :S△ABC=1:4,又∵DE∥BC,∴△ADE∽△ABC,相似比是1:2,∴AD:AB=1:2.故选:C.8.(3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,【解答】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.9.(3分)如图,已知在△MBC中,AD∥BC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AD∥BC,∴△MAD∽△MBC,△ADO∽△CBO,共两对.故选:B.10.(3分)如图,△ACD∽△ABC,则下列式子:①CD2=AD•DB;②AC2=AD•AB;③=.其中一定成立的有()A.3个 B.1个 C.2个 D.0个【解答】解:∵△ACD∽△ABC,∴AC:AB=AD:AC=CD:BC,∴AC2=AD•AB,只有②正确.故选:B.二、填空题(每空2分,共18分)11.(2分)方程x2=x的根是x1=0,x2=1.【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.12.(2分)若x=0是方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则m=2或﹣4.【解答】解:把x=0代入方程(m﹣2)x2+3x+m2+2m﹣8=0,可得m2+2m﹣8=0,解得m=2或﹣4,当m=2时,方程为3x=0,当m=﹣4时,方程为﹣6x2+3x=0,满足条件,故答案为:2或﹣4.13.(4分)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x1+x2=3,x1•x2=﹣2.【解答】解:根据题意得则x1+x2=3,x1•x2=﹣2.故答案为3,﹣2.14.(2分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是k<且k≠0.【解答】解:∵kx2﹣x+1=0有两个不相等的实数根,∴△=1﹣4k>0,且k≠0,解得,k<且k≠0;故答案是:k<且k≠0.15.(2分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则cos∠CPB的值是.【解答】解:如图,连接AE,交CD于点F,∵AC∥BD,且BD=3AC,∴==,又∵四边形ACED为正方形,∴AE⊥CD,DF=CF,∴=,∴=,在Rt△APF中,设PF=x,则AF=2x,由勾股定理可求得AP=x,∴==,∴cos∠APF=,又∵∠CPB=∠APF,∴cos∠CPB=.故答案为:.16.(2分)已知,关于x的方程x2+2(m+2)x+9m=0,方程的左边是一个完全平方式,则m=1或4.【解答】解:∵方程x2+2(m+2)x+9m=0,方程的左边是一个完全平方式,∴(m+2)2=9m,即m2﹣5m+4=0,解得:m=1或4.故答案为:1或417.(2分)如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD的最小值等于.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PFAE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+42=80,∴BD=,∴PD=.18.(2分)在Rt△BAC中,∠BAC=90°,cos∠ACB=,点D在BC 上,AC=AD=4,将△ABC以点C为旋转中心顺时针旋转到△EFC的位置,若点E落在AD的延长线上,连接BF交AD延长线于点G,那么BG=14.【解答】解:∵△ABC以点C为旋转中心顺时针旋转得到△EFC,∴AC=CE,BC=CF,∠ACE=∠BCF(为旋转角),∵∠CAD=(180°﹣∠ACE),∠CBF=(180°﹣∠BCF),∴∠CAD=∠CBF,又∵∠ADC=∠BDG,∴△ACD∽△BGD,∴=,∵AC=AD,∴BG=BD,过点A作AH⊥CD于H,则CD=2CH,∵cos∠ACB=,AC=4,∴==,即==,解得CH=1,BC=16,∴CD=2×1=2,BD=BC﹣CD=16﹣2=14,∴BG=14.故答案为:14.二、解答题(共82分)19.(4分)计算:﹣|﹣3|﹣2sin60°+(﹣1+)0.【解答】解:原式=2﹣3﹣+1=﹣2.20.(8分)解方程:(1)x(x﹣6)=2 (用配方法)(2)(2x+1)2=3(2x﹣1)【解答】解:(1)方程整理得:x2﹣6x﹣2=0,配方得:x2﹣6x+9=11,即(x﹣3)2=11,解得:x1=3+,x2=3﹣;(2)方程整理得:2x2﹣x+4=0,∵△=1﹣32=﹣31<0,∴方程无解.21.(8分)如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2)(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)=3:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.【解答】解:(1)如图,A′(4,7),B′(10,4);(2)C′(3a﹣2,3b﹣2).22.(8分)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC的长.(小明的身高不计,结果精确到0.1米)【解答】解:∵∠BFC=30°,∠BEC=60°,∠BCF=90°,∴∠EBF=∠EBC=30°.∴BE=EF=20米.在Rt△BCE中,BC=BE•sin60°=20×≈17.3(米).答:宣传条幅BC的长是17.3米.23.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.【解答】解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.24.(8分)已知平行四边形ABCD中,AB=5,BC=,E为AB中点,F是BC边上的一动点.(1)如图①,若∠B=90°,作FG⊥CE交AD于点G,作GH⊥BC,垂足为H.求FH的长;(2)如图②,若sinB=,连接FA交CE于M,当BF为多少时,FA⊥CE?【解答】解:(1)如图①,∵∠FMC=∠B=90°,∵∠GFH+∠BCE=∠BEC+∠BCE=90°,∴∠BEC=∠GFH,∴△BEC∽△HFG,∴=,即=,解得FH=;(2)作AT⊥BC,ER⊥BC.∵∠ERC=∠ATF=90°,∵∠REC+∠RCE=∠AFC+∠FCE=90°,∴∠REC=∠AFC,∴△REC∽△TFA,∴=,∵AT=ABsinB=3,BT=4,ER=1.5,CR=4.5,∴=,解得FT=1,BF=BT﹣FT=3.25.(8分)在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,AD∥BC,坝高10m,迎水坡面AB 的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度.(1)求原方案中此大坝迎水坡AB的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC方向拓宽2.7m,求坝底将会沿AD方向加宽多少米?【解答】解:(1)过点B作BF⊥AD于F.在Rt△ABF中,∵i==,且BF=10m.∴AF=6m,.答:此大坝迎水坡AB的长是2m;(2)过点E作EG⊥AD于G.在Rt△AEG中,∵,且EG=BF=10m∴AG=12m,∵AF=6m,∴BE=GF=AG﹣AF=6m,如图,延长EC至点M,AD至点N,连接MN,∵方案修改前后,修建大坝所需土石方总体积不变.S△ABE=S梯形CMND,∴即BE=MC+ND.DN=BE﹣MC=6﹣2.7=3.3(m).答:坝底将会沿AD方向加宽3.3m.26.(10分)阅读下面的短文,并回答下列问题我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图,甲、乙是两个不同的立方体,立方体都是相似体,它们的一切对应线段之比都等于相似比(a:b).设S甲、S乙分别表示这两个立方体的表面积,则,又设V甲、V乙分别表示这两个立方体的体积,则.(1)下列几何体中,一定属于相似体的是AA、两个球体B、两个圆锥体C、两个圆柱体D、两个长方体.(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长度的比等于相似比;②相似体表面积的比等于相似比平方;③相似体体积的比等于相似比立方.(3)寒假里,康子帮母亲到市场去买鱼,鱼摊上有一种鱼,个个都长得非常相似,现有大小两种不同的价钱,如下图所示,鱼长10厘米的每条10元,鱼长13厘米的每条15元.康子不知道买哪种更好些,你能否帮他出出主意.【解答】解:(1)A(2)相似比;相似比的平方;相似比的立方(3)因为同一种鱼的密度一样,所以它们的质量比等于体积比设这两种鱼的质量分别为m、M,则有而它们的价格比为15:10=1.5,∴买15元一条的鱼更合算.27.(10分)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA <OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.【解答】解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).28.(10分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E 在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.【解答】解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.所以∠C的度数是20°或40°;(3)如图4,CD、AE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,∵△ACD∽△ABC,∴2:x=(x+y):2,所以联立得方程组,解得, 即三分线长分别是和.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
江苏省江阴市青阳片2014届九年级数学上学期期中试题 苏科版
某某省江阴市青阳片2014届九年级上学期期中考试数学试题 苏科版注意事项:1.本试卷共6页,全卷满分130分,考试时间为120分钟. 2.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.四个选项中,只有一项是正确的) 1.若等腰三角形的两边长为3、6,则它的周长为( ) A .12 B .15 C .12或15 D .以上都不对 2.下列说法正确的是( )A .形状相同的两个三角形是全等三角形B .面积相等的两个三角形是全等三角形C .三个角对应相等的两个三角形是全等三角形D .三条边对应相等的两个三角形是全等三角形3.下列四种说法:① 矩形的两条对角线相等且互相垂直;② 菱形的对角线相等且互相平分; ③ 有两边相等的平行四边形是菱形; ④ 有一组邻边相等的菱形是正方形.其中正确的有 ( ) A. 0个 B. 1个 C. 2个 D. 3个4.已知一组数据:15,13,16,17,14,则这组数据的极差与方差分别是 ( )A .4,3B .3,3C .3,2D .4,25.若1-x 有意义,则x 的取值X 围是( )A .x >1B .x ≥1C .x ≤1D .1≠x 6. 下列方程是一元二次方程的是( )A .2)1(x x x =- B .02=++c bx ax C .01122=++xx D .012=+x 7.下列一元二次方程中,有实数根的是( )A .x 2-x +1=0 B .x 2-2x+3= 0 C .x 2+x -1=0 D . x 2+4=08.在一幅长为80cm 、宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩 形挂图.如右图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x满足的方程是()C .213014000x x --=D .2653500x x --=9.如图,在正方形ABCD 中,AB=3,点P 在BC 上,点Q 在CD 上,若∠PAQ=450, 那么△PCQ 的周长为( ) A .8 B .7C .6D .510.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ()A .3∶4B .13∶52C .13∶62D .32∶13二、填空题(本大题共8小题,每小题2分共16分)11.若等腰三角形的一个角为1000,则其余两个角为_____________. 12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么图中共有对全等三角形.13.在平行四边形ABCD 中,对角线AC 和BD 相交于O .如果090=∠+∠ADO ABO ,那么平行四边形ABCD 一定是_____形.14.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于.15.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =°. 16.若一等腰梯形的对角线互相垂直,且它的高为5,则该梯形的面积为________. 17.若关于x 的方程042=+-mx x 有两个相等的实数根,则m =________.18.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请写出第四点D 的坐标为.三、解答题(本大题共10小题,共84分) 19.(本题满分8分)计算:(1)21)1(320-++-π(2)22523352-33)()(+20. (本题满分8分) 解方程:(1)0232=-+x x (用公式法) (2)01432=-+x x (用配方法)21.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD =BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题. (1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式) ODCBA22.(本题满分9分)甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:身高(厘米) 176 177 178 179 180 甲队(人数) 3 4 0 乙队(人数)211(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米; (3)你认为哪支仪仗队更为整齐?简要说明理由.23.(本题满分8分)如果一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,那么利用公式法写出两个根x 1、x 2,通过计算可以得出:x 1+x 2=a b -,x 1x 2=ac.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题: (1)若方程2x 2-4x-1=0的两根是x 1、x 2,则x 1+x 2=_____,x 1x 2=______. (2)已知方程x 2-4x+c=0的一个根是32+,请求出该方程的另一个根和c 的值.24.(本题满分8分)如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ’,BC 交AD 于E , (1)试判断△BDE 的形状,并说明理由; (2)若AB=3,BC=5,试求△BDE 的面积.25.(本题满分6分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。
2014-2015学年江苏省无锡市江阴市暨阳中学九年级(上)数学期中试卷带解析答案
