高考数学易错题集锦 集合与常用逻辑用语
(易错题)高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
一、选择题1.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( )A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞3.已知全集U =R ,集合M ={x |x 2+x ﹣2≤0},集合N ={y |y },则(C U M )∪N 等于( ) A .{x |x <﹣2或x ≥0} B .{x |x >1} C .{x |x <﹣1或1<x ≤3} D .R4.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题 5.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}6.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤C .21a -<<D .2a <-或1a >7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④8.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞9.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)10.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.若集合1|,6 A x x m m Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,23n B x x n Z ⎧⎫==-∈⎨⎬⎩⎭,1|,26p C x x p Z ⎧⎫==+∈⎨⎬⎩⎭,则A ,B ,C 之间的关系是( )A .ABC ==B .AB C = C .ABC D .B CA12.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③D .①②③二、填空题13.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.14.已知集合{}3A x x =≤,{}2B x x =<,则RAB =__________.15.已知1a ≤,集合{}2x a x a ≤≤-中有且仅有三个整数,则实数a 的取值范围为________.16.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.17.已知数集{}{},,,1,2,3,4a b c d =,且有下列说法:①1a =;②2>c ;③4d ≠,则满足(),,,a b c d 的数值有________组.18.若集合A ={x|2≤x≤3},集合B ={x|ax -2=0,a ∈Z},且B ⊆A ,则实数a =________. 19.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.20.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.三、解答题21.已知集合()(){}10A x x a x a =-++≤,{3B x x =≤或}6x ≥. (1)当4a =时,求AB ;(2)当0a >时,若“x A ∈”是“x B ∈”的充分条件,求a 的取值范围. 22.已知集合411A x x ⎧⎫=>⎨⎬+⎩⎭,集合{}22220,B x x x a a a R =+-+<∈.(1)求集合A ;(2)若x B ∈是x A ∈的必要条件,求实数a 的取值范围. 23.知2:8150p x x -+≤,(): q xx a a -+-≤>222100.(Ⅰ)若p 为真命题,求实数x 的取值范围;(Ⅱ)若p 为q 成立的充分不必要条件,求实数a 的取值范围. 24.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-. (1)若B A ⊆,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 25.已知0a >,设p :实数x 满足22430x ax a -+<,q :实数x 满足()231x -<.(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}122C x m x m =+<≤-,()C A B ⊆⋂,求实数m 的取值范围;(2)若{}61D x x m =>+,且()AB D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.2.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3.A解析:A 【分析】解出不等式x 2+x ﹣2≤0的解集,求出补集,根据集合的运算法则求解. 【详解】解不等式x 2+x ﹣2≤0得:-2≤x ≤1,C U M=()(),21,-∞-+∞,N ={y |y }[)0,=+∞, (C U M )∪N={x |x <﹣2或x ≥0}. 故选:A 【点睛】此题考查集合的基本运算,关键在于准确求解二次不等式,根据集合的运算法则求解.4.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.5.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.7.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.9.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.10.C【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++, 设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.11.B解析:B 【分析】分别将集合中的元素表示为61,6m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,31|,6t x x t Z +⎧⎫=∈⎨⎬⎩⎭和31|,6p x x p Z +⎧⎫=∈⎨⎬⎩⎭即可得结果. 【详解】 ∵161|,,66m A x x m m Z x x m Z ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 13231|,|,|,2366n n t B x x n Z x x n Z x x t Z -+⎧⎫⎧⎫⎧⎫==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,131|,|,266p p C x x p Z x x p Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭显然A B C =,故选:B.本题主要考查集合间的包含关系的判断,考查集合的包含关系等基础知识,属于基础题.12.C解析:C 【分析】①,证明x 2>4是x 3<-8的必要不充分条件.所以该命题正确;②,在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误;③,证明“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确. ②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C. 【点睛】本题主要考查充分必要条件的判定,考查逆否命题和原命题的等价性,意在考查学生对这些知识的理解掌握水平.二、填空题13.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足a b=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.【分析】首先分析出集合里面必有元素1再讨论集合为三种情况讨论求的取值范围【详解】所以集合里的元素一定有1集合有3个元素当集合是时有集合是空集;当集合是时有解得:;当集合是时有集合是空集;综上:的取值 解析:(]1,0-【分析】首先分析出集合里面必有元素1,再讨论集合为{}1,2,3,{}0,1,2,{}1,0,1- 三种情况讨论,求a 的取值范围. 【详解】1a ≤ ,21a ∴-≥ ,所以集合里的元素一定有1, 集合有3个元素,当集合是{}1,2,3时,有01324a a <≤⎧⎨≤-<⎩,集合是空集;当集合是{}0,1,2时,有10223a a -<≤⎧⎨≤-<⎩,解得:10a -<≤ ;当集合是{}1,0,1-时,有21122a a -<≤-⎧⎨≤-<⎩ ,集合是空集;综上:a 的取值范围是(]1,0- 故答案为(]1,0- 【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.16.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥. 【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<, 又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥, 故答案为:1a <-或 10a -<<或1a ≥. 【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题.17.【分析】列举出符合条件的数组即可【详解】则的取值可以是或①时即数组为;②时则或即数组为和因此符合题中条件的数组有组故答案为:【点睛】本题主要考查集合相等的应用根据条件进行分类讨论是解本题的关键考查分 解析:3【分析】列举出符合条件的数组(),,,a b c d 即可. 【详解】1a =,2>c ,4d ≠,则c 的取值可以是3或4.①3c =时,4b =,2d =,即数组为()1,4,3,2;②4c =时,则2b =,3d =或3b =,2d =,即数组为()1,2,4,3和()1,3,4,2. 因此,符合题中条件的数组(),,,a b c d 有3组,故答案为:3. 【点睛】本题主要考查集合相等的应用,根据条件进行分类讨论是解本题的关键,考查分类讨论数学思想,属于中等题.18.0或1【分析】根据B ⊆A 讨论两种情况:①B=∅;②B≠∅分别求出a 的范围;【详解】∵B ⊆A 若B=∅则a=0;若B≠∅则因为若2∈B ∴2a ﹣2=0∴a=1若3∈B 则3a ﹣2=0∴a=∵a ∈Z ∴a≠∴a解析:0或1 【分析】根据B ⊆A ,讨论两种情况:①B=∅;②B≠∅,分别求出a 的范围;【详解】∵B ⊆A ,若B=∅,则a=0;若B≠∅,则因为若2∈B ,∴2a ﹣2=0,∴a=1,若3∈B ,则3a ﹣2=0,∴a=32,∵a ∈Z ,∴a≠32, ∴a=0或1,故答案为a=0或1.【点睛】此题主要考查集合关系中的参数的取值问题,此题是一道基础题,注意a 是整数. 19.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.20.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤.因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 三、解答题21.(1){4A B x x ⋃=≤或}6x ≥;(2)(]0,3.【分析】(1)当4a =时,解出集合A ,计算A B ; (2)由集合法判断充要条件,转化为A B ⊆,进行计算. 【详解】解:(1)当4a =时,由不等式()()450-+≤x x ,得54x -≤≤,故{}54A x x =-≤≤, 又{3B x x =≤或}6x ≥, 所以{4A B x x ⋃=≤或}6x ≥.(2)若“x A ∈”是“x B ∈”的充分条件,等价于A B ⊆,因为0a >,由不等式()()10x a x a -++≤,得{}1A x a x a =--≤≤, 又{3B x x =≤或}6x ≥,要使A B ⊆,则3a ≤或16a --≥,综合可得a 的取值范围为(]0,3.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.22.(1)()13A ,=-;(2)(][),35,-∞-+∞.【分析】 (1)解分式不等式411x >+可得集合A ; (2)由已知条件可得出A B ⊆,对a -和2a -的大小关系进行分类讨论,结合A B ⊆可得出实数a 所满足的不等式(组),综合可解得实数a 的取值范围.【详解】(1)因为411x >+,所以431011x x x --=>++, 所以()()130x x +-<,所以13x,故()13A ,=-; (2)由22220x x a a +-+<得()()20x a x a +-+<,由x B ∈是x A ∈的必要条件,知A B ⊆.①当2a a -<-,即1a >时,{}2B x a x a =-<<-,则1231a a a >⎧⎪-≥⎨⎪-≤-⎩,解得5a ≥;②当2a a ->-,即1a <时,{}2B x a x a =-<<-,则1321a a a <⎧⎪-≥⎨⎪-≤-⎩,解得3a ≤-;③当2a a =-,即1a =时,B =∅,不满足A B ⊆.综上可得,实数a 的取值范围为(][),35,-∞-+∞. 【点睛】结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 23.(Ⅰ)[]3,5;(Ⅱ)[)4,+∞.【分析】(Ⅰ)解不等式28150x x -+≤即得;(Ⅱ)再求出不等式()222 x x a a -+-≤>100的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论.【详解】(Ⅰ)若p 为真命题,解不等式28150x x -+≤得35x ≤≤,实数x 的取值范围是[]3,5.(Ⅱ)解不等式()222 x x a a -+-≤>100得11a x a -≤≤+, p 为q 成立的充分不必要条件,[]3,5∴是[]1,1a a -+的真子集.1315a a -≤⎧∴⎨+≥⎩且等号不同时取到,得4a ≥. ∴实数a 的取值范围是[)4,+∞.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.(1){}3|m m ≤(2)254 (3){}|24m m m <>或【分析】(1)对集合B 分空集和非空集两种情况讨论得解;(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,再求A 的非空真子集个数;(3)分B =∅和B ≠∅两种情况讨论得解.【详解】(1)当121m m +>-,即2m <时,B =∅,满足B A ⊆.当121m m +≤-,即2m ≥时,要使B A ⊆成立,只需12,215,m m +≥-⎧⎨-≤⎩即23m ≤≤. 综上,当B A ⊆时,m 的取值范围是{}3|m m ≤.(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,∴集合A 的非空真子集个数为822254-=.(3)∵x ∈R ,且{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,又不存在元素x 使x A ∈与x B ∈同时成立,∴当B =∅,即121m m +>-,得2m <时,符合题意;当B ≠∅,即121m m +≤-,得2m ≥时,2,15,m m ≥⎧⎨+>⎩或2,212,m m ≥⎧⎨-<-⎩解得4m >. 综上,所求m 的取值范围是{}|24m m m <>或.【点睛】本题主要考查集合的关系和真子集的个数的计算,考查集合的元素和集合的关系,意在考查学生对这些知识的理解掌握水平.25.(1) 23x <<;(2) 4,23⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)p 为真时实数x 的取值范围是13x <<,q 为真时实数x 的取值范围是,然后求交集即可;(2)p ⌝是q ⌝的充分不必要条件即即q 是p 的充分不必要条件,易得:2a ≤且43a ≤.试题(1)由22430x ax a -+<得()()30x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.由()231x -<,得24x <<,即q 为真时实数x 的取值范围是24x << 因为p q ∧为真,所以p 真且q 真,所以实数x 的取值范围是23x <<.(2)由22430x ax a -+<得()()30x a x a --<,所以,p 为真时实数x 的取值范围是3a x a <<.因为 p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件所以2a ≤且43a ≤所以实数a 的取值范围为:4,23⎡⎤⎢⎥⎣⎦. 26.(1)7,2⎛⎤-∞ ⎥⎝⎦;(2)[)1,+∞ 【分析】结合指数函数和对数函数性质可分别求得集合A 和集合B ;(1)由交集定义得到A B ,分别在C =∅和C ≠∅两种情况下构造不等式求得结果; (2)由并集定义得到A B ,根据交集结果可构造不等式求得结果.【详解】 {}[]12128272,74x A x x x ⎧⎫=≤≤=-≤≤=-⎨⎬⎩⎭ {}[]21log ,,32353,58B y y x x y y ⎧⎫⎡⎤==∈=-≤≤=-⎨⎬⎢⎥⎣⎦⎩⎭ (1)[]2,5A B =-当C =∅时,122+≥-m m ,解得:3m ≤,满足()C A B ⊆⋂当C ≠∅时,12212225m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得:732<≤m 综上所述:实数m 的取值范围为7,2⎛⎤-∞ ⎥⎝⎦(2)[]3,7A B =-()A B D =∅ 617m ∴+≥,解得:m 1≥∴实数m 的取值范围为[)1,+∞【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.。
