Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant
lieb晶格中量子自旋霍尔态的有限尺寸效应
lieb晶格中量子自旋霍尔态的有限尺寸效应Lieb晶格是一种特殊的量子晶体结构,其中的自旋系统表现出许多有趣的物理性质。
在这篇文章中,我将深入探讨lieb晶格中量子自旋霍尔态的有限尺寸效应,分析其对物质的影响以及可能的应用。
1. 理论背景Lieb晶格是一种由三种不同类型的原子(A、B、C)组成的晶格结构,被广泛用于研究自旋系统的量子性质。
其中,量子自旋霍尔态是指在量子自旋系统中出现的一种类似于经典霍尔效应的现象,其具有独特的拓扑性质和导电行为。
在lieb晶格中,量子自旋霍尔态的出现受到了有限尺寸效应的显著影响。
2. 有限尺寸效应对量子自旋霍尔态的影响在实际的物质中,lieb晶格往往存在着一定的有限尺寸效应,这主要是由于晶格的实际宏观形态和微观结构与理想的无限尺寸晶格存在一定的差异所导致的。
这种有限尺寸效应对lieb晶格中量子自旋霍尔态的性质和行为有着重要的影响。
3. 导电行为的变化在有限尺寸的lieb晶格中,量子自旋霍尔态的导电行为会发生较大的变化。
由于边界效应和尺寸约束的影响,量子自旋霍尔态的拓扑性质会发生改变,导致量子霍尔电导的大小和方向出现显著变化。
这种变化使得有限尺寸的lieb晶格具有了不同于无限尺寸情况下的独特电子输运行为,这对其在微纳电子器件和量子计算领域的应用具有重要意义。
4. 自旋自相互作用的调控另外,由于有限尺寸效应的存在,lieb晶格中的自旋自相互作用也会发生一定的变化。
在无限尺寸情况下,自旋自相互作用可以被看作是均匀的,但在有限尺寸的lieb晶格中,由于空间局域效应的存在,自旋自相互作用会呈现出不均匀的特性,这可能导致量子自旋霍尔态的一些独特性质在有限尺寸情况下得到进一步的调控和优化。
5. 应用前景基于有限尺寸效应对lieb晶格中量子自旋霍尔态的影响,可以预见lieb晶格的应用前景。
通过精心设计和控制,可以利用有限尺寸效应来调控量子自旋霍尔态的性质,实现对其在微纳电子器件、量子计算和拓扑量子计算等领域的应用。
关于黑洞的论文
在接下来介绍量子理论和数学的一个重要分支,对黑洞的重要贡献以前,我们先来认识 一下前面提到的黑洞的结构是什么。
史瓦西黑洞,是一切黑洞的发祥地。它有一个视界和一个奇点。
视界,是物体能否回到外部宇宙的分界面(视界的准确定义有两种,会在下文介绍量子 理论对黑洞的作用时介绍),在视界外面,物体可以离开或者接近黑洞而保持安全。而在视 界上,只有光速运动的物体可以保持不进入毁灭熔炉黑洞,但是连光也无法从这个面中逃脱 了。如果不幸进入了视界内部,那么你就再也无法出来或者和任何人联络了。你所面对的将 只有一个:死亡。当然,量子理论允许你选择如何死去。
白洞.................................................................................................................................16 虫洞.................................................................................................................................16 几个重要理论的介绍..................................................................................................................... 19 相对论.....................................................................................................................................19 量子理论.................................................................................................................................21 超弦.........................................................................................................................................23 超引力和克莱茵——卡鲁扎理论......................................................................................... 23 看法、想法和方法......................................................................................................................... 24 对彭罗斯宇宙监督定理的看法............................................................................................. 24 拓扑看宇宙监督定理..................................................................................................... 25 对宇宙监督定理证明的解释以及拓展......................................................................... 27 视界的疑问.............................................................................................................................31 结尾.................................................................................................................................................33
氢原子量子力学模型
氢原子量子力学模型英文回答:The quantum mechanical model of the hydrogen atom is a fundamental concept in physics that describes the behavior of a single hydrogen atom. This model is based on the principles of quantum mechanics, which is the branch of physics that deals with the behavior of particles at the atomic and subatomic levels.In the quantum mechanical model, the hydrogen atom is treated as a system consisting of a single electron orbiting a nucleus. The electron is described by a wave function, which is a mathematical function that determines the probability of finding the electron at a particular position in space. The wave function is governed by the Schrödinger equation, which is a differential equation that describes the behavior of quantum systems.The wave function of the hydrogen atom can be solvedanalytically, resulting in a set of wave functions called the hydrogen atom orbitals. These orbitals describe the different energy levels and spatial distributions of the electron in the hydrogen atom. The lowest energy level is called the ground state, while higher energy levels are called excited states.Each orbital is characterized by a set of quantum numbers, which specify the energy, shape, and orientation of the orbital. The principal quantum number (n) determines the energy level of the orbital, with larger values of n corresponding to higher energy levels. The azimuthal quantum number (l) determines the shape of the orbital, with different values of l corresponding to different shapes such as s, p, d, and f orbitals. The magnetic quantum number (m) determines the orientation of theorbital in space.For example, the 1s orbital is the ground state orbital of the hydrogen atom, with n=1, l=0, and m=0. This orbital is spherically symmetric and has the lowest energy level. The 2s and 2p orbitals are examples of excited stateorbitals, with n=2. The 2s orbital is spherically symmetric like the 1s orbital, while the 2p orbitals have different shapes and orientations.The quantum mechanical model of the hydrogen atom provides a detailed understanding of the behavior of electrons in atoms. It explains phenomena such as the quantization of energy levels, the stability of atoms, and the formation of chemical bonds. This model has been successful in predicting and explaining a wide range of experimental observations in atomic physics.中文回答:氢原子的量子力学模型是物理学中的一个基本概念,描述了单个氢原子的行为。
