构造数列总结
数列中的构造问题--2024高考数学大题题型归纳(解析)
数列中的构造问题1已知数列a n 满足a 1=1,a 2=5,a n +2=5a n +1-6a n .(1)证明:a n +1-2a n 是等比数列;(2)证明:存在两个等比数列b n ,c n ,使得a n =b n +c n 成立.【答案】(1)证明见解析(2)证明见解析【分析】(1)由a n +2=5a n +1-6a n 构造出a n +2-2a n +1=q a n +1-2a n ,用等比数列定义证明即可;(2)通过两次构造等比数列,求出a n 的通项公式,根据通项公式得出结论即可.【详解】(1)由已知,a n +2=5a n +1-6a n ,∴a n +2-2a n +1=5a n +1-6a n -2a n +1,∴a n +2-2a n +1=3a n +1-6a n =3a n +1-2a n ,显然a n +1-2a n =0与a 1=1,a 2=5矛盾,∴a n +1-2a n ≠0,∴a n +2-2a n +1a n +1-2a n=3,∴数列a n +1-2a n 是首项为a 2-2a 1=5-2=3,公比为3的等比数列.(2)∵a n +2=5a n +1-6a n ,∴a n +2-3a n +1=5a n +1-6a n -3a n +1,∴a n +2-3a n +1=2a n +1-6a n =2a n +1-3a n ,显然a n +1-3a n =0与a 1=1,a 2=5矛盾,∴a n +1-3a n ≠0,∴∴a n +2-3a n +1a n +1-3a n=2,∴数列a n +1-3a n 是首项为a 2-3a 1=5-3=2,公比为2的等比数列,∴a n +1-3a n =2n ,①,又∵由第(1)问,a n +1-2a n =3n ,②,∴②-①得,a n =3n -2n ,∴存在b n =3n ,c n =-2n ,两个等比数列b n ,c n ,使得a n =b n +c n 成立.2已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.【答案】(1)a n =2n ,n ∈N *(2)λ∈-2,6【分析】(1)由a n a n +1=4S n ,可得a n -1a n =4S n -1n ≥2 ,两式相减并化简后可得a n +1-a n -1=4n ≥2 ,后分奇偶情况可得a n ;(2)方法1,由题b n =-3 n --1 n ,由等比数列前n 项和公式可得T 2k ,T 2k -1表达式;方法2,注意到b 2k -1+b 2k =2⋅32k -1,可得T 2k ,T 2k -1表达式.后注意到T 2k ,T 2k -1的单调性,利用T 1<λ<T 2可得答案.【详解】(1)∵a n a n +1=4S n ,∴a n -1a n =4S n -1n ≥2 .∴a n a n +1-a n -1 =4a n n ≥2 ,∵a n ≠0,∴a n +1-a n -1=4n ≥2 .又a 1=2,a 1a 2=4S 1,∴a 2=4,∴数列a n 的奇数项,偶数项分别是以2,4为首项,4为公差的等差数列.当n =2k -1时,a 2k -1=4k -2=22k -1 ;当n =2k 时,a 2k =4k =2⋅2k .综上,a n =2n ,n ∈N *(2)方法一:∵b n =-1 n 3n -1 =-3 n --1 n =-3 n +-1 n +1,∴T n =-3 1--3 n1--3+1--1 n 1--1=3-3 n -34+1--1 n 2=3-3 n -2-1 n -14.∴T 2k =39k -1 4,T 2k -1=141-9k .方法二:∵b n =-1 n 3n -1 ,∴b 2k -1+b 2k =-32k -1-1 +32k -1 =2⋅32k -1,∴T 2k =2⋅31+2⋅33+2⋅35+⋯+2⋅32k -1=39k -1 4,∴T 2k -1=T 2k -b 2k =39k -1 4-32k -1 =141-9k ,∴n =2k ,k ∈N *时,T n =T 2k =39k -1 4为递增数列,n =2k -1,k ∈N *时,T n =T 2k -1=141-9k 为递减数列,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,只需使λ>T 2k -1 max =T 1,则λ>-2且λ<T 2k min =T 2,则λ<6.∴λ∈-2,63已知数列a n 满足a 1=3,a n +1=a 2n -2a n +2.(1)证明数列ln a n -1 是等比数列,并求数列a n 的通项公式;(2)若b n =1a n +1a n -2,数列b n 的前n 项和S n ,求证:S n <2.【答案】(1)证明见解析,a n =22n -1+1(2)证明见解析【分析】(1)根据递推公式证明ln a n +1-1 ln a n -1 为定制,即可证明数列为等比数列,再根据等比数列得通项即可得解;(2)由a n +1=a 2n -2a n +2,得a n +1-2=a n a n -2 ,则1a n +1-2=1a n a n -2 =121a n -2-1a n,则1a n =1a n -2-2a n +1-2,再利用裂项相消法求出数列b n 的前n 项和S n ,即可得证.【详解】(1)因为a n +1=a 2n -2a n +2,所以a n +1-1=a n -1 2,则ln a n +1-1 =ln a n -1 2=2ln a n -1 ,又ln a 1-1 =ln2,所以数列ln a n -1 是以ln2为首项,2为公比的等比数列,则ln a n -1 =2n -1⋅ln2=ln22n -1,所以a n =22n -1+1;(2)由a n +1=a 2n -2a n +2,得a n +1-2=a n a n -2 ,则1a n +1-2=1a n a n -2=121a n -2-1a n,所以1a n =1a n -2-2a n +1-2,所以b n =1a n +1a n -2=1a n -2-2a n +1-2+1a n -2=2a n -2-2a n +1-2,所以S n =b 1+b 2+⋯+b n=2a 1-2-2a 2-2 +2a 2-2-2a 3-2 +⋯+2a n -2-2a n +1-2=2a 1-2-2a n +1-2=2-222n -2,因为222n -2>0,所以2-222n-2<2,所以S n <2.4已知数列a n 的前n 项和为S n ,且满足2S n +2n =3a n n ∈N * .(1)a n 的通项公式;(2)若b n =na n +n ,求数列b n 的前n 项和T n .【答案】(1)a n =3n -1(2)T n =n 2-14 ×3n +1+34【分析】(1)根据a n =S 1,n =1S n -S n -1,n ≥2 作差得到a n =3a n -1+2,从而得到a n +1=3a n -1+1 ,即可得到a n +1 是以3为首项,3为公比的等比数列,即可求出通项公式;(2)由(1)可知b n =n ×3n ,利用错位相减法求和即可.【详解】(1)因为2S n +2n =3a n n ∈N * ①,当n =1时2S 1+2=3a 1,则a 1=2,当n ≥2时2S n -1+2n -1 =3a n -1②,①-②得2S n +2n -2S n -1-2n -1 =3a n -3a n -1,即2a n +2=3a n -3a n -1,则a n =3a n -1+2,所以a n +1=3a n -1+1 ,所以a n +1 是以3为首项,3为公比的等比数列,所以a n +1=3n ,则a n =3n -1.(2)因为b n =na n +n ,所以b n =n 3n -1 +n =n ×3n ,所以T n =1×31+2×32+3×33+⋯+n ×3n ③,3T n =1×32+2×33+3×34+⋯+n ×3n +1④,③-④得-2T n =1×31+1×32+1×33+⋯+1×3n -n ×3n +1=31-3n 1-3-n ×3n +1=12×3n +1-32-n ×3n +1=12-n ×3n +1-32,所以T n =n 2-14 ×3n +1+34.5已知各项均为正数的数列{a n }满足a 1=1,a n =2a n -1+3(正整数n ≥2)(1)求证:数列a n +3 是等比数列;(2)求数列{a n }的前n 项和S n .【答案】(1)证明见解析(2)S n =2n +2-3n -4【分析】(1)由题意转化条件得a n +3=2a n -1+3 n ≥2 ,结合a 1+3=4≠0即可得证;(2)由题意可得a n +3=2n +1,进而可得a n =2n +1-3,由分组求和法即可得解.【详解】(1)证明:已知递推公式a n =2a n -1+3,两边同时加上3,得:a n +3=2a n -1+3 n ≥2 ,因为a n >0,a n +3>0,所以a n +3a n -1+3=2n ≥2 ,又a 1+3=4≠0,所以数列a n +3 是以a 1+3=4为首项、以2为公比的等比数列.(2)由(1)a n+3=4×2n-1=2n+1,则a n=2n+1-3n∈N*,所以S n=a1+a2+⋅⋅⋅+a n=22-3+23-3+⋅⋅⋅+2n+1-3=22+23+⋅⋅⋅+2n+1-3n=4⋅1-2n1-2-3n=2n+2-3n-4.6设各项均为正数的数列{a n}满足S na n=pn+r(p,r为常数),其中S n为数列{a n}的前n项和.(1)若p=1,r=0,求证:{a n}是等差数列;(2)若p=13,a1=2,求数列{a n}的通项公式.【答案】(1)证明见解析;(2)a n=n2+n.【分析】(1)把p=1,r=0代入,结合“n≥2,S n-S n-1=a n”计算推理作答.(2)把p=13代入,结合“n≥2,S n-S n-1=a n”求出{a n}相邻两项间关系,再构造常数列作答.【详解】(1)当p=1,r=0时,S n=na n,当n≥2时,S n-1=n-1a n-1,两式相减,得a n=na n-(n-1)a n-1,整理得a n-a n-1=0,所以{a n}是等差数列.(2)当p=13时,S n =13n+ra n,令n=1,而a1=2,得13+r=1,解得r=23,于是S n=13n+23a n,当n≥2时,S n-1=13n+13a n-1,两式相减,得a n=13n+23a n-13n+13a n-1,整理得(n-1)a n=(n+1)a n-1,即a n n+1=a n-1n-1,因此a n(n+1)n=a n-1n(n-1),数列a n(n+1)n是常数列,从而a n(n+1)n=a12×1=1,a n=n2+n,显然a1=2满足上式,所以数列{a n}的通项公式是a n=n2+n.7已知数列a n,2a n+1=a n a n+1+1,a1=3.