2018届高三数学二轮复习冲刺提分作业第一篇专题突破专题六解析几何第3讲圆锥曲线中的综合问题冲刺提分作业
2018届高三理科数学二轮复习习题:解析几何圆锥曲线重点解答题专练作业汇总
所以点 Q到点 F 的距离等于它到直线 y=- 1 的距离, 所以曲线 C是以 F 为焦点,直线 y =- 1 为准线的抛物线,其方程为 x2= 4y. (2) 依题意,知直线 l 的方程为 y = kx+ 1,代入 x2= 4y,得 x 2- 4kx -4= 0, Δ= ( - 4k) 2+ 16>0.
4 + 3 = 1,
m
8km
∴ x1+ k=- 3+ 4k 2,
- 3m(1+ 4k2) ∴ x1= k( 3+4k2) ,
3
设 B(x 2, y 2) ,由
y=- 3kx+ m,
x2 y2 4 + 3 = 1,
得 (3 + 36k2)x 2- 24kmx+4(m2- 3) =0.
2
m 8km
m( 1+4k )
故 E, F 均在椭圆 4 + 3 =1 上.
设直线 EF 的方程为 x= my+1(m≠0) .
3
3
令 x = 4,求得 y =m,即 Q点纵坐标 yQ=m.
x= my+1,
由 x2 y2
得 (3m2+ 4)y 2+ 6my- 9= 0.
4 + 3 = 1,
设 E(x 1, y 1) ,F(x 2, y 2) ,
6m
9
则有 y 1+ y 2=- 3m2+ 4, y1y2=- 3m2+ 4.
因为 E, B, F, Q在同一条直线上,
所以 |EB| · |FQ| =|FB| ·|EQ| 等价于 (y B- y1)(y Q- y2) = (y 2- yB)(y Q- y1) ,
(2) 存在这样的直线 l.
m ∵ y= kx + m,∴ M(0, m), N(- k, 0) ,
m
2018年高考数学三轮冲刺提分练习卷解析几何文
解析几何 1.已知点F 为双曲线C : 22221(0)x y a b a b-=>>的右焦点,点P 是双曲线右支上的一点, O 为坐标原点,若2FP OF =, 120OFP ∠=,则双曲线C 的离心率为( )31-31+31-31+ 2. 双曲线2222:1(0,0)x y C a b a b-=>>的右焦点和虚轴上的一个端点分别为,F A ,点P 为双曲线C 左支上一点,若APF ∆周长的最小值为6b ,则双曲线C 的离心率为( )56858510 3.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于,A B 两点(A 在第一象限),过点A 作准线l 的垂线,垂足为E ,若60AFE ∠=︒,则AFE ∆的面积为( ) A. 432343234.已知椭圆1C 和双曲线2C 焦点相同,且离心率互为倒数, 12,F F 是它们的公共焦点, P 是椭圆和双曲线在第一象限的交点,若1260F PF ∠=︒,则椭圆1C 的离心率为( )332 D. 125.已知圆M 与直线340x y -=及34100x y -+=都相切,圆心在直线4y x =--上,则圆M 的方程为( )A. ()()22311x y ++-=B. ()()22311x y -++=C. ()()22311x y +++=D. ()()22311x y -+-=6.已知双曲线的离心率为,其一条渐近线被圆截得的线段长为,则实数m 的值为( )A. 3B. 1C.D. 27.设直线l : 3x 4y 40++=,圆C : ()222x 2y r (r 0)-+=>,若圆C 上存在两点P , Q ,直线l 上存在一点M ,使得PMQ 90∠=︒,则r 的取值范围是_____.8.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时, 1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 ______ .9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线l 交抛物线于两点,A B ,交抛物线的准线于点C ,若3FC FA =,则FB =__________.10.已知椭圆2222:1(0)x y E a b a b +=>>经过点53,22⎛⎫ ⎪ ⎪,离心率为255,点O 坐标原点.(1)求椭圆E 的标准方程;(2)过椭圆E 的左焦点F 任作一条不垂直于坐标轴的直线l ,交椭圆E 于,P Q 两点,记弦PQ 的中点为M ,过F 作PQ 的垂线FN 交直线OM 于点N ,证明:点N 在一条定直线上.11.已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的焦距为2,过右焦点和短轴一个端点的直线的斜率为-1,O 为坐标原点. (1)求椭圆W 的方程;(2)设斜率为k 的直线l 与W 相交于A ,B 两点,记△AOB 面积的最大值为S k ,证明:S 1=S 2.12.已知动圆C 恒过点1,02⎛⎫ ⎪⎝⎭,且与直线12x =-相切. (1)求圆心C 的轨迹方程;(2)若过点()3,0P 的直线交轨迹C 于A , B 两点,直线OA , OB (O 为坐标原点)分别交直线3x =-于点M ,N ,证明:以MN 为直径的圆被x 轴截得的弦长为定值.13.已知椭圆C : 22221x y a b +=(0a b >> )的左右焦点分别为1F , 2F ,离心率为12,点A 在椭圆C 上, 12AF =, 1260F AF ∠=︒,过2F 与坐标轴不垂直的直线l 与椭圆C 交于P , Q 两点.(Ⅰ)求椭圆C 的方程; (Ⅱ)若P , Q 的中点为N ,在线段2OF 上是否存在点(),0M m ,使得MN PQ ⊥?若存在,求实数m 的取值范围;若不存在,说明理由.14.已知椭圆C : 22221(0)x y a b a b +=>>的长轴长为4,且经过点31,2⎛⎫⎪⎝⎭.(1)求椭圆C 的标准方程;(2)过椭圆右焦点F 作两条互相垂直的弦AB 与CD ,求AB CD +的取值范围.。
2018届高三数学理二轮复习课件:专题六 解析几何1.6.3 精品
=
1
1 k2
|y1-y2|及根与系数的关系,“设而不求”;有关
焦点弦长问题,要牢记圆锥曲线定义的运用,以简化运算.
(3)涉及弦中点的问题,牢记“点差法”是联系中点坐 标和弦所在直线的斜率的好方法. (4)求参数范围的问题,牢记“先找不等式,有时需要找 出两个量之间的关系,然后消去另一个量,保留要求的 量”.不等式的来源可以是Δ>0或圆锥曲线的有界性或 题目条件中的某个量的范围等.
4
处的切线方程为y-a=- a(x+2 )a,
即 ax+y+a=0.
(2)存在符合题意的点P,证明如下: 设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线 PM,PN的斜率分别为k1,k2. 将y=kx+a代入C的方程得x2-4kx-4a=0. 故x1+x2=4k,x1x2=-4a.
x
2 0
y12
x
2 0
8
x12
8(1
x02 ) 16 x12
x02 x02
8(1
x12 16
)
8 8 0.
所以,F1M⊥F2N,所以直线F1M与直线F2N的交点G在
以F1F2为直径的圆上.
【加固训练】
已知椭圆C:
x2 a2
y2 b2
1(a>b>0)的离心率e=
2 ,短轴长
2
为2 2.
(1)求椭圆C的标准方程. (2)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不 重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于 M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.
【解析】(1)由短轴长为2 ,2得b= ,2
(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-
第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。
2018届高三数学(理)二轮复习专题集训:专题六 解析几何6.1 Word版含解析
A 级1.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析: 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN=-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.答案: C2.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B .213C.253D .43解析: 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎫2332=213.答案: B3.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条解析: 由题意可知直线l 方程为x a +yb =1(a <0,b >0),于是⎩⎨⎧-2a +2b =1,12(-a )·b =8,解得-a=b =4,故满足条件的直线l 一共有1条,故选C.答案: C4.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A.102B .10C .5D .10解析: 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴MP ⊥MQ ,∴|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.答案: D5.已知抛物线C 1:x 2=2y 的焦点为F ,以F 为圆心的圆C 2交C 1于A ,B ,交C 1的准线于C ,D ,若四边形ABCD 为矩形,则圆C 2的方程为( )A .x 2+⎝⎛⎭⎫y -122=3 B .x 2+⎝⎛⎭⎫y -122=4 C .x 2+(y -1)2=12D .x 2+(y -1)2=16解析: 如图,连接AC ,BD ,由抛物线的定义与性质可知圆心坐标为F ⎝⎛⎭⎫0,12, 而|F A |=|AD |=|FB |为圆的半径r , 于是A ⎝⎛⎭⎫32r ,12+12r ,而A 在抛物线上,故⎝⎛⎭⎫32r 2=2⎝⎛⎭⎫12+12r , ∴r =2,故选B. 答案: B6.已知点A (-1,0),过点A 可作圆x 2+y 2-mx +1=0的两条切线,则m 的取值范围是________.解析: 由题意得点A (-1,0)在圆外,所以1+m +1>0,所以m >-2,又⎝⎛⎭⎫x -m22+y 2=m 24-1表示圆,所以m 24-1>0⇒m >2或m <-2,所以m >2. 答案: (2,+∞)7.(2017·惠州市第三次调研考试)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0交于两点A ,B ,且△CAB 为等边三角形,则圆C 的面积为________.解析: x 2+y 2-2ax -2y +2=0⇒(x -a )2+(y -1)2=a 2-1,因此圆心C 到直线y =ax的距离为32a 2-1=|a 2-1|a 2+1,所以a 2=7,圆C 的面积为π(a 2-1)2=6π.答案: 6π8.已知圆O :x 2+y 2=1,直线x -2y +5=0上动点P ,过点P 作圆O 的一条切线,切点为A ,则|P A |的最小值为________.解析: 过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线P A ,连接OA ,易知此时|P A |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|12+22= 5.又|OA |=1,所以|P A |min =|OP |2-|OA |2=2. 答案: 29.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. 解析: (1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即a 2-a -b =0.① 又点(-3,-1)在l 1上, ∴-3a +b +4=0.② 由①②得,a =2,b =2.(2)由题意知当a =0或b =0时不成立. ∵l 1∥l 2,∴a b =1-a ,∴b =a 1-a ,故l 1和l 2的方程可分别表示为(a -1)x +y +4(a -1)a =0,(a -1)x +y +a1-a =0,又原点到l 1与l 2的距离相等, ∴4⎪⎪⎪⎪a -1a =⎪⎪⎪⎪a 1-a ,∴a =2或a =23,∴a =2,b =-2或a =23,b =2.10.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.解析: (1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0.则圆C 的方程为x 2+y 2=r 2, 将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2, 令x =2cos θ,y =2sin θ,则PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎫θ+π4-2. 所以PQ →·MQ →的最小值为-4.B 级1.(2017·湖南省五市十校联考)已知函数f (x )=x +sin x (x ∈R ),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( ) A.⎣⎡⎦⎤14,34 B .⎣⎡⎦⎤14,1 C .[1,32-3]D .⎣⎡⎭⎫13,+∞ 解析: 函数f (x )=x +sin x (x ∈R )为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在实数范围内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为半圆及其内部,令k =y x +1=yx -(-1),其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13-(-1)=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max =34,故选A. 答案: A2.已知圆C :(x -1)2+(y -2)2=2,若等边△P AB 的一边AB 为圆C 的一条弦,则|PC |的最大值为________.解析: 已知圆C :(x -1)2+(y -2)2=2,所以圆心为C (1,2),半径r =2,若等边△P AB的一边AB 为圆C 的一条弦,则PC ⊥AB .在△P AC 中,∠APC =30°,由正弦定理得|AC |sin 30°=|PC |sin ∠P AC,所以|PC |=22sin ∠P AC ≤22,故|PC |的最大值为2 2.答案: 2 23.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解析: (1)(坐标法)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2, 整理得x 2+y 2-4x +1=0, 即(x -2)2+y 2=3为所求.(2)(参数法)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0). 设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P , 连接EP ,ED ,NP ,则直线EP :y =x -2. 设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝⎛⎭⎫t +22,t -22. 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝⎛⎭⎫t +22-12+⎝⎛⎭⎫t -222,|ED |2=3,|EP |2=⎝ ⎛⎭⎪⎫|2-t |22,解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3.4.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解析: (1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上. (2)由(1)可得y 1+y 2=2m , x 1+x 2=m (y 1+y 2)+4=2m 2+4, 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4, 所以2m 2-m -1=0, 解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12,圆M 的半径为854, 圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516.。