高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》图文答案
新高考数学《集合与常用逻辑用语》专题解析一、选择题1.已知集合{}|3xM y y ==,{|N x y ==,则M N =I ( )A .{|01}x x <<B .{|01}x x <≤C .{|1}x x ≤D .{|0}x x >【答案】B 【解析】 【分析】根据函数的定义域和值域,求得集合,M N ,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}|3{|0}xM y y y y ===>,{|{|1}N x y x x ===≤,所以{|01}M N x x ⋂=<≤. 故选:B . 【点睛】本题主要考查了集合的交集的运算,其中解答中根据函数的定义域和值域的求法,正确求解集合,M N 是解答的关键,着重考查了计算能力.2.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】Q 点P 不在直线l 、m 上,∴若直线l 、m 互相平行,则过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行,即必要性成立,若过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行,则直线l 、m 互相平行成立,反证法证明如下:若直线l 、m 互相不平行,则l ,m 异面或相交,则过点P 只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的充要条件, 故选:C . 【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.3.已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既非充分也非必要条件【答案】B 【解析】分析:由题意考查充分性和必要性即可求得最终结果. 详解:若//l αβα⊥,,则l β⊥,又//m β,所以l m ⊥;若l m ⊥,当//m β时,直线l 与平面β的位置关系不确定,无法得到//αβ. 综上,“//αβ”是“l m ⊥”的充分不必要条件. 本题选择B 选项.点睛:本题主要考查线面平行的判断定理,面面平行的判断定理及其应用等知识,意在考查学生的转化能力和计算求解能力.4.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.5.14a =-是函数2()1f x ax x =--有且仅有一个零点的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】将14a =-代入函数证明充分性,取0a =得到不必要,得到答案. 【详解】当14a =-时,2211()11042f x x x x ⎛⎫=---=-+= ⎪⎝⎭,2x =-,充分性; 当0a =时,()10f x x =--=,1x =-,一个零点,故不必要. 故选:A . 【点睛】本题考查了充分不必要条件,函数零点,意在考查学生的推断能力.6.已知集合,则( )A .B .C .D .【答案】C【解析】 【分析】 由题意,集合,,再根据集合的运算,即可求解.【详解】 由题意,集合,,所以,故选C.【点睛】本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.7.已知下列四个命题1P :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2P :若()x x f x e e -=-,则,()()x R f x f x ∀∈-=-3P :若1()1f x x x =++则()00(0,),1x f x ∃∈+∞= 4P :在ABC V 中,若A B >,则sin sin A B >其中真命题的个数是( ) A .1B .2C .3D .4【答案】B 【解析】 【分析】根据线面垂直关系判断1P 错误;根据函数奇偶性判定2P 正确,利用基本不等式性质判断3P 不正确,结合三角形边角关系判定4P 正确.【详解】解:1P :若直线l 和平面α内的无数条直线垂直,则l α⊥不一定成立,必须是任意直线;故命题1P 错误,2P :若()x x f x e e -=-,则()()x x f x e e f x --=-=-,即,()()x R f x f x ∀∈-=-成立;命题正确,3P :当1x >-时,11()11121111f x x x x x =+=++-=-=++…, 当且仅当111x x +=+,即2(1)1x +=,得0x =时取等号,则()00(0,),1x f x ∃∈+∞=不成立,故命题为假命题,4P :在ABC V 中,若A B >,则a b >,由正弦定理得sin sin A B >,即命题为真命题.则正确的命题的个数是2, 故选:B . 【点睛】此题考查判断命题的真假,涉及知识面广,关键在于对每一个命题的真假性正确辨析.8.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.已知集合{}2log 1A x x =>,{}1B x x =≥,则A B =U () A .(]1,2 B .()1,+∞C .()1,2D .[)1,+∞【答案】D 【解析】 【分析】解出对数不等式可得集合A ,根据并集的运算即可得结果. 【详解】由{}{}2log 12A x x x x =>=>,{}1B x x =≥,则[)1,A B ∞=+U , 故选D. 【点睛】本题主要考查了对数不等式的解法,并集的概念,属于基础题.10.“0a =”是“函数x a y e -=为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】C 【解析】解析:若0a =,则||x y e =是偶函数,“0a =”是“函数x ay e-=为偶函数”的充分条件;若函数x ay e-=为偶函数,则对称轴为0x =,即0x a ==,则“0a =”是“函数x ay e-=为偶函数”的必要条件,应选答案C .11.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab +≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.12.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45o 其中所有正确结论的编号是( ) A .①③ B .①②④ C .③④ D .②③④【答案】B 【解析】 【分析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④. 【详解】Q 截面PQMN 是正方形,PQ MN ∴//,又MN ⊂Q 平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂Q 平面ABC ,平面ABC I 平面ADC AC =PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确; 由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN , 得AC //平面PQMN ,则②正确; 由PQ AC //,PQ MN //,得AC MN //, 所以AC ADMN DN=, 同理可证BD ADPN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等,则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角, 由正方形PQMN 知45MPN ∠=︒,则④正确. 故选:B. 【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.13.给出下列命题,则假命题的个数是( )①若,,a b c ∈R ,则“a b >”的充要条件是“22ac bc >”;②给定两个命题p ,q ,p ⌝是q 的必要不充分条件,则p 是q ⌝的充分不必要条件; ③设,x y R ∈,若7x y +≠,则3x ≠或4y ≠;④命题“若0m >,则方程2230x x m +-=有实数根”的否命题.( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】当0c =时,22ac bc >不成立,反过来,若22ac bc >,则可得a b >,即可判断①;利用原命题与逆否命题的关系可判断②③,写出否命题即可判断④. 【详解】若a b >,当0c =时,22ac bc >不成立,反过来,若22ac bc >,则可得a b >,故22ac bc >是a b >的充分不必要条件,故①错误;若p ⌝是q 的必要不充分条件,由原命题与逆否命题的等价性可知,q ⌝是p 的必要不充分条件,即p 是q ⌝的充分不必要条件,故②正确;若7x y +≠,则3x ≠或4y ≠的逆否命题为若3x =且4x =,则7x y +=,显然逆否命 题为真命题,则原命题也为真命题,故③正确;若0m >,则方程2230x x m +-=有实数根的否命题为若0m ≤,则方程2230x x m +-=无实根,显然是假命题,因为0m =时,方程就有实根,故④错误. 故选:C 【点睛】本题考查判断命题的真假,涉及到充分条件、必要条件、四种命题之间的关系,考查学生的逻辑推理能力,是一道中档题.14.“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】C 【解析】 【分析】首先判断y x x =的单调性,再根据单调性判断充分必要条件. 【详解】22,0,0x x y x x x x ⎧≥==⎨-<⎩,函数是奇函数,并且在R 上单调递增,所以a b >时,a a b b >,反过来,若满足a a b b >时,根据函数y x x =是单调递增函数,所以a b >, 所以a b >”是“a a b b >”的充要条件. 故选:C 【点睛】本题考查充分必要条件,重点考查函数单调性的判断方法,转化与化归的思想,属于基础题型.15.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案. 【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂, 当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r成立, 反之当a b ⊥r r时,此时a 与l 不一定是垂直的,所以a l ⊥是a b ⊥r r的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.16.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.17.已知命题2000:,10p x R x x ∃∈-+≥;命题:q 若a b <,则11a b>,则下列为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧D .p q ⌝∧⌝【答案】B 【解析】因为222131331()44244x x x x x -+=-++=-+≥,所以命题p 为真;1122,22--∴Q 命题q 为假,所以p q ∧⌝为真,选B.18.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.19.已知,αβ是不同的两个平面,直线a α⊂,直线b β⊂,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】∵a 与b 没有公共点时,a 与b 所在的平面β可能平行,也可能相交(交点不在直线b 上)∴命题p :a 与b 没有公共点⇒命题q :α∥β,为假命题 又∵α∥β时,a 与b 平行或异面,即a 与b 没有公共点 ∴命题q :α∥β⇒命题p :a 与b 没有公共点,为真命题; 故p 是q 的必要不充分条件 故选B20.若命题“[1,2]x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5,4⎛⎫-∞ ⎪⎝⎭B .5,4⎛⎫+∞⎪⎝⎭C .(,1)-∞D .(1,)+∞【答案】C 【解析】 【分析】分离参数,将问题转化为[]1,2x ∀∈,2111()22x a x x x+<=+恒成立,结合基本不等式求解最值即可得解.【详解】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即2111()22x a x x x +<=+恒成立,11()12x x +≥=Q ,当且仅当1x =时等号成立, ∴1a <,即实数a 的取值范围是(,1)-∞.故选:C .【点睛】此题考查根据全称命题的真假求参数的取值范围,利用分离参数,将问题转化为求函数最值求解范围,需要注意等价变形.。
集合与常用逻辑用语(3个易错点+10个易错核心题型)(学生版) 2025年高考数学大一轮复习新高考版