(1)求证:数列1a n-1是等差数列.(2)设b n=1-a n1-a n+1,求证:数列b n的前n项和S n<-2.【答案】(1)证明见解析(2)证明见解析【分析】(1)根据2a n+1=a n a n+1+1,证明1a n+1-1-1a n-1等于定值即可;(2)利用裂项相消法求出数列b n的前n项和S n,即可得证.【详解】(1)∵2a n+1=a n a n+1+1,∴a n-2a n+1=-1,∵a1=3,∴a n-2≠0,∴a n+1=12-a n,∴1 a n+1-1-1a n-1=112-a n-1-1a n-1=2-a na n-1-1a n-1=-a n-1+1a n-1-1a n-1=-1,∴1a n -1是首项为1a n -1=12,公差为-1的等差数列;(2)由(1)知1a n -1=-n +32,∴a n =132-n +1,∴b n =1-a n 1-a n +1 =1n -32⋅1n -12=1n -32-1n -12,∴S n =b 1+b 2+b 3+⋅⋅⋅+b n=11-32-11-12+12-32-12-12+13-32-13-12+⋅⋅⋅+1n -32-1n -12=-2-2+2-23+23-25+⋅⋅⋅+1n -32-1n -12=-2-1n -12,∵n ∈N *,∴1n -12>0,∴S n <-2.8已知数列a n 的前n 项和为S n =n n +1n ∈N + ,数列b n 满足b 1=1,且b n +1=b n b n +2n ∈N + (1)求数列a n 的通项公式;(2)求数列b n 的通项公式;(3)对于n ∈N +,试比较b n +1与a n 的大小.【答案】(1)a n =1n 2+n (2)b n =12n -1(3)b n +1<a n【分析】(1)由数列a n 的前n 项和为S n =n n +1n ∈N + ,利用a n =S 1n =1 S n -S n -1n ≥2 ,能求出a n =1n 2+n;(2)由b n +1=b n b n +2n ∈N + ,两边取倒数得1b n +1=b n +2b n ,从而得到1b n +1 是以首项为1b 1+1=2,公比为2的等比数列,由此能求出b n =12n -1;(3)将问题转化为证明2n +1-1>n 2+n 成立,利用数学归纳法、二项式定理或函数的知识证明即可.【详解】(1)当n =1时,a 1=S 1=12;当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n n +1 =1n 2+n,经检验,n =1时,a 1=12也符合上式,所以数列a n 的通项公式为a n =1n 2+n;(2)易知b n >0,两边取倒数得1b n +1=b n +2b n ,整理得1b n +1+1=21b n +1,∴1b n +1是以首项为1b1+1=2,公比为2的等比数列,∴1 b n +1=2×2n-1,∴b n=12n-1;(3)由(1)(2)问可知,欲比较b n+1=12n+1-1与a n=1n2+n的大小,即比较2n+1-1与n2+n的大小.当n=1时,21+1-1=3,12+1=2,有3>2;当n=2时,22+1-1=7,22+2=6,有7>6;当n=3时,23+1-1=15,32+3=12,有15>12,猜想2n+1-1>n2+n,下面证明:方法一:当n≥4时,2n+1-1=(1+1)n+1-1=C0n+1+C1n+1+C2n+1+⋯+C n-1n+1+C n n+1+C n+1n+1-1≥2C0n+1+2C1n+1+2C2n+1-1=2+2n+1+n+1n-1>n2+n,所以对于任意的n∈N+都成立,所以b n+1<a n.方法二:令f x =2x+1-1-x2-x,则f x =2x+1ln2-2x-1,令g x =f x =2x+1ln2-2x-1,则g x =2x+1(ln2)2-2≥2x+1(ln e)2-2=2x-1-2,当x∈4,+∞时,g x =2x-1-2>0,g x 即f x 在x∈4,+∞单调递增,f x ≥f 4 =2x+1ln2-2x-1>25×12-2×4-1=7>0,f x 在x∈4,+∞单调递增,所以f x ≥f4 >24+1-1-42-4=11>0,所以2x+1-1-x2-x>0,即2x+1-1>x2+x,所以对于任意的n∈N+都成立,所以b n+1<a n.方法三:下面用数学归纳法证明①当n=1时,显然成立;当n=2时,显然成立;②假设n=k时(k≥2),猜想成立,即2k+1-1>k2+k成立,那么当n=k+1时,2k+2-1=2⋅2k+1-1=2⋅2k+1-1+1>2⋅k2+k+1=2k2+2k+1,因为2k2+2k+1-(k+1)2+k+1=k2-k-1,对任意的k≥2且k∈N+上式都大于0,所以有2k+2-1>(k+1)2+k+1,综上所述,2n+1-1>n2+n对于任意的n∈N+都成立,所以b n+1<a n.9已知数列a n有递推关系a n+1=9a n-105a n-6n∈N*,a n≠65,a1=95,(1)记a n=b n+k,若数列b n的递推式形如b n+1=rb npb n+qp,q,r∈R且p,r≠0 ,也即分子中不再含有常数项,求实数k的值;(2)求a n的通项公式.【答案】(1)1或2(2)a n=4n4n--1n+1【分析】(1)根据题意整理可得b n+1=9-5kb n-5k2+15k-105b n+5k-6,即-5k2+15k-10=0,运算求解即可;(2)取k=1,可得b n+1=4b n5b n-1,利用构造法结合等比数列求通项公式.【详解】(1)因为a n=b n+k,且a n+1=9a n-105a n-6,所以b n+1=a n+1-k=9b n+k-105b n+k-6-k=9-5kb n-5k2+15k-105b n+5k-6,则-5k2+15k-10=0,解得k=1或2;(2)由(1)可得:当k=1时,则a n=b n+1,且b n+1=4b n5b n-1,可得1b n+1=5b n-14b n=-14×1b n+54,则1b n+1-1=-141b n-1,且1b1-1=14≠0,故数列1b n-1是以14为首项,-14为公比的等比数列,∴1 b n -1=14×-14n-1=--1 n4n,则b n=4n4n--1n,故a n=4n4n--1n+1.10已知数列a n满足a1+a3=2a2,a n+1=3a n,n为奇数a n+2,n为偶数,数列cn满足c n=a2n-1.(1)求数列c n和a n的通项公式;(2)求数列a n的前n项和S n.【答案】(1)c n=2⋅3n-1-1,a n=2⋅3n-12-1,n为奇数2⋅3n2-3,n为偶数(2)S n=4⋅3n2-2n-4,n为偶数2⋅3n+12-2n-3,n为奇数【分析】(1)由题意先求出a1,再根据c n=a2n-1,得c1=a1,c n+1=a2n+1,从而可得c n+1=3c n+2,再利用构造法求出c n的通项,从而可得a n的通项公式;(2)分n为偶数和奇数两种情况讨论,再结合分组求和法即可得解.【详解】(1)a n+1=3a n,n为奇数a n+2,n为偶数,得a2=3a1,a3=a2+2=3a1+2,因为a1+a3=2a2,即a1+3a1+2=6a1,解得a1=1,由c n=a2n-1,得c1=a1=1,c n+1=a2n+1,又a2k=3a2k-1,a2k+1=a2k+2,k∈N*,故a2k+1=3a2k-1+2,所以c k+1=3c k+2,即c n+1=3c n+2,所以c n+1+1=3c n+1,又c1+1=2,所以数列c n+1是以2为首项,3为公比的等比数列,所以c n+1=2⋅3n-1,所以c n=2⋅3n-1-1,则a2n-1=2⋅3n-1-1,故a2n=3a2n-1=2⋅3n-3,所以a n=2⋅3n-12-1,n为奇数2⋅3n2-3,n为偶数 ;(2)当n为偶数时,S n=a1+a3+⋯+a n-1+a2+a4+⋯+a n=4a1+a3+⋯+a n-1=4c1+c2+⋯+c n2=4×21-3n2 1-3-n 2 =4⋅3n 2-2n -4,当n 为奇数时,S n =S n +1-a n +1=4⋅3n +12-2n +1 -4-2⋅3n +12-3 =2⋅3n +12-2n -3,综上所述,S n =4⋅3n 2-2n -4,n 为偶数2⋅3n +12-2n -3,n 为奇数 .11已知S n 为数列a n 的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2a n -1 +3.(1)求数列b n 的通项公式;(2)已知c n =-1 n +1⋅b n +1b n b n +1,记数列c n 的前n 项和为T n ,求证:T n ≥221.【答案】(1)b n =2n +1n ∈N *(2)证明见解析【分析】(1)利用S n 与a n 的关系,整理数列a n 的递推公式,根据构造法,可得通项,可得答案;(2)写出数列c n 的通项,利用裂项相消,可得T n ,分奇偶两种情况,可得答案.【详解】(1)由S n +1=S n +4a n -3,得S n +1-S n =4a n -3.∴a n +1=4a n -3,则a n +1-1=4a n -1 .∴a 1-1=2-1=1,∴数列a n -1 是以1为首项,4为公比的等比数列,∴a n -1=4n -1=22n -2n ∈N * .∵b n =log 2a n -1 +3,∴b n =log 222n -2+3=2n +1n ∈N * .(2)∵c n =-1 n +1⋅b n +1b n b n +1,∴c n =-1 n +1⋅2n +22n +1 2n +3=-1 n +1⋅1212n +1+12n +3 ∴T n =c 1+c 2+c 3+⋅⋅⋅+c n=1213+15 -15+17 +17+19 -⋅⋅⋅+-1 n +112n +1+12n +3当n 为奇数时,T n =1213+12n +3 >16>221.当n 为偶数时,T n =1213-12n +3 ,T n 是递增数列,∴T n ≥T 2=1213-17 =221.综上得:T n ≥221.12已知数列a n 满足a n +1=2a n -1,a 1+a 2=a 3.(1)求a n 的通项公式;(2)若b n =2n -1,数列c n 满足c 4n -3=b 2n -1,c 4n -2=a 2n -1,c 4n -1=a 2n ,c 4n =b 2n ,求c n 的前4n +1项和S 4n +1.【答案】(1)a n =2n -1+1(2)S 4n +1=4n 2+6n +4n【分析】(1)根据递推关系解方程得a 1=2,进而证明数列a n -1 是等比数列,公比为2,首项为1,再根据等比数列通项公式求解即可;(2)由题知c 4n -3+c 4n -2+c 4n -1+c 4n =8n -2+3⋅4n -1,进而令d n =c 4n -3+c 4n -2+c 4n -1+c 4n ,记数列d n 的前n 项和为T n ,则S 4n +1为T n 与c 4n +1的和,再根据等差数列与等比数列求和公式求解即可.