2018年高考数学(文)二轮复习 专题突破讲义:专题六 解析几何专题六 第3讲
第3讲 圆锥曲线的综合问题1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2017届天津市红桥区二模)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,且过点⎝⎛⎭⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 于A, B 两点,求△OAB 面积的最大值及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎨⎧1a 2+23b 2=1,ca =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴椭圆C 的方程为x 23+y 2=1.(2)①当k 不存在时,x =±32,∴y =±32,∴S △OAB =12×3×32=34.②当k 存在时,设直线方程为y =kx +m , A ()x 1,y 1,B ()x 2,y 2,联立⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,得()1+3k 2x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 1+3k 2,x 1x 2=3m 2-31+3k 2.d =r ⇒4m 2=3()1+k 2.||AB =1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-4×3m 2-31+3k 2=1+k 2·12+36k 2-12m 2(1+3k 2)2=3·1+10k 2+9k 41+6k 2+9k 4=3·1+4k 21+6k 2+9k 4 =3·1+41k 2+9k 2+6≤2,当且仅当1k 2=9k 2,即k =±33时等号成立,此时m =±1.∴S △OAB =12||AB ×r ≤12×2×32=32,∴△OAB 面积的最大值为32, 此时直线方程为y =±33x ±1.思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2017·山东)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2.(1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.解 (1)由椭圆的离心率为22,得a 2=2(a 2-b 2), 又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b2=2,所以a 2=4,b 2=2.因此椭圆C 的方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2). 联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,得(2k 2+1)x 2+4kmx +2m 2-4=0. 由Δ>0,得m 2<4k 2+2,(*) 且x 1+x 2=-4km2k 2+1,因此y 1+y 2=2m2k 2+1,所以D ⎝⎛⎭⎫-2km 2k 2+1,m2k 2+1.又N (0,-m ),所以|ND |2=⎝⎛⎭⎫-2km 2k 2+12+⎝⎛⎭⎫m 2k 2+1+m 2,整理得|ND |2=4m 2(1+3k 2+k 4)(2k 2+1)2.因为|NF |=|m |,所以|ND |2|NF |2=4(k 4+3k 2+1)(2k 2+1)2=1+8k 2+3(2k 2+1)2.令t =8k 2+3,t ≥3, 故2k 2+1=t +14.所以|ND |2|NF |2=1+16t (1+t )2=1+16t +1t +2. 令y =t +1t ,所以y ′=1-1t 2.当t ≥3时,y ′>0,从而y =t +1t 在[3,+∞)上单调递增,因此t +1t ≥103,当且仅当t =3时等号成立,此时k =0, 所以|ND |2|NF |2≤1+3=4.由(*)得-2<m <2且m ≠0,故|NF ||ND |≥12. 设∠EDF =2θ,则sin θ=|NF ||ND |≥12,所以θ的最小值为π6,从而∠EDF 的最小值为π3,此时直线l 的斜率是0.综上所述,当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取得最小值π3.热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2017·长沙市长郡中学模拟)已知抛物线E :y 2=4x 的准线为l ,焦点为F ,O 为坐标原点.(1)求过点O ,F ,且与l 相切的圆的方程;(2)过F 的直线交抛物线E 于A ,B 两点,A 关于x 轴的对称点为A ′,求证:直线A ′B 过定点.(1)解 抛物线E :y 2=4x 的准线l 的方程为x =-1, 焦点坐标为F (1,0),设所求圆的圆心C 为(a ,b ),半径为r, ∵圆C 过O ,F ,∴a =12,∵圆C 与直线l :x =-1相切, ∴r =12-()-1=32.由r =||CO =⎝⎛⎭⎫122+b 2=32,得b =±2.∴过O ,F 且与直线l 相切的圆的方程为⎝⎛⎭⎫x -122+()y ±22=94.(2)证明 方法一 依题意知,直线AB 的斜率存在, 设直线AB 方程为y =k ()x -1,A ()x 1,y 1,B ()x 2,y 2()x 1≠x 2,A ′()x 1,-y 1,联立⎩⎨⎧y =k ()x -1,y 2=4x ,消去y ,得k 2x 2-()2k 2+4x +k 2=0,∴x 1+x 2=2k 2+4k2,x 1x 2=1.∵直线BA ′的方程为y -y 2=y 2+y 1x 2-x 1()x -x 2, ∴令y =0,得x =x 2y 1+x 1y 2y 1+y 2=x 2k ()x 1-1+x 1k ()x 2-1k x 1-1+k x 2-1=2x 1x 2-()x 1+x 2-2+()x 1+x 2=-1 . ∴直线BA ′过定点()-1,0.方法二 设直线AB 的方程为x =my +1, A ()x 1,y 1,B ()x 2,y 2,则A ′()x 1,-y 1.由⎩⎪⎨⎪⎧x =my +1,y 2=4x ,得y 2-4my -4=0, ∴y 1+y 2=4m, y 1y 2=-4. ∵k BA ′=y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1,∴直线BA ′的方程为y -y 2=4y 2-y 1()x -x 2. ∴y =4y 2-y 1(x -x 2)+y 2=4y 2-y 1x +y 2-4x 2y 2-y 1=4y 2-y 1x +y 22-y 1y 2-4x 2y 2-y 1 =4y 2-y 1x +4y 2-y 1 =4y 2-y 1(x +1). ∴直线BA ′过定点(-1,0).思维升华 (1)动线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. (2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→证明定值:将问题转化为证明待证式与参数(某些变量)无关②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.跟踪演练2 (2017届江西省重点中学协作体联考)已知⊙F 1:(x +3)2+y 2=27与⊙F 2:(x -3)2+y 2=3,以F 1,F 2分别为左、右焦点的椭圆C :x 2a 2+y 2b2=1 (a >b >0)经过两圆的交点.(1)求椭圆C 的方程;(2)M ,N 是椭圆C 上的两点,若直线OM 与ON 的斜率之积为-14,试问△OMN 的面积是否为定值?若是,求出这个定值;若不是,请说明理由. 解 (1)设两圆的交点为Q ,依题意有|QF 1|+|QF 2|=33+3=43, 由椭圆定义知,2a =43,解得a 2=12. ∵F 1,F 2分别为椭圆C 的左、右焦点, ∴a 2-b 2=9,解得b 2=3, ∴椭圆C 的方程为x 212+y 23=1.(2)①当直线MN 的斜率不存在时, 设M (x 1,y 1),N (x 1,-y 1). k OM ·k ON =-y 1y 1x 1x 1=-14,∴⎪⎪⎪y 1x 1=12. 又x 2112+y 213=1,∴|x 1|=6,|y 1|=62. ∴S △OMN =12×6×6=3.②当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m , M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 212+y 23=1,得(4k 2+1)x 2+8kmx +4m 2-12=0, 由Δ=64k 2m 2-4(4k 2+1)(4m 2-12)>0, 得12k 2-m 2+3>0,(*)且x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-124k 2+1.∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-12k 24k 2+1.∵k OM ·k ON =y 1y 2x 1x 2=-14,∴m 2-12k 24m 2-12=-14,整理得2m 2=12k 2+3, 代入(*)得m ≠0. ∵|MN |=1+k 2|x 1-x 2| =1+k 2⎝⎛⎭⎫-8km 4k 2+12-4⎝ ⎛⎭⎪⎫4m 2-124k 2+1=1+k248(4k 2+1)-16m 2(4k 2+1)2=61+k 2|m |,原点O 到直线MN 的距离d =|m |1+k2, ∴S △OMN =12|MN |d=12·61+k 2|m |·|m |1+k 2=3(定值). 综上所述,△OMN 的面积为定值3. 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 已知抛物线E 的顶点为原点O ,焦点为圆F :x 2+y 2-4x +3=0的圆心F .经过点F 的直线l 交抛物线E 于A ,D 两点,交圆F 于B ,C 两点,A ,B 在第一象限,C ,D 在第四象限.(1)求抛物线E 的方程;(2)是否存在直线l ,使2|BC |是|AB |与|CD |的等差中项?若存在,求直线l 的方程;若不存在,请说明理由.解 (1)根据已知,设抛物线E 的方程为y 2=2px (p >0). ∵圆F 的方程为(x -2)2+y 2=1, ∴圆心F 的坐标为F (2,0),半径r =1. ∴p2=2,解得p =4. ∴抛物线E 的方程为y 2=8x . (2)∵2|BC |是|AB |与|CD |的等差中项, ∴|AB |+|CD |=4|BC |=4×2r =8, ∴|AD |=|AB |+|BC |+|CD |=10. 若l 垂直于x 轴,则l 的方程为x =2, 代入y 2=8x ,得y =±4. 此时|AD |=|y 1-y 2|=8≠10, 即直线x =2不满足题意;若l 不垂直于x 轴,设l 的斜率为k , 由已知得k ≠0,l 的方程为y =k (x -2).设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -2),y 2=8x ,得k 2x 2-(4k 2+8)x +4k 2=0,∴x 1+x 2=4k 2+8k 2,且Δ=(4k 2+8)2-16k 4=64k 2+64>0,∵抛物线E 的准线为x =-2, ∴|AD |=|AF |+|DF |=(x 1+2)+(x 2+2) =x 1+x 2+4,∴4k 2+8k2+4=10,解得k =±2.∴存在满足要求的直线l ,它的方程为2x -y -4=0或2x +y -4=0. 思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2017届河北省衡水中学押题卷)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的长轴长为6,且椭圆C 与圆M :(x -2)2+y 2=409的公共弦长为4103.(1)求椭圆C 的方程;(2)过点P (0,2)作斜率为k (k ≠0)的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得△ADB 为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.解 (1)由题意可得2a =6,所以a =3.由椭圆C 与圆M: ()x -22+y 2=409的公共弦长为4103,恰为圆M 的直径,可得椭圆C 经过点⎝⎛⎭⎫2,±2103,所以49+409b 2=1,解得b 2=8.所以椭圆C的方程为x 29+y 28=1.(2)直线l 的解析式为y =kx +2,设A ()x 1,y 1,B ()x 2,y 2,AB 的中点为E ()x 0,y 0.假设存在点D ()m ,0,使得△ADB 为以AB 为底边的等腰三角形,则DE ⊥AB . 由⎩⎪⎨⎪⎧y =kx +2,x 29+y 28=1,得()8+9k 2x 2+36kx -36=0,故x 1+x 2=-36k 9k 2+8,所以x 0=-18k 9k 2+8,y 0=kx 0+2=169k 2+8.因为DE ⊥AB ,所以k DE =-1k ,即169k 2+8-0-18k 9k 2+8-m =-1k ,所以m =-2k 9k 2+8=-29k +8k.当k >0时, 9k +8k ≥29×8=122,所以-212≤m <0; 当k <0时, 9k +8k ≤-122,所以0<m ≤212.综上所述,在x 轴上存在满足题目条件的点E ,且点D 的横坐标的取值范围为⎣⎡⎭⎫-212,0∪⎝⎛⎦⎤0,212.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________. 答案 16解析 因为F 为y 2=4x 的焦点, 所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k ,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,且Δ=16k 2+16>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝⎛⎭⎫2k 2+4k 22-4=4(1+k 2)k 2.同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k 2+4(1+k 2) =4⎝⎛⎭⎫1k 2+1+1+k 2 =8+4⎝⎛⎭⎫k 2+1k 2≥8+4×2=16, 当且仅当k 2=1k2,即k =±1时,取得等号.2.