浙江大学小波变换及工程应用复习题

合集下载

小波分析考试题(附答案)

小波分析考试题(附答案)

《小波分析》试题适用范围:硕士研究生时 间:2013年6月一、名词解释(30分)1、线性空间与线性子空间解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。

2、基与坐标解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 ()。

an ...a a 11,,,3、内积解释:内积也称为点积、点乘、数量积、标量积。

,()T n x x x x ,...,,21=,令,称为x 与y 的内积。

()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间解释:线性 完备的内积空间称为Hilbert 空间。

线性(linearity ):对任意f ,g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。

完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。

内积(innerproduct ):<f ,g>,它满足:,()T n f f f f ,...,,21=时。

()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程解释:所以都可以用空间的一个1010,V W t V V t ⊂∈⊂∈)()(ψϕ)()和(t t ψϕ1V从图可以明显看出,多分辨分析只是对低频部分进行进一步分解,而高以考虑。

小波分析考试题及答案

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。

这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。

这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。

在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。

如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。

这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。

为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。

其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。

短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。

但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。

小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。

小波理论期末试题

小波理论期末试题

我个人的理解:小波分析是傅立叶分析思想的发展与延拓,它自产生以来,就一直与傅立叶分析密切相关,他的存在性证明,小波基的构造以及结果分析都依赖于傅立叶分析,二者是相辅相成的,两者主要的不同点:1、傅立叶变换实质是把能量有限信号f(t)分解到以{exp(jωt)}为正交基的空间上去;小 波变换的实质是把能量有限信号f(t)分解到W-j 和V-j 所构成的空间上去的。

2、傅立叶变换用到的基本函数只有sin(ωt),cos(ωt),exp(jωt),具有唯一性;小波分 析用到的函数(即小波函数)则具有多样性,同一个工程问题用不同的小波函数进行分析有时结果相差甚远。

小波函数的选用是小波分析运用到实际中的一个难点问题(也是小波分析研究的一个热点问题),目前往往是通过经验或不断地试验(对结果进行对照分析)来选择小波函数。

3、在频域分析中,傅立叶变换具有良好的局部化能力,特别是对于那些频率成分比较简单的确定性信号,傅立叶变换很容易把信号表示成各频率成分的叠加和的形式,如sin(ω1t)+0.345sin(ω2t)+4.23cos(ω3t),但在时域中傅立叶变换没有局部化能力,即无法从f(t)的傅立叶变换中看出f(t)在任一时间点附近的性态。

事实上,F(w)dw 是关于频率为w 的谐波分量的振幅,在傅立叶展开式中,它是由f(t)的整体性态所决定的。

4、在小波分析中,尺度a 的值越大相当于傅立叶变换中w 的值越小。

5、在短时傅立叶变换中,变换系数S(ω,τ)主要依赖于信号在[τ-δ,τ+δ]片段中的情况,时间宽度是2δ(因为δ是由窗函数g(t)唯一确定的,所以2δ是一个定值)。

在小波变换中,变换系数Wf (a,b )主要依赖于信号在[b-aΔφ,b+aΔφ)片断中的情况,时间宽度是2aΔφ,该时间的宽度是随尺度a 变化而变化的,所以小波变换具有时间局部分析能力。

6、若用信号通过滤波器来解释,小波变换与短时傅立叶变换不容之处在于:对短时傅立叶变换来说,带通滤波器的带宽Δf 与中心频率f 无关;相反小波变换带通滤波器的带宽Δf 则正比于中心频率f 。

研究生《小波理论及应用》复习题.doc

研究生《小波理论及应用》复习题.doc

2005年研究生《小波理论及应用》复习题1.利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。

Shannon采样定理适合于频谱有限的信号o2.信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。

并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。

只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。

3.信号在一点的李氏指数表征了该点的奇异性大小,。

越大,该点的光滑性越小,。

越小,该点的奇异性越大。

光滑点(可导)时,它的cr >1 ;如果是脉冲函数,白噪声时« <0 o4.做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别?5.最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基一一最优基。

6・双通道多采样率滤波器组的传递函数为:[人人 1 A ArU) = y.U)+y2U) = - H(Z)H(Z)+G G)G G) H(Z)H(Z)+G(—Z)G(J X(-J请根据此式给出理想重建条件:为了消除映象X(-z)引起的混迭://(-Z)//(Z)+G(-Z)G(Z)=0为了使y(z)成为x(z)的延迟,要求:H(z)育(z) + G(z)G(z)= CZ・k(C,K为任一常数)7・正交镜像对称滤波器/z(77)的)与H(e jw)以“彳为轴左右对称。

如果知道QMF的/2(/7),能否确定gS)=(T)"〃S), 細=-(-1)乜(司g(“)=(-i)w)8・试列出几种常用的连续的小波基函数Morlet 小波,Marr 小波,Difference of Gaussian (DOG),紧支集样条小波9・试简述海森堡测不准原理,说明应用意义?10. 从连续小波变换到离散小波变换到离散小波框架一双正交小波变换一正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。

小波分析考试题(附答案)

小波分析考试题(附答案)

定义:空间 L2 ( R) 中的多分辨分析是指 L2 ( R) 满足如下性质的一个空间序列Z ∈j j }{V :
(1)单调性: ⊂⊂⊂⊂-101V V V ;(2)逼近性:)(},0{2R L V V j Z
j j Z
j ==∈∈ ;(3)伸缩性:1)2()(+∈⇔∈j j V t f V t f ;(4)平移不变性:j j V t f V t f ∈-⇒∈)1()(,
Z k ∈∀;(5)存在函数0)(V t g ∈,使得Z k k)}-{g(t ∈构成0V 的Riesz 基。