易错01 集合与常用逻辑用语(3个易错点错因分析与分类讲解+10个易错核心题型强化训练)易错点1 忽视对空集的讨论而致误【例1】. [湖南师大附中2023第三次月考]已知集合{}14A x x =-<£,()(){}221B x x a x a =---.若A B=ÆI ,则实数a 的取值范围为(){}.2A a a >{}.2B a a ³{}.12C a a a =³或{}.1D a a ³【变式】.[江西景德镇乐平中学2022月考]设集合{}37,M x x =-<<{}221,N x t x t t R =-<<+Î.若M N M =U , 实数t 的取值范围为( )().3,A +¥().,3B -¥(].,3C -¥[).3,D +¥易错点2 忽略集合中元素的互异性而致误【例2】. [湖南邵阳二中2023第五次月考]已知,a b R Î,若{}2,,1,,0b a a a b a ìü=+íýîþ,则20222022a b +的值为().1A -.0B.1C.1D ±【变式】. [福建龙岩一中2022月考]已知,a R b R ÎÎ,若集合{}2,,1,,0b a a a b a ìü=+íýîþ,则20212021a b +().2A -.1B -.1C.2D 易错点3 没有正确理解充分不必要条件的意义而致误【例3】. [河南驻马店二中2023第二次培优考]已知:120p x x --£,()()():1200q x m x m m +-+£>éùëû.若p 是q 的充分不必要条件,则实数m 的取值范围是 .【变式】. [湖南名校2022第二次联考]已知“21a x a ££+”是“25x -££”的充分不必要条件,则实数的取值范围是()[).2,A -+¥[].2,2B -(].2,2C -().2,2D -【易错核心题型强化训练】一.元素与集合关系的判断(共1小题)1.(2024•泸县校级开学)设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x Î-,0,1},1i =,2,3,4,5},那么集合A 中满足条件123451||||||||||3x x x x x ++++……的元素的个数为( )A .60B .100C .120D .130二.集合的确定性、互异性、无序性(共1小题)2.(2024•扬中市校级开学)设集合{2A =,1a -,22}a a -+,若4A Î,则(a = )A .3-或1-或2B .3-或1-C .3-或2D .1-或2三.集合的包含关系判断及应用(共1小题)3.(2024•浦东新区校级模拟)函数()x x Pf x xx MÎì=í-Îî,其中P 、M 为实数集R 的两个非空子集,又规定(){|()f P y y f x ==,}x P Î,(){|()f M y y f x ==,}x M Î.给出下列四个判断,其中正确判断有( )①若P M =ÆI ,则()()f P f M =ÆI ;②若P M ¹ÆI ,则()()f P f M ¹ÆI ;③若P M R =U ,则()()f P f M R =U ;④若P M R ¹U ,则()()f P f M R ¹U .A .1个B .2个C .3个D .4个四.并集及其运算(共1小题)4.(2024•浙江学业考试)已知集合{0A =,1,2},集合{0B =,2,4},则(A B =U )A .{0}B .{2}C .{0,2,4}D .{0,1,2,4}五.交集及其运算(共4小题)5.(2024•沙依巴克区校级模拟)已知集合{|24}A x x =……,{|3}B x a x a =-<+…,若A B A =I ,则a 取值范围是( )A .2a >-B .1a -…C .1a …D .2a >6.(2024•北京学业考试)已知集合{1A =-,0,1},{1B =,2},则A B I 等于( )A .{1-,0,1}B .{0,1}C .{1}D .{1,2}7.(2024•让胡路区校级开学)设全集U R =,集合2{|20}A x x x =--…,{|0}B x lgx =>,则(A B =I )A .{|12}x x -……B .{|12}x x <…C .{|12}x x <<D .{|1}x x -…8.(2024•平江县校级开学)已知集合{|2x A y y ==-,[2x Î,3]},22{|330}B x x x a a =+-->.(1)当4a =时,求A B I ;(2)若命题“x A Δ是命题“x B Δ的充分不必要条件,求实数a 的取值范围.六.交、并、补集的混合运算(共1小题)9.(2024•合江县校级开学)设全集{1U =,2,3,4,5},集合{1A =,3,5},集合{3B =,4},则()(U A B =I ð )A .{3}B .{4}C .{3,4}D .{2,3,4}七.充分条件与必要条件(共2小题)10.(2024•东坡区校级开学)设x ,y R Î,下列说法中错误的是( )A .“1x >”是“21x >”的充分不必要条件B .“0xy =”是“220x y +=”的必要不充分条件C .“1x >,1y >”是“2x y +>,1xy >”的充要条件D .“x y >”是“22x y >”的既不充分也不必要条件11.(2024春•顺德区校级月考)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件八.全称量词和全称命题(共1小题)12.(2023秋•昆明期末)已知[0x "Î,2],p x >;0[0x $Î,2],0q x >.那么p ,q 的取值范围分别为( )A .(0,)p Î+¥,(0,)q Î+¥B .(0,)p Î+¥,(2,)q Î+¥C .(2,)p Î+¥,(0,)q Î+¥D .(2,)p Î+¥,(2,)q Î+¥九.存在量词和特称命题(共1小题)13.(2024•开福区校级模拟)若命题“0a $<,1a b a+>”是假命题,则实数b 的取值范围为 .一十.命题的真假判断与应用(共9小题)14.(2024•红谷滩区校级模拟)已知m ,n 表示两条直线,a ,b ,g 表示三个平面,则下列是真命题的有( )个.①若m a g =I ,n b g =I ,//m n ,则//a b ;②若m ,n 相交且都在a ,b 外,//m a ,//m b ,//n a ,//n b ,则//a b ;③若//m a ,//m b ,则//a b ;④//m a ,//n b ,//m n ,则//a b .A .1B .2C .3D .415.(2024春•宝山区校级月考)函数()f x xlnx =,正确的命题是( )A .值域为RB .在(1,)+¥上是增函数C .()f x 有两个不同零点D .过(1,0)点的切线有两条16.(2024春•普陀区校级月考)对于全集R 的子集A ,定义函数1()()0()A R x A f x x C A Îì=íÎî为A 的特征函数.设A ,B 为全集R 的子集,下列结论中错误的是( )A .若A B Í,()()A B f x f x …B .()1()R A A f x f x =-ðC .()()()A B ABf x f x f x =×I D .()()()A B ABf x f x f x =+U17.(2024•绥中县校级开学)下列命题中是真命题的有( )A .有A ,B ,C 三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量为30B .一组数据1,2,3,3,4,5的平均数、众数、中位数相同C .若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是甲D .某一组样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在区间[114.5,124.5]内的频率为0.418.(2024春•芝罘区校级月考)如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的是( )A .直线AD 与直线1C M 始终是异面直线B .存在点M ,使得1B M AE ^C .四面体EMAC 的体积为定值D .当12D M MB =时,平面EAC ^平面MAC19.(2024春•璧山区校级月考)为了评估某治疗新冠肺炎药物的疗效,现有关部门对该药物在人体血管中的药物浓度进行测量.已知该药物在人体血管中药物浓度c 随时间t 的变化而变化,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如图所示.则下列结论正确的是( )A .在1t 时刻,甲、乙两人血管中的药物浓度相同B .在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率相同C .在2[t ,3]t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同D .在1[t ,2]t 和2[t ,3]t 两个时间段内,甲血管中药物浓度的平均变化率相同20.(2024春•沙坪坝区校级月考)设函数()sin()(0)6f x x pw w =->,已知()f x 在[0,]p 有且仅有3个零点,下列结论正确的是( )A .在(0,)p 上存在1x ,2x ,满足12()()2f x f x -=B .()f x 在(0,)p 有且仅有1个最小值点C .()f x 在(0,)2p单调递增D .w 的取值范围是1319[,6621.(2024春•沙坪坝区校级月考)已知2()(0)f x ax bx c a =++¹,且关于x 的方程()f x x =无实数根,现有下列说法,其中说法正确的是( )A .若0a >,则不等式(()f f x )x >对一切x R Î恒成立B .若0a <,则必然存在实数0x 使不等式00(())f f x x >成立C .关于x 的方程(())f f x x =一定没有实数根D .若0a b c ++=,则不等式(()f f x )x <对一切x R Î恒成立22.(2024•平罗县校级一模)设函数()3sin()(0,)22f x x ppw j w j =+>-<<的图象关于直线23x p=对称,它的周期是p ,有下列说法:①()f x 的函数图象过点3(0,2;②()f x 在2[,123p p上是减函数;③()f x 的一个对称中心是5(,0)12p;④将()f x 的图象向右平移||j 个单位长度得到函数3sin y x w =的图象.其中正确的序号是 .(正确的序号全填上)。
全国通用2024年高考数学二轮复习易错题精选易错点02常用逻辑用语含解析
易错点02常用逻辑用语易错点1:混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念.命题p 的否定是否定命题所作的判断.而“否命题”是对“若p 则q”形式的命题而言.既要否定条件也要否定结论.易错点2:充分条件、必要条件颠倒致误对于两个条件A 和B.如果A ⇒B 成立.则A 是B 的充分条件.B 是A 的必要条件;如果B ⇒A 成立.则A 是B 的必要条件.B 是A 的充分条件;如果A ⇔B.则A.B 互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性.所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.易错点3:“或”“且”“非”理解不准致误命题p∨q 真⇒p 真或q 真.命题p∨q 假⇒p 假且q 假(概括为一真即真);命题p∧q 真⇒p 真且q 真.命题p∧q 假⇒p 假或q 假(概括为一假即假);¬p 真⇒p 假.¬p 假⇒p 真(概括为一真一假).求参数取值范围的题目.也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解.通过集合的运算求解.1.“2log (1)0x ”成立的一个必要而不充分条件是()A.112x B.0x C.10x D.0x 【答案】D 【详解】由2log (1)0x 有011x ,解得10x ,故“2log (1)0x ”成立的一个必要而不充分条件是“0x ”故选:D2.已知条件:12p x ,条件:q x a ,且p 是q 的充分不必要条件,则实数a 的取值范围是()A. 1, B. ,1 C. 3, D.,3 【答案】A 【详解】:12p x ,解得31x ,:q x a ,因为p 是q 的充分不必要条件,所以3,1,a ,即1a .故选:A3.已知集合 012M ,,, 1,0,1,2N ,则“a M ”是“a N ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【详解】因为M N ,所以“a M ” “a N ”,但“a N ”推不出“a M ”,所以“a M ”是“a N ”的充分不必要条件.故选:A.4.设命题p :R x ,(x -1)(x +2)>0,则p 为()A.0R x , 00120x x B.0R x ,00102x x C.R x , 120x x D.0R x ,00102x x 或02x 【答案】D 【详解】p 为0x R , 00120x x ,等价于0x R ,00102x x 或02x .故选:D5.设 0M x R x ,已知命题p :x M ,11x x;命题q :x M ,11x x ,则下列命题中为真命题的是()A.p q B. p q C. p q D.p q 【答案】C 【详解】因为0x ,所以当0x 时,12x x,当且仅当1x x ,即1x 时取等号,当0x 时,11()2x x x x,当且仅当1x x,即1x 时取等号,综上,当0x 时,12x x,所以命题p 错误,p 正确,因为0x ,所以0x ,所以121x x ,当且仅当1x x ,即1x 时取等号,所以q 正确,q 错误,所以p q 为假命题, p q 为假命题, p q 为真命题, p q 为假命题,故选:C1.设命题0:p x R ,2010x ,则命题p 的否定为()A.x R ,210x B.x R ,210x C.0x R ,2010x D.0x R ,2010x 【答案】B 【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ,2010x 的否定为:x R ,210x .故选:B.2.不等式1133x成立是不等式21x 成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【详解】解不等式1133x,得1x ,解不等式21x ,得11x ,又(1,1)(,1) ,所以不等式1133x成立是不等式21x 成立的必要不充分条件.故选:B.3.已知命题:R,ln 1p x x x :命题q :若正实数x ,y 满足2x y xy ,则29x y ,则下列命题中为真命题的是()A.p q B. p qC.p q D.p q 【答案】B 【详解】由ln y x x 且0x ,故1ln y x ,当10e x 时0y ,y 递减;当1ex 时0y ,y 递增,所以11ey ,故p 为假命题;由x ,y 为正实数且2x y xy ,即211y x,故222(2)()52591x y x y x y y x y x ,当且仅当3x y 时等号成立,故q 为真命题;所以p 为真命题、q 为假命题,综上,p q 为假, p q 为真, p q 为假, p q 为假.故选:B4.已知命题p :1022x x的展开式中,第2项的二项式系数为210C ;命题q :若a ,b 是两个非零向量,则a b a b 是a b r r的充要条件.下列命题为真命题的是()A.p q B.p q C.p q D.p q【答案】B 【详解】由1022x x的展开式通项为210203110102C ()()(2)C r r r r r rr T x x x ,所以第2项为117210(2)C T x ,故二项式系数为110C ,p 为假命题;由22a b a b ,可得0a b 且它们为两个非零向量,即a b r r,充分性成立,由两个非零向量a b r r,则222222a b a a b b a b ,222222a b a a b b a b ,故a b a b,必要性也成立,所以q 为真命题.综上,p 为真命题,q 为假命题,所以p q 为假,p q 为真,p q 为假,p q 为假.故选:B5.已知命题4:(0,),sin 4sin p x x x ,命题001:(0,),22x q x ,则下列判断正确的是()A.p 是真命题B.q 是真命题C.()p q 是真命题D.()p q 是真命题【答案】C 【【详解】因为(0,)x ,0sin 1x ,4sin sin y x x在(0,2]上单调递减,所以4sin 1454sin x x,所以p 为真命题;p 为假命题,故A 错误;当0x 时,0221x ,故q 为假命题,q 为真命题,则()p q 是真命题,()p q 是假命题,所以BD错误,C正确.故选:C1.荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言阐述了做事情不一点一点积累,就永远无法达成目标的哲理.