(2017·山东)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程;(2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l 的斜率.解 (1)由题意知,e =c a =22,2c =2,所以c =1, 所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎨⎧x 22+y 2=1,y =k 1x -32,得(4k 21+2)x 2-43k 1x -1=0.由题意知,Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=2·1+k 21·1+8k 211+2k 21. 由题意可知,圆M 的半径r 为r =23|AB |=223·1+k 21 1+8k 212k 21+1. 由题设知k 1k 2=24, 所以k 2=24k 1, 因此直线OC 的方程为y =24k 1x . 联立方程⎩⎨⎧x 22+y 2=1,y =24k 1x , 得x 2=8k 211+4k 21,y 2=11+4k 21,因此|OC |=x 2+y 2=1+8k 211+4k 21. 由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r. 而|OC |r =1+8k 211+4k 21223·1+k 21 1+8k 211+2k 21=324·1+2k 211+4k 21 1+k 21, 令t =1+2k 21,则t >1,1t ∈(0,1), 因此|OC |r =32·t 2t 2+t -1=32·12+1t -1t 2=32·1-⎝⎛⎭⎫1t -122+94≥1, 当且仅当1t =12,即t =2时等号成立,此时k 1=±22, 所以sin ∠SOT 2≤12,因此∠SOT 2≤π6, 所以∠SOT 的最大值为π3. 综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22. 押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由. 押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色.解 (1)因为C 1,C 2的焦点重合,所以a 2-3=a 2,所以a 2=4.又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1, 抛物线C 2的方程为y 2=4x .(2)假设存在直线l 使得|PN ||MQ |=2, 则可设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 4=2k 2+4k 2,x 1x 4=1,且Δ=16k 2+16>0, 所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4=4(1+k 2)k 2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0, 所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k 2. 若|PN ||MQ |=2, 则4(1+k 2)k 2=2×12(1+k 2)3+4k 2, 解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.A 组 专题通关1.(2016·全国Ⅰ)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1, 得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,且Δ=144k 2+144>0, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1), 点A 到m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,l 的方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 2.(2017·山西省实验中学模拟)已知椭圆C: y 2a 2+x 2b2=1 (a >b >0)的短轴长为2,且椭圆C 的顶点在圆M :x 2+⎝⎛⎭⎫y -222=12上. (1)求椭圆C 的方程;(2)过椭圆的上焦点作互相垂直的两条弦AB ,CD ,求||AB +||CD 的最小值.解 (1)由题意可得2b =2,所以b =1.椭圆C 的顶点在圆M: x 2+⎝⎛⎭⎫y -222=12上,所以a = 2.故椭圆C 的方程为y 22+x 2=1. (2)当直线AB 的斜率不存在或为零时,||AB +||CD =3 2.当直线AB 的斜率存在且不为零时,设直线AB 的方程为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,y 22+x 2=1, 得()k 2+2x 2+2kx -1=0, 设A ()x 1,y 1,B ()x 2,y 2,由根与系数的关系,得x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2, 所以||AB =22()k 2+1k 2+2, 同理可得||CD =22()k 2+12k 2+1, 所以||AB +||CD =62()k 2+12()2k 2+1()k 2+2. 令t =k 2+1,则t >1, ||AB +||CD =62t 2()2t -1()t +1=62⎝⎛⎭⎫2-1t ⎝⎛⎭⎫1+1t , 而2<⎝⎛⎭⎫2-1t ⎝⎛⎭⎫1+1t ≤94, 所以823≤||AB +||CD <3 2. 综上,823≤||AB +||CD ≤32, 故||AB +||CD 的最小值为823. 3.(2017届太原模拟)已知动点C 到点F (1,0)的距离比到直线x =-2的距离小1,动点C 的轨迹为E .(1)求曲线E 的方程;(2)若直线l :y =kx +m (km <0)与曲线E 相交于A ,B 两个不同点,且OA →·OB →=5,证明:直线l 经过一个定点.(1)解 由题意可得动点C 到点F (1,0)的距离等于到直线x =-1的距离,∴曲线E 是以点(1,0)为焦点,直线x =-1为准线的抛物线,设其方程为y 2=2px (p >0),∴p 2=1,∴p =2,∴动点C 的轨迹E 的方程为y 2=4x .(2)证明 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x ,得k 2x 2+(2km -4)x +m 2=0, ∴x 1+x 2=4-2km k 2,x 1x 2=m 2k 2. ∵OA →·OB →=5,∴x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=m 2+4km k 2=5, ∴m 2+4km -5k 2=0,∴m =k 或m =-5k .∵km <0,m =k 舍去,∴m =-5k ,满足Δ=16(1-km )>0,∴直线l 的方程为y =k (x -5),∴直线l 必经过定点(5,0).4.(2017届福建省泉州市适应性模拟)已知抛物线C :x 2=4y 的焦点为F ,直线l :y =kx +a (a >0)与抛物线C 交于A ,B 两点.(1)若直线l 过焦点F ,且与圆x 2+(y -1)2=1交于D ,E (其中A ,D 在y 轴同侧),求证:|AD |·|BE |是定值;(2)设抛物线C 在A 和B 点的切线交于点P ,试问:y 轴上是否存在点Q ,使得APBQ 为菱形?若存在,请说明理由,并求此时直线l 的斜率和点Q 的坐标.解 抛物线C :x 2=4y 的焦点为F (0,1),设A (x 1,y 1),B (x 2,y 2),联立x 2=4y 与y =kx +a ,得x 2-4kx -4a =0,则Δ=16(k 2+a )>0,且x 1+x 2=4k ,x 1x 2=-4a .(1)证明 若直线l 过焦点F ,则a =1,则x 1+x 2=4k ,x 1x 2=-4.由条件可知圆x 2+(y -1)2=1的圆心为F (0,1),半径为1,由抛物线的定义可知,|AF |=y 1+1,|BF |=y 2+1,则|AD |=|AF |-1=y 1,|BE |=|BF |-1=y 2,|AD |·|BE |=y 1y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=-4k 2+4k 2+1=1,(或|AD |·|BE |=y 1y 2=x 214·x 224=(x 1x 2)216=(-4)216=1) 即|AD |·|BE |为定值,定值为1.(2)解 方法一 当直线l 的斜率为0,且Q 的坐标为(0,3a )时,APBQ 为菱形.理由如下: 由x 2=4y ,得y =14x 2,则y ′=12x ,则抛物线C 在A ⎝⎛⎭⎫x 1,14x 21处的切线为y -14x 21=12x 1()x -x 1,即y =12x 1x -14x 21.① 同理抛物线C 在B ⎝⎛⎭⎫x 2,14x 22处的切线为y =12x 2x -14x 22.② 联立①②,解得x =x 1+x 22=2k ,代入①式解得y =x 1x 24=-a ,即P ()2k ,-a .又x 1+x 22=2k ,所以y 1+y 22=k ⎝⎛⎭⎫x 1+x 22+a =2k 2+a ,即AB 的中点为R ()2k ,2k 2+a .则有PR ⊥x 轴.若APBQ 为菱形,则PR ⊥AB ,所以k =0,此时P ()0,-a ,R ()0,a ,Q ()0,3a .方法二 设A ()x 1,y 1,B ()x 2,y 2,Q ()0,y 0,由x 2=4y ,得y =14x 2,则y ′=12x,若APBQ 为菱形,则AQ ∥BP ,BQ ∥AP ,则k AQ =y 1-y 0x 1=12x 2,k BQ =y 2-y 0x 2=12x 1, 即y 1-y 0=12x 1x 2,y 2-y 0=12x 1x 2,则y 1=y 2,∴k =0, ∴A ()-2a ,a ,B ()2a ,a ,则抛物线C 在A ()-2a ,a 处的切线为y -a =-a ()x +2a ,即y =-ax -a ,① 同理抛物线C 在B ()2a ,a 处的切线为y =ax -a , ②联立①②得P ()0,-a .又AB 的中点为R ()0,a ,所以Q ()0,3a .方法三 设A ()x 1,y 1,B ()x 2,y 2,Q ()0,y 0,由x 2=4y ,得y =14x 2,则y ′=12x, 若APBQ 为菱形,则AQ ∥BP ,BQ ∥AP ,则k AQ =y 1-y 0x 1=12x 2,k BQ =y 2-y 0x 2=12x 1, 即y 1-y 0=12x 1x 2,y 2-y 0=12x 1x 2, 则y 1=y 2,∴k =0, 此时直线AB: y =kx +a =a ,则y 0=-12x 1x 2+y 1=-12·()-4a +a =3a , 所以Q ()0,3a .B 组 能力提高5.如图,抛物线C :y 2=2px 的焦点为F ,抛物线上一定点Q (1,2).(1)求抛物线C 的方程及准线l 的方程;(2)过焦点F 的直线(不经过Q 点)与抛物线交于A ,B 两点,与准线l 交于点M ,记QA ,QB ,QM 的斜率分别为k 1,k 2,k 3,问是否存在常数λ,使得k 1+k 2=λk 3成立,若存在,求出λ的值;若不存在,请说明理由.解 (1)把Q (1,2)代入y 2=2px ,得2p =4,所以抛物线方程为y 2=4x ,准线l 的方程为x =-1.(2)由条件可设直线AB 的方程为y =k (x -1),k ≠0.由抛物线准线l :x =-1可知,M (-1,-2k ).又Q (1,2),所以k 3=2+2k 1+1=k +1, 即k 3=k +1.把直线AB 的方程y =k (x -1),代入抛物线方程y 2=4x ,并整理,可得k 2x 2-2(k 2+2)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系知,x 1+x 2=2k 2+4k 2,x 1x 2=1,且Δ=16(k 2+1)>0, 又Q (1,2),则k 1=2-y 11-x 1,k 2=2-y 21-x 2. 因为A ,F ,B 共线,所以k AF =k BF =k ,即y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=2-y 11-x 1+2-y 21-x 2=y 1x 1-1+y 2x 2-1-2(x 1+x 2-2)x 1x 2-(x 1+x 2)+1=2k -2⎝⎛⎭⎫2k 2+4k 2-21-2k 2+4k 2+1=2k +2, 即k 1+k 2=2k +2.又k 3=k +1,可得k 1+k 2=2k 3.即存在常数λ=2,使得k 1+k 2=λk 3成立.6.(2017届九江模拟)如图所示,已知椭圆C :x 2a 2+y 2b 2=1(a >b >c )的焦距为 2,直线y =x 被椭圆C 截得的弦长为433. (1)求椭圆C 的方程;(2)设点M ()x 0,y 0是椭圆C 上的动点,过原点O 引两条射线l 1,l 2与圆M :()x -x 02+()y -y 02=23分别相切,且l 1,l 2的斜率k 1,k 2存在. ①试问k 1k 2是否为定值?若是,求出该定值,若不是,说明理由;②若射线l 1,l 2与椭圆C 分别交于点A ,B ,求||OA ·||OB 的最大值. 解 (1)依题意得c =1,设直线y =x 与椭圆C 相交于P ,Q 两点,则||OP =233,不妨设P ⎝⎛⎭⎫63,63, ∴23a 2+23b2=1,又a 2-b 2=1,解得a =2,b =1, ∴椭圆C 的方程为x 22+y 2=1. (2)①设射线l 方程为y =kx ,A ()x 1,y 1,B ()x 2,y 2,则||kx 0-y 01+k 2=63,两边平方整理得()3x 20-2k 2-6x 0y 0k +3y 20-2=0, ∵y 20=1-x 202, ∴k 1k 2=3y 20-23x 20-2=3⎝⎛⎭⎫1-x 202-23x 20-2=-12. ②联立⎩⎪⎨⎪⎧x 2+2y 2=2,y =k 1x ,消去y 得x 2=21+2k 21,||OA 2=2+2k 211+2k 21, 同理||OB 2=2+2k 221+2k 22, ∴||OA 2·||OB 2=2+2k 211+2k 21·2+2k 221+2k 22 =4·()k 1k 22+()k 21+k 22+14()k 1k 22+2()k 21+k 22+1=4()k 21+k 22+52()k 21+k 22+2 =2+12k 21+12k 21+2≤94, 当且仅当k 21=12时,取等号, ∴(||OA ·||OB )max =32.。
2018年高考数学二轮复习 专题六 解析几何 第3讲 圆锥曲线的综合问题课件 理
(2)M,N是椭圆C上的两点,若直线OM与ON的斜率之积为-14 ,试问 △OMN的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
解答
热点三 探索性问题 1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型, 解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步 骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数 法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、 直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.