【详解】(1)解:数列a n 满足a n +1=2a n -1,a 1+a 2=a 3所以,a 2=2a 1-1a 3=2a 2-1a 1+a 2=a 3,解得a 1=2,a 2=3,a 3=5,由a n +1=2a n -1得a n +1-1=2a n -1 ,即a n +1-1a n -1=2,所以,数列a n -1 是等比数列,公比为2,首项为1,所以a n -1=2n -1,即a n =2n -1+1所以,a n 的通项公式为a n =2n -1+1(2)解:因为b n =2n -1,a n =2n -1+1,所以c 4n -3=b 2n -1=22n -1 -1=4n -3,c 4n -2=a 2n -1=22n -2+1,c 4n -1=a 2n =22n -1+1,c 4n =b 2n =4n -1,所以,c 4n -3+c 4n -2+c 4n -1+c 4n =8n -2+3⋅22n -2=8n -2+3⋅4n -1,令d n =c 4n -3+c 4n -2+c 4n -1+c 4n =8n -2+3⋅4n -1,设数列d n 的前n 项和为T n ,因为数列8n -2 为等差数列,3⋅4n -1 为等比数列,所以,T n =n 6+8n -2 2+3×1-4n 1-4=4n 2+2n +4n -1因为数列c n 的前4n +1项和为T n 与c 4n +1的和,c 4n +1=c 4n +1 -3=4n +1 -3=4n +1,所以,S 4n +1=T n +c 4n +1=4n +1+4n 2+2n +4n -1=4n 2+6n +4n .13设数列a n 的前n 项和为S n ,且a 1=2,2S n +1a n +1=2S n a n+1.(1)求a n 的通项公式;(2)若b n =1S n,求数列b n 的前n 项和T n .【答案】(1)a n =2n(2)T n =n n +1【分析】(1)先根据2S n +1a n +1=2S n a n +1,可得数列S n a n 是以12为公差的等差数列,从而可得数列S n a n 的通项,再根据a n 与S n 的关系结合构造法即可得解;(2)先求出数列b n 的通项,再利用裂项相消法即可得解.【详解】(1)因为2S n +1a n +1=2S n a n +1,所以S n +1a n +1-S n a n =12,所以数列S n a n 是以S 1a 1=1为首项,12为公差的等差数列,所以S n a n =n +12,则S n =n +12a n ,当n ≥2时,S n -1=n 2a n -1,两式相减得a n =n +12a n -n 2a n -1,即a n n =a n -1n -1,所以数列a n n 为常数列,且a n n =a 11=2,所以a n =2n ;(2)由(1)得S n =n +12a n =n n +1 ,所以b n =1S n =1n n +1=1n -1n +1,所以T n =1-12+12-13+13-14+⋯+1n -1n +1=1-1n +1=n n +1.14已知数列a n 满足a 1=1,a n =3a n -1+2n ≥2,n ∈N * .(1)求证:数列a n +1 是等比数列;(2)若b n =2n +1 a n +1-a n ,S n 为数列b n 的前n 项和,求S n .【答案】(1)证明见解析(2)S n =4n ⋅3n ,n ∈N *【分析】(1)根据递推公式证明a n +1a n -1+1为定值即可;(2)先由(1)求得数列a n 的通项,从而可得数列b n 的的通项,再利用错位相减法求解即可.【详解】(1)因为a n =3a n -1+2n ≥2,n ∈N * ,所以a n +1=3a n -1+1 ,又a 1+1=2,所以a n +1 是以2为首项,以3为公比的等比数列;(2)由(1)知a n +1=2⋅3n -1,故a n =2⋅3n -1-1,所以b n =2n +1 2⋅3n -1-2⋅3n -1+1 =432n +1 ⋅3n ,故S n =433×3+5×32+7×33+⋯+2n +1 ⋅3n ,则3S n =433×32+5×33+⋯+2n -1 ⋅3n +2n +1 ⋅3n +1 ,两式相减得-2S n =433×3+2×32+2×33+⋯+2⋅3n -2n +1 ⋅3n +1 =433+61-3n 1-3-2n +1 3n +1 =-8n ⋅3n ,所以S n =4n ⋅3n .15设数列a n 的前n 项和为S n ,S n =2a n +2n -6n ∈N * .(1)求数列a n 的通项公式;(2)若数列2n +1a n a n +1 的前m 项和T m =127258,求m 的值.【答案】(1)a n =2n(2)7【分析】(1)当n ≥2时,构造S n -1=2a n -1+2n -8,与条件中的式子,两式相减,得a n =2a n -1-2,转化为构造等比数列求通项公式;(2)由(1)可知b n =2n +1a n a n +1=2n +12n +2 2n +1+2,利用裂项相消求和法求解.【详解】(1)因为S n =2a n +2n -6,所以当n =1时,S 1=2a 1-4,解得a 1=4.当n ≥2时,S n -1=2a n -1+2n -8,则S n -S n -1=2a n -2a n -1+2,整理得a n =2a n -1-2,即a n -2=2a n -1-2 .所以数列a n -2 是首项为2,公比为2的等比数列,所以a n -2=2×2n -1=2n .所以a n =2n +2.(2)令b n =2n +1a n a n +1=2n +12n +2 2n +1+2=212n +2-12n +1+2,数列b n 的前m 项和T m =214-16+16-110+110-114+⋯+12m +2-12m +1+2,=214-12m +1+2=12-22m +1+2,则12-22m +1+2=127258,则22m +1+2=2258,则2m +1=256⇒m =7.m 的值为7.16已知数列a n 满足a 1=1,n -1 a n -na n -1=0n ≥2 .(1)求数列a n 的通项公式;(2)若b n =2n ⋅a n ,求数列b n 的前n 项和S n .【答案】(1)a n =n (2)S n =n -1 ⋅2n +1+2【分析】(1)由题意得数列a nn为常数列,可数列a n 的通项公式;(2)利用错位相减法求数列前n 项和.【详解】(1)由n -1 a n -na n -1=0n ≥2 ,得a n n =a n -1n -1n ≥2 ,所以数列a n n 为常数列,有a nn =a 11=1,∴a n =n (2)b n =2n ⋅a n =n ⋅2n ,S n =21+2×22+3×23+⋯+n -1 2n -1+n ⋅2n ,2S n =22+2×23+3×24+⋯+n -1 2n +n ⋅2n +1,两式相减,-S n =21+22+23+⋯+2n -n ⋅2n +1=21-2n 1-2-n ⋅2n +1=1-n ⋅2n +1-2,所以S n =n -1 ⋅2n +1+217记数列a n 的前n 项和为S n ,已知a 1=-2,S n +1+2S n =-2 n +1.(1)求a n 的通项公式;(2)记数列a n 的前n 项和为T n ,证明:S n ≤T n <3S n .【答案】(1)a n =-2 n -1-3n +1 (2)见解析【分析】(1)根据辅助数法,整理等式,可得数列S n-2 n的通项,在根据a n 与S n 的关系,可得答案;(2)整理数列a n 的通项公式,利用错位相减法,求得T n ,根据作差法以及数列的单调性,可得答案.【详解】(1)由S n +1=-2S n +-2 n +1,两边同时除以-2 n +1可得:S n +1-2 n +1=S n-2 n +1,故数列S n -2 n为以1为公差的等差数列,则S n-2 n =S 1-21+n -1 ×1=a 1-2+n -1=n ,即S n =n ⋅-2 n ,当n ≥2时,a n =S n -S n -1=n ⋅-2 n -n -1 -2 n -1=-2 n -1-3n +1 ,将n =1代入上式,可得a 1=-2 1-1-3+1 =-2,则a 1满足上式,故数列a n 的通项公式a n =-2 n -1-3n +1 .(2)由n ∈N *,则-3n +1<0,即a n =-2 n -1-3n +1 =2n -13n -1 ,T n =20×2+21×5+22×8+⋯+2n -13n -1 ,2T n =21×2+22×5+23×8+⋯+2n 3n -1 ,两式相减可得,-T n =2+21×3+22×3+⋯+2n -1×3-2n 3n -1 =2+3×2+22+23+⋯+2n -1 -2n 3n -1 =2+3×2×1-2n -1 1-2-2n 3n -1=2+6×2n -1-1 -2n 3n -1 =2+3×2n -6-2n 3n -1 =-4+2n 4-3n ,则T n =4+2n 3n -4 ,由(1)可得S n =n ⋅-2 n =n ⋅2n ,T n -S n =4+2n 3n -4 -n ⋅2n =4+2n 2n -4 ,令b n =4+2n 2n -4 ,b n +1-b n =4+2n +12n +2-4 -4-2n 2n -4 =n ⋅2n +1>0,则数列b n 为递增数列,b 1=4+21×2-4 =0,则b n ≥0,即T n ≥S n ;T n -3S n =4+2n 3n -4 -3n ⋅2n =4-2n +2,令c n =4-2n +2,易知数列c n 为递减数列,c 1=4-21+2=-4<0,则c n <0,即3S n >T n .综上,不等式S n ≤T n <3S n 恒成立.18已知数列a n 的前n 项和为S n ,且S n =2a n -n n ∈N * .(1)求证;数列a n +1 是等比数列;(2)求证:nk =12k a k a k +1 <1.【答案】(1)证明见解析(2)证明见解析【分析】(1)S n +1=2a n +1-n +1 ,S n =2a n -n ,作差得a n +1=2a n +1,则a n +1+1=2a n +1 ,即可证明数列a n +1 为等比数列;(2)首先求出a n =2n-1,而2k a k a k +1=12k -1-12k +1-1,最后通过裂项求出得到nk =12k a k a k +1 =1-12n +1-1<1.