满足上述个条件
的函数空间集合成为一个多分辨分析, 如果)(t g 生成一个多 分辨分析,那么称)(t g 为一个尺度函数。

关于多分辨分析的理解,我们在这里以一个三层的分解进行说明,其小波分解树如图所示。

从图可以明显看出,多分辨分析只是对低频部分进行进一步分解,而高 频部分则不予以考虑。

分解的关系为 112}0{)(+-+++++=j j j V V V R L 。

另外强调一点这 里只是以一个层分解进行说明,如果要进行进一步的分解,则可以把低频部分分解成低频部分和高频部分,以下再分解以此类推。

在理解多分解分析时,我们必须牢牢把握一点:其分解的最终目的是力求构造一个在频率上高度逼近)(2R L 空间的正交小波基,这些频率分辨率不 同的正交小波基相当于带宽各异的带通滤波器。

从上面的多分辨分析树型结 构图可以看出,多分辨分析只对低频空间进行进一步的分解,使频率的分辨率变得越来越高。

Mallat 算法:通过下面公式(1)和(2),可以很快计算出尺度系数和小波系数{cj,k,dj,k},。

《水文小波分析原理及其应用》带答案

《水文小波分析原理及其应用》带答案

《水文小波分析原理及其应用》考试试题课程编号:7.637 学分:3.0 任课教师:刘东考试形式:开卷(1)小波分析:wavelet analysis ;(2)小波变换:wavelet transformation ;(3)小波函数:wavelet function ;(4)小波消噪:Wavelet denoising;(5)小波方差:Wavelet varianee ;(6)连续小波变换:Continuous wavelet transform(7)离散小波变换:Discrete wavelet tran sform ;(8)小波人工神经网络模型:Wavelet artificial neural network model;(9)小波随机耦合模型:Wavelet stochastic coupling model(10)快速小波变换算法:Fast wavelet tra nsform algorithm。

答:水文学是研究地球上水分分布、循环、运动等变化规律及水-环境相互作用的一门科学,属于地球科学的一个分支。

水文时间序列在各种因素影响下具有确定性成分、随机成分)。

水文学的一个重要研究途径就是利用现有分析技术对水文时间序列进行描述,探讨水文系统的演变规律。

小波变换克服了Fourier变换的不足,能够反映出水文时间序列在时频域上的总体特征以及时频局部化信息,被誉为数学显微镜”。

利用小波分析的多分辨率功能,可以充分挖掘水文时间序列所包含的信息,展现水文时间序列的精细结构,从而使我们更好地掌握水文时间序列的多时间尺度变化特征及突变特征。

可以说,在水文学领域引入小波分析,为揭示水文时间序列变化规律提供了一条新的研究途径,极大地丰富了水文学的内容。

由此可见,小波分析技术受到了国内外多数学者的青睐。

我们作为农业水土工程专业的研究生,如果能够成功地将小波分析技术与我们的研究内容相结合,必然会使我们的毕业论文增色不少,而且也会发表一批高水平的学术论文。

小波与滤波器 习题答案 sol3

小波与滤波器 习题答案 sol3

ϕ(t − m)ϕ(t − n) dt = δm,n .
−∞
Hence

f 2 (t) dt =
−∞ n∈Z
f 2 [n].
Therefore if f (t) ∈ L2 then f [n] ∈
2
and vice-versa.
(b) P ROBLEM 5. Since V0 ⊂ V1 and f ∈ V0 and g ∈ V1 , g − f ∈ V1 . Clearly, g − f ∈ / W1 in general since V1 ⊕ W1 = V2 which means that the only element common between V1 and W1 is the 0 function. However, it is also true in general that g − f ∈ / W0 . This is because any element g ∈ V1 can be uniquely written as g = g1 + g2 ⇒ g − f = g1 − f + g2 .
18.327/1.130: Wavelets, Filter Banks and Applications Solutions to Problem Set 3
M ARK D ISTRIBUTION P ROBLEM 6.1.3 6.1.5 6.2.7 6.2.8 6.3.2 6.3.3 6.4.4 6.5.4 6.5.7 6.5.9 7.1.8 7.2.2 7.3.7 7.3.8 7.5.4 T OTAL G RADING P OLICY • A reasonable attempt to answer a one-mark question fetched half-marks • Problems not attempted fetched no marks. • Since lifting was not covered before the problem set was due, Problem 6.5.7 was converted into a one-mark bonus question. M ARKS 1.0 0.5 1.0 1.0 0.5 0.5 1.0 0.5 B ONUS 1.0 1.0 0.5 0.5 0.5 0.5 10.0

小波变换期末大作业

小波变换期末大作业

研究生“小波变换”课程期末大作业2010/06/17说明:下述四道题中可任选两道一、结合MATLAB中的数据文件leleccum (1-D),研究小波去噪的原理和方法。

1.综述用小波去除噪声的原理。

包括:(1)去噪阈值的种类,各种阈值形成的原理,阈值风险函数;(2)阈值使用的方法;2.MATLAB 6.5中与1-D信号去噪相关的m 文件有14个,结合所给数据的去噪,讨论这些文件的应用;3.对上述数据实现去噪;参考文献:1.M Jansen, Noise Reduction by Wavelet Threshold, 2001.2. D L Donoho. De-noiseing by soft-thresholding. IEEE Tran on Info Theory 1995(见附件)请自己在EI 或IEEE全文库上给定相应的关键词,查找其他去噪相关文献。