思维升华 解答
跟踪演练 3 (2017 届河北省衡水中学押题卷)已知椭圆 C:ax22+by22=1 (a>b>0)的长轴长为 6,且椭圆 C 与圆 M:(x-2)2+y2=490的公共弦长为 4 10
3. (1)求椭圆C的方程;
解答
(2)过点P(0,2)作斜率为k (k≠0)的直线l与椭圆C交于两点A,B,试判断 在x轴上是否存在点D,使得△ADB为以AB为底边的等腰三角形.若存在, 求出点D的横坐标的取值范围,若不存在,请说明理由.
12
解答
(2)如图,动直线 l:y=k1x- 23交椭圆 E 于 A,B 两点,C 是椭圆 E 上一
点,直线
OC
的斜率为
k2,且
k1k2=
2 4 .M
是线段
OC
延长线上一点,且
|MC|∶|AB|=2∶3,⊙M 的半径为|MC|,OS,OT 是⊙M 的两条切线,切
点分别为 S,T.求∠SOT 的最大值,并求取得最大值时直线 l 的斜率.
例2 (2017·长沙市长郡中学模拟)已知抛物线E:y2=4x的准线为l,焦 点为F,O为坐标原点. (1)求过点O,F,且与l相切的圆的方程;
2018届高三数学文二轮复习课件:第1部分专题六 解析几何 1-6-2 精品
类型二 双曲线标准方程及性质
[例 2] (1)已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,
△ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为( D )
A. 5
B.2
C. 3
D. 2
解析:基本法:设双曲线 E 的方程为ax22-by22=1. 如图所示,可知|AB|=|BM|=2a,∠ABM=120°,则∠MBx=60°.
∴e=ac= 1+ab22= 2. 速解法:作 MD⊥x 轴于 D 点,在 Rt△MBD 中,BD=a,MD= 3 a ∴M(2a, 3a)在双曲线上,∴a2=b2,即 a=b. 故曲线为等轴双曲线,所以 e= 2. 答案:D
方略点评:基本法是根据直线与双曲线联立方程组求 M 点,并根 据离心率定义求解.速解法是利用解三角形求 M 点,并根据等轴双 曲线定义求 c.
(2)已知 F 是双曲线 C:x2-y82=1 的右焦点,P 是 C 的左支上一点, A(0,6 6).当△APF 周长最小时,该三角形的面积为________.
解析:基本法:由已知得双曲线的右焦点 F(3,0). 设双曲线的左焦点为 F′,则 F′(-3,0).由双曲线的定义及已知 得|PF|=2a+|PF′|=2+|PF′|.△APF 的周长最小,即|PA|+|PF| 最小.|PA|+|PF|=|PA|+2+|PF′|≥|AF′|+2=17,即当 A、P、 F′三点共线时,△APF 的周长最小.
A.1
B.2
C.4ቤተ መጻሕፍቲ ባይዱ
D.8
解析:基本法:由 y2=x 得 2p=1,即 p=12,因此焦点 F14,0, 准线方程为 l:x=-14,设点 A 到准线的距离为 d,由抛物线的定 义可知 d=|AF|,从而 x0+14=54x0,解得 x0=1,故选 A. 速解法:如果 x0=1,则|AF|=1+14=54,适合|AF|=54x0,故选 A. 答案:A
2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题六 解析几何 1-6-3
限时规范训练十七 圆锥曲线的综合问题限时45分钟,实际用时分值80分,实际得分解答题(本题共5小题,每小题12分,共60分)1.(2017·高考全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q =(-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .2.(2017·黑龙江哈尔滨模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1(-3,0),F 2(3,0),点P 在椭圆C 上,满足|PF 1|=7|PF 2|,tan∠F 1PF 2=4 3.(1)求椭圆C 的方程.(2)已知点A (1,0),试探究是否存在直线l :y =kx +m 与椭圆C 交于D ,E 两点,且使得|AD |=|AE |?若存在,求出k 的取值范围;若不存在,请说明理由.解:(1)由|PF 1|=7|PF 2|,PF 1+PF 2=2a 得PF 1=7a 4,PF 2=a 4,由cos 2∠F 1PF 2=11+tan 2∠F 1PF 2=11+32=149,又由余弦定理得cos∠F 1PF 2=17=⎝ ⎛⎭⎪⎫7a 42+⎝ ⎛⎭⎪⎫a 42-322×7a 4×a 4,所以a =2,故所求C 的方程为x 24+y 2=1.(2)假设存在直线l 满足题设,设D (x 1,y 1),E (x 2,y 2),将y =kx +m 代入x 24+y 2=1并整理得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ=64k 2m 2-4(1+4k 2)(4m 2-4)=-16(m 2-4k 2-1)>0,得4k 2+1>m 2①,又x 1+x 2=-8km 1+4k 2设D ,E 中点为M (x 0,y 0),M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2,k AM ·k =-1,得m =-1+4k 23k ②,将②代入①得4k 2+1>⎝ ⎛⎭⎪⎫1+4k 23k 2,化简得20k 4+k 2-1>0⇒(4k 2+1)(5k 2-1)>0,解得k >55或k <-55,所以存在直线l ,使得|AD |=|AE |,此时k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-55∪⎝ ⎛⎭⎪⎫55,+∞.3.(2017·广州五校联考)已知双曲线M :y 2a 2-x 2b 2=1(a >0,b >0)的上焦点为F ,上顶点为A ,B 为虚轴的端点,离心率e =233,且S △ABF =1-32.抛物线N 的顶点在坐标原点,焦点为F . (1)求双曲线M 和抛物线N 的方程.(2)设动直线l 与抛物线N 相切于点P ,与抛物线的准线相交于点Q ,则以PQ 为直径的圆是否恒过y 轴上的一个定点?如果经过,试求出该点的坐标,如要不经过,试说明理由.解:(1)在双曲线M 中,c =a 2+b 2,由e =233,得a 2+b 2a =233,解得a =3b ,故c =2b .所以S △ABF =12(c -a )×b =12(2b -3b )×b =1-32,解得b =1. 所以a =3,c =2.所以双曲线M 的方程为y 23-x 2=1,其上焦点为F (0,2),所以抛物线N 的方程为x 2=8y .(2)由(1)知y =18x 2,故y ′=14x ,抛物线的准线方程为y =-2.设P (x 0,y 0),则x 0≠0,且直线l 的方程为y -y 0=14x 0(x -x 0),即y =14x 0x -18x 20.由⎩⎪⎨⎪⎧y =14x 0x -18x 20,y =-2,得⎩⎪⎨⎪⎧x =x 20-162x 0,y =-2,所以Q ⎝ ⎛⎭⎪⎫x 20-162x 0,-2.假设存在点R (0,y 1),使得以PQ 为直径的圆恒过该点,也就是RP →·RQ →=0对任意的x 0,y 0恒成立.又RP →=(x 0,y 0-y 1),RQ →=⎝ ⎛⎭⎪⎫x 20-162x 0,-2-y 1,由RP →·RQ →=0,得x 0×x 20-162x 0+(y 0-y 1)(-2-y 1)=0,整理得x 20-162-2y 0-y 0y 1+2y 1+y 21=0,即(y 21+2y 1-8)+(2-y 1)y 0=0.(☆)由于(☆)式对满足y 0=18x 20(x 0≠0)的任意x 0,y 0恒成立,所以⎩⎪⎨⎪⎧2-y 1=0,y 21+2y 1-8=0,解得y 1=2.故存在y 轴上的定点R (0,2),使得以PQ 为直径的圆恒过该点.4.已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,F 2的坐标满足圆Q 方程(x -2)2+(y -1)2=1,且圆心Q 满足|QF 1|+|QF 2|=2a .(1)求椭圆C 1的方程.(2)过点P (0,1)的直线l 1交椭圆C 1于A ,B 两点,过P 与l 1垂直的直线l 2交圆Q 于C ,D 两点,M 为线段CD 中点,求△MAB 面积的取值范围.解:(1)方程(x -2)2+(y -1)2=1为圆,此圆与x 轴相切,切点为F 2(2,0),所以c =2,即a 2-b 2=2,且F 2(2,0),F 1(-2,0),|QF 1|=|F 1F 2|2+|QF 2|2=22+12=3,又|QF 1|+|QF 2|=3+1=2a .所以a =2,b 2=a 2-c 2=2,所以椭圆C 1的方程为x 24+y 22=1.(2)当l 1平行x 轴时,l 2与圆Q 无公共点,从而△MAB 不存在; 所以设l 1:x =t (y -1),则l 2:tx +y -1=0.由⎩⎪⎨⎪⎧x 24+y 22=1,x =t y -消去x 得(t 2+2)y 2-2t 2y +t 2-4=0,则|AB |=1+t 2|y 1-y 2|=2+t22t 2+t 2+2.又圆心Q (2,1)到l 2的距离d 1=|2t |1+t2<1得t 2<1.又MP ⊥AB ,QM ⊥CD ,所以M 到AB 的距离即Q 到AB 的距离,设为d 2,即d 2=|2-t +t |1+t 2=21+t 2. 所以△MAB 面积S =12|AB |·d 2=2t 2+4t 2+2,令u =t 2+4∈[2,5),则S =f (u )=2u u 2-2=2u -2u∈⎝ ⎛⎦⎥⎤253,2. 所以△MAB 面积的取值范围为⎝⎛⎦⎥⎤253,2. 5.(2017·山东潍坊模拟)如图,点O 为坐标原点,点F 为抛物线C 1:x 2=2py (p >0)的焦点,且抛物线C 1上点P 处的切线与圆C 2:x 2+y 2=1相切于点Q .(1)当直线PQ 的方程为x -y -2=0时,求抛物线C 1的方程;(2)当正数p 变化时,记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝ ⎛⎭⎪⎫x 0,x 202p ,由x 2=2py (p >0)得,y =x 22p ,求导得y ′=x p .因为直线PQ 的斜率为1,所以x 0p =1且x 0-x 202p-2=0,解得p =22,所以抛物线C 1的方程为x 2=42y .(2)因为点P 处的切线方程为:y -x 202p =x 0p(x -x 0),即2x 0x -2py -x 20=0,根据切线又与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由4p 2=x 40-4x 20>0,得|x 0|>2.由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,x 2+y 2=1,解得Q ⎝ ⎛⎭⎪⎫2x 0,4-x 202p ,所以|PQ |=1+k 2|x P -x Q |=1+x 20p 2⎪⎪⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ⎪⎪⎪⎪⎪⎪x 20-2x 0=14x 40-x 20+x 20p ×⎪⎪⎪⎪⎪⎪x 20-2x 0=|x 0|2p(x 20-2). 点F ⎝ ⎛⎭⎪⎫0,p 2到切线PQ 的距离是d =|-p 2-x 20|4x 20+4p 2= 12x 20+p 2=12x 20+14x 40-x 20=x 204,所以S 1=12|PQ |·d =|x 30|16p(x 20-2),S 2=12|OF ||x Q |=p2|x 0|, 所以S 1S 2=x 40x 20-8p 2=x 40x 20-x 40-4x 20=x 20x 20-x 20-=x 20-42+4x 20-4+3≥22+3, 当且仅当x 20-42=4x 20-4时取“=”号, 即x 20=4+22,此时,p =2+22,所以S 1S 2的最小值为3+2 2.。
2018届高三数学二轮复习 第一篇 专题突破 专题六 解析几何刺 第2讲 椭圆、双曲线、抛物线第1课时 圆锥曲线
因此H
2
t
2
.