由此可得,“积跬步”是“至千里”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件【答案】B【详解】根据“做事情不一点一点积累,就永远无法达成目标”,即要达成目标必须一点一点积累,所以“积跬步”是“至千里”的必要条件.故选:B2.已知命题p:∀x>0,总有(x+1)ln x>1,则¬p为()A.∃x0≤0,使得(x0+1)ln x0≤1B.∃x0>0,使得(x0+1)ln x0≤1C.∃x0>0,总有(x0+1)ln x0≤1D.∃x0≤0,总有(x0+1)ln x0≤1【答案】B【详解】因为特称命题的否定是全称命题,所以命题p:∀x>0,总有(x+1)ln x>1,则¬p为∃x0>0,使得(x0+1)ln x0≤1.故选:B.3.下列命题正确的是()A.命题“若2320x x ,则2x ”的否命题为“若2320x x ,则2x ”B.若给定命题:R p x ,210x x ,则:R p x ,210x x C.已知:12p x , 12:2log 210x q x ,则p 是q 的充分必要条件D.若p q 为假命题,则p ,q 都为假命题【答案】D 【详解】命题“若2320x x ,则2x ”的否命题为“若2320x x ,则2x ”,A 错;命题:R p x ,210x x 的否定是R x ,210x x ,B 错;易知函数12()2log (2)x f x x 在定义域内是增函数,()11f ,(2)10f ,所以12x 时, 1212log 210x x 满足 122log 210x x ,但 122log 210x x 时,22x 不满足12x ,因此题中应不充分不必要条件,C 错;p q 为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q 为真命题,D 正确.故选:D.4.下列四个命题中真命题的个数是()①“x =1”是“2320x x ”的充分不必要条件;②命题“R x ,sin 1x ”的否定是“R x ,sin 1x ”;③命题p : 1,x ,lg 0x ,命题q :R x ,210x x ,则p q 为真命题;④“若2,则为偶函数”的否命题为真命题.A.0B.1C.2D.3【答案】C 【详解】①,则或“”是“或”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :,,命题p 为真命题,,命题q为假命题,则为假命题,③为假命题;④“若,则为偶函数”的否命题为“若,则不是偶函数”若,则为偶函数,④为假命题故选:C.5.“”是“”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】A【详解】解:令,则,所以在上单调递增,又,所以当时,即,故“”是“”的充分必要条件;故选:A6.已知命题p:,;命题q:,,则下列命题中为真命题的是()A.B.C.D.【答案】D【详解】因为时,;,,所以p为假命题,q为真命题,为真命题,为假命题,根据复合命题的真假判断可得,,,均为假命题,为真命题.故选:D.7.已知,命题P:,,则()A.P是假命题,B.P是假命题,C.P是真命题,D.P是真命题,【答案】D【详解】∵,∴∴是定义域上的减函数,∴∴命题P:,,是真命题;∴该命题的否定是.故选:D.8.已知命题,,命题,,则下列命题中为真命题的是()A.B.C.D.【答案】C【详解】由指数函数的性质易知显然是真命题,,当且仅当取等号,但是不存在使得等号成立,故为假命题,因此为假,为假,为真,为假,故选:C.9.若“,使得成立”是假命题,则实数可能的值是().A.1B.C.3D.【答案】A【详解】因为“,使得成立”是假命题,所以,都有成立是真命题,即,恒成立,,当且仅当,即时取等号,所以,比较可知,只有1满足条件,故选:A.10.已知命题:幂函数在上单调递减;命题:,都有.若为真命题,为假,则实数的取值范围为()A.B.C.D.【答案】C【详解】对于命题:因为在上单调递减,所以,即;对于命题:由,得,所以.由为真,为假,可得,一真一假.若假真,则无实数解;若真假,则所以.故选:C.11。
高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》专项训练解析含答案
数学《集合与常用逻辑用语》知识点一、选择题1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2 D .-1或2【答案】C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.2.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据直线平行的等价条件,求出m 的值,结合充分条件和必要条件的定义进行判断即可. 【详解】当m=1时,两直线方程分别为直线l 1:x+y ﹣1=0,l 2:x+y ﹣2=0满足l 1∥l 2,即充分性成立,当m=0时,两直线方程分别为y ﹣1=0,和﹣2x ﹣2=0,不满足条件. 当m≠0时,则l 1∥l 2⇒32211m m m --=≠-, 由321m mm -=得m 2﹣3m+2=0得m=1或m=2, 由211m -≠-得m≠2,则m=1, 即“m=1”是“l 1∥l 2”的充要条件, 故答案为:A 【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线1110a x b y c ++=和直线2220a x b y c ++=平行,则12210a b a b -=且两直线不重合,求出参数的值后要代入检验看两直线是否重合.3.已知命题:,sin cos 10p x R x x ∀∈++…;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( ) A .p B .()p q ∨⌝C .()p q ⌝∧D .p q ∧【答案】C 【解析】 【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项. 【详解】命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d == 即|1|4d m =+=,解得3m =或5m =-,故q 为真, 故()p q ⌝∧为真, 故选:C. 【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题.4.“13m -<<”是“方程22117x y m m+=+-表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】方程22117x y m m+=+-表示椭圆解得13m -<<或37m <<,根据范围大小判断得到答案.【详解】因为方程22117x ym m +=+-表示椭圆,所以107017m m m m+>⎧⎪->⎨⎪+≠-⎩,解得13m -<<或37m <<. 故“13m -<<”是“方程22117x y m m+=+-表示椭圆”的充分不必要条件.故选:A 【点睛】本题考查了充分不必要条件,意在考查学生的推断能力.5.已知集合,则( )A .B .C .D .【答案】C【解析】 【分析】 由题意,集合,,再根据集合的运算,即可求解.【详解】 由题意,集合,,所以,故选C.【点睛】本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.已知实数0a >,0b >,则“1a b >>”是“22a b e b e a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】构造函数()e 2(0)xf x x x =->,利用函数()f x 的单调性和充分与必要条件的定义判断即可. 【详解】e 2e 2e 2e 2a b a b b a a b +>+⇔->-,令()e 2(0)xf x x x =->,则()e 2xf x '=-, 令()0f x '=,解得ln 2x =,因为()'fx 为R 上的增函数,所以当()0,ln 2x ∈时,()'0f x <;当()ln 2,x ∈+∞时,()'0f x >,故()f x 在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 所以当1a b >>时,()()f a f b >,即22a b e a e b ->-, 即“1a b >>”是“e 2e 2a b b a +>+”的充分条件;但当0ln 2a b <<<时,有()()f a f b >,即22a b e a e b ->-, 所以当22a b e b e a +>+时,可得1a b >>或0ln 2a b <<<, 故“1a b >>”是“e 2e 2a b b a +>+”的不必要条件.综上可知“1a b >>”是“22a b e b e a +>+”的充分不必要条件. 故选:A 【点睛】本题考查充分与必要条件;解题的关键是构造函数()e 2(0)xf x x x =->,利用函数的单调性进行判断;属于中档题.7.已知集合{}|3xM y y ==,{|N x y ==,则M N =I ( )A .{|01}x x <<B .{|01}x x <≤C .{|1}x x ≤D .{|0}x x >【答案】B 【解析】 【分析】根据函数的定义域和值域,求得集合,M N ,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}|3{|0}xM y y y y ===>,{|{|1}N x y x x ===≤,所以{|01}M N x x ⋂=<≤. 故选:B . 【点睛】本题主要考查了集合的交集的运算,其中解答中根据函数的定义域和值域的求法,正确求解集合,M N 是解答的关键,着重考查了计算能力.8.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.9.“x <﹣1”是“x 2﹣1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】试题分析:由x <﹣1,知x 2﹣1>0,由x 2﹣1>0知x <﹣1或x >1.由此知“x <﹣1”是“x 2﹣1>0”的充分而不必要条件. 解:∵“x <﹣1”⇒“x 2﹣1>0”, “x 2﹣1>0”⇒“x <﹣1或x >1”.∴“x <﹣1”是“x 2﹣1>0”的充分而不必要条件. 故选A .点评:本题考查充分条件、必要条件和充要条件的应用,解题时要注意基本不等式的合理运用.10.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab ab+≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.11.“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】C 【解析】 【分析】首先判断y x x =的单调性,再根据单调性判断充分必要条件. 【详解】22,0,0x x y x x x x ⎧≥==⎨-<⎩,函数是奇函数,并且在R 上单调递增,所以a b >时,a a b b >,反过来,若满足a a b b >时,根据函数y x x =是单调递增函数,所以a b >, 所以a b >”是“a a b b >”的充要条件.故选:C 【点睛】本题考查充分必要条件,重点考查函数单调性的判断方法,转化与化归的思想,属于基础题型.12.设全集{}0,1,2,3,4U =,集合{}0,1,2A =,集合{}2,3B =,则()C A B ⋃⋃=( ) A .∅ B .{}1,2,3,4C .{}2,3,4D .{}0,1,2,3,4【答案】C 【解析】 【分析】先求C A ⋃,再根据并集定义求结果. 【详解】因为{}3,4C A ⋃=,所以(){}2,3,4C A B ⋃⋃=,选C. 【点睛】本题考查集合的补集与并集,考查基本分析求解能力,属基本题.13.已知命题2000:,10p x R x x ∃∈-+≥;命题:q 若a b <,则11a b>,则下列为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧D .p q ⌝∧⌝【答案】B 【解析】因为222131331()44244x x x x x -+=-++=-+≥,所以命题p 为真;1122,22--∴Q 命题q 为假,所以p q ∧⌝为真,选B.14.设x ∈R ,则“03x <<”是“12x -<” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】解绝对值不等式12x -<求得x 的取值范围.然后根据两者的范围判断正确选项. 【详解】由12x -<,得212x -<-<,解得13x -<<,()0,3是()1,3-的子集,故“03x <<”是“12x -<”的充分而不必要条件.故选A. 【点睛】本小题主要考查绝对值不等式的解法,考查充分、必要条件的判断,属于基础题.15.已知,αβ是不同的两个平面,直线a α⊂,直线b β⊂,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】∵a 与b 没有公共点时,a 与b 所在的平面β可能平行,也可能相交(交点不在直线b 上)∴命题p :a 与b 没有公共点⇒命题q :α∥β,为假命题 又∵α∥β时,a 与b 平行或异面,即a 与b 没有公共点 ∴命题q :α∥β⇒命题p :a 与b 没有公共点,为真命题; 故p 是q 的必要不充分条件 故选B16.已知命题p :∀x ∈R ,x+1x≥2;命题q :∃x 0∈[0,]2π,使sin x 0+cos x 0=,则下列命题中为真命题的是 ( ) A .p ∨(⌝q ) B .p ∧(⌝q )C .(⌝p )∧(⌝q )D .(⌝p )∧q【答案】D 【解析】 【分析】先判断命题p,q 的真假,再判断选项命题的真假. 【详解】对于命题p :当x ≤0时,x+1x≥2不成立, ∴命题p 是假命题,则⌝p 是真命题;对于命题q :当x 0=4π时,sin x 0+cos x 0,则q 是真命题. 结合选项只有(⌝p )∧q 是真命题. 故答案为D. 【点睛】(1)本题主要考查全称命题特称命题的否定及其真假,考查复合命题的真假,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.17.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.18.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件. 【详解】Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >. 因此,“cos cos A B <”是“sin sin A B >”的充分必要条件. 故选:C. 【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.19.已知命题p :“x ∈R 时,都有x 2-x +14<0”;命题q :“存在x ∈R ,使sinx +cosx =2成立”.则下列判断正确的是( ) A .p ∨q 为假命题 B .p ∧q 为真命题 C .非p ∧q 为真命题 D .非p ∨非q 是假命题【答案】C 【解析】 【分析】 【详解】试题分析::∵任意x ∈R 时,都有x 2-x+14=(x−12)2≥0,∴p 是假命题; ∵sinx+cosx=2sin (x+4π),当x=4π时,sinx+cosx=2, ∴q 是真命题,∴p ∨q 是真命题,非p n q 为真命题,故选C 考点:复合命题的真假20.对于非零向量,,“”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】【详解】a b.不一定有,若,则一定有//考点:判断必要性和充分性.。
高考数学必刷真题分类大全-专题01-集合与常用逻辑用语
【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(
)
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.