【详解】(1)由已知得S n +1=2a n +1-n +1 ,又a n +1=S n +1-S n ,S n =2a n -n 所以作差得a n +1=2a n +1-2a n -1,故a n +1=2a n +1所以a n +1+1=2a n +1又当n =1时,S 1=2a 1-1,又S 1=a 1,故a 1=1故数列a n +1 是首项为2,公比为2的等比数列(2)由(1)可知:a n +1=2n ,故a n =2n -1所以2k a k a k +1=2k +1-1 -2k-1 2k -1 2k +1-1 =12k -1-12k +1-1nk =12k a k a k +1=2a 1a 2+22a 2a 3+23a 3a 4+⋅⋅⋅+2k a k a k +1+⋅⋅⋅+2na n an +1=1-122-1+122-1-123-1 +⋅⋅⋅+12k -1-12k +1-1+⋅⋅⋅+12n -1-12n +1-1=1-12n +1-1<1综上可知:nk =12ka k a k +1 <119已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *,数列{b n }满足b 1=1,且nb n +1-(n +1)b n =n (n +1),n ∈N *.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ⋅b n ,求数列{c n }的前n 项和为Tn .【答案】(1)a n =2n -1,b n =n 2(2)T n =(n -1)2n +1【分析】(1){a n }根据前n 项和为S n 与a 的关系可求出;{b n }根据递推公式先构造数列,再根据构造数列的通项公式求出{b n }的通项;(2)写出{c n }通项公式,用错位相减法求出T n .【详解】(1)∵S n =2a n -1,n ∈N *,∴S n +1=2a n +1-1,两式相减得:a n +1=2a n +1-2a ,∴a n +1=2a ,又S 1=a 1=2a 1-1,∴a 1=1,∴{a n }是以首项为1,公比为2的一个等比数列,∴a n =1×2n -1=2n -1;由nb n +1-(n +1)b n =n (n +1)得:b n +1n +1-bn n =1,又b 11=1∴b n n 是以首项为1,公差为1的一个等差数列,∴bn n=1+(n -1)×1=n ,∴b n =n 2;(2)由(1)知c n =n ⋅2n -1,∴T n =1⋅20+2⋅21+⋯+n ⋅2n -1,∴2T n =0+1⋅21+⋯+(n -1)⋅2n -1+n ⋅2n ,两式相减得:-T n =1+2+22+⋯+2n -1-n ⋅2n=1-2n 1-2-n ⋅2n =(1-n )2n -1,∴T n =(n -1)2n +1.20已知数列a n 满足a 1=1,a 2=4.有以下三个条件:①a n +1=4a n -4a n -1(n ≥2,n ∈N *);②na n +1=2n +1 a n ;③a 1+a 22+a 34+⋅⋅⋅+a n 2n -1=n 2+n2(n ∈N *);从上述三个条件中任选一个条件,求数列a n 的通项公式和前n 项和S n .【答案】a n =n ⋅2n -1,S n =n -1 ⋅2n +1【分析】选①根据递推关系式构造等比数列,再构造等差数列即可求得a n ;选②根据递推关系式,结合累乘法求得a n ;选③利用前n 项和与通项的关系,相减求得a n ;求前前n 项和采用错位相减法即可.【详解】解:选①由a n +1=4a n -4a n -1(n ≥2,n ∈N *)得a n +1-2a n =2a n -2a n -1 ,故a n +1-2a n 是公比为2的等比数列,则a n +1-2a n =a 2-2a 1 2n -1=2n即a n +12n +1-a n 2n =12,故a n 2n 是公差为12的等差数列,则a n 2n =12+n -1 12=12n ,即a n =n ⋅2n -1.选②由na n +1=2n +1 a n 得an +1a n =2n +1 n,故a n a n -1⋅a n -1a n -2⋅⋅⋅a 2a 1=2⋅n n -1⋅2⋅n -1 n -2⋅⋅⋅2⋅21化简得a na 1=n ⋅2n -1,即a n =n ⋅2n -1,n =1也满足选③由a 1+a 22+a 34+⋅⋅⋅+a n 2n -1=n 2+n2 (1)得当n ≥2时,a 1+a 22+a 34+⋅⋅⋅+a n -12n -2=n -1 2+n -12 (2)由(1)-(2)得a n 2n -1=n ,故a n=n ⋅2n -1,n =1也满足,因此,S n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -12S n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n两式相减得-S n =20+21+22+⋅⋅⋅+2n -1-n ⋅2n化简得S n =-1-2n1-2+n ⋅2n =n -1 ⋅2n +121若数列a n 满足a 1=2,a n +1-2a n =3n -1.(1)证明:a n +1-3a n 是等比数列;(2)设a n 的前n 项和为S n ,求满足S n <2023的n 的最大值.【答案】(1)证明见解析(2)7【分析】(1)根据题意构造数列证明等比,求出首项及公比即可,(2)由(1)求出a n +1-3a n 的通项公式,与题中等式联立,求出a n 通项公式,进而求出前n 项和为S n ,代数使得S n <2023即可求出n 的最大值.【详解】(1)证明:因为a n +1-2a n =3n -1,所以a n +2-2a n +1=3n ,a n =12a n +1-12⋅3n -1,故a n +2-3a n +1a n +1-3a n=2a n +1+3n-3a n +1a n +1-3⋅12a n +1-12⋅3n -1=3n-a n +112⋅3n-12a n +1=2,又a 1=2,则a 2=5,a 2-3a 1=-1,故a n +1-3a n 是以-1为首项,2为公比的等比数列.(2)由(1)得a n +1-3a n =-2n -1①,又a n +1-2a n =3n -1②,②-①得,a n =2n -1+3n -1,故S n =a 1+a 2+⋯+a n=20+21+⋯+2n -1 +30+31+⋯+3n -1 =2n -1+123n -1 =2n+3n 2-32,易得S n 为递增数列,又S 7=1220<2023,S 8=3535>2023,S n <2023,故n 的最大值为7.22已知数列a n 的首项a 1=25,且满足a n +1=2a n 2a n +1.(1)求证:数列1a n-2为等比数列:(2)若1a 1+1a 2+1a 3+⋯+1a n<101,求满足条件的最大整数n .【答案】(1)证明见解析(2)50【分析】(1)两边取倒数,再同时减2,根据等比数列的定义,即可证明.(2)利用等比数列求和公式求和,再根据函数单调性,即可求解.【详解】(1)证明:由a n +1=2a n 2a n +1,可得1a n +1=2a n +12a n =1+12a n,1a n +1-2=12a n -1=121a n -2,又1a 1-2=12≠0,故数列1a n -2 为等比数列.(2)由(1)可知1a n -2=12×12 n -1=12n ,故1a n =12n +2.1a 1+1a 2+1a 3+⋯+1a n =12+2+122+2+123+2+⋯+12n +2=121-12n1-12+2n =1-12n+2n .令f n =1-12n+2n ,易知f n 随n 的增大而增大,f 50 <101,f 51 >101,故满足f n <101的最大整数为50.23已知数列a n 满足a 1=1,a 2=6,且a n +1=4a n -4a n -1,n ≥2,n ∈N * .(1)证明数列a n +1-2a n 是等比数列,并求数列a n 的通项公式;(2)求数列a n 的前n 项和S n .【答案】(1)证明见详解,a n =(2n -1)2n -1(2)T n =(2n -3)2n +3【分析】(1)根据递推公式构造可证,然后借助a n +1-2a n 为等比数列可得通项,再构造数列a n2n可证为等差数列,根据等差数列通项公式可解;(2)由错位相减法可得.【详解】(1)因为a n +1=4a n -4a n -1,n ≥2,n ∈N * 所以a n +1-2a n =2a n -4a n -1=2(a n -2a n -1)又因为a 2-2a 1=4所以a n +1-2a n 是以4为首项,2为公比的等比数列.所以a n +1-2a n =4×2n -1=2n +1变形得a n +12n +1-a n2n =1所以a n 2n 是以a 12=12为首项,1为公差的等差数列所以a n 2n =12+n -1=n -12,所以a n =(2n -1)2n -1(2)因为T n =1×20+3×21+5×22+⋅⋅⋅+(2n -1)2n -1⋯①所以2T n =1×21+3×22+5×23+⋅⋅⋅+(2n -1)2n ⋯②①-②得:-T n =1+22+23+⋅⋅⋅+2n -1-(2n -1)2n=1+22(1-2n -1)1-2-(2n -1)2n所以T n =(2n -1)2n -2n +1+3=(2n -3)2n +324已知正项数列a n 的前n 项和为S n ,现在有以下三个条件:①数列a 2n 的前n 项和为T n =n (n +1)2;②a 1=1,a n +1=n +1na n ;③a 1=1,a 2=2,当n ≥3时,a n +a n -1 S n -2S n -1+S n -2 =1.从上述三个条件中任选一个,完成以下问题:(1)求数列a n 的通项公式;(2)设数列b n 满足b 1=1,b n =a n -a n -1(n ≥2),试问b n 中是否存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列?请说明理由.【答案】(1)任选一条件,都有a n =n (2)不存在,理由见解析.【分析】(1)选①,结合a 2n =T n -T n -1求得a n ;选②,通过构造常数列的方法求得a n ;选③,结合a n =S n -S n -1以及等差数列的知识来求得a n .(2)先假设存在符合题意的b k ,b k +1,b k +2,结合等差中项的知识推出矛盾,从而作出判断.【详解】(1)选①:因为数列a 2n 的前n 项和为T n =n (n +1)2,所以当n =1时,a 21=1;当n ≥2时,a 2n =T n -T n -1=n (n +1)2-(n -1)n2=n .经检验n =1时,a 21=1符合上式,所以a 2n =n ,n ∈N *,故正项数列a n 的通项公式为a n =n ,选②:因为a 1=1,a n +1=n +1n a n ,所以a n +1n +1=a n n,所以a n n 为常数列,即a nn=a 1=1,所以正项数列a n 的通项公式a n =n .