2014-2015学年江苏省无锡市江阴市暨阳中学九年级(上)期中数学试卷一、选择题:(本大题共10小题,每题3分,共30分,每题的四个选项中,只有一个符合题意)1.(3分)3的算术平方根是()A.3 B.﹣3 C.±D.2.(3分)用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=23.(3分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等4.(3分)等腰△ABC的两边长分别是一元二次方程x2﹣9x+18=0的两个解,则这个等腰三角形的周长是()A.9 B.12 C.15 D.12或155.(3分)如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π6.(3分)餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A.(160+x)(100+x)=160×100×2 B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100 D.2(160x+100x)=160×1007.(3分)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°8.(3分)已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O 的位置关系是()A.相切B.相离C.相离或相切D.相切或相交9.(3分)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC 上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.10.(3分)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A 作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA 的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)若在实数范围内有意义,则x的取值范围是.12.(2分)方程x(x﹣1)=2(x﹣1)的解是.13.(2分)设x1,x2是一元二次方程x2﹣2x﹣5=0的两个根,则x1•x2=.14.(2分)若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是0,则a 为.15.(2分)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是度.16.(2分)如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若∠C=50°,则∠BAE=°.17.(2分)如图,数轴上半径为1的⊙O从原点O开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P以每秒2个单位的速度向左运动,经过秒后,点P在⊙O上.18.(2分)如图,平面直角坐标系的长度单位是厘米,直线l分别与x轴、y轴相交于B、A两点,若OA=6,∠ABO=30°,点C在射线BA上以3厘米/秒的速度运动,以C点为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA 上来回运动,过点P作直线l∥x轴.若点C与点P同时从点B、点O开始运动,设运动时间为t秒,则在整个运动过程中直线l与⊙C相切时t的值为.三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.)19.(8分)解下列方程(1)2x2﹣2x﹣5=0(2)9(x+1)2﹣(x﹣2)2=0.20.(6分)先化简,再求值:(1﹣)÷﹣,其中x满足x2+x﹣2=0.21.(6分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.22.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.(6分)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)在旋转过程中,点A经过的路径的长度为;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并求出D点坐标.24.(8分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.25.(10分)国家限购以来,二手房和新楼盘的成交量迅速下降.据统计,宁波六区限购前某季度二手房和新楼盘成交量为9500套.限购后,同一季度二手房和新楼盘的成交量共4425套.其中二手房成交量比限购前减少55%,新楼盘成交量比限购前减少52%.(1)问限购后二手房和新楼盘各成交多少套?(2)在成交量下跌的同时,房价也大幅跳水.某楼盘限购前均价为12000元/m2,限购后,无人问津,房价进行调整,二次下调后均价为7680元/m2,求平均每次下调的百分率?总理表态:让房价回归合理价位.合理价位为房价是可支配收入的3~6倍,假设宁波平均每户家庭(三口之家)的年可支配收入为9万元,每户家庭的平均住房面积为80m2,问下调后的房价回到合理价位了吗?请说明理由.26.(10分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.27.(12分)在平面直角坐标系中,矩形AOBC的边长为AO=6,AC=8;(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当PQC三点恰好构成黄金圆时点P的坐标.28.(12分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.2014-2015学年江苏省无锡市江阴市暨阳中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每题3分,共30分,每题的四个选项中,只有一个符合题意)1.(3分)3的算术平方根是()A.3 B.﹣3 C.±D.【解答】解:∵()2=3,∴3的算术平方根是.故选:D.2.(3分)用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选:D.3.(3分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选:B.4.(3分)等腰△ABC的两边长分别是一元二次方程x2﹣9x+18=0的两个解,则这个等腰三角形的周长是()A.9 B.12 C.15 D.12或15【解答】解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,当腰为3时,由于3+3=6,不符合三角形三边的关系,故舍去;当腰为6,底为3,则三角形周长=6+6=3=15.故选:C.5.(3分)如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:A.6.(3分)餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A.(160+x)(100+x)=160×100×2 B.(160+2x)(100+2x)=160×100×2 C.(160+x)(100+x)=160×100 D.2(160x+100x)=160×100【解答】解:依题意得:桌布面积为:160×100×2,桌面的长为:160+2x,宽为:100+2x,则面积为=(160+2x)(100+2x)=2×160×100.故选:B.7.(3分)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°【解答】解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A、=,正确,故本选项错误;B、AF=BF,正确,故本选项错误;C、OF=CF,不能得出,错误,故本选项符合题意;D、∠DBC=90°,正确,故本选项错误;故选:C.8.(3分)已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O 的位置关系是()A.相切B.相离C.相离或相切D.相切或相交【解答】解:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l 相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选:D.9.(3分)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC 上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.【解答】解:∵△ABC中,AB=AC,∠BAC=20°∴∠ACB=80°又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°∴∠PAB+∠CAQ=80°△ABC中:∠ACB=∠CAQ+∠AQC=80°∴∠AQC=∠PAB同理:∠P=∠CAQ∴△APB∽△QAC∴,即=.则函数解析式是y=.故选:A.10.(3分)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A 作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA 的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.【解答】解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)若在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.12.(2分)方程x(x﹣1)=2(x﹣1)的解是x1=1,x2=2.【解答】解:x(x﹣1)=2(x﹣1),x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(x﹣2)=0,x﹣1=0,x﹣2=0,x1=1,x2=2,故答案为:x1=1,x2=2.13.(2分)设x1,x2是一元二次方程x2﹣2x﹣5=0的两个根,则x1•x2=﹣5.【解答】解:根据题意得x1x2=﹣5.故答案为﹣5.14.(2分)若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是0,则a 为2.【解答】解:∵关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是0,∴a2﹣4=0且a+2≠0.解得a=2.故答案是:2.15.(2分)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.【解答】解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为:120.16.(2分)如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若∠C=50°,则∠BAE=50°.【解答】解:根据圆内接四边形的外角等于它的内对角,得∠BAE=∠C=50°.故答案是:50.17.(2分)如图,数轴上半径为1的⊙O从原点O开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P以每秒2个单位的速度向左运动,经过2或秒后,点P在⊙O上.【解答】解:设x秒后点P在圆O上,∵原点O开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P以每秒2个单位的速度向左运动,∴当第一次点P在圆上时,(2+1)x=7﹣1=6解得:x=2;当第二次点P在圆上时,(2+1)x=7+1=8解得:x=答案为:2或;18.(2分)如图,平面直角坐标系的长度单位是厘米,直线l分别与x轴、y轴相交于B、A两点,若OA=6,∠ABO=30°,点C在射线BA上以3厘米/秒的速度运动,以C点为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA 上来回运动,过点P作直线l∥x轴.若点C与点P同时从点B、点O开始运动,设运动时间为t秒,则在整个运动过程中直线l与⊙C相切时t的值为2,,.【解答】解:如图,过点C作CD⊥x轴于点D,∵直线AB的解析式分别与x轴、y轴相交于B、A两点,OA=6,∠ABO=30°,∴OB=6.∵在Rt△AOB中,∠ABO=30°.∴在Rt△BCD中,BC=2CD.如图1,直线l与⊙C第一次相切,由题意得:OP=2t,BC=3t,∴CD=2t﹣1.∴3t=2(2t﹣1),解得:t=2.如图2,直线l与⊙C第二次相切,由题意得:OP=6﹣(2t﹣6)=12﹣2t,∴CD=12﹣2t﹣1.∴3t=2(12﹣2t﹣1),解得:t=.如图3,直线l与⊙C第三次相切,由题意得:OP=6﹣(2t﹣6)=12﹣2t,BC=3t,∴CD=12﹣2t+1.∴3t=2(12﹣2t+1),解得:t=.综上所述:直线l与⊙C相切时t的值为:2,,.故答案为:2,,.三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.)19.(8分)解下列方程(1)2x2﹣2x﹣5=0(2)9(x+1)2﹣(x﹣2)2=0.【解答】解:(1)△=(﹣2)2﹣4×2×(﹣5)=44,x==所以x1=,x2=;(2)[3(x+1)﹣(x﹣2)][3(x+1)+(x﹣2)]=0,3(x+1)﹣(x﹣2)=0或3(x+1)+(x﹣2)=0,所以x1=,x2=.20.(6分)先化简,再求值:(1﹣)÷﹣,其中x满足x2+x﹣2=0.【解答】解:(1﹣)÷﹣=(﹣)×﹣=×﹣=,由x2+x﹣2=0,得x1=1,x2=﹣2 (舍去),则原式==.21.(6分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.【解答】(1)证明:∵b2﹣4ac=(﹣6)2﹣4×1×(﹣k2)=36+4k2>0因此方程有两个不相等的实数根.(2)解:∵x1+x2=﹣=﹣=6,又∵x1+2x2=14,解方程组解得:将x1=﹣2代入原方程得:(﹣2)2﹣6×(﹣2)﹣k2=0,解得k=±4.22.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.23.(6分)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)在旋转过程中,点A经过的路径的长度为π;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并求出D点坐标.【解答】解;(1)如图所示:(2)在旋转过程中,点A经过的路径的长度为:=π;故答案为:π;(3)∵B,B1在y轴两旁,连接BB1交y轴于点D,设D′为y轴上异于D的点,显然D′B+D′B1>DB+DB1,∴此时DB+DB1最小,设直线BB1解析式为y=kx+b,依据题意得出:,解得:,∴y=﹣x+,∴D(0,).24.(8分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.【解答】解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S=S梯形OABC﹣S△OCE﹣S△OAD四边形ODBE=×(2+5)×6﹣×|8|﹣×5×2=12.25.(10分)国家限购以来,二手房和新楼盘的成交量迅速下降.据统计,宁波六区限购前某季度二手房和新楼盘成交量为9500套.限购后,同一季度二手房和新楼盘的成交量共4425套.其中二手房成交量比限购前减少55%,新楼盘成交量比限购前减少52%.(1)问限购后二手房和新楼盘各成交多少套?(2)在成交量下跌的同时,房价也大幅跳水.某楼盘限购前均价为12000元/m2,限购后,无人问津,房价进行调整,二次下调后均价为7680元/m2,求平均每次下调的百分率?总理表态:让房价回归合理价位.合理价位为房价是可支配收入的3~6倍,假设宁波平均每户家庭(三口之家)的年可支配收入为9万元,每户家庭的平均住房面积为80m2,问下调后的房价回到合理价位了吗?请说明理由.【解答】解:(1)设限购前二手房成交x套,新楼盘成交y套,根据题意得:,解得:,4500×(1﹣55%)=2025(套),5000×(1﹣52%)=2400(套),答:限购后二手房和新楼盘各成交2025套和2400套.(2)设每次调价百分比为m,根据题意得:12000(1﹣m)2=7680,解得:m=0.2=20%,m=1.8(舍去),∵90000×6÷80=6750<7680,∴没有到合理价位.答:平均每次下调的百分率是20%,没有到合理价位.26.(10分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.【解答】(1)证明:如图,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,又∵CM是⊙O的切线,∴OC⊥CM,∴∠ACM+∠ACO=90°,∵CO=AO,∴∠BAC=∠ACO,∴∠ACM=∠ABC;(2)解:∵BC=CD,∠ACB=90°,∴∠OAC=∠CAD,∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠CAD,∴OC∥AD,又∵OC⊥CE,∴AD⊥CE,∴△AEC是直角三角形,∴△AEC的外接圆的直径是AC,又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,∴△ABC∽△CDE,∴=,⊙O的半径为3,∴AB=6,∴=,∴BC2=12,∴BC=2,∴AC==2,∴△AEC的外接圆的半径为AC的一半,故△ACE的外接圆的半径为:.27.(12分)在平面直角坐标系中,矩形AOBC的边长为AO=6,AC=8;(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当PQC三点恰好构成黄金圆时点P的坐标.【解答】解:(1)如图①,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,又∵E是OB的中点,∴EG=EG,EF=EB=4.在Rt△EFG和Rt△EBG中∴Rt△EFG≌Rt△EBG(HL),∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO⋅AG,即36+16=6×AG,AG=,可得:CG=,BG=.∴G的坐标为(8,);(2)设运动的时间为t秒,当点C为圆心时,则CQ=CP,即:2t=10﹣4t,得到t=,此时CP=,AP=,P点坐标为.当点P为圆心时,则PC=PQ,如图②,过点Q作AC的垂线交AC于点E,CQ=10﹣4t,CP=2t,∵EQ∥AO,∴△CEQ∽△CAO,∴EQ=CQ=,PE=,则,化简得:36t2﹣140t+125=0,解得:(舍去),此时,AP=,P点坐标为,当点Q为圆心时,则QC=PQ,如备用图,过点Q作AC的垂线交AC于点F,CQ=10﹣4t,CP=2t,∵EQ∥AO,∴△CFQ∽△CAO,∴QF=,PF=.则,整理得,解得:(舍去).此时,AP=,P点坐标为,综上所述,P点坐标为,,.28.(12分)如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.【解答】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE=6,∵∠EAD+∠BAE=90°,∠BAE=∠BEF,∴∠EAD+∠BEF=90°,∵∠BEF+∠F=90°,∴∠EAD=∠F∵∠ADE=∠FBE∴△ADE∽△FBE,∴,,∴BF=30;(2)①如图1,将矩形ABCD和直角△FBE以CD为轴翻折,则△AMH即为未包裹住的面积,∵Rt△F′HN∽Rt△F′EG,∴=,即解得:HN=3,∴S=•AM•MH=×12×24=144;△AMH②如图2,将矩形ABCD和Rt△ECF以AD为轴翻折,∵Rt△GBE∽Rt△GB′C′,∴,即,解得:GB′=24,=•B′C′•B′G=×12×24=144,∴S△B′C′G∴按照两种包裹方法的未包裹面积相等.。