二、研究利用小波变换检测信号中的奇异点及由模最大重建信号的原理与方法。

内容包括:1.信号中的突变点在小波变换中的行为;2.由模最大重建信号的原理与方法;3.下载ecg文件(见附件),用open_ecg打开该文件实现对该信号的峰值(R波)检测。

该信号的抽样频率为360Hz;4.令j=1~6, 试用各尺度下的模最大重建原信号;参考文献:1.S Mallat. Singularity Detection and Processing with Wavelet. IEEE Tran on IF, 1992(见附件)2.S Mallat. Signal Characterization from Multiscale Edges. 1990(见附件)请自己在EI 或IEEE全文库上给定相应的关键词,查找其他相关文献。

三、结合MATLAB W A VELET TOOLBOX 中有关小波包的文件(不包括两个2-D文件),研究:1.小波包最佳分解层(即尺度j)的选择原理;2.最佳小波包选择的原理;3.上述13个文件的功能及相关关系;4.利用MATLAB中的数据文件leleccum(1-D),按最佳分解层及最佳小波包进行分解。

浙江大学小波变换及工程应用复习题

浙江大学小波变换及工程应用复习题

小波分析复习题1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。

答:三者之间的异同见表2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点:1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号;2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波;如果)(t ϕ的傅里叶变换是)(ωψ,则)(at ϕ的傅里叶变换为)(||aa ωψ,因此这组滤波器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。

a 越大相当于频率越低。

3)适当的选择基本小波,使)(t ϕ在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。

4)如)(t x 的CWT 是),(τa WT x ,则)(λtx 的CWT 是),(λτλλa WT x ;0>λ此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的伸缩,但是不发生失真变形。

基于上述特性,小波变换被誉为分析信号的数学显微镜。

3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。

答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件当⎰∞+∞-∞<=ωωωψϕd c 2)(时才能由小波变换),(τa WT x 反演原函数)(t x ,ϕc 便是对)(t ϕ提出的容许条件,若∞→ϕc ,)(t x 不存在,由容许条件可以推论出:能用作基本小波)(t ϕ的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波)(t ϕ必须是正负交替的振荡波形,使得其平均值为零。

2)能量的比例性小波变换幅度平方的积分和信号的能量成正比。

3)正规性条件为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。

小波30道题

小波30道题

1. 从Fourier 变换到小波变换的三个阶段: *)信号加窗;**)基加窗;***)小波基;⑴ Fourier 变换是一个强有力的数学工具,它具有重要的物理意义,即信号()f x 的Fourier 变换()()⎰+∞∞-ω-=ωx x f F x d e i表示信号的频谱。

正是Fourier 变换的这种重要的物理意义,决定了Fourier 变换在信号分析和信号处理中的独特地位,特别是作为平稳信号分析的最重要的工具。

但是,在实际应用中,所遇到的信号大多数并不是平稳的。

所以,随着应用范围的逐步扩大和理论分析的不断深入,Fourier 变换的局限性就渐渐展示出来了:首先,从理论上说,为了由Fourier 变换研究一个时域信号()f x 的频谱特性,必须获得信号在时域中的全部信息,以致于包括将来的信息;其次,Fourier 变换对信号的局部畸变没有标定和度量能力。

但是,在许多实际应用中,畸变正是我们所关心的信号在局部范围内的特征;再次,Fourier 变换不能反映信号在局部时间范围内和局部频带上的谱信息分析,或称为局部化时-频分析,而这正是许多实际应用最感兴趣的问题之一;最后,因为一个信号的频率与它的周期长度成反比,因而要给进行分析的一个灵活多变的时间和频率的“窗口”,使其在“中心频率(或称为平均频率、主频)”高的地方,时间窗自动变窄,而在“中心频率”低的地方,时间窗应自动变宽。

⑵ 时间加窗:Gabor 在1946年的论文中,为了提取信号的局部信息,这包括时间和频率两方面的局部信息,引入了一个时间局部化的“窗口函数”()g t b -,其中参数b 用于平行移动窗口,以便于覆盖整个时域。

Gabor 变换继承了Fourier 变换所具有的“信号频谱”这样的物理解释,同时,它克服了Fourier 变换只能反映信号的整体特征而对信号的局部特征没有任何分析能力的缺陷,大大地改进了Fourier 变换的分析能力,为信号处理提供了一种新的分析和处理工具,即信号的时-频分析。

小波应用与算法期末试题湖大研究生

小波应用与算法期末试题湖大研究生

1.什么是一维小波变换?相对于传统信号处理方法它有什么特点?为什么要对信号或图像作多尺度分析?小波变换是信号处理、图像压缩和模式识别等诸多领域中一个非常有效的数学分析工具,它是一种信号的时间—尺度(时间—频率)分析方法,它具有多分辨率分析的特点,而且与傅里叶变换不同,它具有时频两域都具有表征信号局部特征的能力。

在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬变反常信号。

小波应用于信号去噪已取得了极大的成功。

但是在小波阈值去噪中信号边缘处出现的振荡现象一直困扰着小波去噪的应用。

小波阈值去噪方法在边缘处产生振荡的原因是由于阈值去噪所采用的小波变换算法没有平移不变性,并且去噪结果依赖于小波基函数、尺度基函数与信号的空间结构的匹配程度,多尺度边缘检测方法能减轻阈值对边缘检测的负面影响,用强度阈值来提取重要边缘并剔出噪声。