选③:由a n +a n -1 S n -2S n -1+S n -2 =a n +a n -1 a n -a n -1 =a 2n -a 2n -1=1(n ≥3),所以数列a 2n 从第2项起成等差数列,且a 2n =n (n ≥2),经检验n =1时,a 1=1符合上式,所以正项数列a n 的通项公式a n =n .(2)数列b k 中不存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列.理由如下:由(1)知当n ≥2时,b n =a n -a n -1=n -n -1,所以1b n =1n -n -1=n +n -1.假设数列b n 中存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列.当k =1时,1,2+1,3+2,显然不成等差数列,假设不成立;当k ≥2时,则2(k +1+k )=(k +k -1)+(k +2+k +1),即k +1+k =k -1+k +2,两边同时平方,得k +1+k +2k +1⋅k =k -1+k +2+2k -1⋅k +2,所以(k +1)k =(k -1)(k +2),整理得k 2+k =k 2+k -2,所以0=-2,矛盾,故假设不成立.综上所述,数列b n 中不存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列.25已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N * ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)证明见解析(2)选①:T n =n 22+n2+2n +1-2;选②:T n =n -1 2n +1+2【分析】(1)根据递推公式使用构造法可得a n -12n 的通项公式,然后可得b n 通项,再由等比数列定义可证;(2)选①:由分组求和法可得;选②:使用错位相减法可得.【详解】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N * ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n =1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n 2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+226已知数列a n 的前n 项的和为S n 且满足S n =2a n -2n ,数列b n 是两个等差数列1,4,7,10,⋅⋅⋅与4,9,14,19,⋅⋅⋅的公共项组成的新数列.(1)求出数列a n ,b n 的通项公式;(2)求出数列a n +b n 的前n 项的和T n .【答案】(1)a n =n +1 ⋅2n -1,b n =15n -11(2)T n =n ⋅2n+15n 2-7n2【分析】(1)利用a n 与S n 关系可得a n =2a n -1+2n -1,进而得到a n 2n =a n -12n -1+12,可知数列a n 2n 为等差数列,由等差数列通项公式可推导得到a n ;由题意可知b n 为等差数列,由等差数列通项公式可求得b n ;(2)采用分组求和法,分别利用错位相减法和等差数列求和公式可求得数列a n ,b n 的前n 项和,加和即可得到T n .【详解】(1)当n =1时,a 1=S 1=2a 1-2,∴a 1=2;当n ≥2时,S n -1=2a n -1-2n -1,∴a n =S n -S n -1=2a n -2n -2a n -1+2n -1=2a n -2a n -1-2n -1,即a n =2a n -1+2n -1,∴a n 2n =a n -12n -1+12,∴数列a n 2n 是以a 12=1为首项,12为公差的等差数列,∴a n 2n =1+12n -1 =n +12,∴a n =n +1 ⋅2n -1;∵数列b n 是两个等差数列1,4,7,10,⋅⋅⋅与4,9,14,19,⋅⋅⋅的公共项组成的新数列,∴数列b n 是以4为首项,15为公差的等差数列,∴b n =4+15n -1 =15n -11.(2)设A n 为数列a n 的前n 项和,B n 为数列b n 的前n 项和,∵A n =2×20+3×21+4×22+⋅⋅⋅+n ⋅2n -2+n +1 ⋅2n -1,2A n =2×21+3×22+4×23+⋅⋅⋅+n ⋅2n -1+n +1 ⋅2n ,∴-A n =2-n +1 ⋅2n+21+22+⋅⋅⋅+2n -1=2-n +1 ⋅2n+21-2n -1 1-2=-n ⋅2n ,∴A n =n ⋅2n,又B n =n b 1+b n 2=n 4+15n -11 2=15n 2-7n 2,∴数列a n +b n 的前n 项的和T n =A n +B n =n ⋅2n+15n 2-7n 2.27记S n 是公差不为0的等差数列a n 的前n 项和,已知a 3+3a 4=S 5,a 1a 5=S 4,数列b n 满足b n =3b n -1+2n -1n ≥2,n ∈N * ,且b 1=a 1-1.(1)求a n 的通项公式;(2)证明数列b n2n +1 是等比数列,并求b n 的通项公式;(3)求证:对任意的n ∈N *,ni =11b i <32.【答案】(1)a n =2n (2)证明见解析;b n =3n -2n (3)见解析【分析】(1)根据题意求出等差数列的首项与公差,再根据等差数列的通项即可得解;(2)根据等比数列的定义结合递推公式证明b n2n +1b n -12n -1+1为定值,即可得证,再根据等比数列的通项求出数列b n 2n+1 的通项,从而可得出答案;(3)由(2)得1b n =13n -2n ≤13n -1,再根据等比数列的前n 项和的公式即可得证.【详解】(1)解:设等差数列a n 的公差为d ,d ≠0,因为a 3+3a 4=S 5,a 1a 5=S 4,则a 1+2d +3a 1+9d =5a 1+10da 1a 1+4d =4a 1+6d,解得a 1=2d =2或a 1=0d =0 (舍去),所以a n =2n ;(2)证明:因为b n =3b n -1+2n -1n ≥2,n ∈N * ,所以b n 2n =32⋅b n -12n -1+12,即b n 2n+1=32b n -12n -1+1,所以b n2n +1b n -12n -1+1=32,因为b 1=a 1-1,所以b 12+1=32,所以数列b n 2n +1 是以32为首项,32为公比的等比数列,所以b n 2n+1=32 n,所以b n =3n -2n ;(3)证明:由(2)得1b n =13n -2n ≤13n -1,故ni =11b i=1b 1+1b 2+1b 3+⋯1b n ≤1+13+132+⋯+13n -1=1×1-13 n1-13=321-13 n <32,所以ni =11b i<32.28已知数列a n 的前n 项和为S n ,满足a 1=1,且2S n =na n +1.(1)求数列a n 的通项公式;(2)求数列1S n的前n 项和T n .【答案】(1)a n =n ;(2)T n =2nn +1.【分析】(1)利用S n 与a n 的关系求解通项公式;(2)利用等差数列求和公式求解S n ,再根据裂项相消法求解T n .(1)因为2S n =na n +1,所以2S n +1=n +1 a n +2,两式相减得2a n +1=n +1 a n +2-na n +1,即n +2 a n +1=n +1 a n +2,即a n +2n +2=an +1n +1n ∈N * ,又a 2=2a 1=2,a 1=1,故an n =⋅⋅⋅=a 22=a 11=1,因此,数列a nn 是每项都是1的常数列,从而a n =n .(2)因为a n =n ,所以S n =n n +12,从而1S n =2n n +1=21n -1n +1 ,因此T n=2×1-12+12-13+13-14+⋅⋅⋅+1n-1n+1=2×1-1n+1=2n n+1.29设数列a n满足a1=2,a n-2a n-1=2-n n∈N*.(1)求证:a n-n为等比数列,并求a n的通项公式;(2)若b n=a n-n⋅n,求数列b n的前n项和T n.【答案】(1)证明见解析,a n=2n-1+n(2)T n=n-1×2n+1【分析】(1)由递推公式可得a n-n=2a n-1-n-1,即可得到a n-n是以1为首项,2为公比的等比数列,再根据等比数列的通项公式求出a n的通项公式;(2)由(1)可得b n=n×2n-1,再利用错位相减法求和即可;【详解】(1)解:因为a1=2,a n-2a n-1=2-n n∈N*,所以a n=2a n-1+2-n,即a n-n=2a n-1-n-1又a1-1=2-1=1,所以a n-n是以1为首项,2为公比的等比数列,所以a n-n=1×2n-1,所以a n=2n-1+n(2)解:由(1)可得b n=a n-n⋅n=n×2n-1,所以T n=1×20+2×21+3×22+⋯+n×2n-1①,所以2T n=1×21+2×22+3×23+⋯+n×2n②,①-②得-T n=1+1×21+1×22+1×23+⋯+1×2n-1-n×2n即-T n=1-2n1-2-n×2n,所以T n=n-1×2n+1;30问题:已知n∈N*,数列a n的前n项和为S n,是否存在数列a n,满足S1=1,a n+1≥1+a n,﹖若存在.求通项公式a n﹔若不存在,说明理由.在①a n+1=2(S n+1+S n)﹔②a n=S n-1+n n≥2;③a n+1=2a n+n-1这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】选①:a n=1,n=18n-8,n≥2;选②:a n+1=2n-1;选③:a n=2n-n【分析】选①:利用a n与S n的关系得到关于S n的递推公式,再由递推公式求S n,然后可得通项a n;选②:利用a n与S n的关系得到递推公式,然后构造等比数列可求通项;选③:根据递推公式构造等比数列可解.【详解】选①:a n+1=2(S n+1+S n)=S n+1-S n=(S n+1+S n)(S n+1-S n)∵S1=a1=1,a n+1-a n≥1∴S n+1+S n>0∴S n+1-S n=2,即{S n}是以2为公差,1为首项的等差数列∴S n=2n-1,即∴S n=(2n-1)2当n≥2时,a n=S n-S n-1=(2n-1)2-(2n-3)2=8n-8显然,n=1时,上式不成立,所以a n=1,n=1 8n-8,n≥2 .选②:当n≥2时,a n=S n-1+n,即S n-1=a n-n所以a n=S n-S n-1=a n+1-(n+1)-(a n-n)整理得a n+1+1=2(a n+1)又a2=S1+2=3,a2+1=4所以{a n+1}从第二项起,是以2为公比,4为首项的等比数列。
(完整版)数列通项公式常用求法及构造法