量子多体系统的理论模型
量子多体系统的理论模型引言量子力学是描述微观物质行为的基本理论。
在量子力学中,描述一个系统的基本单位是量子态,而量子多体系统则是由多个量子态组成的系统。
由于量子多体系统的复杂性,需要借助一些理论模型来描述和研究。
本文将介绍一些常见的量子多体系统的理论模型,包括自旋链模型、玻色-爱因斯坦凝聚模型和费米气体模型等。
通过对这些模型的研究,我们可以深入了解量子多体系统的行为和性质。
自旋链模型自旋链模型是描述自旋之间相互作用的量子多体系统的模型。
在自旋链模型中,每个粒子可以处于自旋向上或向下的两种状态。
粒子之间通过自旋-自旋相互作用产生相互作用。
常见的自旋链模型包括Ising模型和Heisenberg模型。
Ising模型Ising模型是最简单的自旋链模型之一。
在一维Ising模型中,每个自旋可以取向上(+1)或向下(-1)。
自旋之间通过简单的相邻自旋相互作用来影响彼此的取向。
可以使用以下哈密顿量来描述一维Ising模型:$$H = -J\\sum_{i=1}^{N}s_is_{i+1}$$其中,J为相邻自旋之间的交换耦合常数,s i为第i个自旋的取向。
Heisenberg模型Heisenberg模型是描述自旋间相互作用的模型,与Ising模型不同的是,Heisenberg模型中的自旋可以沿任意方向取向。
常见的一维Heisenberg模型可以使用以下哈密顿量来描述:$$H = \\sum_{i=1}^{N} J\\mathbf{S}_i \\cdot \\mathbf{S}_{i+1}$$其中,$\\mathbf{S}_i$为第i个自旋的自旋算符,J为自旋间的交换耦合常数。
玻色-爱因斯坦凝聚模型玻色-爱因斯坦凝聚是一种量子多体系统的现象,它描述了玻色子统计的粒子在低温下向基态排列的行为。
玻色-爱因斯坦凝聚模型可以使用用薛定谔方程来描述:$$i\\hbar\\frac{\\partial}{\\partial t}\\Psi(\\mathbf{r},t) = -\\frac{\\hbar^2}{2m}\ abla^2\\Psi(\\mathbf{r},t) +V(\\mathbf{r})\\Psi(\\mathbf{r},t) +g|\\Psi(\\mathbf{r},t)|^2\\Psi(\\mathbf{r},t)$$其中,$\\Psi(\\mathbf{r},t)$是波函数,m是粒子的质量,$V(\\mathbf{r})$是外势场,g是粒子之间的相互作用常数。
量子力学英语
量子力学英语
随着量子力学的发展和应用,许多新的概念和术语相继出现。
掌握量子力学英语不仅有利于学习和研究,还可以更好地沟通和交流。
以下是一些常用的量子力学英语词汇:
1. Quantum mechanics 量子力学
2. Wave function 波函数
3. Schrdinger equation 薛定谔方程
4. Uncertainty principle 不确定性原理
5. Superposition principle 叠加原理
6. Entanglement 纠缠
7. Quantum state 量子态
8. Eigenvalue 特征值
9. Eigenfunction 特征函数
10. Hamiltonian 哈密顿量
11. Operator 算符
12. Commutation relation 对易关系
13. Quantum tunneling 量子隧穿
14. Quantum entanglement 量子纠缠
15. Quantum superposition 量子叠加
以上是一些常用的量子力学英语词汇,学习量子力学英语需要不断积累和运用。
- 1 -。
聚焦离子束技术雕刻出的纳米级图案
壁、多壁碳纳米管混合特性的双壁碳纳米管更具有吸引力。 西 北大 学 的研 究人 员发 现 ,D WNT的长 度 比 S T长 4%。由于 双壁碳 纳米 管长度 更 WN 4 长,因而透明导电的 D T在用 于太阳能电池板时,其电导率提高了 2 WN . 4倍。 ( 英惠 杨
内的发育 。该项发现的关键之处在于,这种表面可直接激励细胞,因而无需借助药物,从而 排 除药物 不 良影 响。 科学家 们 利用化 学试剂 改变 通常 的医 用金属 ( 如钛 )的表 面 。将 这些金 属 置于选 定 的酸 和氧 化物 混合 液 中,使金 属表 面形成 海 绵状 、由纳 米尺 寸小坑 组成 的图案 。研 究表 明,经 过 处理 的表 面使 骨细 胞生长 加速 、抑制 了无 用细 胞 的生长 ,并激 发 了支 撑细 胞 。此外 ,由于与
纳米 多孔表面 的接 触 ,有利 于细胞 附着 ,且 生长 的基因表 达 能力也提 高 了。 . ( 英惠 摘译 ) 杨
聚焦离子束技术雕刻 出的纳米级 图案
美国国家标准与工艺研究所 ( IT N S )报道,将离子流聚焦成一个 lm大小的光点技术 n 在 纳 米工 艺 中有 广泛 用途 ,利用 这 项技 术可 在 半 导体上 刻 出 比 目前所有 方 法 都更 精小 的 图 形 ,它还能进行 以比目前 电子显微镜所达到的分辨率更为细小的非破坏成像 。 研 究人 员制 成 了一个 小的原 子 “ ” 云 ,而后 联合 使用磁 场及激 光捉 住这 些 原子并 将其 冷 冻至极低温度。利用另一个激光器将原子离化,并使荷 电粒子加速通过一个小孔,从而制成 了带 能离 子束 。这一装 置 被命名 为 MO I,用作 磁光 离子源 陷 阱。MO I TS TS首先 以铬 原子进 行了演示,并确定除镓外其他元素均可达到相应亮度与强度,宛如聚集离子束。 该项技术还 可用 于许 多其 他原 子 。这些 离子 束可用 于切 削纳 米级 图案 ,而不产 生污 染 ,还 可用 于提 高离 子 束显微 镜 的对 比度 。 ( 英惠 摘译) 杨
凝聚态物理材料物理专业考博量子物理领域英文高频词汇
凝聚态物理材料物理专业考博量子物理领域英文高频词汇1. Quantum Mechanics - 量子力学2. Wavefunction - 波函数3. Hamiltonian - 哈密顿量4. Schrödinger Equation - 薛定谔方程5. Quantum Field Theory - 量子场论6. Quantum Entanglement - 量子纠缠7. Uncertainty Principle - 不确定性原理8. Quantum Tunneling - 量子隧穿9. Quantum Superposition - 量子叠加10. Quantum Decoherence - 量子退相干11. Spin - 自旋12. Quantum Computing - 量子计算13. Quantum Teleportation - 量子纠缠传输14. Quantum Interference - 量子干涉15. Quantum Information - 量子信息16. Quantum Optics - 量子光学17. Quantum Dots - 量子点18. Quantum Hall Effect - 量子霍尔效应19. Bose-Einstein Condensate - 玻色-爱因斯坦凝聚态20. Fermi-Dirac Statistics - 费米-狄拉克统计中文翻译:1. Quantum Mechanics - 量子力学2. Wavefunction - 波函数3. Hamiltonian - 哈密顿量4. Schrödinger Equation - 薛定谔方程5. Quantum Field Theory - 量子场论6. Quantum Entanglement - 量子纠缠7. Uncertainty Principle - 不确定性原理8. Quantum Tunneling - 量子隧穿9. Quantum Superposition - 量子叠加10. Quantum Decoherence - 量子退相干11. Spin - 自旋12. Quantum Computing - 量子计算13. Quantum Teleportation - 量子纠缠传输14. Quantum Interference - 量子干涉15. Quantum Information - 量子信息16. Quantum Optics - 量子光学17. Quantum Dots - 量子点18. Quantum Hall Effect - 量子霍尔效应19. Bose-Einstein Condensate - 玻色-爱因斯坦凝聚态20. Fermi-Dirac Statistics - 费米-狄拉克统计。
物理学专业英语
华中师范大学物理学院物理学专业英语仅供内部学习参考!2014一、课程的任务和教学目的通过学习《物理学专业英语》,学生将掌握物理学领域使用频率较高的专业词汇和表达方法,进而具备基本的阅读理解物理学专业文献的能力。
通过分析《物理学专业英语》课程教材中的范文,学生还将从英语角度理解物理学中个学科的研究内容和主要思想,提高学生的专业英语能力和了解物理学研究前沿的能力。
培养专业英语阅读能力,了解科技英语的特点,提高专业外语的阅读质量和阅读速度;掌握一定量的本专业英文词汇,基本达到能够独立完成一般性本专业外文资料的阅读;达到一定的笔译水平。
要求译文通顺、准确和专业化。
要求译文通顺、准确和专业化。
二、课程内容课程内容包括以下章节:物理学、经典力学、热力学、电磁学、光学、原子物理、统计力学、量子力学和狭义相对论三、基本要求1.充分利用课内时间保证充足的阅读量(约1200~1500词/学时),要求正确理解原文。
2.泛读适量课外相关英文读物,要求基本理解原文主要内容。
3.掌握基本专业词汇(不少于200词)。
4.应具有流利阅读、翻译及赏析专业英语文献,并能简单地进行写作的能力。
四、参考书目录1 Physics 物理学 (1)Introduction to physics (1)Classical and modern physics (2)Research fields (4)V ocabulary (7)2 Classical mechanics 经典力学 (10)Introduction (10)Description of classical mechanics (10)Momentum and collisions (14)Angular momentum (15)V ocabulary (16)3 Thermodynamics 热力学 (18)Introduction (18)Laws of thermodynamics (21)System models (22)Thermodynamic processes (27)Scope of thermodynamics (29)V ocabulary (30)4 Electromagnetism 电磁学 (33)Introduction (33)Electrostatics (33)Magnetostatics (35)Electromagnetic induction (40)V ocabulary (43)5 Optics 光学 (45)Introduction (45)Geometrical optics (45)Physical optics (47)Polarization (50)V ocabulary (51)6 Atomic physics 原子物理 (52)Introduction (52)Electronic configuration (52)Excitation and ionization (56)V ocabulary (59)7 Statistical mechanics 统计力学 (60)Overview (60)Fundamentals (60)Statistical ensembles (63)V ocabulary (65)8 Quantum mechanics 量子力学 (67)Introduction (67)Mathematical formulations (68)Quantization (71)Wave-particle duality (72)Quantum entanglement (75)V ocabulary (77)9 Special relativity 狭义相对论 (79)Introduction (79)Relativity of simultaneity (80)Lorentz transformations (80)Time dilation and length contraction (81)Mass-energy equivalence (82)Relativistic energy-momentum relation (86)V ocabulary (89)正文标记说明:蓝色Arial字体(例如energy):已知的专业词汇蓝色Arial字体加下划线(例如electromagnetism):新学的专业词汇黑色Times New Roman字体加下划线(例如postulate):新学的普通词汇1 Physics 物理学1 Physics 物理学Introduction to physicsPhysics is a part of natural philosophy and a natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry,and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy.Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.Core theoriesThough physics deals with a wide variety of systems, certain theories are used by all physicists. Each of these theories were experimentally tested numerous times and found correct as an approximation of nature (within a certain domain of validity).For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These theories continue to be areas of active research, and a remarkable aspect of classical mechanics known as chaos was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Isaac Newton (1642–1727) 【艾萨克·牛顿】.University PhysicsThese central theories are important tools for research into more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.Classical and modern physicsClassical mechanicsClassical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism.Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies at rest), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter including such branches as hydrostatics, hydrodynamics, aerodynamics, and pneumatics.Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics the physics of animal calls and hearing, and electroacoustics, the manipulation of audible sound waves using electronics.Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light.Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy.Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.Modern PhysicsClassical physics is generally concerned with matter and energy on the normal scale of1 Physics 物理学observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on the very large or very small scale.For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified.The physics of elementary particles is on an even smaller scale, as it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in large particle accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid.The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics.Quantum theory is concerned with the discrete, rather than continuous, nature of many phenomena at the atomic and subatomic level, and with the complementary aspects of particles and waves in the description of such phenomena.The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with relative uniform motion in a straight line and the general theory of relativity with accelerated motion and its connection with gravitation.Both quantum theory and the theory of relativity find applications in all areas of modern physics.Difference between classical and modern physicsWhile physics aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match their predictions.Albert Einstein【阿尔伯特·爱因斯坦】contributed the framework of special relativity, which replaced notions of absolute time and space with space-time and allowed an accurate description of systems whose components have speeds approaching the speed of light.Max Planck【普朗克】, Erwin Schrödinger【薛定谔】, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales.Later, quantum field theory unified quantum mechanics and special relativity.General relativity allowed for a dynamical, curved space-time, with which highly massiveUniversity Physicssystems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.Research fieldsContemporary research in physics can be broadly divided into condensed matter physics; atomic, molecular, and optical physics; particle physics; astrophysics; geophysics and biophysics. Some physics departments also support research in Physics education.Since the 20th century, the individual fields of physics have become increasingly specialized, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (1879–1955) and Lev Landau (1908–1968)【列夫·朗道】, who worked in multiple fields of physics, are now very rare.Condensed matter physicsCondensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms. More exotic condensed phases include the super-fluid and the Bose–Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials,and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.Condensed matter physics is by far the largest field of contemporary physics.Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967. In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics.Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.Atomic, molecular and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions on the scale of single atoms and molecules.1 Physics 物理学The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of the energy scales that are relevant. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions, low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of high-energy physics.Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light.Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects, but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.High-energy physics (particle physics) and nuclear physicsParticle physics is the study of the elementary constituents of matter and energy, and the interactions between them.In addition, particle physicists design and develop the high energy accelerators,detectors, and computer programs necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally, but are created only during high-energy collisions of other particles.Currently, the interactions of elementary particles and fields are described by the Standard Model.●The model accounts for the 12 known particles of matter (quarks and leptons) thatinteract via the strong, weak, and electromagnetic fundamental forces.●Dynamics are described in terms of matter particles exchanging gauge bosons (gluons,W and Z bosons, and photons, respectively).●The Standard Model also predicts a particle known as the Higgs boson. In July 2012CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson.Nuclear Physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.University PhysicsAstrophysics and Physical CosmologyAstrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the solar system, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe was expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.The Big Bang was confirmed by the success of Big Bang nucleo-synthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle (On a sufficiently large scale, the properties of the Universe are the same for all observers). Cosmologists have recently established the ΛCDM model (the standard model of Big Bang cosmology) of the evolution of the universe, which includes cosmic inflation, dark energy and dark matter.Current research frontiersIn condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity. Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. Particle accelerators have begun probing energy scales in the TeV range, in which experimentalists are hoping to find evidence for the super-symmetric particles, after discovery of the Higgs boson.Theoretical attempts to unify quantum mechanics and general relativity into a single theory1 Physics 物理学of quantum gravity, a program ongoing for over half a century, have not yet been decisively resolved. The current leading candidates are M-theory, superstring theory and loop quantum gravity.Many astronomical and cosmological phenomena have yet to be satisfactorily explained, including the existence of ultra-high energy cosmic rays, the baryon asymmetry, the acceleration of the universe and the anomalous rotation rates of galaxies.Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity, chaos, or turbulence are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sand-piles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems.Vocabulary★natural science 自然科学academic disciplines 学科astronomy 天文学in their own right 凭他们本身的实力intersects相交,交叉interdisciplinary交叉学科的,跨学科的★quantum 量子的theoretical breakthroughs 理论突破★electromagnetism 电磁学dramatically显著地★thermodynamics热力学★calculus微积分validity★classical mechanics 经典力学chaos 混沌literate 学者★quantum mechanics量子力学★thermodynamics and statistical mechanics热力学与统计物理★special relativity狭义相对论is concerned with 关注,讨论,考虑acoustics 声学★optics 光学statics静力学at rest 静息kinematics运动学★dynamics动力学ultrasonics超声学manipulation 操作,处理,使用University Physicsinfrared红外ultraviolet紫外radiation辐射reflection 反射refraction 折射★interference 干涉★diffraction 衍射dispersion散射★polarization 极化,偏振internal energy 内能Electricity电性Magnetism 磁性intimate 亲密的induces 诱导,感应scale尺度★elementary particles基本粒子★high-energy physics 高能物理particle accelerators 粒子加速器valid 有效的,正当的★discrete离散的continuous 连续的complementary 互补的★frame of reference 参照系★the special theory of relativity 狭义相对论★general theory of relativity 广义相对论gravitation 重力,万有引力explicit 详细的,清楚的★quantum field theory 量子场论★condensed matter physics凝聚态物理astrophysics天体物理geophysics地球物理Universalist博学多才者★Macroscopic宏观Exotic奇异的★Superconducting 超导Ferromagnetic铁磁质Antiferromagnetic 反铁磁质★Spin自旋Lattice 晶格,点阵,网格★Society社会,学会★microscopic微观的hyperfine splitting超精细分裂fission分裂,裂变fusion熔合,聚变constituents成分,组分accelerators加速器detectors 检测器★quarks夸克lepton 轻子gauge bosons规范玻色子gluons胶子★Higgs boson希格斯玻色子CERN欧洲核子研究中心★Magnetic Resonance Imaging磁共振成像,核磁共振ion implantation 离子注入radiocarbon dating放射性碳年代测定法geology地质学archaeology考古学stellar 恒星cosmology宇宙论celestial bodies 天体Hubble diagram 哈勃图Rival竞争的★Big Bang大爆炸nucleo-synthesis核聚合,核合成pillar支柱cosmological principle宇宙学原理ΛCDM modelΛ-冷暗物质模型cosmic inflation宇宙膨胀1 Physics 物理学fabricate制造,建造spintronics自旋电子元件,自旋电子学★neutrinos 中微子superstring 超弦baryon重子turbulence湍流,扰动,骚动catastrophes突变,灾变,灾难heterogeneous collections异质性集合pattern formation模式形成University Physics2 Classical mechanics 经典力学IntroductionIn physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of the oldest and largest subjects in science, engineering and technology.Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, as well as astronomical objects, such as spacecraft, planets, stars, and galaxies. Besides this, many specializations within the subject deal with gases, liquids, solids, and other specific sub-topics.Classical mechanics provides extremely accurate results as long as the domain of study is restricted to large objects and the speeds involved do not approach the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to introduce the other major sub-field of mechanics, quantum mechanics, which reconciles the macroscopic laws of physics with the atomic nature of matter and handles the wave–particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, classical mechanics is enhanced by special relativity. General relativity unifies special relativity with Newton's law of universal gravitation, allowing physicists to handle gravitation at a deeper level.The initial stage in the development of classical mechanics is often referred to as Newtonian mechanics, and is associated with the physical concepts employed by and the mathematical methods invented by Newton himself, in parallel with Leibniz【莱布尼兹】, and others.Later, more abstract and general methods were developed, leading to reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advances were largely made in the 18th and 19th centuries, and they extend substantially beyond Newton's work, particularly through their use of analytical mechanics. Ultimately, the mathematics developed for these were central to the creation of quantum mechanics.Description of classical mechanicsThe following introduces the basic concepts of classical mechanics. For simplicity, it often2 Classical mechanics 经典力学models real-world objects as point particles, objects with negligible size. The motion of a point particle is characterized by a small number of parameters: its position, mass, and the forces applied to it.In reality, the kind of objects that classical mechanics can describe always have a non-zero size. (The physics of very small particles, such as the electron, is more accurately described by quantum mechanics). Objects with non-zero size have more complicated behavior than hypothetical point particles, because of the additional degrees of freedom—for example, a baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made up of a large number of interacting point particles. The center of mass of a composite object behaves like a point particle.Classical mechanics uses common-sense notions of how matter and forces exist and interact. It assumes that matter and energy have definite, knowable attributes such as where an object is in space and its speed. It also assumes that objects may be directly influenced only by their immediate surroundings, known as the principle of locality.In quantum mechanics objects may have unknowable position or velocity, or instantaneously interact with other objects at a distance.Position and its derivativesThe position of a point particle is defined with respect to an arbitrary fixed reference point, O, in space, usually accompanied by a coordinate system, with the reference point located at the origin of the coordinate system. It is defined as the vector r from O to the particle.In general, the point particle need not be stationary relative to O, so r is a function of t, the time elapsed since an arbitrary initial time.In pre-Einstein relativity (known as Galilean relativity), time is considered an absolute, i.e., the time interval between any given pair of events is the same for all observers. In addition to relying on absolute time, classical mechanics assumes Euclidean geometry for the structure of space.Velocity and speedThe velocity, or the rate of change of position with time, is defined as the derivative of the position with respect to time. In classical mechanics, velocities are directly additive and subtractive as vector quantities; they must be dealt with using vector analysis.When both objects are moving in the same direction, the difference can be given in terms of speed only by ignoring direction.University PhysicsAccelerationThe acceleration , or rate of change of velocity, is the derivative of the velocity with respect to time (the second derivative of the position with respect to time).Acceleration can arise from a change with time of the magnitude of the velocity or of the direction of the velocity or both . If only the magnitude v of the velocity decreases, this is sometimes referred to as deceleration , but generally any change in the velocity with time, including deceleration, is simply referred to as acceleration.Inertial frames of referenceWhile the position and velocity and acceleration of a particle can be referred to any observer in any state of motion, classical mechanics assumes the existence of a special family of reference frames in terms of which the mechanical laws of nature take a comparatively simple form. These special reference frames are called inertial frames .An inertial frame is such that when an object without any force interactions (an idealized situation) is viewed from it, it appears either to be at rest or in a state of uniform motion in a straight line. This is the fundamental definition of an inertial frame. They are characterized by the requirement that all forces entering the observer's physical laws originate in identifiable sources (charges, gravitational bodies, and so forth).A non-inertial