2.编程实现信号的多尺度分解与重构的快速算法(不使用函数dwt和idwt)。

一维小波分解的程序:function [cA,cD] = mydwt(x,lpd,hpd,dim);% 函数[cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]% 输入参数:x——输入序列;% lpd——低通滤波器;% hpd——高通滤波器;% dim——小波分解级数。

% 输出参数:cA——平均部分的小波分解系数;% cD——细节部分的小波分解系数。

cA=x; % 初始化cA,cDcD=[];for i=1:dimcvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数cvh=conv(cA,hpd); % 高通滤波dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数cA=dnl; % 下抽样后的平均部分系数进入下一层分解cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cDendfunction y=downspl(x);% 函数Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列Y。

小波习题解答ab

小波习题解答ab
小波习题解答
June 16, 2011
一、对双尺度方程
ϕ(t) =
n
hn ϕ(2t − n) 1 2
两边做Fourier变换
ω ω ϕ ˆ(ω ) = H ( )ϕ ˆ( ) 2 2
H (ω ) =
hn e−inω
n
继续分解,有极限式
∞ ϕ ˆ(ω ) = Π+ j =1 H (
∴ 取ω=0得
ω )ϕ ˆ(0) 2j ϕ ˆ(0) = 0
n m n n (−1) hn
=0 h2n+1 = 1
h2 n =
hm eimω e−ikω
hn hn−k
K n
|H (ω + π )|2 = =
1 4 1 4
hn (−1)n e−inω
n m
hm (−1)m eimω e−ikω
(−1)k
K n
hn hn−k
1
两边相加,注意对于奇数的 k ,对应项相消 1 2 上式为一个Fourier 级数 ⇒ 也可这样做: hn hn−2k
k n
e−i2kω ≡ 1
n hn hn−2k
= 2 δ 0k
ϕ(t − k ), ϕ(t − l) = δkl hn ϕ(2t − 2k − n),
n n
hn ϕ(2t − 2l − n) hp−2l ϕ(2t − p)
p
= δkl = δkl
hs−2k ϕ(2t − s),
s
1 2 即
hs−2k hp−2l = δkl
1 7 f 的信号向量是 f (t) 在 t = 0 8 , 8 , · · · , 8 的抽样 (2)VM 有8个系数 db4 滤波器有8个非0系数,推算得 VM −1 和 WM −1 都有7个非0系数. 周期性: C M 以 2M 为周期 ⇔ Ck = Ck+2M ∀k ∈ Z M −1 Ck = n M h(n − 2k )Cn

小波分析基础及应用期末习题

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤<⎧=⎨⎩其它,请利用Haar 尺度关系式将信号()(4)2(41)2(42)(43)f x x x x x φφφφ=+-+---分解为10,0,w w v 分量。

题2:简述信号分解和重构的Mallat 算法(要求写出算法步骤并列出分解重构公式。

)题3:设{},,,φφψψ构成双正交多分辨分析:(1) 写出双正交条件;(2) 写出4个双尺度方程(尺度系数分别为,,,k k k k h h g g );(3) 写出尺度系数间的对应关系。

题4:设{},j V j Z ∈是依尺度函数()x φ的正交多分辨率分析,k p 是尺度系数,证明:(1)202k l k l k Z p p δ-∈=∑(2)2||2k k Zp ∈=∑(3)2k k Zp ∈=∑题5:令2C H =,),(),,(),1,0(21233212321-=--==e e e ,H v v v ∈=∀),(21 验证},,{321e e e 是一紧框架,指出其框架界并求出其对偶框架. 题6:列出二维可分离小波的4个变换基。

题3:0()k h k p =已知为低通分解滤波器,11()3.kk h k p -=为高通分解滤波器,写出个双倍平移正交关系等式题6:列出二维可分离小波的4个变换基。

题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。

(1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件:(2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式:(3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整:222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0,1 2h h h h h h h h n ⎧+++=⎪⎪⎨+==⎪⎪⎩规范性低通双平移正交阶消失矩。

浙江大学小波分析及其工程应用考试试卷

浙江大学小波分析及其工程应用考试试卷

浙江大学小波分析及其工程应用考试试卷
1、简述傅里叶变换、短时傅里叶变换以及小波变换之间的异同,并
说明小波变换的必要性。

(10分)
2、小波变换堪称数学显微镜,且二维小波变换除了有显微能力之外,还有极化能力,请说明为什么?(10分)
3、说明小波变换的多分辨率分析和时-频局部化能力,请问该变换为
什么能够随着视野的变化自动调整分辨率以及如何调整?(10分)
4、请结合数学推导进行说明:当小波母函数满足正规性条件时,小
波变换能够凸显被分析的细节信息。

(10分)
5、为什么说小波变换的信息是冗余的?为减少其信息冗余度,可采
用离散栅格的方法予以改善,但会带来信息的失真的弊端,请问该如何尽
量避免这种失真?(10分)
6、请问利用函数空间剖分理论说明从第j-1级到j级分辨率的信号
分解过程,并建立同小波变换之间的关系。

(10分)
7、Mallat算法在小波变换中的地位,如同FFT算法在傅里叶变换中
的地位,具有十分重要的应用。

请结合论文说明信号分解时这种算法的基
本过程,以及如何在论文中实施应用,并列举应用时需要注意的事项。

(10分)
8、基于美林变换的算法,基于CZT的算法和Mallat算法分别适合什
么场合下应用?请结合基于CZT的算法和Mallat算法,谈谈任意尺度密
度下快速小波变换的策略。