集合与常用逻辑用语--2023高考真题分类汇编完整版
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
高考数学 黄金易错点专题汇编 专题01 集合与常用逻辑用语
高考数学 黄金易错点专题汇编 专题01 集合与常用逻辑用语1.设集合M ={m ∈Z|m ≤-3或m ≥2},N ={n ∈Z|-1≤n ≤3},则(∁Z M )∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}2.已知向量a =(2,1),b =(-1,2),且m =ta +b ,n =a -kb (t 、k ∈R),则m ⊥n 的充要条件是( ) A .t +k =1 B .t -k =1 C .t ·k =1D .t -k =03.设集合M ={y |y =|cos 2x -sin 2x |,x ∈R},N ={x ||x -1i |<2,i 为虚数单位,x ∈R},则M ∩N为( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]4.设集合I 是全集,A ⊆I ,B ⊆I ,则“A ∪B =I ”是“B =∁I A ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.已知命题p :∀x ∈R,9x 2-6x +1>0;命题q :∃x ∈R,sin x +cos x =2,则( ) A .綈p 是假命题 B .綈q 是真命题 C .p ∨q 是真命题D .綈p ∧綈q 是真命题6.已知全集U ,集合A ,B 如图所示,则(∁U A )∩B =( )A .{5,6}B .{3,5,6}C .{3}D .{0,4,5,6,7,8}7.下列命题中是假命题的是( )A .∀x ∈⎝⎛⎭⎪⎫0,π2,x >sin xB .∃x 0∈R,sin x 0+cos x 0=2C .∀x ∈R,3x>0D .∃x 0∈R,lg x 0=08.已知全集U =R ,若函数f (x )=x 2-3x +2,集合M ={x |f (x )≤0},N ={x |f ′(x )<0},则M ∩∁U N =( )A .[32,2]B .[32,2)C .(32,2]D .(32,2)9.对于函数y =f (x ),x ∈R,“y =|f (x )|的图像关于y 轴对称”是“y =f (x )是奇函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件10. 已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B易错起源1、集合的关系和运算例1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=( )A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}1.元素与集合的关系:元素x与集合A之间,要么x∈A,要么x∉A,二者必居其一,这就是集合元素的确定性,集合的元素还具有互异性和无序性.解题时要特别注意集合元素互异性的应用.2.运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.解答集合间的包含与运算关系问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性,代表的意义.(2)根据集合中元素的性质化简集合.(3)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时注意端点值的取舍.易错起源2命题真假的判断错误例2.原命题:若a=1,则函数f(x)=x3+ax2+ax+1没有极值,以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.0 B.1C.2 D.41.四种命题有两组等价关系,即原命题与其逆否命题等价,否命题与逆命题等价.2.含有逻辑联结词的命题的真假判断:命题p∨q,只要p,q至少有一为真,即为真命题,换言之,见真则真;命题p∧q,只要p,q至少有一为假,即为假命题,换言之,见假则假;非p和p为一真一假两个互为对立的命题.3.“或”命题和“且”命题的否定:命题p∨q的否定是非p∧非q;命题p∧q的否定是非p∨非q.(1)一般命题p的真假由涉及到的相关交汇知识辨别真假.(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无必然联系.(3)形如p 或q 、p 且q 、非p 命题的真假根据真值表判定. 易错起源3、充要条件的判断例3. 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+ y 2≥4”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件对于p 和q 两个命题,若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p 和q 互为充要条件.推出符号“⇒”具有传递性,等价符号“⇔”具有双向传递性.对充分、必要条件的判断或探求要注意以下几点(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推 出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;(2)要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明;(3)要注意转化:如果p 是q 的充分不必要条件,那么非p 是非q 的必要不充分条件,同理,如果p 是q 的必要不充分条件,那么非p 是非q 的充分不必要条件,如果p 是q 的充要条件,那么非p 是非q 的充要条件.1.已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M∩N={4},则复数z =( ) A .-2i B .2i C .-4i D .4i2.已知集合A ={}x|0<log 4x<1,B ={}x|x≤2,则A∩B=( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2]3.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( ) A.3 B.4C.5 D.64.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3 C.5 D.95.设全集为R,函数f(x)=1-x2的定义域为M,则∁R M为( )A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)6.设集合A={x|x+2=0},集合B={x|x2-4=0},则A∩B=( )A.{-2} B.{2} C.{-2,2} D.7.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=( )A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]8.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}9.设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=( )A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)10.“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知集合A={1,a},B={1,2,3},则“a=3”是“A B”的( )。
高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点总复习附解析
【最新】数学复习题《集合与常用逻辑用语》专题解析一、选择题1.“方程22175x y m m +=--的曲线是椭圆”的一个必要不充分条件是( )A .“6m =”B .“67m <<”C .“57m <<”D .“57m <<”且“6m ≠”【答案】C 【解析】 【分析】由椭圆的定义可列出m 满足的不等式组,从而求出m 的取值范围,再结合选项选出必要不充分条件. 【详解】因为方程22175x y m m +=--的曲线是椭圆,则由椭圆的定义可知:705075m m m m ->⎧⎪->⎨⎪-≠-⎩,解得:57m <<且6m ≠,所以“方程22175x y m m +=--的曲线是椭圆”的充要条件为“57m <<且6m ≠”,Q “57m <<”推不出“57m <<且6m ≠”,反之可推出,所以“57m <<”是方程“22175x y m m +=--的曲线是椭圆”的必要不充分条件.所以“方程22175x y m m +=--的曲线是椭圆”的必要不充分条件是:“57m <<”.故选:C . 【点睛】本题考查必要不充分条件的判断,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意利用集合的关系进行解题.2.给出下列说法: ①定义在[],a b 上的偶函数()()24f x x a x b =-++的最大值为20;②“4x π=”是“tan 1x =”的充分不必要条件;③命题“()00,x ∃∈+∞,0012x x +≥”的否定形式是“()0,x ∀∈+∞,12x x+<”. 其中正确说法的个数为( ) A .0B .1C .2D .3【答案】D 【解析】 【分析】根据偶函数的定义求得a 、b 的值,利用二次函数的基本性质可判断①的正误;解方程tan 1x =,利用充分条件和必要条件的定义可判断②的正误;根据特称命题的否定可判断③的正误.综合可得出结论. 【详解】对于命题①,二次函数()()24f x x a x b =-++的对称轴为直线42a x +=,该函数为偶函数,则402a +=,得4a =-,且定义域[]4,b -关于原点对称,则4b =, 所以,()24f x x =+,定义域为[]4,4-,()()max 420f x f ∴=±=,命题①正确;对于命题②,解方程tan 1x =得()4x k k Z ππ=+∈,所以,tan 14x x π=⇒=,tan 14x x π=⇐=/,则“4x π=”是“tan 1x =”的充分不必要条件,命题②正确;对于命题③,由特称命题的否定可知③正确. 故选:D. 【点睛】本题以考查命题真假性的形式,考查函数奇偶性、二次函数最值,充分条件与必要条件 还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.3.下列三个命题中,真命题的个数为( ) ①命题p :0(1,)x ∃∈+∞,002x x >-,则p ⌝:(1,)x ∀∈+∞,02x x ≤-; ②p q ∧为真命题是p q ∨为真命题的充分不必要条件; ③若22ac bc >,则a b >的逆命题为真命题; A .3 B .2C .1D .0【答案】C 【解析】 【分析】对三个命题逐一判断即可. 【详解】①中p ⌝:()1x ∀∈+∞,,02xx ≤-或2x =,所以①为假命题; ②为真命题;③中逆命题为:若a b >,则22ac bc >,若c 为0,则③错误,即③为假命题. 故选:C . 【点睛】本题考查命题的真假,属于基础题.4.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数; ②若0a b ⋅=r r,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题;④函数()x xe ef x x--=是偶函数.A .1B .2C .3D .4【答案】B 【解析】 【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论. 【详解】对于①中,当x =时,22x =为有理数,故①错误;对于②中,若0a b ⋅=r ,可以有a b ⊥r r,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-,且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称, 所以函数()x xe ef x x--=是偶函数,故④正确.综上,真命题的个数是2. 故选:B. 【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.5.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果. 详解:由题意可得,在ABC ∆中,因为tan tan 1A B >,所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<, 所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.6.若数列{}n a 的前n 项和为n S ,则“()12n n n a a S +=”是“数列{}n a 是等差数列”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】必要性显然成立;由()12n n n a a S +=,()111(1)2n n n a a S ---+=,得11(1)(2)n n n a a n a --=+-①,同理可得211(2)(3)n n n a a n a ---=+-②,综合①,②,得122n n n a a a --=+,充分性得证,即可得到本题答案. 【详解】必要性显然成立;下面来证明充分性, 若()12n n n a a S +=,所以当2n …时,()111(1)2n n n a a S ---+=, 所以()()1112(1)n n n a n a a n a a -=+--+,化简得11(1)(2)n n n a a n a --=+-①,所以当3n …时,211(2)(3)n n n a a n a ---=+-②,①-②得()122(2)(2)n n n n a n a a ---=-+,所以122n n n a a a --=+,即数列{}n a 是等差数列,充分性得证,所以“()12n n n a a S +=”是“数列{}n a 是等差数列”的充要条件.故选:C. 【点睛】本题主要考查等差数列的判断与证明的问题,考查推理能力,属于中等题.7.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m ≥-,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】试题分析:2:()e ln 21xp f x x x mx =++++在内单调递增,则,即在(0)+∞,上恒成立,令,由于,则, ,则,则,设的最大值为N ,则必有,则的取值范围是,所以p 是q 的必要不充分条件.