,
p
2
t
所以N为OH的中点,即 | O H=2| .
|O N |
(2)直线MH与C除H以外没有其他公共点.
理由如下:
直线MH的方程为y-t= p x,即x=2 t (y-t).
2t
p
代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,
2
× 3 =2 .3 故选C.
2
考点二 圆锥曲线的几何性质(高频考点)
命题点 1.求椭圆、双曲线的离心率或离心率的范围; 2.由圆锥曲线的性质求圆锥曲线的标准方程; 3.求双曲线的渐近线方程.
1.椭圆、双曲线中,a,b,c之间的关系
(1)在椭圆中:a2=b2+c2,离心率为e= c = a
图(1) 当点M运动到短轴的端点时,∠AMB取最大值,此时∠AMB≥120°,则|MO|≤ 1,即0<m≤1; 当m>3时,椭圆C的长轴在y轴上,如图(2),A(0, m),B(0,- ),Mm ( ,0),3
图(2) 当点M运动到短轴的端点时,∠AMB取最大值,此时∠AMB≥120°,则|OA| ≥3,即 m≥3,即m≥9. 综上,m∈(0,1]∪[9,+∞),故选A. (2)如图,在圆O中,F1F2为直径,P是圆O上一点,所以PF1⊥PF2,设以OF1为
+|MF|+|NF|=|MN|+(2 5 -|ME|)+(2 -5|NE|).因为|ME|+|NE|≥|MN|,所以|MN|-
|ME|-|NE|≤0,当直线MN过点E时取等号,所以L=4 5+|MN|-|ME|-|NE|≤
2018年高考数学二轮总复习 第一部分 专题攻略 专题六 解析几何 6.3 圆锥曲线的综合问题课件 文
2.(2016·北京卷)已知椭圆 C:ax22+by22=1(a>b>0)的离心率为
23,A(a,0),B(0,b),O(0,0),△OAB 的面积为 1. (1)求椭圆 C 的方程; (2)设 P 是椭圆 C 上一点,直线 PA 与 y 轴交于点 M,直线 PB
与 x 轴交于点 N.求证:|AN|·|BM|为定值.
又
P
到直线
AB
的距离为
d=
|m| , 3
所以
S△PAB
=
1 2
|AB|·d=
3 2
·
4-m22
·
|m| 3
=
1 2
4-m22·m2
=
1 22
m28-m2
≤ 2
1
2·m2+82-m2=
2.
当且仅当 m=±2∈(-2 2,2 2)时取等号,所以(S△PAB)max= 2.
考点 2 圆锥曲线中的定点、定值问题
考点 1 圆锥曲线中的范围、最值问题
例 1(2017·浙江卷)如图,已知抛物线 x2=y,点 A-12,14, B32,94,抛物线上的点 P(x,y)-12<x<32.过点 B 作直线 AP 的垂线, 垂足为 Q.
(1)求直线 AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值.
因为|PA|= 1+k2x+12= 1+k2(k+1), |PQ|= 1+k2(xQ-x)=-k-1k2+k+1 12, 所以|PA|·|PQ|=-(k-1)(k+1)3. 令 f(k)=-(k-1)(k+1)3, 因为 f′(k)=-(4k-2)(k+1)2,
所以 f(k)在区间-1,12上单调递增,12,1上单调递减, 因此当 k=12时,|PA|·|PQ|取得最大值2176.
2018届高三数学(文)二轮复习课件:专题六 解析几何6.3
题型一 圆锥曲线中的最值、范围问题 (2017·浙江卷)如图,已知抛物线 x2=y,点 A-12,14,B32,94,抛物
线上的点 P(x,y)-12<x<32. 过点 B 作直线 AP 的垂线,垂足为 Q. (1)求直线 AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值.
∴x20-4≠0,Δ>0,k1k2=yx2020- -44. ∵点 R(x0,y0)在椭圆 C 上,∴1x202 +y602=1,即 y02=6-12x02, ∴k1k2=2x-20-12x420=-12. 即 k1k2 的定值为-12.
(3)|OP|2+|OQ|2 是定值 18.
y=k1x 设 P(x1,y1),Q(x2,y2),联立得1x22 +y62=1
解析: (1)∵|PF1|+|PF2|=4, ∴2a=4,a=2.∴椭圆 E:x42+by22=1. 将 P1,32代入可得 b2=3, ∴椭圆 E 的方程为x42+y32=1.
(2)①当 AC 的斜率为零或斜率不存在时,|A1C|+|B1D|=13+14=172; ②当 AC 的斜率 k 存在且 k≠0 时,AC 的方程为 y=k(x+1), 代入椭圆方程x42+y32=1,并化简得(3+4k2)x2+8k2x+4k2-12=0. 设 A(x1,y1),C(x2,y2), 则 x1+x2=-3+8k42k2,x1·x2=43k+2-4k122. |AC|= 1+k2|x1-x2|= 1+k2[x1+x22-4x1x2]=123+1+4kk22.
即(2k+1)·44mk22+-14+(m-1)·4-k28+km1=0,解得 k=-m+2 1. 当且仅当 m>-1 时,Δ>0, 于是 l:y=-m+2 1x+m, 即 y+1=-m+2 1(x-2), 所以 l 过定点(2,-1).
高考数学大二轮总复习 增分策略 专题六 解析几何 第3讲 圆锥曲线的综合问题
S P F1Q =12·|F1F2|·|y1-y2|=12
k2+k4 3+4k22,
令 t=3+k2,∴t>3,k2=t-4 3,
∴S =3 P F1Q -31t +132+43,
∵0<1t <13,∴S P F1Q ∈(0,3),
∴当直线PQ与x轴垂直时 S PF1Q 最大,且最大面积为3. 设△PF1Q内切圆半径为r, 则 S P F1Q =12(|PF1|+|QF1|+|PQ|)·r=4r≤3. 即 rmax=34,此时直线 PQ 与 x 轴垂直,△PF1Q 内切圆面积
因此 2c=|F1F2|= |PF1|2+|PF2|2 = 2+ 22+2- 22=2 3, 即 c= 3,从而 b= a2-c2=1. 故所求椭圆的标准方程为x42+y2=1.
(2)若|PQ|=λ|PF1|,且34≤λ<43,试确定椭圆离心率 e 的取值 范围. 解 如图,由PF1⊥PQ,|PQ|=λ|PF1|, 得|QF1|= |PF1|2+|PQ|2= 1+λ2|PF1|.
考情考向分析
1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置 关系为载体,以参数处理为核心,考查范围、最值问 题,定点、定值问题,探索性问题. 2.试题解答往往要综合应用函数与方程、数形结合、 分类讨论等多种思想方法,对计算能力也有较高要求, 难度较大.
热点分类突破 热点一 范围、最值问题
圆锥曲线中的范围、最值问题,可以转化为函数的最值问 题(以所求式子或参数为函数值),或者利用式子的几何意 义求解.
则 x1+x2= 1+2k2 ,x1x2= 1+2k2 ,
12
从而直线AP,AQ的斜率之和 kAP+kAQ=y1x+1 1+y2x+2 1=kx1+x12-k+kx2+x22-k =2k+(2-k)x11+x12=2k+(2-k)x1x+1x2x2
2018届高三数学(理)二轮复习专题集训:专题六 解析几何6.3
A 级1.(2017·湖北省七市(州)联考)双曲线-=1(a ,b >0)的离心率为,左、右焦点分x 2a 2y 2b 23别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( )A.-y 2=1B .x 2-=1x 22y 22C .x 2-=1D .-y 2=1y 23x 23解析: ∵∠F 1PF 2的平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|PQ |,而|PF 1|-|PF 2|=2a ,∴|PQ |-|PF 2|=2a ,即|F 2Q |=2=2a ,解得a =1.又e ==⇒c =⇒b 2=c 2-a 2=2,∴双曲线的方程为x 2-=1.故选B.ca 33y 22答案: B2.(2017·云南省第一次统一检测)抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若·=-4,则点A 的坐标是( )OA→ AF → A .(-1,2)或(-1,-2) B .(1,2)或(1,-2)C .(1,2)D .(1,-2)解析: 设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-.曲线E 的方程p2可化为(x -3)2+(y +2)2=16,则有3+=4,解得p =2,所以抛物线M 的方程为p2y 2=4x ,F (1,0).设A ,则=,=,所以·=(y 204,y 0)OA → (y 204,y 0)AF → (1-y 204,-y 0)OA → AF → y 204-y =-4,解得y 0=±2,所以x 0=1,所以点A 的坐标为(1,2)或(1,-2),故选B.(1-y 204)20答案: B3.(2017·成都市第二次诊断性检测)如图,抛物线y 2=4x 的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使|OA |=|AC |,过点C ,D 作y 轴的垂线,垂足分别为点E ,G ,则|EG |的最小值为________.解析: 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则|EG |=y 4-y 3=y 2-2y 1.因12为AB 为抛物线y 2=4x 的焦点弦,所以y 1y 2=-4,所以|EG |=y 2-2×=y 2+≥212(-4y 2)128y 2=4,当且仅当y 2=,即y 2=4时取等号,所以|EG |的最小值为4.12y 2×8y 2128y 2答案: 44.(2017·郑州市第二次质量预测)已知双曲线C 2与椭圆C 1:+=1具有相同的焦x 24y 23点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为________.解析: 设双曲线C 2的方程为-=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由x 2a 2y 2b 2Error!,解得交点的坐标满足Error!,由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=4·=8··≤8·4a 23(1-a 2)3a 21-a 23=4,当且仅当a 2=1-a 2,即a 2=时,取等号,此时双曲线的方程为a 2+1-a 22312-=1,离心率e =.x 212y 2122答案: 25.(2017·郑州市第二次质量预测)已知动圆M 恒过点(0,1),且与直线y =-1相切.(1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.解析: (1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线,则=1,p =2.p2∴圆心M 的轨迹方程为x 2=4y .(2)证明:设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2),联立得Error!⇒x 2-4kx +8=0,∴Error!k AC ===,直线AC 的方程为y -y 1=(x -x 1).y 1-y 2x 1+x 2x 214-x 24x 1+x 2x 1-x 24x 1-x 24即y =y 1+(x -x 1)=x -+=x +,x 1-x 24x 1-x 24x 1(x 1-x 2)4x 214x 1-x 24x 1x 24∵x 1x 2=8,∴y =x +=x +2,即直线AC 恒过点(0,2).x 1-x 24x 1x 24x 1-x 246.(2017·惠州市第三次调研考试)已知椭圆C :+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-1,0),F 2(1,0),点A在椭圆C 上.(1,22)(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =上找到一点P ,在椭圆C 上找到一点Q ,满足=?若存在,求出直线的方程;53PM→ NQ → 若不存在,说明理由.解析: (1)设椭圆C 的焦距为2c ,则c =1,因为A在椭圆C 上,所以2a =|AF 1|+|AF 2|=2,(1,22)2因此a =,b 2=a 2-c 2=1,故椭圆C 的方程为+y 2=1.2x 22(2)不存在满足条件的直线,证明如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P,Q (x 4,y 4),MN 的中点为D (x 0,y 0),(x 3,53)由Error!消去x ,得9y 2-2ty +t 2-8=0,所以y 1+y 2=,且Δ=4t 2-36(t 2-8)>0,2t9故y 0==,且-3<t <3.y 1+y 22t9由=得=(x 4-x 2,y 4-y 2),PM → NQ → (x 1-x 3,y 1-53)所以有y 1-=y 4-y 2,y 4=y 1+y 2-=t -.53532953(也可由=知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,DPM→ NQ →也为线段PQ 的中点,所以y 0==,可得y 4=)53+y 42t 92t -159又-3<t <3,所以-<y 4<-1,73与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.因此不存在满足条件的直线.B 级1.(2017·新疆第二次适应性检测)已知F (1,0),直线l :x =-1,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且·=·.QP→ QF → FP → FQ → (1)求动点P 的轨迹G 的方程;(2)点F 关于原点的对称点为M ,过点F 的直线与G 交于A ,B 两点,且AB 不垂直于x 轴,直线AM 交曲线G 于点C ,直线BM 交曲线G 于点D .