江苏省江阴市2015届中考数学模拟试卷(一)
y一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置.......上) 1.下列四个数中,2-的倒数是( )A .2B . 2-C .0D . 12-2.下列运算正确的是( )A ()255-=- B . 21164-⎛⎫-= ⎪⎝⎭C . 632x x x ÷= D . ()235x x =3.函数2y x =-x 的取值范围在数轴上可表示为( )4.某校有15名同学参加百米竞赛,预赛成绩各不相同,要取前7名参加决赛,小张已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这15名同学成绩的( ) A .平均数 B .众数 C .中位数 D .极差 5.由四个大小相同的正方体组成的几何体如图所示,它的左视图是( )6.函数1y x =-+与函数2y x=-在同一坐标系中的大致图象是( )7.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8m ,最深处水深0.2m ,则此输水管道的直径是( )m .A .0.5B .C .2D .4第7题 第8题 第9题 第10题8.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE BC ⊥于点E ,则AE 的长是( )A .B .C .485cmD .245cm 9.如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD =10,则k 的值为( )A . -16B .16C .-15D .1510.如图,正方形ABCD 的边长为6,点O 是对角线AC ,BD 的交点,点E 在CD 上,且DE=2CE ,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为( )A. B. C. D.二、填空题(本大题共8小题,每小题2分,共16分,把答案填在答题卷相应横线上) 11.某校学生在“爱心传递”活动中,共筹得捐款37400元,请你将数字37400用科学计数法并保留两个有效数字表示为 .12.把一块直尺与一块三角板如图放置,若140o ∠=,则2∠的度数为 .13.分解因式:2363x x ++= .14.若两个等边三角形的边长分别为a 与3a ,则它们的面积之比为 .15.若某个圆锥的侧面积为28cm π,其侧面展开图的圆心角为45o ,则该圆锥的底面半径为 cm .16.如图,点A 、B 在反比例函数4y x=()0x >的图像上,过点A 、B 作x 轴的垂线,垂足分别为C 、D ,延长线段AB 交x 轴于点E ,若OC CD DE ==,则AOE ∆的面积为 .17.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若3AB =,则BC 的长为 .第16题 第17题 第18题18.如图,点A 、B 、C 、D 在圆O 上,点O 在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= °.三、解答题(本大题共有10小题,共84分,解答过程请写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)E19.(每题4分)(1)计算:()02sin6020132π︒+-+ (2)解方程:2512112x x+=--20.(每题4分)(1)先化简,再求值:2112x x x x x ⎛⎫++÷- ⎪⎝⎭,其中3x =.(2)解不等式组:.21.(本题3+4分,共7分)如图,在平行四边形ABCD 中,E 、F 是BC 、AB 的中点,DE 、DF 的延长线分别交AB 、CB 的延长线于H 、G ;(1)求证:BH AB =;(2)若四边形ABCD 为菱形,试判断G ∠与H ∠的大小,并证明你的结论.22.(本题4+2+2分,共8分)为了解我市九年级学生化学考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分;B :39-35分;C :34-30分;D :29-20分;E :19-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的体育成绩应在什么分数段内?.(填相应分数段的字母)(3)若把成绩在35分以上(含35分)定为优秀,则我市今年11300名九年级学生中体育成绩为优秀的学生人数约有多少名?23.(本题满分本题3+4分,共7分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?24.(本题满分7分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30o,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60o.已知A点的高度AB为2m,台阶AC的坡度为B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测量器的高度忽略不计).D25.(本题2+3+3分,共8分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润y (万元)和月份n 之间满足函数关系式:21424y n n =-+-. (1)若一年中某月的利润为21万元,求n 的值; (2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?26.(本题2+3+4分,共9分)如图,在平面直角坐标系xOy 内,正方形AOBC 的顶点C 的坐标为(,),过点B 的直线MN 与OC 平行,AC 的延长线交MN 于点D ,点P 是直线MN 上的一个动点,CQ ∥OP 交MN 于点Q . (1)求直线MN 的函数解析式;(2)当点P 在x 轴的上方时,求证:OBP ∆≌CDQ ∆; (3)当四边形OPQC 为菱形时,试求出点P 的坐标.27.(本题3+3+3+1分,共10分)如图1,抛物线2y x bx c =-++的顶点为Q ,与x 轴交于A (1-,0)、B (5,0)两点,与y 轴交于点C . (1)求抛物线的解析式及其顶点Q 的坐标;(2)在该抛物线的对称轴上求一点P ,使得PAC ∆的周长最小.请在图中画出点P 的位置,并求点P 的坐标;(3)如图2,若点D 是第一象限抛物线上的一个动点,过D 作DE x ⊥轴,垂足为E . ①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q 与x 轴相距最远,所以当点D 运动至点Q 时,折线D —E —O 的长度最长”.这个同学的说法正确吗?请说明理由.②若DE 与直线BC 交于点F .试探究:四边形DCEB 能否为平行四边形?请直接写出能或者不能,不用说明理由.28.(本题3+3+6分,共12分)如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30º时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.。
【解析版】2014-2015年无锡市江阴二中九年级上期中数学试卷
2014-2015学年江苏省无锡市江阴二中九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在下列二次根式中,与是同类二次根式的是( )A.B.C.D.2.用配方法解方程x2﹣2x﹣5=0时,变形正确的是( )A.(x﹣2)2=9 B.(x﹣1)2=6 C.(x+2)2=9 D.(x+1)2=63.⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(﹣2,4),则点P与⊙A的位置关系是( )A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.点P在⊙A上或外4.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.已知一元二次方程x2﹣3x+1=0的两个根分别是x1、x2,则x12x2+x1x22的值为( ) A.﹣3 B.3 C.﹣6 D.66.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.127.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD8.如图,点A、B、C在⊙O上,∠ACB=30°,则cos∠AOB的值是( )A.B.C.D.9.如图,在等腰Rt△ABC中,∠C=90°,AC=3,D是AC上一点.若tan∠DBA=,则AD的长为( )A.2 B.C.D.110.如图,在矩形AOBC中,点A的坐标是(﹣3,1),点C的纵坐标是7,则B、C两点的坐标分别是( )A.(2,6)、(﹣1,7)B.(2,6)、(,7)C.(,)、(,7)D.(,)、(,7)二、填空题:(本大题共8小题,每小题2分,共16分.)11.方程(x﹣1)2=4的解为__________.12.函数y=中,自变量x的取值范围是__________.13.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是__________.14.一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是__________cm.15.在Rt△ABC中,∠C=90°,AB=10,cosB=,则AC的长为__________.16.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是__________.17.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为__________.18.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为__________.三、解答题(本大题共10小题,共84分.)19.计算:(1)|2﹣3|﹣+(2)+sin45°cos45°.20.解下列方程:(1)x2﹣3x=2(2)x2﹣5x+6=0(3)(3x+1)2=4(x﹣2)2.21.先化简,再求值:(﹣)÷,其中,a是方程x2+3x+1=0的根.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C 与船B的距离是多少.(结果保留根号)23.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?24.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.25.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.26.如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y=的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)填空:双曲线的另一支在第__________象限,k的取值范围是__________;(2)若点C的坐标为(1,1),请用含有k的式子表示阴影部分的面积S.并回答:当点E 在什么位置时,阴影部分面积S最小?(3)若=,S△OAC=2,求双曲线的解析式.27.阅读材料:例:说明代数式+的几何意义,并求它的最小值.解:+=+,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3.根据以上阅读材料,解答下列问题:(1)代数式+的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B__________的距离之和.(填写点B的坐标)(2)代数式+的最小值.28.如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.(1)求梯形ABCD的面积;(2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QF⊥BC于点F.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.2014-2015学年江苏省无锡市江阴二中九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在下列二次根式中,与是同类二次根式的是( )A.B.C.D.考点:同类二次根式.分析:先把各根式化为最简二次根式,再看被开方数是否相同即可.解答:解:A、=3与被开方数不同,不是同类二次根式;B、=2与被开方数不同,不是同类二次根式;C、=3与被开方数相同,是同类二次根式;D、与被开方数不同,不是同类二次根式.故选C.点评:此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.用配方法解方程x2﹣2x﹣5=0时,变形正确的是( )A.(x﹣2)2=9 B.(x﹣1)2=6 C.(x+2)2=9 D.(x+1)2=6考点:解一元二次方程-配方法.分析:先移项,再配方,即可得出答案.解答:解:x2﹣2x﹣5=0,x2﹣2x=5,x2﹣2x+1=1+5,(x﹣1)2=6,故选B.点评:本题考查了解一元二次方程的应用,解此题的关键是能正确配方,即加上一次项系数一半的平方,难度适中.3.⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(﹣2,4),则点P与⊙A的位置关系是( )A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.点P在⊙A上或外考点:点与圆的位置关系;坐标与图形性质.专题:计算题.分析:先根据两点间的距离公式计算出PA的长,然后比较PA与半径的大小,再根据点与圆的关系的判定方法进行判断.解答:解:PA==5,∵⊙A半径为5,∴点P点圆心的距离等于圆的半径,∴点P在⊙A上.故选A.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了坐标与图形性质.4.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.专题:计算题.分析:先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.解答:解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.已知一元二次方程x2﹣3x+1=0的两个根分别是x1、x2,则x12x2+x1x22的值为( ) A.﹣3 B.3 C.﹣6 D.6考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到x1+x2=3,x1x2=1,再把x12x2+x1x22分解因式,然后利用整体代入的方法计算即可.