(10分)
9、列举双通道多采样滤波器的理想重建条件,请问为什么?(10分)
10、小波变换是信号消噪处理的有效手段,请画出基于小波多分辨率
的信号消噪技术方案框图,并列举两类用于该方案的多尺度信噪分离规则。

(10分)。

《小波分析与应用》试题

《小波分析与应用》试题

《小波分析与应用》试题学院:信息科学与工程学姓名:钱宏学号:20064249 院1、[10’]小波变化俗称“数字显微镜”,试从尺度因子的变化对时频窗的中心和半径的影响,阐述其时频局部化功能。

尺度因子变大时,相应小波分量表现了某个子频带信号,其频率中心变高且频带变宽,时频窗呈“廋窄”的变化趋势,即时窗变窄,频窗变宽,正好适应于更高频信号时频局部化的需要。

相反,尺度因子变小时,同样相应小波分量表现了某个子频带信号,其频率中心变低且频带变窄,时频窗呈“扁平”的变化趋势,即时窗变宽,频窗变窄,正好适应于低频信号时频局部化的需要。

2、[10’]简述HHT变换的原理和简要实现过程。

HHT 方法包含两个主要步骤:1) 对原始数据进行预处理,即先通过经验模态分解方法, 把数据分解为满足希尔伯特变换要求的n 阶本征模式函数(IMF)和残余函数r n(t)之和;2)对分解出的每一阶IMF 做希尔伯特变换, 得出各自的瞬时频率,做出时频图。

其中经验模态分解(EMD)方法能把非平稳、非线性信号分解成一组稳态和线性的序列集, 即本征模式函数。

且每一阶的IMF 应满足两个条件: 1)数据的极值点和过零点交替出现, 且数目相等或最多相差一个任何点上;2)在任何点上,有局部最大值和局部最小值定义的包络的均值必须是零。

下面以时间序列X(t)介绍经验模态分解的一般过程。

首先, 找出X(t)所有极大和极小值点, 并用三次样条函数对极大值点和极小值点分别进行拟合得到X (t) 的上下包络线;然后将原始数据序列减去上下包络线的均值m1(t) , 就可以得到一个去掉低频的新数据序列:h1(t)=X(t)- m1(t),通常h1(t)不满足IMF 的条件, 还需对h1(t)重复上述处理过程。