①证明直线AB 与直线CD 的倾斜角互补;②直线CD 是否经过定点?若经过定点,求出这个定点,否则,说明理由.解析: (1)设点P (x ,y ),则Q (-1,y ),由F (1,0)及·=·,得QP→ QF → FP → FQ → (x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x ,所以动点P 的轨迹G 的方程为y 2=4x .(2)由题易知点F 关于原点的对称点为M (-1,0),设过点F 的直线AB 的方程为x =ny +1(n ≠0),联立方程得Error!消去x ,得y 2-4ny -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-4.设直线AM 的方程为x =my -1,联立方程得Error!消去x ,得y 2-4my +4=0,设C (x 3,y 3),则y 1y 3=4,即y 3=,4y 1易得A ,C ,同理可得B ,D .(y 214,y 1)(4y 21,4y 1)(y 24,y 2)(4y 2,4y 2)①∵k AB ==,k CD ===,y 1-y 2y 214-y 244y 1+y 24y 1-4y 24y 21-4y 2y 1y 2y 1+y 2-4y 1+y 2∴k AB +k CD =0,设直线AB ,CD 的倾斜角分别为α,β,则tan α=tan (π-β),又0<α<π,0<β<π,且α,β≠,π2∴α=π-β,即α+β=π.∴直线AB 与直线CD 的倾斜角互补.②易知直线CD 的方程y =-+,4y 1+y 2(x -4y 21)4y 1令y =0,得x =+===1,y 1+y 2y 14y 21y 21+y 1y 2+4y 21y 21y 21∴直线CD 过定点(1,0).2.(2017·东北四市高考模拟)椭圆C :+=1(a >b >0)的长轴长为2,P 为椭圆C x 2a 2y 2b 22上异于顶点的一个动点,O 为坐标原点,A 2为椭圆C 的右顶点,点M 为线段PA 2的中点,且直线PA 2与直线OM 的斜率之积恒为-.12(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1且不与坐标轴垂直的直线l 交椭圆C 于A ,B 两点,线段AB 的垂直平分线与x 轴交于点N ,点N 的横坐标的取值范围是,求|AB |的取值范围.(-14,0)解析: (1)由已知得2a =2,a =,22设点P (x 0,y 0),x 0≠±a 且x 0≠0,点A 1为椭圆C 的左顶点,∵k OM =kPA 1,∴kPA 2×k OM =kPA 2×kPA 1=×=,y 0x 0-a y 0x 0+a y 20x 20-a 2又P (x 0,y 0)在椭圆上,∴+=1,x 20a 2y 20b 2∴kPA 2×k OM =-=-,∴=,∴b 2=1,b 2a 212b 2a 212∴椭圆C 的方程为+y 2=1.x 22(2)设直线l :y =k (x +1),联立直线与椭圆方程,得Error!,消去y ,得(2k 2+1)x 2+4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),则Error!∴y 1+y 2=k (x 1+x 2+2)=.2k2k 2+1记AB 的中点为Q ,则Q,(-2k 22k 2+1,k2k 2+1)∴直线QN 的方程为y -=-=-x -,k 2k 2+11k(x +2k 22k 2+1)1k 2k2k 2+1∴N,由已知得-<-<0,(-k 22k 2+1,0)14k 22k 2+1∴0<2k 2<1,∴|AB |=|x 1-x 2|=×=×=1+k 21+k 2(-4k 22k 2+1)2-4×2k 2-22k 2+11+k 2221+k 22k 2+1,2(1+12k 2+1)∵<<1,∴|AB |∈.1212k 2+1(322,22)。
2018年高考数学(文)二轮复习+专题突破讲义:专题六 解析几何专题六+第2讲
第2讲 椭圆、双曲线、抛物线1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率). 2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M . 2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)(2017·湛江模拟)已知双曲线x 2a 2-y 23=1(a >0)的一个焦点与抛物线y 2=8x 的焦点重合,则a 等于( ) A .1 B .2 C.13 D.19 答案 A解析 抛物线y 2=8x 的焦点为F ()2,0,在双曲线x 2a 2-y 23=1(a >0)中, c =2,c 2=4,b 2=3,所以a 2=c 2-b 2=4-3=1, 所以a =1,故选A.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( ) A .y 2=9x B .y 2=6x C .y 2=3xD .y 2=3x 答案 C解析 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°,在Rt △ACE 中, ∵||AE =|AF |=3,||AC =3+3a ,∴2||AE =||AC ,即3+3a =6,从而得a =1,||FC =3a=3.∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C.思维升华 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1 (1)(2017届沈阳市东北育才学校模拟)已知双曲线与椭圆x 29+y 225=1的焦点相同,且它们的离心率的乘积等于85,则此双曲线的方程为( )A.x 24-y 212=1 B.y 24-x 212=1 C.x 212-y 24=1 D.y 212-x 24=1 答案 B解析 由题意得c =4,4a ×45=85⇒a =2,∴b 2=12.又双曲线的焦点在y 轴上,∴双曲线的方程为y 24-x 212=1,故选B. (2)△ABC 的两个顶点为A (-4,0),B (4,0),△ABC 的周长为18,则C 点轨迹方程为( ) A.x 216+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.y 216+x 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 答案 D解析 ∵△ABC 的两顶点A (-4,0),B (4,0),周长为18,∴|AB |=8,|BC |+|AC |=10.∵10>8,∴点C 到两个定点的距离之和等于定值,满足椭圆的定义,∴点C 的轨迹是以A ,B 为焦点的椭圆.∴2a =10,2c =8,即a =5,c =4,∴b =3.∴C 点的轨迹方程为x 225+y 29=1(y ≠0).故选D.热点二 圆锥曲线的几何性质1.椭圆、双曲线中a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca =1-⎝⎛⎭⎫b a 2. (2)在双曲线中:c 2=a 2+b 2,离心率为e =ca=1+⎝⎛⎭⎫b a 2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x .注意离心率e 与渐近线的斜率的关系.例2 (1)(2017·全国Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则椭圆C 的离心率为( ) A.63 B.33 C.23 D.13答案 A解析 由题意知,以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,所以圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b ,所以b a =13 .所以e =c a =a 2-b 2a= 1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63. 故选A.(2)(2017届百校大联考全国名校联盟联考)过双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与E 的渐近线交于B ,C 两点,若BC →+2BA →=0,则双曲线E 的渐近线方程为 ( ) A .y =±3x B .y =±4x C .y =±2x D .y =±2x 答案 D解析 直线l :y =-x +a 与渐近线l 1:bx -ay =0交于点B ⎝ ⎛⎭⎪⎫a 2a +b ,ab a +b ,直线l :y =-x +a与渐近线l 2:bx +ay =0交于点C ⎝ ⎛⎭⎪⎫a 2a -b,-ab a -b ,A ()a ,0.因为BC →+2BA →=0,所以AC →=3AB →,所以a 2a -b-a =3⎝ ⎛⎭⎪⎫a 2a +b -a , 所以b =2a .所以双曲线E 的渐近线方程为y =±2x ,故选D.思维升华 (1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.跟踪演练2 (1)(2017届株洲一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1为左焦点,A 为右顶点, B 1,B 2分别为上、下顶点,若F 1,A ,B 1,B 2四点在同一个圆上,则此椭圆的离心率为( ) A.3-12B.5-12C.22 D.32答案 B解析 由题设圆的半径r =a +c 2,则b 2+⎝ ⎛⎭⎪⎫a -a +c 22=⎝ ⎛⎭⎪⎫a +c 22,即a 2-c 2=ac ⇒e 2+e -1=0,解得e =-1+52,故选B.(2)已知双曲线C: x 2a 2-y 2b 2=1(a >0, b >0)的焦距为2c ,直线l 过点⎝⎛⎭⎫23a ,0且与双曲线C 的一条渐近线垂直,以双曲线C 的右焦点为圆心,半焦距为半径的圆与直线l 交于M, N 两点,若||MN =423c ,则双曲线C 的渐近线方程为( ) A .y =±2xB .y =±3xC .y =±2xD .y =±4x 答案 B解析 由题意可设渐近线方程为y =b a x ,则直线l 的斜率k l =-a b ,直线方程为y =-ab ⎝⎛⎭⎫x -23a , 整理可得ax +by -23a 2=0.焦点()c ,0到直线的距离d =⎪⎪⎪⎪ac -23a 2a 2+b2=⎪⎪⎪⎪ac -23a 2c,则弦长为2c 2-d 2=2c 2-⎝⎛⎭⎫ac -23a 22c 2=423c ,整理可得c 4-9a 2c 2+12a 3c -4a 4=0, 即e 4-9e 2+12e -4=0, 分解因式得()e -1()e -2()e 2+3e -2=0.又双曲线的离心率e >1,则e =ca =2,所以b a=c 2-a 2a 2= ⎝⎛⎭⎫c a 2-1=3, 所以双曲线C 的渐近线方程为y =±3x . 故选B.热点三 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标. (2)几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3 如图,已知P ⎝⎛⎭⎫62,1为椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的点,且a2+b 2=5.过点P 的动直线与圆F :x 2+y 2=a 2+1相交于A ,B 两点,过点P 作直线AB 的垂线与椭圆E 相交于点Q . (1)求椭圆E 的离心率; (2)若|AB |=23,求|PQ |.解 (1)依题意知,64a 2+1b 2=1,a 2+b 2=5,a >b >0,解得a 2=3,b 2=2,所以椭圆E 的离心率e =a 2-b 2a 2= 3-23=33. (2)依题意知圆F 的圆心为原点,半径r =2,||AB =23, 所以原点到直线AB 的距离为 d =r 2-⎝⎛⎭⎫|AB |22=22-⎝⎛⎭⎫2322=1, 因为点P 的坐标为⎝⎛⎭⎫62,1,所以直线AB 的斜率存在,设为k .所以直线AB 的方程为y -1=k ⎝⎛⎭⎫x -62, 即kx -y -62k +1=0, 所以d =⎪⎪⎪⎪1-62k 1+k2=1,解得k =0或k =2 6.①当k =0时,此时直线PQ 的方程为x =62, 所以||PQ 的值为点P 的纵坐标的两倍, 即||PQ =2×1=2;②当k =26时,直线PQ 的方程为 y -1=-126⎝⎛⎭⎫x -62, 将它代入椭圆E 的方程x 23+y 22=1,消去y 并整理,得34x 2-106x -21=0, 设Q 点坐标为()x 1,y 1,所以62+x 1=10634, 解得x 1=-7634,所以||PQ =1+⎝⎛⎭⎫-1262⎪⎪⎪⎪x 1-62=3017. 思维升华 解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 (2017届百校大联考全国名校联盟联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P ⎝⎛⎭⎫-1,233在椭圆C 上, ||PF 2=433,过点F 1的直线l 与椭圆C 分别交于M ,N 两点.(1)求椭圆C 的方程及离心率;(2)若△OMN 的面积为1211,O 为坐标原点,求直线l 的方程.解 (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,1a 2+43b2=1,()-1-c 2+43=4 33,解得a =3,b =2,c =1,故所求椭圆的方程为x 23+y 22=1,离心率为e =c a =33.