解答:解:根据题意得x1+x2=3,x1x2=1,所以x12x2+x1x22=x1x2(x1+x2)=1×3=3.故选B.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.6.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△A BC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC 的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.7.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD考点:垂径定理.专题:计算题.分析:由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.解答:解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D点评:此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.8.如图,点A、B、C在⊙O上,∠ACB=30°,则cos∠AOB的值是( )A.B.C.D.考点:圆周角定理;特殊角的三角函数值.分析:由点A、B、C在⊙O上,∠ACB=30°,根据圆周角定理,即可求得∠AOB的度数,继而求得cos∠AOB的值.解答:解:∵点A、B、C在⊙O上,∠ACB=30°,∴∠AOB=2∠ACB=60°,∴cos∠AOB=.故选C.点评:此题考查了圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握数形结合思想的应用.9.如图,在等腰Rt△ABC中,∠C=90°,AC=3,D是AC上一点.若tan∠DBA=,则AD的长为( )A.2 B.C.D.1考点:解直角三角形.分析:想要求AD的长,求CD的长即可,根据tan∠DBA=和tan45°=1,即可求得tan∠CBD的值,即可解题.解答:解:∵∠CBD+∠DBA=∠ABC=45°,∴tan∠ABC==1,∵tan∠DBA=,∴tan∠CBD=,∴CD=BC•tan∠CBD=2,∴AD=3﹣2=1.故选D.点评:本题考查了直角三角形中正切值的运用,考查了两角和的正切公式,熟练运用两角和的正切公式是解题的关键.10.如图,在矩形AOBC中,点A的坐标是(﹣3,1),点C的纵坐标是7,则B、C两点的坐标分别是( )A.(2,6)、(﹣1,7)B.(2,6)、(,7)C.(,)、(,7)D.(,)、(,7)考点:矩形的性质;坐标与图形性质.分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解答:解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=7﹣1=6,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴=,即=,∴OE=2,即点B(2,6),∴AF=OE=2,∴点C的横坐标为:﹣3+2=﹣1,∴点C(﹣1,7).故选:A.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题:(本大题共8小题,每小题2分,共16分.)11.方程(x﹣1)2=4的解为﹣1或3.考点:解一元二次方程-直接开平方法.分析:方程左边是一个完全平方式,右边是个常数,可用直接开平方法进行求解.解答:解:(x﹣1)2=4,x﹣1=±2,即x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.点评:解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.12.函数y=中,自变量x的取值范围是x≤3.考点:函数自变量的取值范围.专题:计算题.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.考点:一元二次方程的解.分析:根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.解答:解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是18cm.考点:解一元二次方程-因式分解法;三角形三边关系.专题:计算题.分析:利用因式分解法求出方程的解确定出第三边,求出周长即可.解答:解:方程x2﹣10x+21=0,分解因式得:(x﹣3)(x﹣7)=0,解得:x=3或x=7,当x=3时,三角形三边分别为3cm,4cm,7cm,3+4=7,不合题意,舍去;当x=7时,三角形三边为4cm,7cm,7cm,此时周长为4+7+7=18cm,故答案为:18点评:此题考查了解一元二次方程﹣因式分解法,以及三角形三边关系,熟练掌握因式分解的方法是解本题的关键.15.在Rt△ABC中,∠C=90°,AB=10,cosB=,则AC的长为6.考点:锐角三角函数的定义;勾股定理.分析:首先根据三角函数值计算出BC长,再利用勾股定理可计算出AC长.解答:解:∵AB=10,cosB=,∴BC=10×=8,∴AC==6,故答案为:6.点评:此题主要考查了三角函数,以及勾股定理,关键是掌握锐角三角函数定义.16.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.考点:垂径定理;勾股定理.专题:压轴题.分析:连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.解答:解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.点评:解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.17.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为6m.考点:解直角三角形的应用-坡度坡角问题.分析:根据斜面坡度为1:2,斜坡AB的水平宽度为12米,可得AC=12m,BC=6m,然后利用勾股定理求出AB的长度.解答:解:∵斜面坡度为1:2,AC=12m,∴BC=6m,则AB===(m).故答案为:6m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解.18.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.考点:垂径定理;垂线段最短;勾股定理.专题:计算题.分析:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,由Rt△ADB为等腰直角三角形,则AD=BD=1,即此时圆的直径为1,再根据圆周角定理可得到∠EOH=60°,则在Rt△EOH中,利用锐角三角函数可计算出EH=,然后根据垂径定理即可得到EF=2EH=.解答:解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,∠ABC=45°,AB=,∴AD=BD=1,即此时圆的直径为1,∵∠EOF=2∠BAC=120°,而∠EOH=∠EOF,∴∠EOH=60°,在Rt△EOH中,EH=OE•sin∠EOH=•sin60°=,∵OH⊥EF,∴EH=FH,∴EF=2EH=,即线段EF长度的最小值为.故答案为.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了垂线段最短和解直角三角形.三、解答题(本大题共10小题,共84分.)19.计算:(1)|2﹣3|﹣+(2)+sin45°cos45°.考点:二次根式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据绝对值的性质,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的性质进行计算即可得解;(2)把30°、45°、60°的特殊三角函数值代入进行计算即可得解.解答:解:(1)|2﹣3|﹣(﹣)﹣2+,=3﹣2﹣4+3,=﹣1;(2)+sin45°cos45°,=+×,=1+,=.点评:本题考查了二次根式的混合运算,负整数指数幂,特殊角的三角函数,是基础题,是需要熟记的知识.20.解下列方程:(1)x2﹣3x=2(2)x2﹣5x+6=0(3)(3x+1)2=4(x﹣2)2.考点:解一元二次方程-因式分解法;解一元二次方程-公式法.专题:计算题.分析:(1)先把方程化为一般式,然后根据求根公式法解方程;(2)利用因式分解法解方程;(3)先移项得到(3x+1)2﹣4(x﹣2)2=0,然后利用因式分解法解方程.解答:解:(1)x2﹣3x﹣2=0,△=(﹣3)2﹣4×1×(﹣2)=17,所以x=,所以;(2)(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,所以x1=2,x2=3;(3)(3x+1)2﹣4(x﹣2)2=0,(3x+1+2x﹣4)(3x+1﹣2x+4)=0,3x+1+2x﹣4=0或3x+1﹣2x+4=0,所以x1=,x2=﹣5.点评:本题考查了解一元二次方程﹣因式分解法:因式分解法解一元二次方程的一般步骤:移项,使方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为零,得到两个一元一次方程;解这两个一元一次方程,它们的解就都是原方程的解.也考查了公式法解一元二次方程.21.先化简,再求值:(﹣)÷,其中,a是方程x2+3x+1=0的根.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a代入方程求出a2+3a的值,代入计算即可求出值.解答:解:原式=[+]÷=(+)•=•=,∵a是方程x2+3x+1=0的根,∴a2+3a=﹣1,则原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C 与船B的距离是多少.(结果保留根号)考点:解直角三角形的应用-方向角问题.专题:压轴题.分析:首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACB的度数,然后利用三角函数的知识求解即可求得答案.解答:解:过点B作BD⊥AC于D.由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°,在Rt△ABD中,BD=AB•sin∠BAD=20×=10(海里),在Rt△BCD中,BC===20(海里).答:此时船C与船B的距离是20海里.点评:此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.23.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?考点:一元二次方程的应用.专题:增长率问题.分析:(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.解答:解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.点评:本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.24.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.考点:根与系数的关系;根的判别式.专题:计算题.分析:(1)方程有两个实数根,可得△=b2﹣4ac≥0,代入可解出k的取值范围;(2)结合(1)中k的取值范围,由题意可知,x1+x2=2(k﹣1)<0,去绝对值号结合等式关系,可得出k的值.解答:解:(1)由方程有两个实数根,可得△=b2﹣4ac=4(k﹣1)2﹣4k2=4k2﹣8k+4﹣4k2=﹣8k+4≥0,解得,k≤;(2)依据题意可得,x1+x2=2(k﹣1),x1•x2=k2,由(1)可知k≤,∴2(k﹣1)<0,x1+x2<0,∴﹣x1﹣x2=﹣(x1+x2)=x1•x2﹣1,∴﹣2(k﹣1)=k2﹣1,解得k1=1(舍去),k2=﹣3,∴k的值是﹣3.答:(1)k的取值范围是k≤;(2)k的值是﹣3.点评:本题主要考查了一元二次方程根与系数的关系,将根与系数的关系与代数式相结合解题是一种经常使用的解题方法;注意k的取值范围是正确解答的关键.25.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠PAD+∠EAP′=90°,∴∠PAD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=DP,∴AE=CP;(3)解:∵=,∴设CP=3k,PE=2k,则AE=CP=3k,AP′=AP=3k+2k=5k,在Rt△AEP′中,P′E==4k,∵∠C=90°,P′E⊥AC,∴∠CBP+∠BPC=90°,∠EP′P+∠EPP′=90°,∵∠BPC=∠EPP′(对顶角相等),∴∠CBP=∠EP′P,又∵∠CBP=∠ABP,∴∠ABP=∠EP′P,又∵∠BAP′=∠P′EP=90°,∴△ABP′∽△EPP′,∴=,即=,解得P′A=AB,在Rt△ABP′中,AB2+P′A2=BP′2,即AB2+AB2=(5)2,解得AB=10.点评:本题考查了全等三角形的判定与性质,旋转的性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DP并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出P′A=AB是解题的关键.26.如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y=的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)填空:双曲线的另一支在第三象限,k的取值范围是k>0;(2)若点C的坐标为(1,1),请用含有k的式子表示阴影部分的面积S.并回答:当点E 在什么位置时,阴影部分面积S最小?(3)若=,S△OAC=2,求双曲线的解析式.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数系数k的几何意义.分析:(1)根据反比例函数图象与性质得到:双曲线y=的一支在第一象限,则k>0,得到另一支在第三象限;(2)根据梯形的性质,AC∥x轴,BC⊥x轴,根据点C的坐标为(1,1),可得A点的纵坐标为1,E点的横坐标为1,B点坐标为(1,0),然后表示出A、E的坐标,S阴影部分=S△ACE+S△OBE,再代入相应数值可得s=(k﹣)2+,再根据二次函数的最值可得答案;(3)设D点坐标为(a,),然后表示出C点坐标为(2a,),再表示出A点坐标,根据三角形面积公式由S△OAC=2得到×(2a﹣)×=2,然后解方程即可求出k的值,然后可得解析式.解答:解:(1)三,k>0;(2)∵梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,∵点C的坐标为(1,1),∴A点的纵坐标为1,E点的横坐标为1,B点坐标为(1,0),把y=1代入y=得x=k;把x=1代入y=得y=k,∴A点的坐标为(k,1),E点的坐标为(1,k),∴S阴影部分=S△ACE+S△OBE=×(1﹣k)×(1﹣k)+×1×k,=k2﹣k+,=(k﹣)2+,当k﹣=0,即k=时,S阴影部分最小,最小值为;∴E点的坐标为(,1),即E点为BC的中点,∴当点E在BC的中点时,阴影部分的面积S最小;(3)设D点坐标为(a,),∵=,∴2OD=OC,即D点为OC的中点,∴C点坐标为(2a,),∴A点的纵坐标为,把y=代入y=得x=,∴A点坐标为(,),∵S△OAC=2,∴×(2a﹣)×=2,∴k=,∴双曲线的解析式为y=点评:本题考查了反比例函数综合题:当k>0时,反比例函数y=(k≠0)的图象分布在第一、三象限;点在反比例函数图象上,则点的横纵坐标满足图象的解析式;运用梯形的性质得到平行线段,从而找到点的坐标特点.27.阅读材料:例:说明代数式+的几何意义,并求它的最小值.解:+=+,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3.根据以上阅读材料,解答下列问题:(1)代数式+的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)或(2,﹣3)的距离之和.(填写点B的坐标)(2)代数式+的最小值.考点:轴对称-最短路线问题;坐标与图形性质.分析:(1)先把原式化为+的形式,再根据题中所给的例子即可得出结论;(2)先把原式化为+的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可.解答:解:(1)∵原式化为+的形式,∴代数式+的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和,故答案为(2,3);(2)∵原式化为+的形式,∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,如图所示:设点A关于x轴的对称点为A′,则PA=PA′,∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,。