考点:1.导数与函数的单调性;2.均值不等式;3.估算法;4.充要条件与集合的包含关系;8.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3C .4D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.9.“4sin 25α=”是“tan 2α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】直接利用二倍角的正弦公式换化简222sin cos 4sin 2sin cos 5ααααα==+,再利用齐次式进行弦切互化,得出22tan 4tan 15αα=+,即可求出tan α,即可判断充分条件和必要条件.【详解】解:2242sin cos 4sin 25sin cos 5ααααα=⇔=+Q , 则22tan 4tan 2tan 15ααα=⇔=+或12,所以“4sin 25α=”是“tan 2α=”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,运用到三角函数中的二倍角正弦公式、同角平方关系、齐次式进行弦切互化.10.已知x ,y R ∈,则“x y <”是“1xy<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】x y <,不能得到1x y <, 1xy<成立也不能推出x y <,即可得到答案. 【详解】 因为x ,y R ∈,当x y <时,不妨取11,2x y =-=-,21x y=>,故x y <时,1xy<不成立, 当1xy<时,不妨取2,1x y ==-,则x y <不成立, 综上可知,“x y <”是“1xy<”的既不充分也不必要条件, 故选:D 【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.11.“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】C【分析】首先判断y x x =的单调性,再根据单调性判断充分必要条件. 【详解】22,0,0x x y x x x x ⎧≥==⎨-<⎩,函数是奇函数,并且在R 上单调递增,所以a b >时,a a b b >,反过来,若满足a a b b >时,根据函数y x x =是单调递增函数,所以a b >, 所以a b >”是“a a b b >”的充要条件. 故选:C 【点睛】本题考查充分必要条件,重点考查函数单调性的判断方法,转化与化归的思想,属于基础题型.12.已知集合{}2|log ,1,|A y y x x B x y ⎧==>==⎨⎩,则A B =I ( ) A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .1,12⎛⎫ ⎪⎝⎭D .1,2⎛⎫+∞⎪⎝⎭【答案】A 【解析】∵集合{}2log ,1A y y x x == ∴集合(0,)A =+∞ ∵集合|B x y ⎧==⎨⎩ ∴集合1(,)2B =-∞ ∴1(0,)2A B ⋂= 故选A.13.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.14.设x ∈R ,则“03x <<”是“12x -<” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】 【分析】解绝对值不等式12x -<求得x 的取值范围.然后根据两者的范围判断正确选项. 【详解】由12x -<,得212x -<-<,解得13x -<<,()0,3是()1,3-的子集,故“03x <<”是“12x -<”的充分而不必要条件.故选A. 【点睛】本小题主要考查绝对值不等式的解法,考查充分、必要条件的判断,属于基础题.15.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( ) A .(1,3) B .(-∞,-1) C .(-1,1) D .(-3,1)【答案】C 【解析】 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A ∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.16.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->,即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.17.已知命题p :“x ∈R 时,都有x 2-x +14<0”;命题q :“存在x ∈R ,使sinx +cosx =2成立”.则下列判断正确的是( ) A .p ∨q 为假命题 B .p ∧q 为真命题 C .非p ∧q 为真命题 D .非p ∨非q 是假命题【答案】C 【解析】 【分析】 【详解】试题分析::∵任意x ∈R 时,都有x 2-x+14=(x−12)2≥0,∴p 是假命题; ∵sinx+cosx=2sin (x+4π),当x=4π时,sinx+cosx=2, ∴q 是真命题,∴p ∨q 是真命题,非p n q 为真命题,故选C 考点:复合命题的真假18.对于非零向量,,“”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】 【详解】不一定有,若,则一定有//a b .考点:判断必要性和充分性.19.命题“x R ∀∈,2230x x -+≤”的否定为( )A .x R ∀∈,2230x x -+≥B .x R ∃∉,2230x x -+>C .x R ∃∈,2230x x -+>D .x R ∀∉,2230x x -+≤【答案】C【解析】分析:根据全称命题的否定得结果.详解:因为x R ∀∈,2230x x -+≤,所以否定为x R ∃∈,2230x x -+>, 选C.点睛:命题的否定的注意点(1)注意命题是全称命题还是存在性命题,是正确写出命题的否定的前提;(2)注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;(3)注意“或”“且”的否定,“或”的否定为“且”,且”的否定为“或”.20.已知命题:p 函数()20.5log 2y x x a =++的定义域为R ,命题:q 函数()52x y a =--是减函数.若p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,则实数a 的取值范围是( )A .1a ≤B .12a <<C .2a <D .1a ≤或2a ≥【答案】A【解析】【分析】由题意知p 为假命题,q 为真命题.由p 为假命题,即:220x x a ++>不恒成立,故4401a a ∆=-≥⇒≤ . q 为真命题,即: 5212a a ->⇒<.由此便可得出答案.【详解】由p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,得p 为假命题,q 为真命题. 由p :函数()20.5log 2y x x a =++为假命题得,220x x a ++>在R 上不恒成立.即4401a a ∆=-≥⇒≤.由:q 函数()52x y a =--是减函数,即:()52xy a =-是增函数,即5212a a ->⇒<. 两者取交集得:1a ≤.故选:A【点睛】本题主要考查逻辑联结词“或”、“且”、“非”,属于中档题目.。
第一章 集合与常用逻辑用语典型易错题集(解析版)
第一章 集合与常用逻辑用语典型易错题集易错点1.忽视(漏)空集致错【典型例题1】(2022·全国高一课时练习)已知集合{}11A x x =-≤≤,{}121B x a x a =-≤≤-,若B A ⊆,则实数a 的取值范围是( ) A .1a ≤ B .1a < C .01a ≤≤ D .01a <<【错解C 】 要使B A ⊆,则需满足11,211,a a -≥-⎧⎨-≤⎩解得01a ≤≤.点评:本题错误原因在于忽视了B =∅的情况,导致漏解,∅是任何集合的子集,考试在解题时常常忽略了∅【正解A 】若B =∅,即211a a -<-,即0a <时,满足B A ⊆; 若B ≠∅,即121a a -≤-,亦即0a ≥时, 要使B A ⊆,则需满足11,211,a a -≥-⎧⎨-≤⎩解得01a ≤≤.综上所述,1a ≤. 故选:A .易错点2.忽视最高项系数为0时。
【典型例题2】(2022·安徽省蚌埠第三中学高一月考)已知集合{}260M x x x =+-=,{}10N x mx =-=,若N M ⊆,则实数m 的取值构成的集合为___________. 【错解12m =或13m =-】∵集合{}260M x x x =+-=,∴集合{}2,3M =-,∵N M ⊆,{}10N x mx =-=, ∵{}10N x mx =-=, ∴12x m ==,∴12m =;13x m ==-,∴13m =-; 所以12m =或13m =-点评:本题忽略了10mx -=,当0m =时,N =∅,此时N M ⊆符合题意,考生很容易忽视最高项系数为0的情况。
【正解】110,,23⎧⎫-⎨⎬⎩⎭【详解】∵集合{}260M x x x =+-=,∴集合{}2,3M =-,∵N M ⊆,{}10N x mx =-=,∴N =∅,或{}2N =,或{}3N =-三种情况, 当N =∅时,可得0m =;当{}2N =时,∵{}10N x mx =-=,∴12x m ==,∴12m =; 当{}3N =-,13x m ==-,∴13m =-; ∴实数m 的取值构成的集合为110,,23⎧⎫-⎨⎬⎩⎭,故答案为:110,,23⎧⎫-⎨⎬⎩⎭易错点3.忽视集合元素的互异性【典型例题3】(2022·浙江高一月考)已知集合(){}222,133A a a a a =++++,,若1A ∈,则实数a 的取值集合为( ) A .{}1,0,2-- B .{}0,2- C .{}1- D .{}0【错解A 】①若21a +=,即1a =-时②若()211a +=,即0a =或2a =-时, ③若2331a a ++=,即1a =-或2a =-时, 所以:1a =-或者0a =或者2a =-点评:集合元素的互异性是集合的特征之一,考生容易忽视集合元素互异性导致错解。
高考数学纠错笔记-集合与常用逻辑用语
高考数学纠错笔记-集合与常用逻辑用语
专题01 集合与常用逻辑用语
易错点1 忽略集合中元素的互异性
集合中元素的特性:
(1)确定性. 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合;
(2)互异性. 集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
(3)无序性. 集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系
易错点2 误解集合间的关系致错
易错点3 忽视空集易漏解
易错点4 A是B的充分条件与A的充分条件是B的区别
易错点5 命题的否定与否命题的区别。
高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点总复习附答案解析
【高中数学】数学《集合与常用逻辑用语》复习资料一、选择题1.已知集合*4x M xN ⎧=∈⎨⎩且*10x N ⎫∈⎬⎭,集合40x N x Z ⎧⎫=∈⎨⎬⎩⎭,则( ) A .M N =B .N M ⊆C .20x M N x Z ⎧⎫⋃=∈⎨⎬⎩⎭D .*40x M N x N ⎧⎫⋂=∈⎨⎬⎩⎭ 【答案】D【解析】【分析】【详解】由题意可得:集合M 表示能被20整除的正整数,而集合N 表示能被40整除的整数,据此可得,集合N 与集合M 的公共元素为能被40整除的正整数, 即*40x M N x N ⎧⎫⋂=∈⎨⎬⎩⎭, 本题选择D 选项.2.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( )A .{|3}x x >-B .{|3}x x <-C .{|3}x x ≤-D .{|23}x x ≤<【答案】C【解析】【分析】化简集合,根据集合的并集补集运算即可.【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-,所以A B U {|3}x x =>-, ()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.3.下列命题中是假命题的是A .对任意x ∈R ,30x >B .对任意()0x ∈+∞,,sin x x >C .存在0x ∈R ,使20log 0x =D .存在0x ∈R ,使00sin cos 2x x +=【答案】D【解析】【分析】根据指数函数,三角函数,对数函数的性质依次判断,即可得出答案.【详解】因为函数30xy =>,所以“对任意x ∈R ,30x >”为真命题;利用导数知识易证当0x >时,sin 0x x ->恒成立,所以“对任意()0x ∞∈+,,sin x x >”为真命题;当01x =时,202log log 10x ==,所以“存在0x ∈R ,使20log 0x =”为真命题;因为000πsin cos 2sin 24x x x ⎛⎫+=+≤ ⎪⎝⎭,故“存在0x ∈R ,使00sin cos 2x x +=”为假命题. 故选D .【点睛】本题考查命题的真假判断,是基础题,解题时要认真审题,解答本题的关键熟悉运用不等式、对数函数、三角函数的性质.4.设,则"是""的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】根据题意得到充分性,验证得出不必要,得到答案. 【详解】,当时,,充分性; 当,取,验证成立,故不必要.故选:.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.5.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45o其中所有正确结论的编号是( )A .①③B .①②④C .③④D .②③④【答案】B【解析】【分析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④.