(2)当直线MN 与x 轴垂直时, ||MN =433,此时S △MON =233不符合题意,舍去;当直线MN 与x 轴不垂直时, 设直线MN 的方程为y =k ()x +1,由⎩⎪⎨⎪⎧x 23+y 22=1,y =k ()x +1,消去y 得()2+3k 2x 2+6k 2x +3k 2-6=0.设M ()x 1,y 1,N ()x 2,y 2, 则x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2,所以||MN =()1+k 2[]()x 1+x 22-4x 1x 2=()1+k 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-6k 22+3k 22-4×3k 2-62+3k 2=48()k 2+12()2+3k 22=43()k 2+12+3k 2,原点O 到直线MN 的距离为d =||k 1+k2,所以三角形的面积S △OMN =12||MN d=12×||k 1+k 2×43()k 2+12+3k 2,由S △OMN =1211,得k 2=3,故k =±3,所以直线l 的方程为y =3()x +1或y =-3()x +1.真题体验1.(2017·全国Ⅱ改编)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则双曲线C 的离心率为________. 答案 2解析 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2, 由弦长为2,得圆心到渐近线的距离为22-12= 3.由点到直线的距离公式,得|2b |a 2+b2=3,解得b 2=3a 2.所以双曲线C 的离心率e =ca=c 2a 2=1+b 2a2=2. 2.(2017·全国Ⅱ改编)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1).联立方程组⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎪⎨⎪⎧x =3,y =2 3. ∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴|NF |=(1+1)2+(0-23)2=4,|MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3.3.(2017·全国Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案 5解析 ∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.4.(2017·山东)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 答案 y =±22x解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0,∴y 1+y 2=2pb 2a 2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x .押题预测1.(2017届江西师范大学附属中学模拟)已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( ) A.62 B.52C. 3 D .2押题依据 圆锥曲线的几何性质是圆锥曲线的灵魂,其中离心率、渐近线是高考命题的热点. 答案 A解析 由F 2()c ,0到渐近线y =bax 的距离为d =bc a 2+b2=b ,即||AF 2→=b ,则||BF 2→=3b . 在△AF 2O 中, ||OA →||=a ,OF 2→=c ,tan ∠F 2OA =b a , tan ∠AOB =4b a =2×ba 1-⎝⎛⎭⎫b a 2,化简可得a 2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点⎝⎛⎭⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.押题依据 椭圆及其性质是历年高考的重点,直线与椭圆的位置关系中的弦长、中点等知识应给予充分关注.解 (1)由题意可得e =c a =12,又a 2=b 2+c 2, 所以b 2=34a 2.因为椭圆C 经过点⎝⎛⎭⎫1,32, 所以1a 2+9434a 2=1,解得a =2,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y 23=1消去x ,得(4+3t 2)y 2-6ty -9=0, 显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t 2,所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627,化简得18t 4-t 2-17=0, 即(18t 2+17)(t 2-1)=0, 解得t 21=1,t 22=-1718(舍去). 又圆O 的半径r =|0-t ×0+1|1+t2=11+t2,所以r =22,故圆O 的方程为x 2+y 2=12.A 组 专题通关1.(2017·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 2=1 D .x 2-y 23=1 答案 D解析 根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =b a x 上.由△AOF 是边长为2的等边三角形,得∠AOF =60°,c =|OF |=2. 又点A 在双曲线的渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3, ∴双曲线的方程为x 2-y 23=1.故选D.2.(2017届汕头模拟)若椭圆x 236+y 216=1上一点P 与椭圆的两个焦点F 1,F 2的连线互相垂直,则△PF 1F 2的面积为( ) A .36 B .16 C .20 D .24 答案 B解析 设||PF 1||=m ,PF 2=n ,则m 2+n 2=4()36-16=80,即()m +n 2-2mn =80.又m +n =2×6=12,∴mn =32,S △PF 1F 2=12mn =16,故选B.3. (2017届常德一模)已知抛物线C: y 2=4x 的焦点为F ,过F 的直线l 交抛物线C 于A ,B 两点,弦AB 的中点M 到抛物线C 的准线的距离为5,则直线l 的斜率为( )A .±22B .±1C .±63D .±62答案 C解析 由题意知直线l 的斜率存在且不为零,设直线l 的方程为y =k ()x -1,点A ()x 1,y 1,B ()x 2,y 2,线段AB 的中点为M ()x 0,y 0.由⎩⎪⎨⎪⎧y =k ()x -1,y 2=4x ,得k 2x 2-()2k 2+4x +k 2=0,所以x 1+x 2=2k 2+4k2.又因为弦AB 的中点M 到抛物线C 的准线的距离为5,所以x 1+x 22+p 2=x 1+x 22+1=5,所以x 1+x 2=2k 2+4k 2=8,解得k 2=23,所以k =±63,故选C.4.(2017·河南省豫北重点中学联考)如图, F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2的直线与双曲线C 交于A ,B 两点,若||AB ∶|BF 1|∶|AF 1|=3∶4∶5,则双曲线的离心率为( )A.13 B .3 C. 5 D .2 答案 A解析 设||AB =3x ,||BF 1||=4x ,AF 1=5x ,所以△ABF 1是直角三角形.因为||BF 2||-BF 1=2a ,所以||BF 2||=BF 1+2a =4x +2a, ||AF 2=x +2a .又||AF 1||-AF 2=2a ,即5x -x -2a =2a ,解得x =a ,又||BF 22+||BF 12=4c 2,即()4x +2a 2+()4x 2=4c 2,即()4a +2a 2+()4a 2=4c 2,解得c 2a 2=13,即e =13,故选A. 5.(2017·全国Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 答案 6解析 如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P , ∴PM ∥OF . 由题意知,F (2,0), |FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6.6.(2017届浙江省嘉兴市第一中学适应性考试)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点到渐近线的距离等于焦距的34倍,则双曲线的离心率为________,如果双曲线上存在一点P 到双曲线的左、右焦点的距离之差为4,则双曲线的虚轴长为________. 答案 2 4 3解析 由右焦点到渐近线的距离等于焦距的34倍可知,双曲线的渐近线y =b a x 的倾斜角为π3,即b a =3,所以e =c a =1+3=2.因为a =2,从而b =3a =23,所以虚轴长为4 3.7.(2017·泉州质检)椭圆C :x 2a 2+y 2=1(a >1)的离心率为32, F 1,F 2是C 的两个焦点,过F 1的直线l 与C 交于A ,B 两点,则||AF 2||+BF 2的最大值为______. 答案 7解析 因为离心率为32,所以a 2-1a =32⇒a =2, 由椭圆定义得||AF 2+||BF 2+||AB =4a =8,即||AF 2+||BF 2=8-||AB .而由焦点弦性质知,当AB ⊥x 轴时,||AB 取最小值2×b 2a=1,因此||AF 2||+BF 2的最大值为8-1=7.8.一动圆与圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,则动圆圆心的轨迹方程为________________. 答案 x 225+y 216=1解析 两定圆的圆心和半径分别是O 1(-3,0),r 1=1; O 2(3,0),r 2=9.设动圆圆心为M (x ,y ),半径为R ,则由题设条件, 可得|MO 1|=R +1,|O 2M |=9-R . ∴|MO 1|+|MO 2|=10>|O 1O 2|=6.由椭圆的定义知,点M 在以O 1,O 2为焦点的椭圆上, 且2a =10,2c =6,∴b 2=16. ∴动圆圆心的轨迹方程为x 225+y 216=1.9.(2017届唐山模拟)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M ⎝⎛⎭⎫3,12,且离心率为32. (1)求椭圆Γ的方程;(2)设点M 在x 轴上的射影为点N ,过点N 的直线l 与椭圆Γ相交于A, B 两点,且NB →+3NA →=0,求直线l 的方程. 解 (1)由已知可得3a 2+14b 2=1,a 2-b 2a =32, 解得a =2, b =1,所以椭圆Γ的方程为x 24+y 2=1.(2)由已知N 的坐标为()3,0,当直线l 斜率为0时,直线l 为x 轴,易知NB →+3NA →=0不成立. 当直线l 斜率不为0时,设直线l 的方程为x =my +3,代入x 24+y 2=1,整理得()4+m 2y 2+23my -1=0,设A ()x 1,y 1, B ()x 2,y 2,则 y 1+y 2=-23m4+m 2,①y 1y 2=-14+m 2, ②由NB →+3NA →=0,得y 2=-3y 1, ③由①②③解得m =±22.所以直线l 的方程为x =±22y +3,即y =±2()x -3.10.如图所示,抛物线y 2=4x 的焦点为F ,动点T (-1,m ),过F 作TF 的垂线交抛物线于P ,Q 两点,弦PQ 的中点为N . (1)证明:线段NT 平行于x 轴(或在x 轴上); (2)若m >0且|NF |=|TF |,求m 的值及点N 的坐标.(1)证明 易知抛物线的焦点为F (1,0),准线方程为x =-1,动点T (-1,m )在准线上,则k TF =-m2.当m =0时,T 为抛物线准线与x 轴的交点,这时PQ 为抛物线的通径,点N 与焦点F 重合,显然线段NT 在x 轴上. 当m ≠0时,由条件知k PQ =2m ,所以直线PQ 的方程为y =2m(x -1),联立⎩⎪⎨⎪⎧y 2=4x ,y =2m (x -1),得x 2-(2+m 2)x +1=0,Δ=[-(2+m 2)]2-4=m 2(4+m 2)>0, 设P (x 1,y 1),Q (x 2,y 2),可知x 1+x 2=2+m 2,y 1+y 2=2m(x 1+x 2-2)=2m .所以弦PQ 的中点N ⎝ ⎛⎭⎪⎫2+m 22,m ,又T (-1,m ),所以k NT =0,则NT 平行于x 轴.综上可知,线段NT 平行于x 轴(或在x 轴上). (2)解 已知|NF |=|TF |,在△TFN 中,tan ∠NTF =|NF ||TF |=1⇒∠NTF =45°,设A 是准线与x 轴的交点,则△TF A 是等腰直角三角形,所以|TA |=|AF |=2, 又动点T (-1,m ),其中m >0,则m =2. 因为∠NTF =45°,所以k PQ =tan 45°=1, 又焦点F (1,0),可得直线PQ 的方程为y =x -1. 由m =2,得T (-1,2),由(1)知线段NT 平行于x 轴, 设N (x 0,y 0),则y 0=2,代入y =x -1,得x 0=3, 所以N (3,2).B 组 能力提高11.(2017·长沙市长郡中学模拟)2000多年前,古希腊大数学家阿波罗尼奥斯(Apollonius)发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为PH, AB 为地面直径,顶角为2θ,那么不过顶点P 的平面与PH 夹角π2>a >θ时,截口曲线为椭圆;与PH 夹角a =θ时,截口曲线为抛物线;与PH夹角θ>a >0时,截口曲线为双曲线.