江苏省江阴初级中学2015届中考数学一模试题
江苏省江阴初级中学2015届中考数学一模试题一、选择题(每题3分,共30分) 1.已知10a -+=,则a b +=( )A .-8B .-6C .6D .821的值在( )A .2到3之间B . 3到4之间C .4到5之间D .5到6之间3.下列计算正确的是( )A5=±B .283=-C .32-2=3D .14×7=724.如图,菱形ABCD 的对角线AC 、BD 的长分别是6cm 、8cm ,AE ⊥BC 于点E ,AE 的长是( )A.cmB.C .485cm D .245c m 5.在一个不透明的口袋中,装有3个红球,2个折球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( )A .31B .52C .51D .536.下列图形中,既是中心对称图形又有且只有两条对称轴对称图形是( ) A .正三角形 B .正方形 C .圆 D .菱形 7.将二次函数2y x =的图象向下平移1个单位,则平移后的二次函数的解析式为( )A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+8.在第六次全国人口普查中,无锡市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65 岁及以上人口用科学记数法表示约为 ( ) A .0.736×106人 B .7.36×104人 C .7.36×105人 D .7.36×106 人 9.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2 ②图中有9对全等三角形 ③若将△GEF 沿EF 折叠,则点G 不一定落在AC 上④BG =BF ⑤S 四边形GFOE =S △AOF ,上述结论中正确的个数是 ( )A .1个B .2个C .3个D .4个10.如图,平面直角坐标系中,直线1-=kx y 与反比例函数xy 6-=相交于点A ,AB ⊥x 轴,S △ABC =1,则k 的值为( )A .1-B .1C .1-D .1-第9题图F EO DCBA第4题图第10题图二、填空题(每题2分,共16分)11x 的取值范围是____________________. 12.分解因式x 3-9x = .13.若抛物线y =ax 2 +bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 . 14.如图,将直角三角板60°角的顶点放在圆心O 上,斜边和一直角边分别与⊙O 相交于A 、B 两点,P 是优弧AB 上任意一点(与A 、B 不重合),则∠APB =____________________.15.调查市场上某种食品的色素含量是否符合国家标准,这种调查适合用____________________.(填入全国调查或者抽样调查)16.如图,AB 、CD 是⊙O 的两条互相垂直的直径,点O 1、O 2、O 3、O 4分别OA 、OB 、OC 、OD 的中点,若⊙O的半径是2,则阴影部分的面积为____________________.17.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时,小球P 所经过的路程长为______________.18.如图,已知⊙O 经过点A (2,0)、C (0,2),直线y =kx (k ≠0)与⊙O 分别交于点B 、D ,则四点A 、B 、C 、D 组成的四边形面积的最大值为 .三、解答题 19.(本题满分8分) (1)计算: 2330tan 627)32(2--+--(2)先化简,再求值:21211x x x x -+⎛⎫-÷ ⎪⎝⎭, 其中x第16题图第14题图第17题图FEDCBA第18题图20.(本题满分8分)(1)解不等式组212(3)33x x x +≥⎧⎨+->⎩,,(2)解方程:x 2+3x -2=0;21.(本题满分6分)如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .22.(本题满分8分)某中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A .3元,B .4元,C .5元,D .6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:(1(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为4.44元,从平均数和众数的角度分析,哪个班购买的 餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是多少?乙班购买午餐情况扇形统计图A18% B 26%C50% D 6% BA F C D E23.(本题满分8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?(本题满分10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如24.果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?25.(本题满分8分)如图四边形ABCD 中,已知∠A =∠C =30°,∠D =60°,AD =8,CD =10. (1)求AB 、BC 的长;(2)已知,半径为1的⊙P 在四边形ABCD 的外面沿各边滚动(无滑动)一周,求⊙P 在整个滚动过程中所覆盖部分图形的面积.26.(本题满分10分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD PA ,垂足为D . (1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长度.27.(本题满分8分)提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕 (AD ∥BC ),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样). 背景介绍: 这条分割直线..既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”. 尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.(2) 小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF 分别交AD 、BC 于点E 、F .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD ∥BC ,∠A =90°,AD <BC ,AB=4 cm ,BC =6 cm ,CD = 5cm .请你找出梯形ABCD 的所有“等分积周线”,并简要的说明确定的方法. 图2 A B C D 图1A C D28.(本题满分10分)如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O 作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式、直线AB的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.问题一:当t为何值时△OPQ为等腰三角形;问题二:当t为何值时,四边形CDPQ初三数学阶段性考试答案参考答案 一、选择题1.B ;2.B ;3.D ;4.D ;5.D ;6.D ;7.A ;8.C ;9.C ;10.A 二、填空题11.x ≤3;12.x (x +3)( x -3);13.y =-x 2+4x -3;14.30°;15.抽样调查;16.8;17.18. 三、解答题 19.(1)解:2330tan 627)32(2--+--=)32(3363349--⨯+- =32323349+-+-=14 (2)解:原式=2121x xx x x -⨯-+ =()21111x x x x x -⨯=--,x 1==.20.(1)解:由x +2≥1得x ≥-1, 由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3. (2)解:2341(2)17∆=-⨯⨯-=∴x =,∴1x =,2x =21.解:通过证△ABC ≌△DEF ,得∠ACB =∠DFE ,说明BC ∥EF22.解:(1)13÷26%=50(人);(2)乙班购买A 种午餐的人数为50×18%=9(人),中位数是5元;(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高; (4)16+2550+50=41100. 所以,恰好是购买C 种午餐的学生的概率是41100. 23.解:(1)P (小鸟落在草坪上)=69=23. (2)用树状图或表格列出所有可能的结果: “树状图”开始1 2 32 3 1 3 1 2 列表:所以编号为1,2,的2个小方格空地种植草坪的概率=2163=. 24.解:(1)设今年甲型号手机每台售价为x 元,由题意得,80000x +500=60000x ,解得x =1500.经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m 台,由题意得,17600≤1000m +800(20﹣m )≤18400,8≤m ≤12. 因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一:设总获利W 元,则W =(1500﹣1000)m +(1400﹣800﹣a )(20﹣m ), W =(a ﹣100)m +12000﹣20a . 所以当a =100时,(2)中所有的方案获利相同.25.解:(1)AB =BC =(2)在⊙P 的整个滚动过程中,圆心P 的运动路径长为73π;所以⊙P 在整个滚动过程中,所覆盖部分图形的面积为143π; 26.解:(1)证明:连接OC ,因为点C 在⊙O 上,OA =OC ,所以.OCA OAC ∠=∠因为CD PA ⊥,所以90CDA ∠=,有90CAD DCA ∠+∠=.因为AC 平分 ∠PAE ,所以.DAC CAO ∠=∠所以90.DCO DCA ACO DCA CAO DCA DAC ∠=∠+∠=∠+∠=∠+∠=又因为点C 在⊙O 上,OC 为⊙O 的半径,所以CD 为⊙O 的切线.(2)解:过O 作OF AB ⊥,垂足为F ,所以90OCD CDA OFD ∠=∠=∠=,所以四边形OCDF 为矩形,所以,.OC FD OF CD ==因为DC +DA =6,设AD x =,则6.OF CD x ==-因为⊙O 的直径为10,所以5DF OC ==,所以5AF x =-. 在Rt AOF △中,由勾股定理知222.AF OF OA +=即()()225625.x x -+-=化简得211180x x -+=,解得2x =或x=9.由AD DF <,知05x <<,故2x =.因为OF AB ⊥,由垂径定理知F 为AB 的中点,所以2 6.AB AF == 27.解:(1)作线段AD (或BC )的中垂线即可. (2)小华不会成功.直线平分梯形ABCD 面积,则21(AE +BF )AB=21(ED +CF )AB ∴AE +BF = ED +CF ,又∵AB <CD ,∴此时AE +BF + AB <ED +CF + CD∴小华不可能成功(3)可求得:S 梯形ABCD =18,C 梯形ABCD =18,由(2)可知直线分别交AD 、BC 于点E 、F 时不可能,只要分以下几种情况: ①当直线分别交AD 、AB 于E 、F 时有 S △AEF ≤S △ABD ,又∵S △ABD =6<9,∴不可能同理,当直线分别交AD 、CD 于E 、F 时S △AEF ≤S △ACD <9, ∴不可能②当直线分别交AB 、BC 于E 、F 时 设BE =x ,则BF =9−x 由直线平分梯形面积得:12 x (9−x )=9求得:x 1=3,x 2=6>4(舍去) ∴BE =3③当直线分别交CD 、BC 于E 、F 时 设CE =x ,可得:S △ECF =12 ×4x5 ×(9−x )=92x 2-18 x +45=0此方程无解,∴不可能④当直线分别交AB 、CD 于、 E 、F 时设CF =x ,可得:S BFEC =12 ×(3−x 5 )(6−3x 5 )+6x225 = 9∴ x 1=0, 与②同x 2=5 ,BF =−2,舍去综上所述,符合条件的直线共有一条.28.解:(1)∴y =94 (x +2)2-4,或y =94 x 2+916x -920;y =34x —34. (2)问题一:5=t 、 25=t 、 30=tx文档来源:弘毅教育园丁网数学第一站 11问题二:将y =0代入y =94x 2+916x -920,得94x 2+916x -920=0,解得x =1或-5.∴C (-5,0).∴OC =5.∵OM ∥AB , AD ∥x 轴,∴四边形ABOD 是平行四边形. ∴AD =OB =1.∴点D 的坐标是(-3,-4).∴S △DOC =21×5×4=10.过点P 作PN ⊥BC ,垂足为N .易证△OPN ∽△BOH . ∴OB OP OH PN =,即154t PN=.∴PN =54t .∴四边形CDPQ 的面积S =S △DOC -S △OPQ =10-21×(5-2t )×54t =54t 2-2 t +10. ∴当t =45时,四边形CDPQ 的面积S 最小.此时,点P 的坐标是(-53,-1),点Q 的坐标是(-25,0),∴PQ =22)10()5325(+++-=10362.。
2014-2015年度江阴初级中学第一学期数学期中试卷
A B C D E F 第12题第14题命题人:赵静 复核人:孙卫荣(满分:100分,考试时间:120分钟)一、选择题:(本大题共6小题,每题3分,共18分)1.下列图形中,是轴对称图形的为 ( )A 、B 、C 、D 、2.36的算术平方根是 ( )A .6B .-6C .±6D 3.下列命题正确的个数有:(1)a a =33;(2)a a =2;(3)无限小数都是无理数;(4)有限小数都是有理数;(5)实数分为正实数和负实数两类 。
( )A .1个B .2个C .3个D .4个4.若92=a ,162=b ,且0<ab ,则b a -的值为 ( )A .±1B .-1C .±7D .75.在下列各组条件中 不能说明△ABC ≌△DEF 的是 ( )A .AB=DE ,∠B=∠E ,∠C=∠FB .AC=DF , BC=EF ,∠A=∠DC .AB=DE ,∠A=∠D ,∠B=∠E D .A B=DE ,BC=EF ,AC=DF 6.已知:如图,BD 为△ABC 的的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ; ②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF .其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 二、填空题(本大题共10小题,每空2分,共22分)7x 的取值范围是 .8.用四舍五入法对31500取近似数,并精确到千位,用科学计数法可表示为 .9.已知等腰三角形的一个外角等于100,则它的顶角是______________°.10.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为 _____ cm .11.已知正数x 的两个不同的平方根是3m +和215m -,则x = .12.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是___________.13.把一张长方形纸片按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,则DF=__________cm ,重叠部分△DEF 的面积是 ___ cm 2.14.如图,已知AM ⊥MN ,BN ⊥MN ,垂足分别为M,N 点C 是MN 上使AC+BC 的值最小的点,若AM=3,BN=5,MN=15,则AC+BC= .A B C FE A ′ 第13题 (B ') D第16题 15.如图,在△ABC 中,AB=5,AC=13, BC 边上的中线AD=6,则BC 的长为_________.`16.如图,四边形ABCD 中,AC 、BD 为对角线,△ABC 为等边三角形,∠ADC=30°,AD=2,BD=3,则CD 的长为 .三、解答题(本大题共9小题,共60分.解答时应写出文字说明、证明过程或演算步骤.)17.(每小题4分,共8分) (1)计算:4)21(803++-- (2)求x 的值:24810x -=18.(本题满分5分)画图计算:(1)在8×8的方格纸中画出△ABC 关于点O 的对称图形△A ′B ′C ′,并在所画图中标明字母.(2)设小方格的边长为1,求△A ′B ′C ′中B ′C ′边上的高h 的值.19.(本题满分5分)实数a 、b在数轴上的位置如图所示,请化简:22b a a --.20.(本题满分8分)如图,四边形ABCD 的对角线AC 与BD 相交于点O ,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ;(2)OB =OD .CB21.(本题满分6分)如图,∠ACB=900,AD 是∠CAB 的平分线,BC=4,CD=23,求AC 的长.22.(本题满分6分)如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF . (1)求证:BF=2AE ; (2)若AD 的长.23.(本题满分6分)如图,在△ABC 中,∠A =90°,AB =AC ,O 是BC 的中点,如果在AB 和AC 上分别有一个动点M 、N 在移动,且在移动时保持AN =BM ,请你判断△OMN 的形状,并说明理由.24.(本题满分8分)如图,在△ABC中,AC=BC=2,∠A=∠B=30°,点D在线段AB上运动(D不与A、B 重合),连接CD,作∠CDE=30°,DE交BC于点E.(1)AB=;(2)当AD等于多少时,△ADC≌△BED,请说明理由;(3)在点D的运动过程中,△CDE的形状可以是等腰三角形吗?若可以,求出∠ADC的度数;若不可以,说明理由.25.(本题满分8分)如图(1),凸四边形ABCD ,如果点P 满足∠APD=∠APB=α.且 ∠BPC=∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法);(3)若四边形ABCD 有两个半等角点P 1、P 2(如图(4)),证明线段P 1P 2上任一点也是它的半等角点.初二数学答案:二、填空:7.1≥x 8.4102.3⨯ 9.80°或20° 10.3511.49 12.ASA 13. 3.4, 5.1 14.17 15.612 16.5三、解答:17.(1)-1 (2)29±=x 18.(1)略 (2)2=h 19.原式=-1 20.略 21.AC=322. (1)略 (2)AD 22+=23.等腰直角三角形24.(1)32 (2)232- (3)60°或105°。