【详解】 Q 截面PQMN 是正方形,PQ MN ∴//,又MN ⊂Q 平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂Q 平面ABC ,平面ABC I 平面ADC AC =PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确;由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN ,得AC //平面PQMN ,则②正确;由PQ AC //,PQ MN //,得AC MN //, 所以AC AD MN DN=, 同理可证BD AD PN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等, 则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角,由正方形PQMN 知45MPN ∠=︒,则④正确.故选:B.【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.6.“x <﹣1”是“x 2﹣1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】试题分析:由x <﹣1,知x 2﹣1>0,由x 2﹣1>0知x <﹣1或x >1.由此知“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.解:∵“x <﹣1”⇒“x 2﹣1>0”,“x 2﹣1>0”⇒“x <﹣1或x >1”.∴“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.故选A .点评:本题考查充分条件、必要条件和充要条件的应用,解题时要注意基本不等式的合理运用.7.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】A【解析】【分析】根据直线平行的等价条件,求出m 的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l 1:x+y ﹣1=0,l 2:x+y ﹣2=0满足l 1∥l 2,即充分性成立,当m=0时,两直线方程分别为y ﹣1=0,和﹣2x ﹣2=0,不满足条件.当m≠0时,则l 1∥l 2⇒32211m m m --=≠-, 由321m m m -=得m 2﹣3m+2=0得m=1或m=2, 由211m -≠-得m≠2,则m=1, 即“m=1”是“l 1∥l 2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线1110a x b y c ++=和直线2220a x b y c ++=平行,则12210a b a b -=且两直线不重合,求出参数的值后要代入检验看两直线是否重合.8.下列说法正确的是( )A .命题“0[0,1]x ∃∈,使2010x -…”的否定为“[0,1]x ∀∈,都有2 10x -…” B .命题“若向量a v 与b v 的夹角为锐角,则·0a b >vv ”及它的逆命题均为真命题C .命题“在锐角ABC V 中,sin cos A B <”为真命题D .命题“若20x x +=,则0x =或1x =-”的逆否命题为“若0x ≠且1x ≠-,则20x x +≠”【答案】D【解析】【分析】对于A 选项,利用特称命题的否定即可判断其错误.对于B 选项,其逆命题为“若·0a b >r r ,则向量a r 与b r的夹角为锐角”, 由·0a b >r r 得:·cos 0a b θ>r r ,可得cos 0θ>,则0,2πθ⎡⎫∈⎪⎢⎣⎭,所以该命题错误,所以B 错误.对于C 选项,0222A B A B πππ+>⇒>>->,可得sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,所以C 错误.故选D【详解】命题“0[0,1]x ∃∈,使2110x -…”的否定应为“[0,1]x ∀∈,都有210x -<”,所以A 错误; 命题“若向量a r 与b r 的夹角为锐角,则·0a b >r r ”的逆命题为假命题,故B 错误;锐角ABC V 中,0222A B A B πππ+>⇒>>->, ∴sin sin cos 2A B B π⎛⎫>-=⎪⎝⎭,所以C 错误, 故选D.【点睛】本题主要考查了命题的真假判断,还考查了特称命题的否定,向量的数量积知识,属于中档题.9.已知曲线C 的方程为22121x y m m+=-,现给出下列两个命题:p :102m <<是曲线C 为双曲线的充要条件,q :12m > 是曲线C 为椭圆的充要条件,则下列命题中真命题的是( )A .()()p q ⌝∧⌝B .()p q ⌝∧C .()p q ∧⌝D .p q ∧【答案】C【解析】【分析】根据充分必要条件及双曲线和椭圆定义,分别判定命题p 与命题q 的真假,进而判断出复合命题的真假.【详解】若曲线C 为双曲线,则()210m m -< ,可解得102m <<若102m <<,则()210m m -<,所以命题p 为真命题 若曲线C 为椭圆,则12m >且m≠1,所以命题q 为假命题 因而()p q ∧⌝为真命题所以选C【点睛】 本题考查了椭圆与双曲线的标准方程,充分必要条件的判定,属于基础题.10.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331*********D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件. 【详解】由题意可知:()()221210p p p p -+-+= ,且()2011p <-<,()0211p p <-<,201p <<解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小,所以当E ξ减小时,不能推出D ξ增加;设()2880,2D p p t ξ=-+=∈, 21822p t ⎛⎫--+= ⎪⎝⎭, 21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件.故选:D【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.11.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件.【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B.【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.12.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.13.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件.14.已知命题p :∀x ∈R ,x+1x≥2;命题q :∃x 0∈[0,]2π,使sin x 0+cos x 0=,则下列命题中为真命题的是 ( )A .p ∨(⌝q )B .p ∧(⌝q )C .(⌝p )∧(⌝q )D .(⌝p )∧q 【答案】D【解析】【分析】先判断命题p,q 的真假,再判断选项命题的真假.【详解】 对于命题p :当x ≤0时,x+1x≥2不成立, ∴命题p 是假命题,则⌝p 是真命题;对于命题q :当x 0=4π时,sin x 0+cos x 0,则q 是真命题. 结合选项只有(⌝p )∧q 是真命题.故答案为D.【点睛】 (1)本题主要考查全称命题特称命题的否定及其真假,考查复合命题的真假,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.15.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.16.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)【答案】C【解析】【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解.【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1),∴A ∩B =(-1,1).【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.17.设命题p:n ∃>1,n 2>2n ,则⌝p 为( )A .21,2n n n ∀>>B .21,2n n n ∃≤≤C .21,2n n n ∀>≤D .21,2n n n ∃>≤【答案】C【解析】根据命题的否定,可以写出p ⌝:21,2n n n ∀>≤,所以选C.18.若命题“[1,2]x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5,4⎛⎫-∞ ⎪⎝⎭ B .5,4⎛⎫+∞ ⎪⎝⎭ C .(,1)-∞ D .(1,)+∞【答案】C【解析】【分析】分离参数,将问题转化为[]1,2x ∀∈,2111()22x a x x x+<=+恒成立,结合基本不等式求解最值即可得解.【详解】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即2111()22x a x x x +<=+恒成立, 111()12x x x x+≥⋅=Q ,当且仅当1x =时等号成立, ∴1a <,即实数a 的取值范围是(,1)-∞.故选:C .【点睛】此题考查根据全称命题的真假求参数的取值范围,利用分离参数,将问题转化为求函数最值求解范围,需要注意等价变形.19.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】【分析】通过列举,和推理证明可以推出充要性.【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->;故“()0ab a b ->”是“0a b >>”的必要不充分条件,故选:B.【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.20.对于非零向量,,“”是“//a b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】【详解】不一定有,若,则一定有//a b .考点:判断必要性和充分性.。
鹤壁市高中数学第一章集合与常用逻辑用语易错题集锦
鹤壁市高中数学第一章集合与常用逻辑用语易错题集锦单选题1、集合A={x∈N|1≤x<4}的真子集的个数是()A.16B.8C.7D.4答案:C解析:先用列举法写出集合A,再写出其真子集即可.解:∵A={x∈N|1≤x<4}={1,2,3},∴A={x∈N|1≤x<4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选:C.2、若全集U=R,集合A={0,1,2,3,4,5,6},B={x|x<3},则图中阴影部分表示的集合为()A.{3,4,5,6}B.{0,1,2}C.{0,1,2,3}D.{4,5,6}答案:A分析:根据图中阴影部分表示(∁U B)∩A求解即可.由题知:图中阴影部分表示(∁U B)∩A,∁U B={x|x≥3},则(∁U B)∩A={3,4,5,6}.故选:A3、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.4、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A5、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.填空题6、已知集合A={2,3,4,5,6},B={(x,y)|x∈A,y∈A,x−y∈A},则集合B中元素的个数为______.答案:6分析:由已知,根据条件给的集合A,按照集合B给的定义列举即可完成求解.因为x∈A,y∈A,x−y∈A,所以x=4时,y=2;x=5时,y=2或y=3,x=6时,y=2或3或4.B= {(4,2),(5,2),(5,3),(6,2),(6,3),(6,4)},所以集合B中元素的个数为6.所以答案是:6.7、设集合S={x|x>5或x<−1},T={x|a<x<a+8},S∪T=R,则a的取值范围是___________.答案:(−3,−1)分析:由题意,S∪T=R,可得a<−1,a+8>5,求解即可由题意,集合S={x|x>5或x<−1},T={x|a<x<a+8},因为S∪T=R,故可得a<−1,a+8>5解得a∈(−3,−1).所以答案是:(−3,−1)8、若全集U=R,集合A={x|−3≤x≤1},A∪B={x|−3≤x≤2},则B∩∁U A=___________.答案:{x|1<x≤2}##(1,2]分析:由集合A,以及集合A与集合B的并集确定出集合B,以及求出集合A的补集,再根据交集运算即可求出结果.因为A={x|−3≤x≤1},A∪B={x|−3≤x≤2},所以∁U A={x|x<−3或x>1},{x|1<x≤2}⊆B⊆{x|−3≤x≤2},所以B∩∁U A={x|1<x≤2}.所以答案是:{x|1<x≤2}.9、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.10、若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合A={−1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为_____.答案:{0,12,2}分析:分“鲸吞”或“蚕食”两种情况分类讨论求出a值,即可求解当a=0时,B=∅,此时满足B⊆A,当a>0时,B={−√2a ,√2a},此时A,B集合只能是“蚕食”关系,所以当A,B集合有公共元素−√2a=−1时,解得a=2,当A,B集合有公共元素√2a =2时,解得a=12,故a的取值集合为{0,12,2}.所以答案是:{0,12,2}解答题11、已知集合A为非空数集,定义:S={x|x=a+b,a,b∈A},T={x|x=|a−b|,a,b∈A}(1)若集合A={1,3},直接写出集合S,T.(2)若集合A={x1,x2x3,x4},x1<x2<x3<x4,且T=A,求证:x1+x4=x2+x3(3)若集合A⊆{x|0≤x≤2020,x∈N},S,S∩T=∅,记|A|为集合A中元素的个数,求|A|的最大值.答案:(1)S={2,4,6},T={0,2};(2)证明见解析;(3)1347.解析:(1)根据题目定义,直接计算集合S及T;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,2020},m⩽2020,m∈N,求出相应的S及T,通过S∩T=∅建立不等关系求出相应的值.