经过k次筛分后将产生第1个IMF分量C1(t), 即h1k(t)=h1(k- 1)(t)- m1k(t),C1(t)=h1k(t)。

第1个IMF分量代表原始数据序列中最高频的成分,将原始数据序列X(t)减去第1个分量C1(t)。

小波考试复习

小波考试复习

1.检测异常点程序清单:t=0 : pi/125:4*pis1=sin(t); %设置一正常信号s2=sin(10*t); %设置一故障信号,表现在频率的突变s3=sin(t); %设置一正常信号s=[s1,s2,s3];%整个信号subplot(421);plot(s);title('原始信号');ylabel('s');[c,l]=wavedec(s,6,'db3');%采用db3小波并对信号进行六层分解apcmp=wrcoef('a',c,l,'db3',6);subplot(422);plot(apcmp);ylabel('ca6');for i =1 : 6decmp = wrcoef('d',c,l,'db3',7-i);subplot(4,2,i+2);plot(decmp);ylabel(['d',num2str(7-i)]);end检测第二类型的间断点程序清单:t=1:0.01:2;s1=exp(t);s2=exp(4*t);s=[s1,s2];%设置由不同指数函数组成的信号subplot(6,1,1);plot(s);title('原始信号');ds=diff(s); % 计算信号的一阶微分%显示信号的一阶微分结果subplot(6,1,2);plot(ds);ylabel('s 微分');[c,l]=wavedec(s,2,'db1');%采用db1小波分解信号到第 2 层%对分解结构[c,l]的第 2 层低频部分进行重构a2=wrcoef('a',c,l,'db1',2);%显示重构结果subplot(6,1,3);plot(a2);ylabel('a2');%对分解结构[c,l]中的各层高频部分进行重构并显示结果d2=wrcoef('d',c,l,'db1',2);subplot(614);plot(d2);ylabel('d2');d1=wrcoef('d',c,l,'db1',1);subplot(615);plot(d1);ylabel('d1');2.图像重构对图像单尺度分解重构程序代码如下:load xxxx;sX = size(X);%使用小波函数db4进行信号的单层分解[cA1,cH1,cV1,cD1] = dwt2(X,'db4');图6.8 单尺度二维小波重构 %进行小波函数的重构A0 = idwt2(cA1,cH1,cV1,cD1,'db4',sX);%检查重构误差ans = max(max(abs(X-A0)))nbc = size(map,1);colormap(pink(nbc));subplot(121);image(wcodemat(X,nbc));title('原始图像');subplot(122);image(wcodemat(A0,nbc));title('重构图像');ii.对图像的多尺度小波分解重构低频或高频信号load xxxxx;%对信号用小波函数sym5进行二尺度分解[c,s] = wavedec2(X,2,'sym5');%对小波分解结构[c,s]的低频系数进行尺度1和尺度2上的重构a1 = wrcoef2('a',c,s,'sym5',1);a2 = wrcoef2('a',c,s,'sym5',2);%对分解结构[c,s]的高频系数进行'h'、'v'、'd'三个方向上尺度2上的重构hd2 = wrcoef2('h',c,s,'sym5',2);vd2 = wrcoef2('v',c,s,'sym5',2);dd2 = wrcoef2('d',c,s,'sym5',2);%所有的图像都有相同的大小sX = size(X)sa1 = size(a1)shd2 = size(hd2)nbc = size(map,1);colormap(pink(nbc));subplot(3,2,1);image(wcodemat(X,nbc));title('原始图像');subplot(3,2,2);image(wcodemat(a1,nbc));title('尺度1的低频图像');subplot(3,2,3);image(wcodemat(a2,nbc));title('尺度2的低频图像');subplot(3,2,4);image(wcodemat(hd2,nbc));title('尺度2的水平高频图像');subplot(3,2,5);image(wcodemat(vd2,nbc));title('尺度2的垂直高频图像');subplot(3,2,6);image(wcodemat(dd2,nbc));title('尺度2的斜线高频图像'); iii.通过小波系数进行小波重构load woman;%使用小波函数db4对信号进行二层分解[c,s] = wavedec2(X,2,'db4');siz = s(size(s,1),:);%提取尺度1的低频系数ca1 = appcoef2(c,s,'db4',1);%对尺度1的低频部分进行重构a1 = upcoef2('a',ca1,'db4',1,siz);%提取尺度1的水平方向高频系数chd1 = detcoef2('h',c,s,1);%对尺度1的水平方向高频部分进行重构hd1 = upcoef2('h',chd1,'db4',1,siz);%提取尺度1的垂直方向高频系数cvd1 = detcoef2('v',c,s,1);%对尺度1的斜线方向高频部分进行重构dd1 = upcoef2('d',cdd1,'db4',1,siz);nbc = size(map,1);colormap(pink(nbc));subplot(321);image(wcodemat(X,nbc)); title('原始图像'); subplot(323);image(wcodemat(a1,nbc));title('尺度1的低频系数重构图像');subplot(324);image(wcodemat(hd1,nbc));title('尺度1的水平高频系数重构图像'); subplot(325);image(wcodemat(vd1,nbc));title('尺度1的垂直高频系数重构图像'); subplot(326);image(wcodemat(dd1,nbc));title('尺度1的斜线高频系数重构图像');3去噪%加载原始信号load woman;%产生含噪图像init = 2055615866;randn('seed',init);[c,s] = wavedec2(x,3,'sym4');%设置尺度向量n = [1,2,3];%设置阈值向量p = [150,120,60];%对高频系数进行阈值处理nc = wthcoef2('d',c,s,n,p,'s');%对新的分解结构进行重构rx = waverec2(nc,s,'sym4');nbc = size(map,1);colormap(pink(nbc));subplot(2,2,1);image(wcodemat(X,nbc));title('原始信号');subplot(2,2,2);image(wcodemat(x,nbc))title('含噪信号');subplot(2,2,3)image(wcodemat(rx,nbc))title('去噪后的信号');去噪后的讨论:目前,小波去噪的方法大概可以分为三大类:第一类方法(小波变换模极大值去噪法)是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法(小波系数相关性去噪法)是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类方法(小波变换阈值去造法)是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。

课程作业-杭电研究生-小波变换-小波作业

课程作业-杭电研究生-小波变换-小波作业

小波分析与时域分析作业1、利用小波包变换和滤波方法实现图像去噪,给出实验仿真程序和实验结果,并对进行分析。

(1)比较不同小波包树结构对图像的影响吗,给出分析理由。

(2)分析小波包变换去噪与滤波方法去噪的特点。

仿真程序:load trees;subplot(2,2,1);image(X);colormap(map);title('原始图像');axis square;init=2055615866;randn('seed',init);X1=X+20*randn(size(X));subplot(2,2,2);image(X1);colormap(map);title('含噪图像');axis square;T=wpdec2(X1,1,'sym2');thr=8.342;NT=wpthcoef(T,0,'s',thr);X2=wprcoef(NT,1);subplot(2,2,3);image(X2);colormap(map);title(‘小波包去噪图像');axis square;K=medfilt2(X1,[4,4]);subplot(2,2,4);image(K);colormap(map);title('中值滤波去噪图像');axis square;实验结果:实验分析:(1)为了比较不同小波包树结构对图像的影响,这里取不同层的小波包树结构对含噪图像进行去噪,实验仿真如下:仿真程序:load trees;subplot(2,2,1);image(X);colormap(map);title('原始图像');axis square;init=2055615866;randn('seed',init);X1=X+20*randn(size(X));subplot(2,2,2);image(X1);colormap(map);title('含噪图像');axis square;T=wpdec2(X1,1,'sym2');thr=8.342;NT=wpthcoef(T,0,'s',thr); X2=wprcoef(NT,1);subplot(2,2,3);image(X2);colormap(map);title('小波包1层去噪图像'); axis square;K=wpdec2(X1,4,'sym2');thr=8.342;NT1=wpthcoef(K,0,'s',thr); X3=wprcoef(NT1,1);subplot(2,2,4);image(X3);colormap(map);title('小波包3层去噪图像'); axis square;实验结果:小波包分解每次对低频和高频都进一步进行处理,舍弃高频,相比于小波分解分得的频段更多。

数字图像处理试题(简答)

数字图像处理试题(简答)