2015年江阴初级中学初三模拟考试数学试卷
江阴初级中学初三模拟考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,只需把相应的选项标号填写在答题卡上相应的位置.........) 1.-5的相反数是 (▲ )A .5B .±5C .-5D . 5 2.下列计算正确的是(▲ )A .a 3+a 3=a 6B .a 6÷a 3=a 2C .(a 2)3=a 8D .a 2²a 3=a 53.下列调查中,适合采用普查方式的是(▲ )A .调查市场上婴幼儿奶粉的质量情况B .调查黄浦江水质情况C .调查某个班级对青奥会吉祥物的知晓率D .调查《无锡第一看点》栏目在无锡市的收视率 4.式子1-x 在实数范围内有意义,则x 的取值范围是( ▲ )A .x >1B .x ≥1C .x <1D .x ≤1 5.在△ABC 中,∠C =90°,BC =4,2sin 3A =,则边AC 的长是 (▲ ) A..6 C .83D.6.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值为(▲ )A .6B .-1C .2或3D .-1或67.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页,数学2页,英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ▲ ) A. 16B. 13C.12D.1128.小亮从家步行到公交车站台,等公交车去学校。
图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是 ( ▲ ).A.他离家8km 共用了30min ; B .他等公交车时间为6min C .他步行的速度是100m/min ; D .公交车的速度是350m/min9.如图,直径为10的⊙A 经过点C 和点O ,点B 是y 轴右侧⊙A 优弧上一点,∠OBC =30°,则点C 的坐标为( ▲ ).A.(0,5) B .(0,35) C .(0,325) D .(0,335) 10.如图在坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为A 1,A 2,A 3,…,则A 2015的坐标为.( ▲ ) A.(1343,0) B .(1347,0) C .(134321,23) D .(134721,23)第8题第9题 第10题A 1C 1二、填空题(本大题共有8小题,每小题2分,共16分.不需写出解答过程,请把结果直接填在答题卷上....相应的位置.....) 11. 因式分解:2x 2-8y 2= ▲ .12. 生物学家发现H7N9型禽流感病毒的其最小直径约为80nm ,1nm=0.000000001m ,用科学计数法表示其尺寸为 ▲ m.13.若一个多边形的内角和比外角和大360°,则这个多边形的边数为 ▲ .14.关于x 的一元二次方程x 2-k =0有实数根,则k 的取值范围是 .15.已知菱形的周长为40cm ,两条对角线之比为3∶4,则菱形的面积为____▲____ cm 2.16、如图,规定程序运行到“结果是否大于33”为一次运算,且运算进行3次才停止,则可输入的实数x的取值范围为 ▲ . 17、如图,等腰直角三角形ABC 中,∠BAC =90°,AB =AC =215,点M ,N 在边BC 上,且∠MAN =45°,CN =5, MN = ▲ .18.如图,点D 是反比例函数上一点,矩形ABCD 的周长是20,正方形ABOF 和正方形ADGH 的面积之和为68,则反比例函数的解析式是 ▲三、解答题(本大题共有10小题,共84分.请在答题卷指定区域.......内作答,解答需写出必要的文字说明、演算步骤或证明过程.) 19.(本题满分8分)(1) 计算:()12132-⎛⎫- ⎪⎝⎭. (2)化简:2311)24(a a a ++--÷ 20.(本题满分8分)(1)解方程:(1)22333x x x -+=-- (2) 解不等式组:⎪⎩⎪⎨⎧-≤-〉-121312x x xx . 21.(本题6分)如图,AB ∥CD ,AB ﹦CD ,点E 、F 在BC 上,且BF ﹦CE .(1)求证:△ABE ≌△DCF ;(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形.22.(本题满分6分)有4个完全相同的小球,把它们分别标号为1,2,3,4放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(1) 如果第一次摸出球上的数字为十位数字,第二次摸出的数字为个位数组成新数,求组成的新数是偶数的概率;(2) 如果第一次摸出球上的数字为记为m ,第二次摸出的数字记为n ,若m 、n 满足m n 1-≤,则称“两数相近”,求“两数相近”的概率.C D第17题 第18题 第16题23.(本题满分8分)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项(每个时间段含最小值不含最大值):A .1.5小时以上B .1-1.5小时C .0.5-1小时D .0.5小时以下 根据调查结果绘制了两幅不完整的统计图. 请你根据以上信息解答下列问题:(1)本次调查活动采取了 ▲ 调查方式;本次调查的学生总人数为___▲__人;(2)请将图(1)中选项B 的部分补充完整;(3)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在1小时以下. 24、(本题满分10分)由30°的直角三角形的三边分别向外作半圆组成 “花瓣”,现要从矩形纸片上剪出“花瓣”,如图1、2有两种剪法。
2014~2015学年度 江阴市2015届九年级第一次模拟考试数学试题及答案
14.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是▲.
15.已知菱形的周长为40cm,两条对角线之比为3∶4,则菱形的面积为____▲____cm2.
16.如图,正△ABC的边长为9cm,边长为3cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为2π____▲____cm.(结果保留π)
①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;
②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;
③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.
正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交
直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、
BA为邻边作□ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边
作□A1B1A2C2;…;按此作法继续下去,则Cn的坐标是(▲ )
A.(﹣ ×4n,4n)B.(﹣ ×4n-1,4n-1)
C.(﹣ ×4n﹣1,4n) D.(﹣ ×4n,4n-1)
二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)
江苏省江阴市2014届九年级下学期期中考试数学试题
江苏省江阴市2014届九年级下学期期中考试数学试题江苏省江阴市2014届九年级下学期期中考试数学试题一、选择题(本大题共10小题,每小题3分,共30分)1.|﹣2|的值等于()A.2B.﹣2C.±2D.2.若式子在实数范围内有意义,则x的取值范围是()A.x2D.x≥23.下列运算正确的是()A.a+a=a2B.(-a3)2=a5C.3a•a2=a3D.(2a)2=2a24.下列图形中,既是轴对称图形又是中心对称图形的是()5.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由此可知()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲乙两人的成绩一样稳定D.无法确定谁的成绩更稳定6.关于x的一元二次方程的一个根0,则a值为()A.1B.-1C±1D.07.如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.8.已知关于的一元二次方程的两个实数根分别为,(),则二次函数中,当时,的取值范围是()A.B.C.D.或9.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.B.C.D.10、如图1,在平面直角坐标系中,将□ABCD放置在第一象限,且AB∥x 轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为()A.4B.45C.8D.85二、填空题(本大题共8小题,每小题2分,共16分)17.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(x>0)的图象上运动,那么点B在(填函数解析式)的图象上运动.第17题18.如图,射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值.(单位:秒)三.简答题19.(本题满分8分)(1)计算:;(2)化简:20.(本题满分8分)⑴解方程:(1)(2)解不等式组并求该不等式组的整数解。
江苏省江阴市要塞片2015届九年级上期中考试数学试题及答案
2014-2015学年度第一学期期中考试试卷初三数学(本卷考试时间为120分钟,满分130分)一.选择题(本大题共有10小题,每小题3分,共30分.)1.关于x 的方程032)1(2=-++mx x m 是一元二次方程,则m 的取值是【 ▲ 】A.任意实数 B .1≠m C .1-≠m D .1>m2.下列说法正确的有几个 【 ▲ 】① 经过三个点一定可以作圆; ② 任意一个圆一定有内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个外接圆并且只有一个外接圆; ④ 垂直于弦的直径必平分弦; ⑤经过不在同一直线上的四个点一定可以作圆.A . 3B .2C . 1D . 03.若两圆的半径分别为4和3,圆心距为5,则这两圆的位置关系是 【 ▲ 】 A .内含 B .相交 C .内切 D .外切4.方程(x -1)2=2的根是 【 ▲ 】 A .-1、3 B .1、-3 C .1-2、1+ 2 D .2-1、2+15.一元二次方程x (x -3)=0的根的情况是 【 ▲ 】 A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根6.已知实数a ,b 分别满足0642=+-a a ,0642=+-b b ,且a ≠b 则ab 11+的值【 ▲ 】 A.1.5 B.-1.5 C.2/3 D. -2/37.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:月用水量(吨)3 4 5 8 户 数2341则关于这若干户家庭的月用水量,下列说法错误的是 【 ▲ 】A .平均数是4.6B .中位数是4 C. 众数是5 D .调查了10户家庭的月用水量8. 如图,⊙O 上有两定点A 与B ,若动点P 从点B 出发在圆上匀速运动一周,那么弦AP 的长度d 与时间t 的关系可能是下列图形中的【 ▲ 】A .①或④ B.②或③ C.②或④ D.①或③ 9.某地区2010年投入教育经费2500万元,预计到2012年共投入8000万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是 【 ▲ 】 A .2500+2500(1+x )+2500(1+x )2=8000 B .2500x 2=8000 C .2500(1+x )2=8000D .2500(1+x )+2500(1+x ) 2=800010.如图所示,小范从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB 上,此时∠AOE=48°,则α的度数是 【 ▲ 】 A. 60° B. 51° C. 48° D. 76° 二.填空题(本大题共有8小题,每空2分,共20分.) 11.方程x 2=2的根是 ▲ _。
江阴 2014—2015学年第一学期初三数学期中考试试卷
江阴 2014—2015学年第一学期初三数学期中考试试卷(注意:1.请考生将答案写在答题卷相应区域;2.本卷满分130分,考试时间120分钟。
)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列线段能构成比例线段的是 ( ▲ )A .1,2,3,4B .1,2 ,2 ,2C .2,5,3,1D .2, 5, 3, 4 2.下列方程中,是一元二次方程的有( ▲ )①223x x x +=②270x = ③21252x x -= ④ 2250x y -= A .1个 B .2个 C .3个 D .4个 3.一元二次方程x 2-5x +7=0根的情况是 ( ▲ )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定4.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC △∽ADE △的是( ▲ ) A .AEAC ADAB = B .DEBC ADAB =C .D B ∠=∠ D .AED C ∠=∠5.若12,x x 是方程2630x x -+=的两个根,则12x x +的值为( ▲ )A. 6B.6-C. 3D.3-6.某商品原价500元,连续两次降价%a 后售价为200元, 下列所列方程正确的是( ▲ ) A .200%)1(5002=+a B .200%)1(5002=-a C .200%)21(500=-a D .200%)1(5002=-a 7.下列说法不正确...的是( ▲ ) A .半圆(或直径)所对的圆周角是直角 B.等边三角形的重心与外心重合C .相等的弧所对的圆心角相等 D.平分弦的直径垂直于弦8.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( ▲ )A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)9.如图,已知矩形A BCD ∽矩形ECDF ,且A B=BE ,那么BC 与A B 的比值是( ▲ )A.122+B.132+C.152+ D.162+10.李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A ,B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM CBA E 12D(第4题图)FEDCBAxy11BCA(第8题图) (第9题图)A 、324-B 、432-C 、332-D 、332二、填空题(本大题共8小题,每空2分,共18分.)11.在比例尺为1∶2000000的地图上,量得M 、N 两地的距离为2.5cm ,则这两地间的实际距离为__▲__千米. 12.已知x =-2是方程x 2+mx -6=0的一个根,则方程另一根为 ▲ .13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有_▲ _(填序号).14.如图,⊙O 是ABC △的外接圆,30C ∠=,2cm AB =,则⊙O 的半径为 ▲ cm .15.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD =4,BC =8,BD :DC =5:3,则DE 的长等于 ▲ . 16.已知圆内一点P 到圆上各点的距离中最短距离为2cm ,最长距离为8cm ,则过P 点的最短弦长为 ▲ . 17.某班师生十年后再次聚会,见面时相互握手一次,共握手820次,问原来班级师生 ▲ 人.18.如图,已知AB 是半圆的直径,且AB=10,弦AC=6,将半圆沿过点A 的直线折叠,使点C 落在直径AB 上的点C′,则折痕AD 的长为 ▲ .三、解答题(本大题共8小题,共82分.)19.(本题满分16分)解下列方程: (1)x 2-4=0 (2) 2y 2-3=4y (配方法)(3)3y (y -1)=2(y -1) (4) (x -1)(x +2)=7020.(本题满分6分)在等腰△ABC 中,三边分别为a 、b 、c ,其中a=5,若关于x 的方程x 2+(b +2)x +6-b=0有两个相等的实数根,求△ABC 的周长. (第14题图) (第15题图) (第18题图)C'ADO BC(第10题图)21.(本题满分10分)已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E(1)求证:DE 是⊙O 的切线;(2)若DE=6cm ,AE=3cm ,求⊙O 的半径.22.(本题满分10分) 配方法可以用来解一元二次方程,还可以用它来解决很多问题。