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
高考数学构造法求数列通项的八种技巧(二)(解析版)
构造法求数列通项的八种技巧(二)【必备知识点】◆构造四:同型构造法所谓同型构造法,就是将找因式中的因子和数列项数相同或者相近的部分通过同除或同乘化归成结构相同的形式,形成新的数列,如常数列,等差数列或等比数列.下面让我们来看看有哪些模型结构吧.模型一:a n +1=nn +1⋅a n 左右同乘n +1 (n +1)a n +1=n ⋅a n ,构造b n =n ⋅a n ,则b n +1=b n ,b n 为常数数列.模型二:a n +1=n +1n ⋅a n 左右同除n +1 a n +1n +1=a n n ,构造b n =a n n,则b n +1=b n ,b n 为常数数列.模型三:a n +1=n +2n ⋅a n 左右同除n +2 n +1 a n +1(n +1)(n +2)=a n n (n +1),构造b n =a n n (n +1),则b n +1=b n,b n 为常数数列.模型四:na n +1=2(n +1)a n 左右同除n n +1a n +1n +1=2a n n ,构造b n =an n,则b n +1=2b n ,b n 为等比数列.模型五:a n +1=n +2n ⋅S n ⇒S n +1-S n =n +2n ⋅S n ⇒S n +1=2n +2n ⋅S n 左右同除n +1 S n +1n +1=2S n n,构造b n =S nn ,则b n +1=2b n ,b n 为等比数列.模型六:a n +1=n +1n ⋅a n +n +1左右同除n +1 a n +1n +1=a n n +1,构造b n =a n n,则b n +1=b n +1,b n 为等差数列.模型七:a n +1=2a n +2n +1左右同除2n +1a n +12n +1=a n 2n +1,构造b n =a n 2n,则b n +1=b n +1,b n 为等差数列.模型八:a n -a n +1=a n a n +1左右同除a n a n +11a n +1-1a n =1,构造b n =1an ,则b n +1-b n =1,b n 为等差数列.看了这么多模型,是不是觉得很多,很难记住呢,其实向大家展示这么多,只是想向大家展示,当看到这类式子,尽量将n +1和a n +1,n 和a n 等因子和数列项数相同的部分划归成结构相同的形式,构造成新数列.【经典例题1】已知数列a n 满足a 1=23,a n +1=nn +1⋅a n,求a n . 【解析】因为a n +1=nn +1a n,所以(n +1)a n +1=na n .令b n =na n ,则b n =b n +1,即b n 是常数数列,所以b n=b 1,即na n =1×a n =23,a n =23n.【经典例题2】已知数列a n 中,a n +1=nn +2a n且a 1=2,求数列a n 的通项公式.【解析】因为a n +1=nn +2a n,所以(n +2)a n +1=na n ,(n +1)(n +2)a n +1=n (n +1)a n .令b n =n (n +1)a n ,则b n +1=b n ,即b n 是常数数列,所以b n =b 1.因此n (n +1)a n =1×2×2,a n =4n (n +1).【经典例题3】已知数列a n 中,na n +1=2(n +1)a n +n (n +1)且a 1=1,求数列a n 的通项公式.【解析】na n +1=2(n +1)a n +n (n +1),等式两侧同除n (n +1),形成a n +1n +1=2a n n +1,令b n =an n,则b n +1=2b n +1,这又回到了构造一的形式,所以b n +1+1=2(b n +1),b n +1 是以2为首项,2为公比的等差数列,即b n +1=2×2n -1=2n , b n =2n -1,所以a nn=2n -1,a n =n (2n -1).【经典例题4】已知a 1=1,且na n +1=(n +2)a n +n ,求数列a n 的通项公式.【解析】等式两侧同除n (n +1)(n +2),得a n +1(n +1)(n +2)=a n n (n +1)+1(n +1)(n +2),即a n +1(n +1)(n +2)-a n n (n +1)=1(n +1)(n +2),a n +1(n +1)(n +2)-a n n (n +1)=1(n +1)-1(n +2),另b n =a n n (n +1),所以b n +1-b n =1(n +1)-1(n +2),接下来就是叠加法发挥作用的时候了b 2-b 1=12-13b 3-b 2=13-14b 4-b 3=14-15⋯⋯b n -b n -1=1n -1(n +1)叠加得b n -b 1=12-1(n +1),b 1=a 12=12,所以b n =1-1(n +1)=n n +1,即a n n (n +1)=nn +1,a n =n 2.【练习1】已知数列a n 满足a 1=1,a n -a n +1=3a n a n +1,则a 10=()A.28B.128C.-28D.-128【答案】B【解析】数列a n 满足a 1=1,a n -a n +1=3a n a n +1,则:1a n +1-1a n=3(常数)则:数列1a n 是以1a 1=1为首项,3为公差的等差数列。
数列构造方法(一)
数列构造方法(一)数列构造什么是数列构造?数列构造是数学中一种通过不同的规律和方法构造序列的技巧和方法。
数学中的序列指的是按照规律排列起来的一系列数。
使用数列构造可以帮助我们更好地理解和掌握数学知识,例如数列求和、递归函数、函数极限等。
常见的数列构造方法等差数列和等比数列等差数列是每一项与前一项之差相等的数列,公差是相邻两项之差的值。
例如,1,3,5,7,9就是一个公差为2的等差数列。
等比数列是每一项与前一项之比相等的数列,公比是相邻两项之比的值。
例如,1,2,4,8,16就是一个公比为2的等比数列。
可以通过规律找到等差数列和等比数列的通项公式,从而计算它们的和。
斐波那契数列斐波那契数列是指一个数列,其第一项和第二项均为1,从第三项开始,每一项是前两项之和。
例如,1,1,2,3,5就是斐波那契数列。
斐波那契数列在自然界中广泛存在,例如植物的叶子排列、贝壳的形状等。
斐波那契数列还与黄金分割比例密切相关,常被应用于设计、艺术等领域。
筛法构造素数序列素数是仅能被1和本身整除的自然数,如2、3、5、7、11等。
筛法构造素数序列的方法是,从2开始,依次筛去2的倍数、3的倍数、5的倍数……依次类推,筛完后剩下未被标记的数即为素数。
例如,下面是构造1-100的素数序列的过程:1.假设全部数都为素数。
2.2是素数,筛去2的倍数:4、6、8、10……100。
3.3是素数,筛去3的倍数:9、15、21……99。
4.5是素数,筛去5的倍数:25、35……95。
5.7是素数,筛去7的倍数:49、63……91。
6.最终剩下的未被标记的数即为素数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
素勾股数构造法素勾股数是指勾股数中所有元素都为素数的三元组。
例如,(3,5,7)就是一个素勾股数。
素勾股数构造法是通过穷举的方法找到所有素勾股数。
高考数学构造法求数列通项的八种技巧(三)(解析版)
构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。
构造数列的方法总结
构造数列的方法总结数列是数学中一种重要的概念,它是按照一定的规律排列的一组数。
构造数列是数学学习中的重要内容之一,通过学习数列的构造方法,不仅能够培养思维能力,而且能够提高解决问题的能力。
本文将总结几种常见的构造数列的方法。
一、等差数列等差数列是一种最基本的数列形式,它的特点是数列中的每两个相邻的数之间的差值都是相等的。
例如1, 3, 5, 7, 9就是一个等差数列,相邻两个数的差值都是2。
构造等差数列的方法有两种:1.1. 公差法公差法是通过确定数列的首项和公差来构造等差数列。
公差指的是相邻两个数之间的差值。
例如,已知数列的首项a1=3,公差d=2,可以得到数列3, 5, 7, 9, 11。
1.2. 通项公式法通项公式法是通过数列的首项和公差,得到数列的通项公式,从而可以方便地找到数列中任意一项的值。
等差数列的通项公式为an = a1 + (n-1)d,其中an表示数列的第n项。
例如,已知数列的首项a1=1,公差d=3,可以得到数列1, 4, 7, 10。
二、等比数列等比数列是一种数列,其中每个数都是前一个数与一个固定常数的乘积。
例如2, 4, 8, 16就是一个等比数列,相邻两个数的比值都是2。
构造等比数列的方法有两种:2.1. 公比法公比法是通过确定数列的首项和公比来构造等比数列。
公比指的是相邻两个数之间的比值。
例如,已知数列的首项a1=2,公比r=2,可以得到数列2, 4, 8, 16。
2.2. 通项公式法通项公式法是通过数列的首项和公比,得到数列的通项公式,从而可以方便地找到数列中任意一项的值。
等比数列的通项公式为an = a1 * r^(n-1),其中an表示数列的第n项。
例如,已知数列的首项a1=2,公比r=2,可以得到数列2, 4, 8, 16。
三、斐波那契数列斐波那契数列是一种特殊的数列,其中每一项都是前两项的和。
例如1, 1, 2, 3, 5, 8就是一个斐波那契数列。
构造斐波那契数列的方法如下:3.1. 递归法递归法是一种通过定义函数自身来构造数列的方法。
用构造法求数列的通项公式
用构造法求数列的通项公式首先,我们需要了解什么是数列和通项公式。
数列是由一系列按照一定规律排列的数字组成的序列。
通项公式是指能够通过一个数列中的任意一项来表示它的第n项的公式。
构造法是指通过观察数列中的规律,逐步构造出通项公式的方法。
对于数列的构造方法,有多种不同的途径可以使用。
下面将介绍一些常见的构造法。
1.等差数列:等差数列是指数列中任意两项之间的差都是一个常数d。
要构造等差数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于等差数列1,4,7,10,13,...,我们可以观察到每一项与前一项的差都是3,因此该数列的通项公式可以表示为An=A1+(n-1)d,其中A1为首项,d为公差,n为项数。
2.等比数列:等比数列是指数列中任意两项之间的比都是一个常数r。
要构造等比数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于等比数列2,6,18,54,162,...,我们可以观察到每一项与前一项的比都是3,因此该数列的通项公式可以表示为An=A1*r^(n-1),其中A1为首项,r为公比,n为项数。
3.斐波那契数列:斐波那契数列是一种特殊的数列,每一项都是前两项的和。