数字图像处理试题(简答)1.小波变换、离散余弦变换(DCT)在图像的压缩中的应用原理离散小波变换进行图像压缩基本原理是,根据二维小波分解算法,一幅图像做小波分解后,可得到一系列不同分辨率的图像,而表现一幅图像最主要的部分是低频部分,如果去掉图像的高频部分而只保留低频部分,则可达到图像压缩的目的。

传统傅立叶分析只能对信号进行时域或频域单独进行分析,时域上有限的信号在频域是无穷的,频域内有限的信号在时域里是无穷的。

而小波分析能在时域和频域内同时分析,且能自动调整分辨率。

DCT变换编码的核心思想是,利用DCT变换对数据信息强度的集中特性,可以将数据中视觉上容易察觉的部分与不容易察觉的部分进行分离,由此可以达到进行有损压缩的目的。

8x8的图像经过DCT变换后,其低频分量都集中在左上角,高频分量都集中在右下角。

由于该低频分量包含了图像的主要信息,而高频与之相比就不那么重要了,所以忽略高频分量,从而达到压缩的目的。

2.图像几何变换与图像变换的区别图像的几何变换:改变图像的大小或形状。

比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。

图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。

比如傅里叶变换、小波变换等。

3.图像放大会产生“块状效应”吗?用什么方法可以解决这个问题?当图像放大倍数较大时,会产生“块状效应”。

解决块状效应的有效方法是采用连续的插值算法,常用的有双线性插值算法和三次卷积插值算法。

双线性插值算法中,目标图像中新像素值是由原图像位置在它附近的2x2区域4个邻近象素的值通过加权平均计算得出的。

双线性插值算法放大后的图像质量较高,不会出现像素值不连续的的情况。

而三次卷积插值是一种更加复杂的插值方式,需要考虑待采样点周围16个点的影响。

三次运算可以得到更接近高分辨率图像的放大效果,但也导致了运算量的急剧增加。

4.图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方?图像的细节是指画面中灰度的变化情况,包含了图像的孤立点、细线、画面突变等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小波分析复习题1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。

答:三者之间的异同见表2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点:1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号;2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波;如果)(t ϕ的傅里叶变换是)(ωψ,则)(at ϕ的傅里叶变换为)(||aa ωψ,因此这组滤波器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。

a 越大相当于频率越低。

3)适当的选择基本小波,使)(t ϕ在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。

4)如)(t x 的CWT 是),(τa WT x ,则)(λtx 的CWT 是),(λτλλa WT x ;0>λ此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的伸缩,但是不发生失真变形。

基于上述特性,小波变换被誉为分析信号的数学显微镜。

3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。

答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件当⎰∞+∞-∞<=ωωωψϕd c 2)(时才能由小波变换),(τa WT x 反演原函数)(t x ,ϕc 便是对)(t ϕ提出的容许条件,若∞→ϕc ,)(t x 不存在,由容许条件可以推论出:能用作基本小波)(t ϕ的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波)(t ϕ必须是正负交替的振荡波形,使得其平均值为零。

2)能量的比例性小波变换幅度平方的积分和信号的能量成正比。

3)正规性条件为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。

这就要求)(t ϕ的前n 阶原点矩为0,且n 值越大越好。

也就是要求⎰=0)(dt t t p ϕ,n p ~1:,且n 值越大越好,此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01ωψωωψ+=n ,0)(00≠=ωωψ,n 越大越好。

4)重建核和重建核方程重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。

重建核方程:τττττϕ⎰⎰∞+∞∞-=000200),,,(),(),(a a K a WT ada a WT x x ;重建核:><==⎰)(),(1)()(1),,,(0000*00t t c dt t t c a a K a a a a ττϕττϕϕϕϕϕϕττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用框图分别简述之,并说明分别适合于什么情况下应用。

答:1)基于调频Z 变换),(2a j a nje A eW ππ--==运算说明:a .原始数据及初始化:原始数据是)(k ϕ(1~0-=N k )和a 值,初始化计算包括a j e A π-=和a njeW π2-=。

ϕ ---12)(2N k r )2(am N π 12~2--NN对应于:1~0-=N rb .计算)(k g 和)(k h :22)()(k k WA k k g -⋅=ϕ,1~0-=N k ;22)(k Wk h -=,1~1-+-=N N k 。

c .为了调用FFT 程序把)(k g ,)(k h 改成L 点(L 是2的整幂,L>2N-1)的数组)('k g ,)('k h :⎩⎨⎧-+-=-==1~1 ,01~0),()('N N k N k k g k g⎪⎩⎪⎨⎧-+-=--=-==1~1),(~ ,01~0 ),()('L N L k k L h N L N k N k k h k h延长到L 点并补零是为了使DFT 的圆周卷积计算结果等于所需要的线性卷积。

d .调用L 点FFT 程序:由)('k g 得到1~0),(-=L m m G ; 由)('k h 得到1~0),(-=L m m H ; e .求1~0),()()(-==L m m G m G m Y ;f .将)(m Y 作反演FFT ,且只取1~0-=L r 各点:)()(r y m Y IFFT −−→−,只取1~0-=N rg .2),(222N r m r y W am N r -==⎪⎭⎫⎝⎛πψ⎪⎭⎫⎝⎛am N πψ2求得后,取共轭,与⎪⎭⎫⎝⎛m N X π2逐点对应相乘,再作N 点IFFT 并乘以a 便得到所需要的1~0),(-=N k k a WT x ,。