如图,底面内的直线AM ⊥AB ,过AM 的平面截圆锥得到的曲线为椭圆,其中与PB 的交点为C ,可知AC 为长轴.那么当C 在线段PB 上运动时,截口曲线的短轴端点的轨迹为( ) A .圆的部分B .椭圆的部分C .双曲线的部分D .抛物线的部分答案 D解析 如图,因为对于给定的椭圆来说,短轴的端点Q 到焦点F 的距离等于半长轴a ,但短轴的端点Q 到直线AM 的距离也是a ,即说明短轴的端点Q 到定点F 的距离等于到定直线AM 的距离,所以由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,故选D.12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ()1,0,离心率为22,过点F 的动直线交M 于A, B 两点,若x 轴上的点P ()t ,0使得∠APO =∠BPO 总成立(O 为坐标原点),则t 等于( )A .-2B .2C .- 2 D. 2 答案 B解析 在椭圆中c =1, e =c a =22,得a =2,b =1,故椭圆的方程为x 22+y 2=1.设A ()x 1,y 1,B ()x 2,y 2,由题意可知,当直线斜率不存在时, t 可以为任意实数;当直线斜率存在时,可设直线方程为y =k ()x -1,联立方程组⎩⎪⎨⎪⎧y =k ()x -1,x 22+y 2=1,得()1+2k 2x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 21+2k 2, x 1x 2=2k 2-21+2k 2,使得∠APO =∠BPO 总成立,即使得PF 为∠APB 的角平分线, 即直线P A 和PB 的斜率之和为0, 即y 1x 1-t +y 2x 2-t =0,①由y 1=k (x 1-1), y 2=k ()x 2-1, 代入①整理得2x 1x 2-()t +1()x 1+x 2+2t =0,由根与系数的关系,可得4k 2-41+2k 2-()t +14k 21+2k2+2t =0, 化简可得t =2,故选B.13.(2017·武汉调研)已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点,直线PQ 过原点O 与MN 平行,且与椭圆交于P ,Q 两点,则|PQ |2||MN =________.答案 2 2解析 方法一 特殊化,设MN ⊥x 轴,则||MN =2b 2a =22=2,||PQ 2=4, ||PQ 2||MN =42=2 2.方法二 由题意知F (-1,0),当直线MN 的斜率不存在时,|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=22;当直线MN 的斜率存在时,设直线MN 的斜率为k , 则MN 方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0. 由根与系数的关系,得x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1,则|MN |=1+k 2·(x 1+x 2)2-4x 1x 2=22(k 2+1)2k 2+1.直线PQ 的方程为y =kx ,P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧y =kx ,x 22+y 2=1,解得x 2=21+2k 2,y 2=2k 21+2k 2, 则|OP |2=x 2+y 2=2(1+k 2)1+2k 2,又|PQ |=2|OP |,所以|PQ |2=4|OP |2=8(1+k 2)1+2k 2,∴|PQ |2|MN |=2 2.14.(2017·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EF A 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=3c2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .①求直线FP 的斜率; ②求椭圆的方程.解 (1)设椭圆的离心率为e . 由已知可得12(c +a )c =b 22.又由b 2=a 2-c 2,可得2c 2+ac -a 2=0, 即2e 2+e -1=0,解得e =-1或e =12.又因为0<e <1,所以e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m .由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0.与直线FP 的方程联立, 可得x =(2m -2)c m +2,y =3cm +2,即点Q 的坐标为⎝ ⎛⎭⎪⎫(2m -2)c m +2,3c m +2.由已知|FQ |=3c2,有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝ ⎛⎭⎪⎫3c m +22=⎝⎛⎭⎫3c 22, 整理得3m 2-4m =0,所以m =43(m =0舍去),即直线FP 的斜率为34.②由a =2c ,可得b =3c , 故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立得⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c 7(舍去)或x =c .因此可得点P ⎝⎛⎭⎫c ,3c 2, 进而可得|FP |= (c +c )2+⎝⎛⎭⎫3c 22=5c 2,所以|PQ |=|FP |-|FQ |=5c 2-3c 2=c . 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan ∠QFN =3c 2×34=9c 8, 所以△FQN 的面积为12|FQ ||QN |=27c 232. 同理△FPM 的面积等于75c 232. 由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c , 整理得c 2=2c .又由c >0,得c =2.所以椭圆的方程为x 216+y 212=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲圆锥曲线中的综合问题
A组基础题组
1.(2017兰州诊断考试)已知F1,F2为双曲线C:-=1(a>0,b>0)的左、右焦点,点P为双曲线C 右支上一点,直线PF1与圆x2+y2=a2相切,且|PF2|=|F1F2|,则双曲线C的离心率为( )
A. B. C. D.2
2.(2017课标全国Ⅰ,10,5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为( )
A.16
B.14
C.12
D.10
3.(2017东北四市高考模拟)F为双曲线-=1(a>b>0)的左焦点,过点F且斜率为1的直线与双
曲线的两条渐近线分别交于A,B两点,若=,则双曲线的离心率为.
4.(2017湖南湘中名校高三联考)已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,
且满足++=0,则++=.
5.(2017课标全国Ⅱ,20,12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且·=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
6.(2017太原模拟试题)已知直线l:y=kx+m与椭圆C:+=1(a>b>0)相交于A,P两点,与x轴,y 轴分别交于点N和点M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别作x轴的垂线,垂足分别为A1,B1.
(1)若椭圆C的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,求椭圆C的方程;
(2)当k=时,若点N平分线段A1B1,求椭圆C的离心率.
B组提升题组
1.(2017惠州第三次调研考试)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),
点A在椭圆C上.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同交点M,N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线的方程;若不存在,说明理由.
2. (2017石家庄第一次模拟)如图,已知椭圆C:+y2=1的左顶点为A,右焦点为F,O为坐标原点,M,N是y轴上的两个动点,且MF⊥NF,直线AM和AN分别与椭圆C交于E,D两点.
(1)求△MFN的面积的最小值;
(2)证明:E,O,D三点共线.
答案精解精析
A组基础题组
1.C 设直线PF1与圆相切于点M,
∵|PF2|=|F1F2|,
∴△PF1F2为等腰三角形,
∴|F1M|=|PF1|,
∵在Rt△F1MO(O为坐标原点)中,
|F1M|2=|F1O|2-a2=c2-a2,
∴|F1M|=b=|PF1|,①
又|PF1|=|PF2|+2a=2c+2a,②
c2=a2+b2,③
故由①②③得,e==.
2.A 如图所示,设直线AB的倾斜角为θ,过A,B分别作准线的垂线,垂足为A1,B1,
则|AF|=|AA1|,|BF|=|BB1|,过点F向AA1引垂线FG,得==cos θ, 则|AF|=,同理,|BF|=,
则|AB|=|AF|+|BF|=,即|AB|=,
因l1与l2垂直,故直线DE的倾斜角为θ+或θ-,
则|DE|=,则|AB|+|DE|=+===,
则易知|AB|+|DE|的最小值为16.故选A.
3.答案
解析设双曲线的两条渐近线分别为l1:y=x,l2:y=-x,
由于k FA=1,则FA的方程为y=x+c,
由可得A,
由可得B.
因为=,
所以点A为FB的中点,故=,则b=3a,
即b2=9a2,所以c2-a2=9a2,即e2=10,所以e=.
4.答案0
解析设A(x1,y1),B(x2,y2),C(x3,y3),F,
由+=-,得y1+y2+y3=0.
因为k AB==,所以k AC=,k BC=,
所以++=++=0.
5.解析(1)设P(x,y),M(x0,y0),
则N(x0,0),=(x-x0,y),=(0,y0).
由=得x0=x,y0=y.
因为M(x0,y0)在C上,所以+=1.
因此点P的轨迹方程为x2+y2=2.
(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则
=(-3,t),=(-1-m,-n),·=3+3m-tn,=(m,n),=(-3-m,t-n).
由·=1得-3m-m2+tn-n2=1,
又由(1)知m2+n2=2,故3+3m-tn=0.
所以·=0,即⊥.
又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.
6.解析(1)由题意得∴
∴椭圆C的方程为+=1.
(2)当k=时,由y=x+m得M(0,m),N(-2m,0),
∵PM=MN,∴P (2m,2m),Q(2m,-2m),
∴直线QM的方程为y=-x+m.
设A(x1,y1),则A1(x1,0).
由得x2+a2mx+a2(m2-b2)=0,
∴x1+2m=,∴x1=-.
设B(x2,y2),则B1(x2,0).
由得x2-3a2mx+a2(m2-b2)=0,
∴x2+2m=,
∴x2=-.
∵点N平分线段A1B1,∴x1+x2=-4m,
∴--=-4m,
∴3a2=4b2.
∴x1=-3m,y1=-m,
代入椭圆方程得m2=b2<b2,符合题意.
∵a2=b2+c2,∴e==.
B组提升题组
1.解析(1)设椭圆C的焦距为2c,则c=1,
因为A在椭圆C上,所以2a=|AF1|+|AF2|=2,
因此a=,b2=a2-c2=1,故椭圆C的方程为+y2=1.
(2)不存在满足条件的直线,
证明如下:设直线的方程为y=2x+t,M(x1,y1),N(x2,y2),P,Q(x4,y4),MN的中点为D(x0,y0), 由消去x,得9y2-2ty+t2-8=0,
所以y1+y2=,且Δ=4t2-36(t2-8)>0,
故y0==,且-3<t<3.
由=得=(x4-x2,y4-y2),
所以有y1-=y4-y2,y4=y1+y2-=t-.也可由=知四边形PMQN为平行四边形,而D为线段MN
的中点,因此,D也为线段PQ的中点,所以y0==,可得y4=
又-3<t<3,所以-<y4<-1,
与椭圆上点的纵坐标的取值范围是[-1,1]矛盾,
因此不存在满足条件的直线.
2.解析(1)解法一:由题意得F(1,0).
设M(0,m),N(0,n),
∵MF⊥NF,∴m·n=-1.
S△MFN=|MF|·|FN|
=·
=
=≥=1.
当且仅当|m|=1,|n|=1且mn=-1时等号成立.
∴△MFN的面积的最小值为1.
解法二:由题意得F(1,0).设M(0,m),N(0,n),
∵MF⊥NF,∴m·n=-1,
S△MFN=|MN|·|OF|=|MN|,
且|MN|2=|m-n|2=m2+n2-2mn=m2+n2+2≥2|mn|+2=4,
当且仅当|m|=1,|n|=1且mn=-1时等号成立,
∴|MN|min=2,∴(S△MFN)min=|MN|=1.
故△MFN的面积的最小值为1.
(2)∵A(-,0),M(0,m),∴直线AM的方程为y=x+m,
由得(1+m2)x2+2m2x+2(m2-1)=0,
设E(x E,y E),D(x D,y D),
由-·x E=,得x E=,①
同理可得x D=,
∵m·n=-1,∴x D==.②由①②可知x E=-x D,
代入椭圆方程可得=.
∵MF⊥NF,∴N,M分别在x轴两侧,
∴y E=-y D,
∴=,故E,O,D三点共线.。