reference frame is one accelerating with respect to an inertial one, and in such a non-inertial frame a particle is subject to acceleration by fictitious forces that enter the equations of motion solely as a result of its accelerated motion, and do not originate in identifiable sources. These fictitious forces are in addition to the real forces recognized in an inertial frame.A key concept of inertial frames is the method for identifying them. For practical purposes, reference frames that are un-accelerated with respect to the distant stars are regarded as good approximations to inertial frames.Forces; Newton's second lawNewton was the first to mathematically express the relationship between force and momentum . Some physicists interpret Newton's second law of motion as a definition of force and mass, while others consider it a fundamental postulate, a law of nature. Either interpretation has the same mathematical consequences, historically known as "Newton's Second Law":a m t v m t p F ===d )(d d dThe quantity m v is called the (canonical ) momentum . The net force on a particle is thus equal to rate of change of momentum of the particle with time.So long as the force acting on a particle is known, Newton's second law is sufficient to。
3d量子态主量子数
3d量子态主量子数
3D量子态主量子数,也被称为三维象限数,是一项新型的分子运算理论。
它是由皮特·波利尼于2013年提出的,这项技术可以深入研究分子的结构和性质,以及两个分子之间的相互作用等。
3D量子态主量子数是根据笛卡尔坐标系中的坐标位置而计算出的,它以数字的形式来表示物体的量子态。
它是指当研究物质的量子态时,主要使用的数字或变量。
此数字可以将量子态的表现转换为数学表达式,从而可以更进一步解释更多特性。
3D量子态主量子数对科学研究尤其有用,它可以帮助研究者准确模拟空间中分子的分布以及空间场景中物质的运动特性。
此外,它也可以更好地理解和解释数个有机分子和非有机分子之间的相互作用。
它可以改善分子模拟的准确性,有助于科学家解释诸如分子静电势的复杂结构及相互作用。
3D量子态主量子数可以评估有机和非有机分子之间的化学可变性,因此在抗生素开发、聚合物设计以及药物开发等方面可能有更多应用,也可以用于解决许多社会问题。
由此可见,3D量子态主量子数在互联网上的普及,为科学家提供了更多的研究材料,也会大大改变现有的科研方式。
量子光晶格中的玻色哈伯德模型
量子光晶格中的玻色哈伯德模型量子光晶格中的玻色-哈伯德模型随着科技的不断发展,量子光晶格成为近年来研究的热门领域之一。
其具有可调控的参数和精确的控制能力,使得科学家们能够在实验室中模拟各种量子系统,其中包括玻色-哈伯德模型。
本文将介绍量子光晶格中的玻色-哈伯德模型及其在凝聚态物理领域中的应用。
一、玻色-哈伯德模型概述玻色-哈伯德模型是一种用于描述玻色子在格点上运动的模型。
其基本思想是将空间离散化为离散点的晶格,用算符来描述玻色子在不同晶格之间的跃迁以及在同一晶格内的相互作用。
该模型通常由三个部分组成:单粒子部分、相互作用部分和外势场部分。
在量子光晶格中,可以通过激光束在原子或离子的运动轨迹上形成一个二维或三维的晶格结构,从而实现量子光晶格中的玻色-哈伯德模型。
通过调节激光的幅度和频率,可以改变晶格的深度和周期,从而实现不同的模型参数。
二、量子光晶格中的玻色-哈伯德模型的物理性质量子光晶格中的玻色-哈伯德模型具有丰富的物理性质和现象。
其中一个重要的性质是量子相变。
通过改变晶格的形状、激光的参数等条件,可以实现由一个相到另一个相的相变。
这些相变与凝聚态物理领域中的超流相变、Mott绝缘相变等现象有类似之处。
此外,量子光晶格中的玻色-哈伯德模型还可以用来研究量子纠缠、凝聚态材料的电子结构、超导和凝聚态系统中的准粒子等重要问题。
通过改变晶格的结构和参数,可以模拟出各种复杂的相互作用和输运现象,为凝聚态物理的研究提供了可靠的实验平台。
三、量子光晶格中玻色-哈伯德模型的实验研究进展近年来,研究者们通过激光冷却、玻色爆破等技术,成功地在实验室中实现了量子光晶格中玻色-哈伯德模型的研究。
通过精确的控制和调节,他们观察到了量子相变、准粒子的产生和输运等重要现象。
在实验研究中,科学家们还发现了一些有趣的现象,比如拓扑绝缘态和无序化现象。
这些新的物理现象不仅丰富了凝聚态物理学的研究内容,还有望在量子计算和量子信息领域有所应用。
三维量子霍尔效应诺贝尔奖
三维量子霍尔效应诺贝尔奖1. 什么是三维量子霍尔效应三维量子霍尔效应是指在三维材料中出现的一种量子霍尔效应。
量子霍尔效应是指在二维材料中,当施加外加电场时,在材料内部会出现一种特殊的电流分布,即电流只在材料的边缘流动,而在材料的内部则不流动。
这种现象是由于材料内部的电子在磁场的影响下,会形成一种能量级别的分层结构,称为“能级阶梯”。
这种分层结构使得电子在材料内部只能沿着边缘运动,从而产生量子霍尔效应。
2. 三维量子霍尔效应的意义和应用领域是什么三维量子霍尔效应的发现具有重要的科学意义和潜在的应用价值。
首先,三维量子霍尔效应的发现丰富了我们对量子霍尔效应的理解,拓展了我们对非平凡拓扑态材料的认识。
其次,三维量子霍尔效应在拓扑量子计算、量子信息存储和传输等领域具有潜在的应用价值。
由于三维量子霍尔效应能够在材料内部实现电流的无耗散传输,因此可以用于设计更高效、更稳定的量子计算和通信设备。
3. 谁获得了三维量子霍尔效应的诺贝尔奖目前(截至2021年),尚未有科学家因为发现或研究三维量子霍尔效应而获得诺贝尔奖。
然而,诺贝尔奖经常被授予在科学研究中做出重大突破的科学家,而三维量子霍尔效应被视为拓扑量子物理研究的重要方向之一。
因此,未来有可能会有科学家因为对三维量子霍尔效应的贡献而获得诺贝尔奖,以表彰他们对物理学领域的突破性工作。
总结:三维量子霍尔效应是在三维材料中出现的一种特殊的电流分布现象。
它在科学上丰富了我们对量子霍尔效应的认识,为非平凡拓扑态材料的研究提供了新的方向。
此外,三维量子霍尔效应也具有潜在的应用价值,可以在量子计算和量子通信等领域中发挥重要作用。
目前,尚未有科学家因为三维量子霍尔效应获得诺贝尔奖,但这个领域的研究仍在不断发展,未来的诺贝尔奖可能会有科学家因为对三维量子霍尔效应的贡献而获得。
首枚光子神经形态芯片问世
和 方法 在 医学界 一直 存有 争议 。
不 少 专家 对这种 做法 提 出质疑 ,
认 为 目 前 还 没 有 科 学 证 据 证 明 这 一做 法能够 使人复 活 。 伦敦 大
学学院低 温 医学专家 巴里 ・ 富 勒
说, 在极 度低 温下保 存细 胞的 技 术 前景广 阔 , 但 还不 能应 用于 大 / J 、 与 肾相 当 的人体器 官 , 想让 冰 冻人体 “ 复 活 ”还有 相当 长的 路 要走 。 他说 : “ 眼下 , 我们手里 没 有任 何客观 证据 证明整个 人体 能 够 通过 超低温 贮藏 技术 , 在细 胞
内。 当光被输入时 , 会调节在阈值处工作的
激光器 的输 出 , 在此 区域中 , 入射 光的微小 变化都 会对该激 光的输 出产 生 巨大 影响 。 研 究表明 , 其输 出在 数学上等效 于一种被 称为
“ 连续时间递归神经网络 ( CT R N N) ” 的设
备。 这说 明CTR N N 的编程 工具可 以应用于
l m 口 g 皇 j I J 天下 图闻
首枚 光子神经形 态芯片 问世
美 国普 林斯顿 大学 亚历 山大 ・ 泰特 团队 日前研制 出全球 首枚 光子神 经形态 芯片 , 并证 明其 能以超 快 速度计算 。 光子计 算是计算科 学领 域的 “ 明 日之 星”。 与 电子相 比 , 光子拥有 更多带宽 , 能快速 处理更
更大的 硅光子神 经网络 。
研 究人 员 表示 ,这 将 开启 ~个 全新 的 光子计 算产 业 。 泰特说 : “ 硅 光子神经 网络 可能成 为更庞大 的 、 可扩展信 息处理 的硅光
子系统 家族的 ‘ 排 头兵 ’。”
塔诺基 量子力学 第三卷
塔诺基量子力学第三卷英文回答:Quantum mechanics, as described in the third volume of the Tannocky series, is a fascinating and complex field of study. It deals with the behavior of particles at the quantum level, where classical physics no longer applies.In this realm, particles can exist in multiple states simultaneously and can exhibit wave-particle duality.One of the fundamental principles of quantum mechanicsis superposition. This concept states that a particle can exist in multiple states or positions at the same time. For example, imagine a particle that can be in either the "up"or "down" state. In classical physics, the particle wouldbe in one state or the other. However, in quantum mechanics, the particle can exist in a superposition of both states simultaneously. It is only when a measurement is made that the particle "chooses" one of the states.Another important principle in quantum mechanics is entanglement. This phenomenon occurs when two particles become linked in such a way that the state of one particle is dependent on the state of the other, regardless of the distance between