江阴初级中学2014-2015学年第二学期期中考试初三数学试卷(附答案、答卷纸)
江阴初级中学2014-2015学年第二学期期中考试初三数学试卷(满分130分,考试时间为120分钟)一、选择题(本题共10小题,每小题3分,共30分)1.23-的相反数是 ( ▲ )A .32B .32-C .23D .23-2.下列运算正确的是 ( ▲ )A .236x x x ⋅=B .22124x x --=- C .235()x x -= D .22223x x x --=-3.如图所示的支架是由两个长方体构成的组合体,则它的主视图是 ( ▲ )4.□ABCD 的对角线交于点O ,下列结论错误的是 ( ▲ ) A .△AOB≌△BOC B .△AOB≌△CODC .□ABCD 是中心对称图形 D .△AOB 与△BOC 的面积相等5.分解因式2x 2—4x+2的最终结果是 ( ▲ )A .2x(x -2)B .2(x 2-2x+1)C .(2x -2)2D . 2(x -1)26.以下数据是10名学生测试跳绳项目的成绩(单位:个/分钟): 176、180、184、180、170、176、172、164、186、180,则该组数据的众数、中位数、平均数分别为( ▲ ) A .180、180、178 B .180、178、178 C .180、178、176.8 D .178、180、176.8 7.若一个圆锥的侧面展开图是一个半径为10 cm ,圆心角为252°的扇形,则该圆锥的底面半径为 ( ▲ ) A . 6 cm B .7 cm C .8 cm D .10 cm8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为 ( ▲ )A.C.3D.9.如图,已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于D 点,双曲线y =kx(x >0)经过D 点,交BC 的延长线于E 点,且OB •AC =160,有下列四个结论:①双曲线的解析式为y =40x(x >0);②E 点的坐标是(5,8);③sin∠COA =45;④AC +OB =125.其中正确的结论有 ( ▲ )A .1个B .2个C .3个D .4个 10.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于 ( ▲ )A.3 D .4(第8题图) (第9题图) (第10题图)二、填空题(本大题共8小题,每小题2分,共16分) 11.5-的值等于 ▲ .12.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为 ▲ . 13.函数x y -=3中自变量x 的取值范围是 ▲ . 14.请写出一个无理数,使它是大于2-的负数: ▲ .15.正六边形的每一个内角的度数是 ▲ °.16.如图,△ABC 中,CD⊥AB 于D ,E 是AC 的中点,∠B=45°,若AD=6,DE=5,则BC 的长等于 ▲ .(第16题图) (第17题图) (第18题图) 17.如图,直线x y 3=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点n A的坐标为 ▲ .A DA E CB18.如图,在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△111C B A .点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,线段1EP 长度的最小值是 ▲ .三、解答题(本大题共10小题,共84分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分6分)计算:(1)()023200921)1(---+- (2)1a 21a 2a 2-+++20.(本题满分8分)(1)解方程:05x 6x 2=+-(2)解不等式组(1)(2)3(1)42,1.23x x x x +>+⎧⎪-⎨≥⎪⎩21.(本题满分6分)如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并说明理由.22.(本题满分8分)如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A 处,游戏者所掷骰子着地一面所示数字为3,则棋子由A 处前进3个方格到达B 处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A 处前进6个方格到达C 处的概率.MF E D CBA23.(本题满分8分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此无锡市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 名学生;(2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?24.(本题满分8分)耘耙是一种清除水稻成长期缝隙间杂草的传统农具,大小款式不一,图1是其中的一种,图2是其示意图,现测得AC =40cm,∠C =30°,∠BAC =45°.为了使耘耙更加牢固,AB 处常用铁条制成,则制作此耘耙时需准备多长的铁条?(结果保留根号)学习态度层级图①C 级图②(图1) (图2) AB C25.(本题满分8分)如图,在△ABC,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF CAB ∠=∠. (1)求证:直线BF 是⊙O 的切线; (2)若5AB =,sin 5CBF ∠=,求BC 和BF 的长.26.(本题满分10分)为推进节能减排,发展低碳经济,江阴某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为:⎩⎨⎧≤<-≤≤-=)3530(5.025)3025(40x x x x y (年获利=年销售收入—生产成本—投资成本) (1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.F AB。
2014-2015年江苏省无锡市江阴市华士片九年级上学期期中数学试卷及参考答案
2014-2015学年江苏省无锡市江阴市华士片九年级(上)期中数学试卷一、选择题:(本大题共10题,每小题3分,满分30分)1.(3分)实数4的算术平方根是()A.B.±C.2 D.±22.(3分)方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=03.(3分)已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2 B.a<2 C.a<2且a≠l D.a<﹣24.(3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=1215.(3分)若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(4,3),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上6.(3分)如图,量角器外沿上有A、B两点,它们的读数分别是70°和40°,则∠1的度数()A.15°B.30°C.40°D.70°7.(3分)已知⊙O中,圆心角∠AOB=100°,则圆周角∠ACB等于()A.50°B.100°或50°C.130°或50°D.130°8.(3分)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是()①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.A.1个 B.2个 C.3个 D.4个9.(3分)三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.不能确定10.(3分)如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1﹣h2|等于()A.5 B.6 C.7 D.8二、填空题:(本大题共8题,每小题2分,满分16分)11.(2分)若方程x2﹣3x+1=0的两根为x1、x2,则代数式x1+x2的值为.12.(2分)如果=1﹣2a,则a的取值范围是.13.(2分)如图,A、B两点被池塘隔开,在AB外任选一点C,连接AC、BC分别取其三等分点M、N量得MN=28m.则AB的长为m.14.(2分)已知:如图,四边形ABCD是平行四边形,则图中相似的三角形有对.15.(2分)已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.16.(2分)如图是一张电脑光盘的表面,两个圆的圆心都是点O,大圆的弦AB 所在直线是小圆的切线,切点为C.已知大圆的半径为5cm,小圆的半径为1cm,则弦AB的长度为cm.17.(2分)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为.18.(2分)如图,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,0)、(20,0)、(20,10).在线段AC、AB上各有一动点M、N,则当BM+MN为最小值时,点M的坐标是.三、解答题:(本大题84分)19.(8分)计算:(1)(2).20.(8分)解下列方程:(1)x2﹣2x﹣1=0;(2)﹣=0.21.(6分)已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求的度数.22.(8分)已知:AD是ABC的边BC上的高,AE是△ABC的外接圆的直径.求证:(1)△ADB∽△ACE;(2)AB•AC=AD•AE.23.(8分)如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=°,BC=;(2)判断△ABC与△DEC是否相似,并证明你的结论.24.(8分)如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.25.(8分)张家港永安旅行社为吸引市民组团去普陀山风景区旅游,推出了如下收费标准:(1)现有一个35人的团队准备去旅游,人均旅游费为元.(2)某单位组织员工去普陀山风景区旅游,共支付给永安旅行社旅游费用27000元,请问:该单位这次共有多少员工去普陀山风景区旅游?26.(8分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?27.(10分)问题探究:(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点,并说明理由.(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.问题解决:(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP′D钢板,且∠APB=∠CP'D=60度.请你在图③中画出符合要求的点和P和P′,并求出△APB的面积(结果保留根号).28.(12分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x 轴、y轴的正半轴上,OA=8,OC=4.点P从点O出发,沿x轴以每秒2个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t 秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)填空:当t=时,点D恰好落在AB上,即△DPA成为直角三角形;(2)若以点D为圆心,DP为半径的圆与CB相切,求t的值;(3)在点P从O向A运动的过程中,△DPA能否成为等腰三角形?若能,求t 的值;若不能,请说明理由;(4)填空:在点P从点O向点A运动的过程中,点D运动路线的长为.2014-2015学年江苏省无锡市江阴市华士片九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共10题,每小题3分,满分30分)1.(3分)实数4的算术平方根是()A.B.±C.2 D.±2【解答】解:实数4的算术平方根是2.故选:C.2.(3分)方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=0【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,∴x=0,x﹣2=0,∴x1=0,x2=2,故选:B.3.(3分)已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2 B.a<2 C.a<2且a≠l D.a<﹣2【解答】解:△=4﹣4(a﹣1)=8﹣4a>0得:a<2.又a﹣1≠0∴a<2且a≠1.故选:C.4.(3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=121【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故选:C.5.(3分)若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(4,3),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上【解答】解:由勾股定理得:OP==5,∵圆O的半径为5,∴点P在圆O上.故选:C.6.(3分)如图,量角器外沿上有A、B两点,它们的读数分别是70°和40°,则∠1的度数()A.15°B.30°C.40°D.70°【解答】解:∵量角器外沿上有A、B两点,它们的读数分别是70°和40°,∴∠AOB=70°﹣40°=30°,∴∠1=∠AOB=×30°=15°,故选:A.7.(3分)已知⊙O中,圆心角∠AOB=100°,则圆周角∠ACB等于()A.50°B.100°或50°C.130°或50°D.130°【解答】解:当点C在优弧上时,如图1,则∠ACB=∠AOB=50°;当点C在劣弧上时,如图2,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=50°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣50°=130°;故选:C.8.(3分)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是()①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.A.1个 B.2个 C.3个 D.4个【解答】解:∵AB是直径,∴∠ADB=90°,∴AD⊥BC,故①正确;连接DO,∵点D是BC的中点,∴CD=BD,∴△ACD≌△ABD(SAS),∴AC=AB,∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,OD∥AC,∴∠ODE=∠CED,∴ED是圆O的切线,故④正确;由弦切角定理知,∠EDA=∠B,故②正确;∵点O是AB的中点,故③正确,故选:D.9.