要构造斐波那契数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于斐波那契数列1,1,2,3,5,8,...,我们可以观察到每一项都是前两项的和,因此该数列的通项公式可以表示为An=An-1+An-2,其中A1和A2为首两项,n为项数。
4.平方数列:平方数列是指数列中每一项都是一些整数的平方。
要构造平方数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于平方数列1,4,9,16,25,36,...,我们可以观察到每一项都是一些整数的平方,因此该数列的通项公式可以表示为An=n^2,其中n为项数。
5.阶乘数列:阶乘数列是指数列中每一项都是小于等于该项的正整数的阶乘。
要构造阶乘数列的通项公式,可以通过观察数列中的规律来得到。
构造数列的方法总结
构造数列的方法总结数列是数学中的一个重要概念,它是按照一定规律排列的一组数。
构造数列的方法有很多种,下面我们就来总结一下常见的构造数列的方法。
一、等差数列的构造方法。
等差数列是指数列中相邻两项的差都相等的数列。
构造等差数列的方法是通过已知的首项和公差来确定数列的每一项。
首先确定首项a1和公差d,然后利用等差数列的通项公式an=a1+(n-1)d来逐项求出数列中的每一项。
二、等比数列的构造方法。
等比数列是指数列中相邻两项的比值都相等的数列。
构造等比数列的方法是通过已知的首项和公比来确定数列的每一项。
首先确定首项a1和公比q,然后利用等比数列的通项公式an=a1q^(n-1)来逐项求出数列中的每一项。
三、斐波那契数列的构造方法。
斐波那契数列是指数列中每一项都是前两项之和的数列。
构造斐波那契数列的方法是通过已知的前两项来确定数列的后续项。
首先确定前两项a1和a2,然后利用递推关系an=an-1+an-2来逐项求出数列中的每一项。
四、特殊数列的构造方法。
除了等差数列、等比数列和斐波那契数列外,还有一些特殊的数列,如等差-等比数列、调和数列等。
构造这些特殊数列的方法需要根据数列的特点来确定每一项的值。
在构造数列的过程中,我们需要注意数列的规律性和递推关系,通过已知的条件来确定数列中的每一项。
同时,我们也可以利用数学工具如数学归纳法、递推关系等来推导数列的通项公式,从而更加方便地求出数列中任意一项的值。
总之,构造数列的方法有很多种,我们可以根据数列的特点和已知条件来确定每一项的值,从而得到我们需要的数列。
希望本文总结的构造数列的方法能够对大家有所帮助。
高中数学数列构造法讲解
高中数学数列构造法讲解先来说一下,我们现在做题所讲解的这种数列其实是一种构造法,叫做直接构造法。
1.如果有n个自然数,这些自然数满足,则称该数列为n次数列。
2.如果从(1, 1),…,(n-1, 1)起,每一项都是自然数的数列,则称这样的数列为直接产生式,或简称直接式。
如果数列有无穷多项,就称这样的数列为直接产生式的数列。
(注:无穷多项的数列是指该数列存在无穷多个项,而不是有无穷多个项。
) 3.用直接构造法构造出的数列,叫做原数列。
如果数列有两个项相同,则称为直接式。
4.(1)如果将上述数列分割成若干段小于15的短数列时,并且把各部分添加到原始数列当中去,那么得到另外一组更新、但仍属于原数列的数列;否则,便归入了重复计算之内。
也即完全按照间隔符号移动位置进行改变。
(2)如果把整体(原数列)依某个标准划分成许多类似项目,再以此作为基础逐步求增减,由高至低排序,找出各比较层级对应关系及首尾衔接处,使余额达到要求值即可。
(3)假设A=1+3+7+11+13+...+99, B=0+4+5+6+7+...+100, C=5+10+20+25 (100)则上述定义的三条件需加试检验。
5.(4)根据前面的叙述,发现直接产生式具有交替性与平稳性质。
由①和②知直接式不会因偶然事故突然消失,只会缓慢地降格甚至消失;而根据③和④,又反映了它既没有快速上升趋势也没有急剧骤停点。
根据⑤,还表明⑥的形态很难确切预见。
6.其中任意两项的和可能不同。
例如设X, Y为数列{1, 2, 3}的第i项, x+y>1,同理,{-1, -2, -3}未必>- 1。
(5)通过适当的运算,可逆向推导出公共项=公差+邻项商=-1。
(6)结合⑦可知,其他项均可取正负符号代换,唯独累积量绝对不允许互换。
(7)记忆特殊规律: a,b,c≥3, d,e≥5;(f)证:a<-b≤b;(g)证;a>b≤c; (h)证:c<a≤d。
构造数列的方法总结
构造数列的方法总结构造数列是数列理论中的一种重要方法,它常常用于解决各种数学问题和实际应用中的数值计算。
构造数列的方法有很多种,下面将对其中一些常见的方法进行总结。
一、等差数列的构造方法:等差数列是指数列中相邻两项之间的差值都是相等的数列。
常用的构造等差数列的方法有以下几种:1、已知首项和公差,可以直接通过逐项求得。
2、已知首项和末项,可以通过末项减去首项得到差值,然后通过差值除以项数得到公差。
3、已知首项和项数,可以通过项数减一得到差值,然后通过差值除以项数得到公差。
4、已知末项和项数,可以通过项数减一得到差值,然后通过差值除以项数得到公差。
二、等比数列的构造方法:等比数列是指数列中相邻两项之间的比值都是相等的数列。
常用的构造等比数列的方法有以下几种:1、已知首项和公比,可以直接通过逐项求得。
2、已知首项和末项,可以通过末项除以首项得到比值,然后通过开方得到公比。
3、已知首项和项数,可以通过公比的次方得到末项。
4、已知末项和项数,可以通过公比的次方得到首项。
三、斐波那契数列的构造方法:斐波那契数列是指数列中每一项都是前两项之和的数列。
常用的构造斐波那契数列的方法有以下几种:1、已知前两项,可以通过求和得到第三项,然后通过逐项求得。
2、已知第一项和项数,可以通过递推公式求得后续项。
3、已知末项,可以通过递推公式求得前一项,然后通过逐项逆推。
四、调和数列的构造方法:调和数列是指数列中每一项都是前一项的倒数加一的数列。
常用的构造调和数列的方法有以下几种:1、已知首项和项数,可以通过逐项调和得到后续项。
2、已知末项和项数,可以通过项数减一得到首项,然后通过逐项调和得到前一项。
3、已知任意两项,可以通过前一项的倒数减一得到差值,然后通过差值除以项数得到后续项。
五、等差等比混合数列的构造方法:等差等比混合数列是指数列中前n项为等差数列,后m项为等比数列的数列。
构造等差等比混合数列的方法较为复杂,但可以通过以下几种常用的方法进行:1、已知首项、公差、公比和项数,可以通过逐项求得。
(完整版)用构造法求数列的通项公式汇总
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:}{n a 数列中,若),(411,211N n a a a nn ∈+==+求a n n n nn b b a b ==+1,1则设+4, 即n n b b -+1=4, n b {∴}是等差数列。
可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。
练习:1)数列{ a n }中,a n ≠0,且满足),(,311,2111N n a a a nn ∈+==+求a n 2)数列{ a n }中,,22,111+==+n nn a a a a 求a n 通项公式。
3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且求a n . 二.构造形如2n n a b =的数列。
例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。
构造数列的方法总结
构造数列的方法总结数列是数学中最基本的概念之一,它由一系列按照特定规律排列的数所组成。
构造数列的方法多种多样,下面将就几种常见的方法进行总结和探讨。
递推法:递推法是最常见的构造数列的方法之一。
递推法的基本思想是通过确定数列前几项之间的递推关系,从而不断地推导出后面的项。
例如斐波那契数列,它的递推关系是每一项都等于前两项之和,即F(n) = F(n-1) + F(n-2),其中F(0)=0,F(1)=1。
通过这个递推关系,我们可以得到斐波那契数列的任意一项。
求通项公式:求解数列的通项公式是构造数列的一种高级方法。
通项公式可以直接给出数列的任意一项,而无需计算前面的项。
要求数列的通项公式,通常需要从数列中发现一定的规律,并运用代数方法进行推导。
例如等差数列的通项公式是An = A1 + (n - 1)d,其中An表示第n项,A1表示首项,d表示公差。
特殊构造法:特殊构造法是一种灵活的数列构造方法,根据数列所要满足的特定条件,通过选择合适的数值和操作来构造出所需的数列。
例如杨辉三角,它是一种特殊的数列构造法,根据每个数等于它上方两个数之和的规律,可以逐行构造出杨辉三角的每一个数。
生成函数法:生成函数法是一种数理统计中常用的数列构造方法,它将数列看作是一个形式为函数的无穷级数。
通过对数列的生成函数进行求解,可以得到数列的各个项。
例如,斐波那契数列的生成函数是F(x) = 1/(1-x-x^2),通过对这个生成函数进行展开,就可以得到斐波那契数列的每一项。
从几何问题中构造数列:数列构造方法还可以与几何问题相结合,通过几何问题的特点来构造数列。
例如,规则的图形阵列,通过对图形阵列的规律进行观察,可以确定数列的递推关系,从而构造数列。
通过以上几种方法,我们可以构造出各种各样的数列。
数列不仅仅是数学理论中的一个概念,它还广泛应用于实际生活和科学研究中。
在实际生活中,数列可以用来描述人口增长、货币贬值等现象;在科学研究中,数列可以用来描述物质的分布、自然界的规律等。
高考数学复习:数列中的构造问题
故b1n+3是以 2 为首项,2 为公比的等比数列, 于是b1n+3=2·2n-1=2n,可得 bn=2n-1 3.
课时精练
一、单项选择题
1.已知数列{an}满足 a1=12,an+1=ana+n 1,则 a1 000 等于
1 A.1 000
√1 B.1 001
1 C.1 002
1 D.1 003
1 2 3 4 5 6 7 8 9 10
4.(2024·商洛模拟)已知 Sn 是数列{an}的前 n 项和,a1=a2=1,an+an+1=
2n+1(n≥2),则SS22
024等于
023
√1 013
A.1 012
2 023 B.2 024
2 025 C.2 023
1 013 D.1 011
1 2 3 4 5 6 7 8 9 10
又a311=6,∴a13nn是首项为 6,公差为 1 的等差数列,故 C 错误;
设an+1+k(n+1)+b=2(an+kn+b), 所以an+1=2an+kn+b-k,
由an+1=2an+n-1, 得kb=-1k,=-1, 解得kb==10,. ∴an+a1+n+nn+1=2,
即{an+n}是首项为a1+1=2,公比为2的等比数列. ∴an+n=2×2n-1=2n,故an=2n-n,故D错误.