2)基于梅林变换),(τa x分别计算)(τ+bex ,)(b b e e ϕ对b 的IFT ,得到)(1βM 和)(*2βM ,将两者相乘后再对)()(*21ββM M 作FT ,便可求得),(τa WT x ,即)]()([),(*21ββτM M FT a a WT x ⋅=适用范围:1)基于调频Z 变换:当需要对尺度a 作更细致的划分,此时a 又不是2的整幂,它可能是分数或无理数,这种情况下按2的整幂离散求和计算WT 是困难的,此时可以通过调频Z 变换来快速进行这一计算,所需原始数据只是原始采样序列)(),(n n x ϕ,无需插补新值。

2)基于梅林变换:在一段较短的时间内,通过比较x WT 多个尺度下的表现来表征)(t x 中持续时间较短的瞬态或信号某些奇异点,这主要由于梅林变换的算法,能一次算出某一固定时刻0τ下一组不同尺度的),(0τnx q a WT =,q 为某一常数,n=0,1,2,……5、为什么说连续小波变换的信息是冗余的?为减小其信息的冗余度,可采用离散栅格的方法予以改善,但会带来信息失真的弊端,请问如何尽量避免这种失真?答:这是因为对于任何一个尺度因子和平移因子τ的小波,与原信号内积,所得到的小波系数都可以表示成在a ,τ附近生成的小波投影后小波系数的线性组合,所以说连续小波变换的信息是冗余的。

可以通过标架进行原函数x 的重建:1)小波标架的定义:当由基本小波)(t ϕ经伸缩与位移引出的函数族],),2(2[2Z k Z j k t t j jjk ∈∈-=+--ϕϕ)(具有下述性质时,便称],|[Z k Z j t jk ∈∈+)(ϕ构成一个标架:∑∑≤><≤jkjk x B x x A 222,ϕ,且∞<<<B A 02)信号的重建,对于紧标架:∑∑=><jkjk x A x 22,ϕ,则∑∑∑∑=><=j kk j x kj j k k j t k j WT A t x A t x )(),(1)(,1)(,,,ϕϕϕ 又因为在),(00k j 处的WT 为dt t t x k j WT k j x ⎰=)()(),(*0000ϕ将上一式代入下一式子,得:∑∑∑∑⎰⎰∑∑===j kx j k k j j x j k jk x x k j WT k j k j K A dt t t k j WT A dt t t k j WT A k j WT k j ),(),;(1)()(),(1)(])(),([1),(0,0**0000000ϕϕϕϕϕ式中,⎰>=<=)(),()()(),;(0000*0,0t t dt t t k j k j K k j jk k j jk ϕϕϕϕϕ当),(),;,(0000k k j j k j k j K --=δ时,信息没有冗余,此时各)(t jk ϕ互相正交。

6、请利用函数空间剖分理论说明从第j-1级到j 级分辨率的信号分解过程,并建立同小波变换之间的关系。

答:1)函数空间逐级剖分:把空间做逐级二分解,产生一组逐级包含的子空间:……,110W V V ⊕=,221W V V ⊕=,……,11++⊕=j j j W V V ,j 是从∞-到∞+的整数,j 值越小空间越大,而且剖分是完整的。

当-∞→j 时,)(2R L V j →,包含整个平方可积的实变函数空间。

在逐级包含的条件下,上式等效于:zj jR L V∈=)(2当+∞→j 时,〉〈→0j V ,即空间剖分最终到空集为止。

在逐级包含的条件下,上式等效于:zj jV∈〉〈=0上述剖分方式显然保证了空间j V 与空间j W 正交,且各j W 之间也正交:j j W V ⊥进一步要求剖分还具有以下两项特性:(1)位移不变性:函数的时移不改变其所属空间。

即:j V t x ∈)(,则j V k t x ∈-仍)((2)二尺度伸缩性:如j V t x ∈)(,则1)2(+∈j V tx ,1)2(-∈j V t x 。

2)对各子空间内的结构做进一步分析(1)子空间0V :设0V 中有低通的平滑函数)(t φ,他的整数位移集合>∈-<z k k t );(φ是0V 中的正交归一基。

称)(t φ为尺度函数,正交归一性可记为:)'()'(),(k k k t k t -=〉--〈δφφ或)'()(),('00k k t t k k -=〉〈δφφ。

式中)(0t k φ是)2(21)(2/k t t j j jk -=-φφ在0=j 时的退化形式,也就是)(k t -φ。

0V 中的任意函数必可表示为>∈<z k t k );(0φ的线性组合,设)(0t x P 代表)(t x 在0V 上的投影,则必有:∑=kkk t xt x P )()(0)0(0φ,由此可得〉〈=〉〈=)(),()(),(000)0(t t x t t x P x k k k φφ子空间1V :)'()(),('11k k t t k k -=〉〈δφφ,∑=kkk t xt x P )()(1)1(1φ,那么〉〈=〉〈=)(),()(),(111)1(t t x t t x P x k k k φφ子空间1W :1W 中任意函数可表示为>∈<z k t k );(1φ的线性组合。

设)(1t x D 代表)(t x 在1W 中的投影则必有:∑=kk k t dt x )()(1)1(ϕ,且权重〉〈=〉〈=)(),()(),(111)1(t t x t t x D d k k k φφ。

3)以上讨论可以推广到1-j V 与j V ,j W 之间,即:〉∈-=〈-z k k t t j j jk );2(21)(2/φφ必是j V 中的正交归一基。

相关文档
最新文档