(3分)三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.不能确定【解答】解:(x﹣2)(x﹣4)=0x﹣2=0或x﹣4=0∴x1=2,x2=4.因为三角形两边的长分别为3和6,所以第三边的长必须大于3,故周长=3+6+4=13.故选:B.10.(3分)如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1﹣h2|等于()A.5 B.6 C.7 D.8【解答】解:设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴△AFH∽△ODH∽△BEH,∴即,即=,∴(AF﹣BE)=﹣2,∴|h1﹣h2|=|AF﹣BE|=6.故选:B.二、填空题:(本大题共8题,每小题2分,满分16分)11.(2分)若方程x2﹣3x+1=0的两根为x1、x2,则代数式x1+x2的值为3.【解答】解:根据题意得x1+x2=3.故答案为3.12.(2分)如果=1﹣2a,则a的取值范围是a≤.【解答】解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.13.(2分)如图,A、B两点被池塘隔开,在AB外任选一点C,连接AC、BC分别取其三等分点M、N量得MN=28m.则AB的长为84或42m.【解答】解:因为M、N分别为AC,BC的三等分点.∴设MC=x,则AC=3x,或MC=2x,AC=3x又∵△CMN∽△CAB,∴=.即=或=,解得:AB=84m或42m.故答案为84或42.14.(2分)已知:如图,四边形ABCD是平行四边形,则图中相似的三角形有3对.【解答】解:∵四边形ABCD是平行四边形,∴DF∥BC,AB∥CD,∴△EFD∽△EBC,△EFD∽△BFA,∴△ABF∽△CEB.共3对.故答案为3.15.(2分)已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为1.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.16.(2分)如图是一张电脑光盘的表面,两个圆的圆心都是点O,大圆的弦AB 所在直线是小圆的切线,切点为C.已知大圆的半径为5cm,小圆的半径为1cm,则弦AB的长度为4cm.【解答】解:连接OA、OC;∵AB切小圆于C,∴OC⊥AB;∴∠OCA=90°,AC=BC=AB;Rt△OCA中,OA=5cm,OC=1cm;由勾股定理,得:AC==2cm;∴AB=2AC=4cm.17.(2分)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为65°.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.故答案为:65°.18.(2分)如图,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,0)、(20,0)、(20,10).在线段AC、AB上各有一动点M、N,则当BM+MN为最小值时,点M的坐标是(12,6).【解答】解:如图,作点B关于AC的对称点B′,过点B′作OB的垂线垂足即为点N,该垂线与x轴的交点即为点M,则B′N=B′M+MN=BM+MN,B′N的长就是BM+MN的最小值.连接OB′,交DC于P.∵四边形ABCD是矩形,∴DC∥AB,∴∠BAC=∠PCA,∵点B关于AC的对称点是B′,∴∠PAC=∠BAC,∴∠PAC=∠PCA,∴PA=PC.令PA=x,则PC=x,PD=20﹣x.在Rt△ADP中,∵PA2=PD2+AD2,∴x2=(20﹣x)2+102,∴x=12.5.∵cos∠B′ON=cos∠OPD,∴ON:OB′=DP:OP,∴ON:20=7.5:12.5,∴ON=12.∵tan∠MON=tan∠OCD,∴MN:ON=OD:CD,∴MN:12=10:20,∴MN=6.∴点M的坐标是(12,6).故答案为(12,6).三、解答题:(本大题84分)19.(8分)计算:(1)(2).【解答】解:(1)原式=(2)2﹣(3)2=20﹣18=2;(2)原式=﹣+2=4﹣+2=4+.20.(8分)解下列方程:(1)x2﹣2x﹣1=0;(2)﹣=0.【解答】解:(1)x2﹣2x﹣1=0,∵a=1,b=﹣2,c=﹣1,∴x====±,∴x1=,x2=﹣;(2)﹣=0,2(x﹣1)﹣x=0,x=2,检验:当x=2时,x(x﹣1)=2≠0,x=2是原方程的解.21.(6分)已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求的度数.【解答】解:解法一:(用垂径定理求)如图,过点C作CE⊥AB于点E,交于点F,∴,又∵∠ACB=90°,∠B=25°,∴∠FCA=25°,∴的度数为25°,∴的度数为50°;解法二:(用圆周角求)如图,延长AC交⊙C于点E,连接ED,∵AE是直径,∴∠ADE=90°,∵∠ACB=90°,∠B=25°,∴∠E=∠B=25°,∴的度数为50°;解法三:(用圆心角求)如图,连接CD,∵∠ACB=90°,∠B=25°,∴∠A=65°,∵CA=CD,∴∠ADC=∠A=65°,∴∠ACD=50°,∴的度数为50°.22.(8分)已知:AD是ABC的边BC上的高,AE是△ABC的外接圆的直径.求证:(1)△ADB∽△ACE;(2)AB•AC=AD•AE.【解答】证明:(1)∵AD是ABC的边BC上的高,AE是△ABC的外接圆的直径.∴∠ACE=∠ADB=90°,∵∠B=∠E,∴△ADB∽△ACE;(2)∵△ADB∽△ACE,∴AB:AE=AD:AC,∴AB•AC=AD•AE.23.(8分)如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2;(2)判断△ABC与△DEC是否相似,并证明你的结论.【解答】解:(1)∵△BCG是等腰直角三角形,∴∠GBC=45°,∵∠ABG=90°,∴∠ABC=∠GBC+∠ABG=90°+45°=135°;∵在Rt△BHC中,BH=2,CH=2,∴BC===2.故答案为:135°;2;(2)相似.理由如下:∵BC=2,EC=,∴==,==,∴=,又∵∠ABC=∠CED=135°,∴△ABC∽△DEC.24.(8分)如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.【解答】解:图中前3个三角形均为腰长为5的等腰三角形,第4个为腰长为的等腰三角形.25.(8分)张家港永安旅行社为吸引市民组团去普陀山风景区旅游,推出了如下收费标准:(1)现有一个35人的团队准备去旅游,人均旅游费为800元.(2)某单位组织员工去普陀山风景区旅游,共支付给永安旅行社旅游费用27000元,请问:该单位这次共有多少员工去普陀山风景区旅游?【解答】解:(1)人均旅游费=1000﹣(35﹣25)×20=800,故答案为800;(2)设该单位这次共有x名员工去普陀山风景区旅游,∵27000>25×1000,∴x>25;∴[1000﹣20(x﹣25)]x=27000,解得:x1=45,x2=30,∵1000﹣20(x﹣25)≥700∴x1=45(不符合题意,舍去),x2=30.答:该单位这次共有30名员工去普陀山风景区旅游.26.(8分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(1)A点所表示的实际意义是小亮出发分钟回到了出发点;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?【解答】解:(1)根据M点的坐标为(2,0),则小亮上坡速度为:=240(m/min),则下坡速度为:240×1.5=360(m/min),故下坡所用时间为:=(分钟),故A点横坐标为:2+=,纵坐标为0,得出实际意义:小亮出发分钟回到了出发点;==.故答案为:小亮出发分钟回到了出发点;.(2)由(1)可得A点坐标为(,0),设y=kx+b,将B(2,480)与A(,0)代入,得:,解得.所以y=﹣360x+1200.(3)小刚上坡的平均速度为240×0.5=120(m/min),小亮的下坡平均速度为240×1.5=360(m/min),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).(或求出小刚的函数关系式y=120x,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.)27.(10分)问题探究:(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点,并说明理由.(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.问题解决:(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP′D钢板,且∠APB=∠CP'D=60度.请你在图③中画出符合要求的点和P和P′,并求出△APB的面积(结果保留根号).【解答】解:(1)如图①,连接AC、BD交于点P,则∠APB=90度.∴点P为所求.(2)如图②,画法如下:①以AB为边在正方形内作等边△ABP;②作△ABP的外接圆O,分别与AD、BC交于点E、F.∵在圆O中,弦AB所对的上的圆周角均为60°,∴上的所有点均为所求的点P.(3)如图③,画法如下:①连接AC;②以AB为边作等边△ABE;③作等边△ABE的外接圆O,交AC于点P;④在AC上截取AP'=CP.则点P、P′为所求.(评卷时,作图准确,无画法的不扣分)过点B作BG⊥AC,交AC于点G.∵在Rt△ABC中,AB=4,BC=3.∴AC==5.∴BG=.在Rt△ABG中,AB=4,∴AG=.在Rt△BPG中,∠BPA=60°,∴PG=.∴AP=AG+PG=.∴S=AP•BG=.△APB28.(12分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x 轴、y轴的正半轴上,OA=8,OC=4.点P从点O出发,沿x轴以每秒2个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t 秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)填空:当t=3时,点D恰好落在AB上,即△DPA成为直角三角形;(2)若以点D为圆心,DP为半径的圆与CB相切,求t的值;(3)在点P从O向A运动的过程中,△DPA能否成为等腰三角形?若能,求t 的值;若不能,请说明理由;(4)填空:在点P从点O向点A运动的过程中,点D运动路线的长为4.【解答】解:(1)如图1,∵∠COP=90°,∠CPD=90°,∠PAD=90°,∴△COP∽△PAD,∴=,PC=2PD,OC=4∴PA=2,2t+2=8,解得t=3;(2)如图2,过点D作DE⊥x轴,垂足为E,延长ED交CB于F,则DF⊥CB,F 为切点则△PED∽△COP,∴=,∴PE=2,DE=t,∵DF=DP即DF2=DP2,得出t2+22=(4﹣t)2,t=;(3)△DPA是等腰三角形,有下列3种情况:①若DP=DA时,则EA=EP=2,8﹣2t=4,t=2;②若PA=PD时,t=;③若AP=AD时,t=2﹣4;综上所述,△DPA是等腰三角形时,t的值是2或或2﹣4.(4)如图3,当点P在点O位置时,PD=2,当点P在点A位置时,作DE⊥OA交OA的延长线于E,∵△AED∽△COA,CA=2AD,∴AE=2,DE=4,∴点D运动路线的长为=4.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
江苏省江阴市第一初级中学2015届九年级下期中数学试题
江阴市第一初级中学2014—2015学年度第二学期期中试卷 初三数学 2015年4月一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.9的算术平方根是--------------------------------------------------------( ▲ ) A .81 B .±3 C .−3 D .32.已知空气的单位体积质量为0.00124克/厘米3,将0.00124这个数用科学记数法表示为( ▲ ) A .210124.0-⨯ B .31024.1-⨯ C .31024.1⨯ D .21024.1⨯ 3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是-----------------( ▲ )4.下列计算正确的是---------------------------------------------------------( ▲ ) A .222)2(aa =- B .632a a a ÷= C .a a 22)1(2-=-- D .22a a a ⋅=5.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=36°,则∠4等于-----( ▲ )A . 36°B . 54°C . 72°D . 108°6.某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM 2.5指数的众数和中位数分别是---------------------------------------( ▲ )A .150,150B .150,155C . 155,150D .150,152.5第5题图 第7题图 第8题图7.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是------------------( ▲ )A .线段EF 的长逐渐增大;B .线段EF 的长逐渐减小;C .线段EF 的长不变;D .线段EF 的长与点P 的位置有关.9.如图,点A 、B 、C 、D 都在⊙O 上,且四边形OABC 是平行四边形, 则∠D 的度数为 --------------------------------------------------( ▲ ) A . 45° B . 60° C . 75° D . 不能确定第9题图 第10题图10.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数xky =在第二象限的图象经过点B ,且822=-AB OA ,则k 的值 --------------------( ▲ )A .−4B .4C .−6D .6 二、填空题(本大题共有8小题,每空2分,共16分)11.函数y =x 的取值范围是 ▲ .12.因式分解:=-a a 22▲ .13.一次函数42+=x y 的图像与y 轴交点的坐标是 ▲___.14. 有一组数据:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是_ ▲___. 15.如图,在△ABC 中,∠B =∠C ,AD ⊥BC 于点D ,若AB =6,CD =4,则△ABC 的周长是 ▲ .第15题图 第17题图 第18题图 16.在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sinA =____▲___.17.如图,将□ABCD 折叠,使点A 与C 重合,折痕为EF .若∠A =60°,AD =4,AB =6,则AE 的长为 ▲ .18.如图,在△ABC 中,AB =6,BC =8,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,则线段EP 1长度的最小值为 ▲ .三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.)19.(本题共有2小题,每小题4分,共8分)(1) 计算:202160cos 2)12015(-⎪⎭⎫ ⎝⎛-+-(2) 计算: 2(2)(2)(2)x x x --+- 20.(本题共有2小题,每小题5分,共10分) (1)解方程:0142=-+x x (2)化简:31922+--a a a21.(本题满分8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲中的正方形ABCD 、图乙中的平行四边形ABCD 分别各自分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.注:图甲、图乙在答题卡上,分割线画成实线.22.(本题满分6分)某校课外兴趣小组在本校学生中开展“感动中国2014年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A 、B 、C 、D 四类.其中,A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示“不太了解”,划分类别后的数据整理如下表:(1)表中的a = ▲ ,b = ▲ ;(2)根据表中数据,求扇形统计图中类别为B 的学生数所对应的扇形圆心角的度数; (3)若该校有学生1000名,根据调查结果估计该校学生中类别为C 的人数约为多少?23.(7分)魔术师刘谦在2010年央视春晚中表演的纸牌魔术让我们感受到魔术的神奇,他创造的“奇迹”给我们带来了很多快乐。