them. This concept is often described using the famous thought experiment of two entangled particles, known as "spooky action at a distance." For example, if two entangled particles are in a superposition of "up" and "down" states, measuring one particle will instantaneously determine the state of the other particle, even if they are light-years apart.Quantum mechanics also introduces the concept of uncertainty, as described by Heisenberg's uncertainty principle. This principle states that certain pairs of physical properties, such as position and momentum, cannot both be precisely known at the same time. The more precisely one property is known, the less precisely the other can be known. This inherent uncertainty at the quantum level is a fundamental aspect of the nature of reality.Overall, quantum mechanics is a highly mathematical and abstract field, but its principles have been successfully applied in various technological advancements. For example, quantum computers utilize the principles of superposition and entanglement to perform calculations at a much faster rate than classical computers. Quantum cryptography also relies on the principles of quantum mechanics to ensure secure communication.中文回答:量子力学是塔诺基系列第三卷中描述的一个引人入胜且复杂的研究领域。
显微数字全息中的3维信息重建
的重 建 过 程 , 出 了利 用 平 坦 区域 相 位 数 据 进 行 线 性 拟 合 , 而 获 得 线 性 相 位 畸 变 系 数 的方 法 , 指 出 对 原 始 提 从 并 包 裹 相 位 图进 行 1 相 位展 开 是 横 向 剪 切 法 重 建 数 字 全 息 相 位 信 息 的 前 提 。对 无 噪 声 及 含 有 噪 声 的全 息 图 进 维
位重建 方法 , 如基 于单 幅 全息 图 的“ 自动相 位补 偿法 ” 、 空 间相移 法” “ 向剪 切 法 ”】 ]基 于 两 幅全息 [ “ ] u及 横 _ , 图 的“ 双曝 光重 建相 位相 减法 ”1 基于 相移 数字 全 息技 术 的“ 移 ( 间) ”】 。其 中 , 于单 幅全 息 图的 l , 相 时 法 l 胡等 基 相位重 建方 法 , 由于 能够 实现 准实 时 的全 息记 录和再 现 , 而具有 更 重要 的实 际意 义 。在基 于单 幅全息 图重 建 因 的 3种 方法 中 , 间相移 法太 复杂 , 时性 稍差 ; 空 实 自动相 位补 偿法 需要 物场 中存 在较 大 的平坦 区域 , 而且 需要 进
何 相位 畸变 补偿 的像 光场 相位 分 布 乒 z, ; 次 , 过 数值 移动 自变 量 z, 一个 微 小 的量 5 得到 ( 一5 , ( ) 其 通 3 } ~5 z
) 和 ( Y , 与原 始相 位 图相减 , 而 得 到 未 经 畸变 补 偿 的像 光 场 的剪切 相 位 图 , 原 始剪 切 相 位 图 : z, —s) 并 从 即 △ 一 声 , 一 ( ( ) z— S, , ) 一 ( , 一≠ z, z I ) ( —s) 由于 S S 小 ( 常取 一个 像元 大小 ) △ , 。 和 很 通 , △
三维显示系统[发明专利]
专利名称:三维显示系统
专利类型:发明专利
发明人:巴里·乔治·勃伦·黛尔申请号:CN93117664.6申请日:19930910
公开号:CN1088356A
公开日:
19940622
专利内容由知识产权出版社提供
摘要:一种三维象素装置,包括一个抽成真空的容器、 一个涂有荧光物质的屏幕、旋转屏幕的装置、一支或 更多支电子枪和驱动电子枪的控制装置。
对于许多 图象扇形区,由电子枪将连续的图象帧写在旋转的屏 幕上。
只要屏幕转动得足够迅速,并且荧光涂层具有 所需的停留时间,则人眼会在由屏幕扫出的显示体积 中看到三维象素。
申请人:巴里·乔治·勃伦·黛尔
地址:新西兰克赖斯特彻奇
国籍:NZ
代理机构:上海专利事务所
代理人:竹民
更多信息请下载全文后查看。
修发贤课题组发现三维空间量子霍尔效应文章
修发贤课题组发现三维空间量子霍尔效应文章嘿,朋友们!今天得跟你们唠唠一个超酷的科学发现,就像是在科学的大宝藏里挖到了超级稀有的钻石一样。
修发贤课题组发现了三维空间量子霍尔效应,这事儿可不得了啊。
你可以把这个发现想象成在一个超级复杂的迷宫里找到了一条从来没人发现的秘密通道。
量子世界本来就像一个充满魔法的神秘森林,各种奇怪的现象就像森林里那些会发光的奇异植物或者会说话的小动物。
而量子霍尔效应在二维空间的时候就已经是个小明星了,现在突然蹦到三维空间,这就好比一个原本只会在平面上跳舞的舞者,一下子学会了在空中翩翩起舞,还跳出了前所未有的酷炫舞步。
以前的量子霍尔效应在二维世界里就像是在一张薄薄的纸上画画,虽然也很精彩,但现在这个三维空间的量子霍尔效应,那简直就是在一个巨大的立体城堡里进行一场超级华丽的魔术表演。
科学家们就像是一群勇敢的探险家,拿着科学的放大镜和探测仪,在这个三维的神秘城堡里一点点摸索,然后突然“哇塞”一声,发现了这个神奇的效应。
这个发现就像是给科学这辆超级跑车装上了一个超炫的涡轮增压发动机。
它可能会带着我们在科技的高速公路上一路狂飙,冲向那些我们以前想都不敢想的地方。
也许未来的电子产品会因为这个发现变得像科幻电影里那么酷,小得像一粒沙子却有着超级强大的功能,就像把一个超级电脑压缩成了一个小不点,还跑得飞快。
要是把科学比作一个巨大的拼图,那这个三维空间量子霍尔效应就是一块超级关键的拼图块。
它补上了之前量子霍尔效应这块拼图在三维空间里缺失的那一块,让整个画面变得更加完整和惊艳。
科学家们在这个研究过程中,肯定就像在黑暗中摸索的小鼹鼠,不断地挖呀挖,不知道挖了多少个“洞”,才终于挖到了这个宝藏。
这也告诉我们,探索科学就像一场超级刺激的冒险游戏,你永远不知道下一个转角会遇到什么神奇的东西。
这个发现就像是一颗投入科学湖水中的大石头,激起了一圈又一圈的涟漪。
它会带动更多的科学家们像一群好奇的小鱼一样,围绕着这个发现游来游去,不断深入研究,说不定又会发现更多的宝藏呢。
钴基三角晶格量子
钴基三角晶格量子
2024年1月11日,《自然》在线发表了一项关于极低温制冷的重要进展,来自中国科学院大学、中国科学院物理研究所以及中国科学院理论物理研究所等单位的研究人员,在钴基三角晶格磁性晶体中首次发现量子自旋超固态存在的实验证据。
超固态是一种在接近绝对零度(0开,也就是零下273.15摄氏度)时出现的量子物态,在超固态情形下,物质中的原子一方面呈现规则的排列,同时还可以在其间“无粘滞”地流动。
这是人类首次在实际固体中给出超固态存在的实验证据。
该研究团队利用钴基三角晶格磁性晶体材料,通过绝热去磁获得了94毫开(零下273.056摄氏度)的极低温,成功实现无液氦极低温制冷,并将该效应命名为“自旋超固态巨磁卡效应”。
群论在几何结晶学中的应用
群论在几何结晶学中的应用群论是数学领域中一种用来研究可以进行乘法操作的数字或对象的学科,其研究对象包括半群、群、李群和环等。
群论的基本思想是几何结晶学,它可以用于描述晶体的形状和表面构型。
换句话说,群论是探索晶体的图案、结构和原理的重要理论手段。
群论的应用可以追溯到五千年前的古埃及文明,用于分类晶体的几何结晶学被认为是群论的祖先。
到了19世纪,数学家约翰亨里克维希(John H. Herivel)结合群论和几何结晶学,提出了玻尔兹曼-亨里克维希(Boltzmann-Herivel)理论,该理论描述了晶体中电子状态如何影响其形状和表面构型,为后来几何结晶学提供了重要支撑。
几何结晶学是研究物质晶体的形状和表面构型的学科,是物质结构研究的基础。
群论的几何学方法可以用来探索原子结构的分布情况以及原子在晶体中的变化,从而形成结构体系和构型。
群论的应用可以解释晶体结构的本质和晶体的异常的行为,有助于更好地理解晶体的结构和表面特性。
除了用来表述晶体的形状和表面构型之外,群论还用于研究其他材料结构。
例如,它可以解释非晶材料如发泡玻璃、陶瓷等的结构,以及这些材料的物理性能。
群论还可以用于研究多维物质的构型,以及物质的非晶物性等。
群论在几何结晶学中的应用可以归结为三个部分:研究晶体结构,研究非晶材料和研究多维物质。
群论还可以用于研究其他复杂结构,如半导体、气体、液体、晶体、多孔介质等。
群论的应用有助于更深入地理解晶体和复杂结构物质在结构、物理性质和构型等方面的表现,为材料科学与工程提供重要依据。
群论在几何结晶学领域的应用受到了科学家们的普遍认可,它的应用范围日益扩大,在制备高性能材料、表征材料的结构和物理性质、精准设计材料结构等方面具有重要作用,因此受到众多科学家的关注和研究,取得了很多突破性进展。
综上所述,群论在几何结晶学中的应用日益重要,它可以帮助科学家更好地理解晶体的结构,有助于科学家们更深入地发掘材料结构、物理性质和构型等,同时也可以用于研究非晶材料和多维物质,为材料科学与工程提供重要依据。
我国制备出最大规模光量子计算芯片
2018·611美国《科学》杂志子刊《科学进展》日前发表了上海交通大学物理与天文学院金贤敏团队最新研究成果。
该研究成果报道了世界最大规模的三维集成光量子芯片,并演示了首个真正空间二维的随机行走量子计算。
同时这也是国内首个光量子计算芯片。
这一成果对于推进模拟量子计算机研究具有重要意义。
上海交大金贤敏团队通过飞秒激光直写技术制备了节点数多达49×49的三维光量子计算芯片。
这种目前世界最大规模的光量子计算芯片,使得真正空间二维自由演化的量子行走得以在实验中首次实现,并将促进未来更多以量子行走为内核的量子算法的实现。
量子信息技术已经经历了广泛的原理性验证,其是否能真正走出实验室、走向实用化和产业化,取决于我们是否能够构建和操控足够大规模的量子系统,发展的光量子集成芯片技术有望推动量子信息技术的实质性进展。
金贤敏团队在光量子芯片的多层技术和集成上实现了超越,成为少有的同时具有光量子芯片制备技术和量子信息研究背景的团队。
《人民日报》·2018年5月15日科技
我国制备出
最大规模光量子计算芯片▲Copyright©博看网 . All Rights Reserved.。
量子点
2004年的大奖 归属于美国麻省 理工学院的赛 思· 科尔苏利文, 他的作品展示了 硅基片上的量子 点纳米晶体,放 大倍数200倍。
类型划分
量子点按其几何形状,可分为箱形量子点、 球形量子点、四面体量子点、柱形量子点、 立方量子点、盘形量子点和外场(电场和 磁场)诱导量子点
量子效应
表面效应 限域效益 隧道效应 尺寸效应
生物探针
接受光产生荧光
荧光探针
量子点
Quantum dot
量子点 形状 特性及用途
什么是量子点?