1 2 3 4 5 6 7 8 9 10
二、多项选择题 5.已知数列{an}的前n项和为Sn,a2=3,且an+1=3Sn+2(n∈N*),则下列 说法正确的有
√A.a1=13
√B.S4=1390
C.{an}是等比数列
√D.Sn+23是等比数列
1 2 3 4 5 6 7 8 9 10
由题意,数列{an}的前n项和为Sn,a2=3,且an+1=3Sn+2,
构造法求数列通项公式
精心整理构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。
一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12解析:由a n+1=33+n n a a 得,a n+1a n 设b n =n a 1,则b n+1-b n =31数列{b n }是首相b 1=2,公差根据等差数列的通项公式得b n =∴数列通项公式为a n =53+n评析:na 1的例2n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1=S n S n-1两边除以S n S n-1得,nS 1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2(n-1)=2n-1,∴S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1)当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点。
二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
构造数列的方法总结
构造数列的方法总结构造数列的方法总结:构造方法如下: 1、定义:(1)有界闭区间上函数的和,即对于有界闭区间上每一个点P,只要它属于某一正整数集内,就存在唯一的一个y,使得y=mx+c(x>0)(x∈H(P))(m∈K)(m>0)2、单调性:函数在任何一个闭区间上都连续,那么它在这个闭区间上就可以取到一个最小值或者一个最大值,并且从这个最小值或者最大值出发,在任何一个闭区间上,函数图像都会向右上方或者左下方无限延伸; 3、等比数列定义法:如果把一个有界闭区间上的数列看作是由一个定比数列和一个函数所构成,则这两种不同形式的数列是可以通过合理的运算得到一个等比数列; 4、切割法:如果把有界闭区间上的数列看作是由一个基本函数和另外一个复合函数所构成,我们称其为切割函数,那么将原数列按照切割函数所确定的某个区间进行分段后,得到的数列与原数列相比,具有相同的性质。
这种切割法可以得到一些新的等比数列。
5、单调递减法:如果把一个有界闭区间上的数列看作是由一个非递增序列和一个递减序列所构成,那么在这个非递增序列的起始点之前和递减序列的终止点之后,都存在一个最小值或最大值,这个递减序列和这个非递增序列分别对应着两个不同的数列;2。
判断递减与否(见第4条) 3。
将原数列在某个区间进行划分,再找一个和原数列相同的数列,且新数列能将原数列分成的两个子列,新数列必须满足前面两条,但需注意的是,因为原数列的开区间是一个有界闭区间,因此只有第二条可以在有界闭区间上得到,其余三条均只能在无穷区间上得到,在这样的情况下,依然有一种较好的切割法可以解决这个问题。
在这里要特别提醒一点的是,在有些题目中经常会出现原数列属于一个无穷序列,但它的切割法却是在一个有限序列,这时候一定要灵活处理,很多时候可以用无穷数列做一个解释,如果这样的话,那么此时就可以写成一个无穷序列上的数列的形式,再来求最值或者判断是否属于一个无穷序列,这时候也可以有效的节省计算的时间,从而得到更好的结果。
构造等差数列方法
构造等差数列方法构造等差数列是指根据给定的首项和公差,依次将首项加上公差,得到一系列的数。
等差数列在数学中有广泛的应用,并且有许多不同的构造方法。
下面将介绍几种常见的构造等差数列的方法。
1. 首项和公差最常见的构造等差数列的方法是通过给定首项和公差来生成数列。
首项是指等差数列中的第一个数,公差是指相邻两个数之间的差。
根据首项和公差,可以使用递推关系式来生成等差数列中的其他项。
递推关系式如下:an = a1 + (n - 1) * d其中,an表示等差数列中第n项的值,a1表示首项的值,d表示公差,n表示项数。
通过不断代入不同的n值,就可以得到等差数列中的其他项。
2. 公式法公式法是另一种构造等差数列的方法。
根据等差数列的性质,可以得到以下公式:an = a1 + (n - 1) * dSn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和。
通过这两个公式,可以轻松地计算出等差数列中的任意一项的值和前n项和的值。
3. 递归法递归法是一种比较特殊的构造等差数列的方法。
递归是指在定义中使用了自身的定义。
在构造等差数列时,可以使用递归方法。
递归公式如下:an = a(n-1) + d其中,a(n-1)表示等差数列中的第n-1项的值,an表示等差数列中的第n项的值,d表示公差。
通过依次递归计算,就可以得到等差数列中的其他项。
4. 差序法差序法是通过数列前后相邻两项的差构造等差数列的方法。
首先,找到等差数列中的任意一项和它前一项的差值。
然后,分别找到最小项和最大项与其前一项的差值。
根据这两个差值的差(即公差),可以构造等差数列。
总结起来,构造等差数列的方法有:首项和公差法、公式法、递归法和差序法。
在实际应用中,根据具体的题目要求和已知信息,选择适合的方法来构造等差数列。
无论采用哪种方法,都需要明确已知条件和所要求的结果,然后应用相应的方法逐步推导,最终得到等差数列中的其他项或前n项和的值。
构造新数列求通项公式
公比为
1 2
的等比数列.
∴an-an-1=
1 2
(
1 2
)n-2=(
1 2
)n-1.
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+
1 2
+(
1 2
)2+…+(
1 2
)n-1
=2-21-n.
即 an=2-21-n.
3.已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1(nN*),
∴an-2=-( 12)n-1.
即 an=2-21-n.
构造新数列法又称待定系数法 适用于an+1=qan +f(n)
基本思路是转化为等差数列或等比数列,而数列的本 质是一个函数,其定义域是自然数集的一个函数。
通过恰当的恒等变形, 如配方、因式分解、取对数、取倒
数等, 转化为等比数列或等差数列.
(1)若 an+1=pan+q, 则: an+1-=p(an-).
求 an.
解法二
由解法一知
an-an-1=21-n,
又
an=
1 2
an-1+1,
消去 an-1 得 an=2-21-n.
解法三
∵
an=
1 2
an-1+1,
令
an+=
1 2
(an-1+),
则 =-2.
∴ an-2=
1 2
(an-1-2).
∴{an-2} 是以 a1-2=-1 为首项,
公比为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造数列
林森
本文主要淡淡构造法在高中数列问题的应用。
一、型如(为常数且,)的数列,其本身并不是等差或等比数列,但经过适当的变形后,即可构造出一个新数列,利用这个数列可求其通项公式。
1.(为常数),可构造等比数列求解.
例1已知数列满足,(),求通项.
解由,得,又,所以数列
是首项为,公比为的等比数列,∴.注:一般地,递推关系式(p、q为常数,且p≠0,p≠1)可等价地改写成,则{}为等比数列,从而可求.2.为等比数列,可构造等差数列、等比数列求解。
如(为常
数) ,两边同除以,得,令,则可转化为的形式求解.
例2(1)已知数列{a n}中,,,求通项.
(2)已知数列满足,,求通项.
解(1)由条件,得,令,则,即,又,,∴数列为等比数列,故有
,即,∴.
(2)由条件,得,即,故数列是以为首项,以为公差的等差数列,∴,故.3.为等差数列,如型递推式,可构造等比数列求解.
例3已知数列满足,(),求
.解令,则,∴,代入已知条件,得,即,
令,,解得=-4,=6,所以,且,∴是以3为首项、以为公比的等比数列,故,故.注此例通过引入一些尚待确定的系数,转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解.
4.为非等差、非等比数列,可构造等差、等比数列求解.
法一、构造等差数列求解:
例4在数列中,(1)若,其中,求数列的通项公式;(2)若,求通项.
解(1)由条件可得,∴数列是首项为0,公差为1的等差数列,故,∴.(2)由条件可得:,∴数列是首项为
,公差为2的等差数列,∴.
法二、构造等比数列求解:
例5已知数列满足,,求数列的通项公式.解设,将已知条件代入此式,整理后得
,令,解得,∴有,又,
且,故数列是以为首项,以3为公比的等比数列,∴,故.
二、形如的复合数列,可先构造等差数列或等比数列,再用叠加法、叠乘法、迭代法等方法求解.
例6在数列中,,,,求.
解由条件可得,∴数列是以为首项,以为公比的等比数列,∴,
故==…
=== .
例7已知数列满足,,(),求.解由已知可得:,又,所以数列是首项为、公比为的等比数列,∴,即
,亦即,又,∴数列是首
项为2、公差为6的等差数列,∴,∴.
三、一些较为特殊的数列,可利用“取倒数”的方法构造等差数列或等比数列求解.
例8已知数列中,,()
,求.
,
解由已知,得,设,则,故是以
为首项,1为公差的等差数列,∴,即.例9已知数列,其中,且,求通项a n.
解由条件得:,设,则,
令,解得,于是有,
∴数列是一个以为首项,公比是-3的等比数列,
∴,即,代入b n=,得.例10若数列中,,是数列的前项之和,且,求数列的通项公式.
解由,得,令,
则有,故,∴数列{}是以为首项,3
为公比的等比数列,∴=,∴,当n时,由
()得,
∴.
四、对某些特殊的数列,可利用特征方程构造等差数列或等比数列求解.
如满足(A,B,C,D为常数,且)的数列,可令特征方程为,变形为,若方程有二异根,则可令(为待定常数),则数列是首项为,公比为的等比数列;若方程有二重根,则可令(为待定常数),则数列是首项为,公差为的等差数列。
然后代入的值可求得值,于是可求得.
例11已知数列满足,求数列的通项.
解令,化简得,解得,令,由,得,可得,∴数列是以为首项,以为公比的等比数列,,解得.
例12已知数列满足,求数列的通项.
解令,即,解得,令,
由得,求得,∴数列是以为首项,以为公差的
等差数列,∴,故.
五、其它特殊数列的特殊构造方法
1.通过取对数来构造新的数列求解.
例13若数列中,=3且(n是正整数),则它的通项公式是
=▁▁.
解由题意知>0,将两边取对数得,即,所以数列是以=为首项,公比为2的等比数列,
,即.
2.通过换元来构造新的数列求解.
例14数列中,,,求.
分析本题的难点是已知递推关系式中的较难处理,可构建新数列,令,这样就巧妙地去掉了根式,将通项进行转化,便于化简变形.
解令,则,,即,则原条件可化为,化简得,即,变形得,∴数列是以为首项,为公比的等
比数列,∴,即,∴.3.对于两个数列的复合问题,也可构造等差或等比数列求解。
例15在数列{}、{}中,,且,求{}、{}的通项公式.
解构造新数列{},则
=+=,令,得=或=5 ,∴数列{}是首项,公比q=+5的等比数列,即:当=-3时,{}是首项为=,q=5+=2的等比数列,故==;当=5时,{}是首项为=6,q=+5=10的等比数列,故=6×,
联立二式,得,解得,。
注:1.并不是任何数列都可以求出其通项的,能够求出通项的只是一些特殊的数列。
例如数列1,1.4,1.41,1.414,……就没有通项公式;
2.同一个数列的通项公式的形式不一定唯一。
例如数列-1,1,-1,1,…,
其通项公式为,或;
3.数列是函数概念的继续和延伸,数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同,因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性。
从上述各题构建新数列的过程中,可以看出对题设中递推式的观察、分析,并据其结构特点进行合理变形,是成功构造新数列的关键。
构造新数列的目的是为了化繁为简、化未知为已知、化不熟悉为熟悉,这也是解答数学问题的共性之所在。
由上所举众多例子,不言而喻,正是在问题按照定向、按照常规难以解决的情况下,我们才改变思维方向,创造解题条件。
长此以往,这将有利于我们优化思维品质,提高思维能力;深刻理解概念,综合运用知识;发挥主观作用,激发学习兴趣,在中学数学课的教学中,引导学生运用构造法解题不仅能提高学生的解题能力,更重要的是通过这种解题方法的运用可丰富学生的想象力,培养他们的创造性思维能力.高水平地掌握知识并能把知识广泛地运用到解决问题上来,使学生的思维由单一型转变为多角度,变得积极、灵活、自如.。