量子点(quantum dot)是准零维 (quasi-zero-dimensional)的纳米材 料,由少量的原子所构成。粗略地 说,量子点三个维度的尺寸都在 100纳米(nm)以下,外观恰似一极 小的点状物。量子点又被称为「人 造原子」(artificial atom)。科学家 已经发明许多不同的方法来制造量 子点,并预期这种纳米材料在二十 一世纪的纳米电子学 (nanoelectronics)上有极大的应用 潜力。
由于量子点特殊的量子效应,在太 阳能电池,发光器件,光学生物标 记方面等领域有着广泛的应用前景
量子点电池
量子点是指大小约为10纳米的纳米结晶体,并在这一微小的量子点中封 存电子。一般太阳能电池是通过太阳光照到半导体上后电子的移动而产生电 流的,采用硅半导体的太阳能电池受到光照之后,半导体中的电子会自由旋 转,这些电子中,只有移向电极的电子才会转换成电力。由于未移动到电极 的电子不能发电,所以实际上的发电效率较低。而量子点中封存的电子可以 高效的移动到电极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
uniquely defined eigenvalue that is a polynomial invariant of the link. The quantum holonomy is defined as
Z [C
]≡
1 V
DAexp (iS[A]) f [A, C] ,
f [A, C]≡P exp i A , C
Abstract
We consider quantum holonomy of some three-dimensional general covariant non-Abelian field theory in Landau gauge and confirm a previous result partially proven. We show that quantum holonomy retains metric independence after explicit gauge fixing and hence possesses the topological property of a link invariant. We examine the generalized quantum holonomy defined on a multi-component link and discuss its relation to a polynomial for the link.
= Ωg′ −1Z[C]Ωg′ ,
(1)
where where C is a contour in the three-dimensional manifold M, S[A] is the action of some
three-dimensional general covariant non-Abelian gauge field theory, P means path-ordering
However, the argument used in Ref. [1] was based only on the formal properties of the functional integral and complications that may arise from the necessity for gauge fixing in any actual computation were not taken into consideration. In addition, in a case when a metric is needed for gauge fixing, the metric independence of quantum holonomy may be violated. Furthermore, in the standard Faddeev-Popov technique used for gauge fixing, ghost fields and auxiliary fields that are introduced reduce the original local gauge symmetry to BRST symmetry, and it is no longer certain the formal arguments and manipulations used in Ref. [1] to derive its results are still valid. As well, the case of the quantum holonomy defined on multi-component links was not explicitly considered.
1 The reason why we prefer this gauge is because it allows one to avoid the infrared divergence in low dimensional gauge theories; for a discussion on Chern-Simons theory, see [15].
H.C. Lee
Department of Physics, National Central University, Chungli, Taiwan 320, ROC
Z.Y. Zhu
Institute of Theoretical Physics, Academia Sinica, P. O. Box 2735, Beijing, 100080, China
1≡∆F [A] DgΠxδ(F [Ag(x)])
(3)
into Eq.(1) and obtain
Z [C ]
=
1 V
DA∆F [A] DgΠxδ(F [Ag(x)]) exp (iS[A]) f [A, C].
(4)
Denoting Ag as A and replacing the original A by Ag−1, we rewrite Eq.(4) as follows
PACS number(s): , 03.65.Fd, 02.40.Pc
Some time ago it was shown that quantum holonomy in a three-dimensional general covariant non-Abelian gauge field theory possesses topological information of the link on which the holonomy operator is defined [1]. The quantum holonomy operator was shown to be a central element of the gauge group so that, in a given representation of the gauge group,
arXiv:hep-th/9611153v3 6 May 1997
Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant
W.F. Chen∗
Helsinki Institute of Physics P.O. Box 9 (Siltavuorenpenger 20 C), FIN-00014, Helsinki, Finland
and V = Dg is gauge invariant group volume. Now we choose the Lorentz gauge condition
√
F [A] = ∂µ( −GGµν Aν) = 0, G = det(Gµν ),
(2)
where Gµν is the metric of space-time manifold. According to standard Faddeev-Popov procedure, we insert the identity
∗Also at ICSC-World Laboratory, Switzerland
1
it is a matrix that commutes with the matrix representations of all other operators in the group. In an irreducible representation, it is proportional to the identity matrix. Quantum holonomy should therefore in general have more information on the link invariant than the quantum Wilson loop which, for the SU(2) Chern-Simons quantum field theory, was shown by Witten [2] to yield the Jones polynomial [3]. Horne [4] extended Witten’s result to some other Lie groups. The difference between quantum holonomy and the Wilson loop becomes apparent in the SU(N|N) Chern-Simons theory, where the quantum Wilson loop vanishes identically for any link owing to the property of super-trace, but the quantum holonomy [1] yields the important Alexander-Conway polynomial [5–8].
3
Z [C ]
=
1 V
DgDADBDc¯Dc
exp iS[A] + i
d3
√ x −G(B
a∂µ
Aaµ
−Байду номын сангаас
c¯a∂µDµca)
×f [(Ag−1 )g′ , C]
=
1 V
DgDADBDc¯Dc
exp iS[A] + i
d3
√ x −G(B