(1)根据题意,由A={1,3},则S={2,4,6},T={0,2};(2)由于集合A={x1,x2,x3,x4},x1<x2<x3<x4,且T=A,所以T中也只包含四个元素,即T={0,x2−x1,x3−x1,x4−x1},剩下的x3−x2=x4−x3=x2−x1,所以x1+x4=x2+x3;(3)设A={a1,a2,⋅⋅⋅a k}满足题意,其中a1<a2<⋅⋅⋅<a k,则2a1<a1+a2<a1+a3<⋅⋅⋅<a2+a k<a2+a k<a3+a k<⋅⋅⋅<a k−1+a k<2a k,∴|S|≥2k−1,a1−a1<a2−a1<a3−a1<⋅⋅⋅<a k−a1,∴|T|≥k,∵S∩T=∅,|S∪T|=|S|+|T|≥3k−1,S∪T中最小的元素为0,最大的元素为2a k,∴|S∪T|≤2a k+1,∴3k−1≤2a k+1≤4041(k∈N∗),k≤1347,实际上当A={674,675,676,⋅⋅⋅,2020}时满足题意,证明如下:设A={m,m+1,m+2,⋅⋅⋅,2020},m∈N,则S={2m,2m+1,2m+2,⋅⋅⋅,4040},T={0,1,2,⋅⋅⋅,2020−m},依题意有2020−m<2m,即m>67313,故m的最小值为674,于是当m=674时,A中元素最多,即A={674,675,676,⋅⋅⋅,2020}时满足题意,综上所述,集合A中元素的个数的最大值是1347.小提示:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.12、已知p:{x|{x+2≥0x−10≤0},q:{x|1-m≤x≤1+m,m>0}.(1)若m=1,则p是q的什么条件?(2)若p是q的充分不必要条件,求实数m的取值范围.答案:(1)p是q的必要不充分条件;(2)m∈[9,+∞).分析:(1)分别求出p、q对应的集合,根据集合间的关系即可得出答案;(2)根据p是q的充分不必要条件,则p对应的集合是q对应的集合的真子集,列出不等式组,解得即可得出答案.(1)因为p:{x|{x+2≥0x−10≤0}={x|-2≤x≤10},若m=1,则q:{x|1-m≤x≤1+m,m>0}={x|0≤x≤2},显然{x|0≤x≤2}⊂≠{x|-2≤x≤10},所以p是q的必要不充分条件.(2)由(1),知p:{x|-2≤x≤10},因为p是q的充分不必要条件,所以{x∣−2≤x≤10}⊂≠{x∣1−m≤x≤1+m},所以{m>01−m≤−21+m≥10,且1−m≤−2和1+m≥10不同时取等号,解得m≥9,即m∈[9,+∞).13、定义:若任意m,n∈A(m,n可以相等),都有1+mn≠0,则集合B={x|x=m+n1+mn,m,n∈A}称为集合A的生成集;(1)求集合A={3,4}的生成集B;(2)若集合A={a,2},A的生成集为B,B的子集个数为4个,求实数a的值;(3)若集合A=(−1,1),A的生成集为B,求证A=B.答案:(1)B={35,817,713}(2)a=±1或a=12(3)证明见解析分析:(1)根据新定义算出x的值即可求出B;(2)B的子集个数为4个,转化为B中有2个元素,然后列出等式即可求出a的值;(3)求出B的范围即可证明出结论(1)由题可知,(1)当m=n=3时,x=3+31+3×3=35,(2) 当m=n=4时,x=4+41+4×4=817,(3)当m=3,n=4或m=4,n=3时,x=3+41+3×4=713所以B={35,817,713}(2)(1)当m=n=2时,x=2+21+2×2=45,(2)当m=n=a时,x=a+a1+a2=2a1+a2(3)当m=2,n=a或m=a,n=2时,x=2+a1+2a B的子集个数为4个,则B中有2个元素,所以45=2a1+a2或2a1+a2=2+a1+2a或2+a1+2a=45,解得a=±1或a=12(a=2舍去),所以a=±1或a=12.(3)证明:∀m,n∈(−1,1)=A,m+n 1+mn +1=(m+1)(n+1)1+mn>0,m+n 1+mn −1=−(m−1)(n−1)1+mn<0,∴−1<m+n1+mn<1,即B=(−1,1)∴B⊆A,又A=(−1,1),所以A⊆B,所以A=B14、已知集合A={y|y=x2-2x},B={y|y=-x2+2x+6}.(1)求A∩B.(2)若集合A,B中的元素都为整数,求A∩B.(3)若集合A变为A={x|y=x2-2x},其他条件不变,求A∩B.(4)若集合A,B分别变为A={(x,y)|y=x2-2x},B={(x,y)|y=-x2+2x+6},求A∩B.答案:(1)A∩B={y|-1≤y≤7};(2)A∩B={y|-1≤y≤7};(3)A∩B={y|y≤7};(4)A∩B={(3,3),(-1,3)}.分析:首先根据集合A与B的定义,确定集合里面的元素,再根据题目要求去求解.(1)因为y=x2-2x=(x-1)2-1≥-1,所以A={y|y≥-1},因为y=-x2+2x+6=-(x-1)2+7≤7,所以B={y|y≤7},所以A∩B={y|-1≤y≤7}.(2)由已知得A={y∈Z|y≥-1},B={y∈Z|y≤7},所以A∩B={-1,0,1,2,3,4,5,6,7}.(3)由已知得A={x|y=x2-2x}=R,B={y|y≤7},所以A∩B={y|y≤7}.(4)由{y=x2-2x,y=-x2+2x+6,得x2-2x-3=0,解得x=3,或x=-1,所以{x=3,y=3,或{x=-1,y=3,所以A∩B={(3,3),(-1,3)}.小提示:本题主要考查集合的交并补运算,在求解过程中注意是数集还是点集.15、设p:|2x+1|<3,q:x−(2a+1)<0.(1)若a=1,且p、q均为真命题,求满足条件的实数x构成的集合;(2)若p是q的充分条件,求实数a的取值范围.答案:(1){x|−2<x<1}(2)[0,+∞)分析:(1)当a=1时,分别化简p与q,再取交集即得所求(2)p是q的充分条件,则p所表示的取值范围是q 所表示的取值范围的子集,利用集合的包含关系即可求解(1)因为p:−2<x<1,q:x−3<0,即x<3,所以p、q均为真命题,则取公共部分得实数x构成的集合为{x|−2<x<1};(2)(2)因为p是q的充分条件,且p:−2<x<1,q:x<2a+1,所以(−2,1)⊆(−∞,2a+1),所以2a+1≥1,解得a≥0,故实数a的取值范围是[0,+∞).。
高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》易错题汇编含答案解析
数学高考《集合与常用逻辑用语》复习资料一、选择题1.“x <﹣1”是“x 2﹣1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】试题分析:由x <﹣1,知x 2﹣1>0,由x 2﹣1>0知x <﹣1或x >1.由此知“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.解:∵“x <﹣1”⇒“x 2﹣1>0”,“x 2﹣1>0”⇒“x <﹣1或x >1”.∴“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.故选A .点评:本题考查充分条件、必要条件和充要条件的应用,解题时要注意基本不等式的合理运用.2.已知集合{}2log 1A x x =>,{}1B x x =≥,则A B =U ()A .(]1,2B .()1,+∞C .()1,2D .[)1,+∞ 【答案】D【解析】【分析】解出对数不等式可得集合A ,根据并集的运算即可得结果.【详解】 由{}{}2log 12A x x x x =>=>,{}1B x x =≥,则[)1,A B ∞=+U ,故选D.【点睛】本题主要考查了对数不等式的解法,并集的概念,属于基础题.3.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.【详解】Q 点P 不在直线l 、m 上,∴若直线l 、m 互相平行,则过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行,即必要性成立,若过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行,则直线l 、m 互相平行成立,反证法证明如下:若直线l 、m 互相不平行,则l ,m 异面或相交,则过点P 只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的充要条件,故选:C .【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.4.已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既非充分也非必要条件【答案】B【解析】分析:由题意考查充分性和必要性即可求得最终结果.详解:若//l αβα⊥,,则l β⊥,又//m β,所以l m ⊥;若l m ⊥,当//m β时,直线l 与平面β的位置关系不确定,无法得到//αβ. 综上,“//αβ”是“l m ⊥”的充分不必要条件.本题选择B 选项.点睛:本题主要考查线面平行的判断定理,面面平行的判断定理及其应用等知识,意在考查学生的转化能力和计算求解能力.5.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】A【解析】【分析】根据直线平行的等价条件,求出m 的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l 1:x+y ﹣1=0,l 2:x+y ﹣2=0满足l 1∥l 2,即充分性成立,当m=0时,两直线方程分别为y ﹣1=0,和﹣2x ﹣2=0,不满足条件.当m≠0时,则l 1∥l 2⇒32211m m m --=≠-, 由321m m m -=得m 2﹣3m+2=0得m=1或m=2, 由211m -≠-得m≠2,则m=1, 即“m=1”是“l 1∥l 2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线1110a x b y c ++=和直线2220a x b y c ++=平行,则12210a b a b -=且两直线不重合,求出参数的值后要代入检验看两直线是否重合.6.已知p ,q 是两个命题,那么“p q ∧是真命题”是“p ⌝是假命题”的( )A .既不充分也不必要条件B .充分必要条件C .充分不必要条件D .必要不充分条件【答案】C【解析】【分析】由充分必要条件及命题的真假可得:“p q ∧是真命题”是“p ⌝是假命题”的充分不必要条件,得解.【详解】解:因为“p q ∧是真命题”则命题p ,q 均为真命题,所以p ⌝是假命题,由“p ⌝是假命题”,可得p 为真命题,但不能推出“p q ∧是真命题”,即“p q ∧是真命题”是“p ⌝是假命题”的充分不必要条件,故选:C .【点睛】本题考查了充分必要条件及命题的真假,属于基础题.7.14a =-是函数2()1f x ax x =--有且仅有一个零点的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】将14a =-代入函数证明充分性,取0a =得到不必要,得到答案. 【详解】 当14a =-时,2211()11042f x x x x ⎛⎫=---=-+= ⎪⎝⎭,2x =-,充分性; 当0a =时,()10f x x =--=,1x =-,一个零点,故不必要.故选:A .【点睛】本题考查了充分不必要条件,函数零点,意在考查学生的推断能力.8.“4sin 25α=”是“tan 2α=”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】 直接利用二倍角的正弦公式换化简222sin cos 4sin 2sin cos 5ααααα==+,再利用齐次式进行弦切互化,得出22tan 4tan 15αα=+,即可求出tan α,即可判断充分条件和必要条件. 【详解】 解:2242sin cos 4sin 25sin cos 5ααααα=⇔=+Q , 则22tan 4tan 2tan 15ααα=⇔=+或12, 所以“4sin 25α=”是“tan 2α=”的必要不充分条件. 故选:B.【点睛】 本题考查必要不充分条件的判断,运用到三角函数中的二倍角正弦公式、同角平方关系、齐次式进行弦切互化.9.已知集合{}|3x M y y ==,{|N x y ==,则M N =I ( ) A .{|01}x x <<B .{|01}x x <≤C .{|1}x x ≤D .{|0}x x > 【答案】B【解析】【分析】根据函数的定义域和值域,求得集合,M N ,再结合集合的交集的运算,即可求解.【详解】由题意,集合{}|3{|0}x M y y y y ===>,{|1}{|1}N x y x x x ==-=≤, 所以{|01}M N x x ⋂=<≤.故选:B .【点睛】本题主要考查了集合的交集的运算,其中解答中根据函数的定义域和值域的求法,正确求解集合,M N 是解答的关键,着重考查了计算能力.10.已知曲线C 的方程为22121x y m m+=-,现给出下列两个命题:p :102m <<是曲线C 为双曲线的充要条件,q :12m > 是曲线C 为椭圆的充要条件,则下列命题中真命题的是( )A .()()p q ⌝∧⌝B .()p q ⌝∧C .()p q ∧⌝D .p q ∧ 【答案】C【解析】【分析】根据充分必要条件及双曲线和椭圆定义,分别判定命题p 与命题q 的真假,进而判断出复合命题的真假.【详解】若曲线C 为双曲线,则()210m m -< ,可解得102m <<若102m <<,则()210m m -<,所以命题p 为真命题 若曲线C 为椭圆,则12m >且m≠1,所以命题q 为假命题 因而()p q ∧⌝为真命题所以选C【点睛】本题考查了椭圆与双曲线的标准方程,充分必要条件的判定,属于基础题.11.已知集合1|,42k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,24k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .M N =B .M NC .N MD .M N ⋂=∅【答案】C【解析】【分析】 化简集合2|,4k M x x k Z +⎧⎫==∈⎨⎬⎩⎭,21|,4k N x x k Z +⎧⎫==∈⎨⎬⎩⎭,结合2()k k Z +∈为和22()k k Z +∈的关系,即可求解.【详解】由题意,集合12|,|,424k k M x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 121|,|,244k k N x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 因为2()k k Z +∈为所有的整数,而22()k k Z +∈为奇数,所以集合,M N 的关系为NM .故选:C .【点睛】本题主要考查了集合与集合的关系的判定,其中解答准确合理化简集合的形式是解答的关键,着重考查了推理与运算能力.12.“方程22175x y m m +=--的曲线是椭圆”的一个必要不充分条件是( ) A .“6m =”B .“67m <<”C .“57m <<”D .“57m <<”且“6m ≠”【答案】C【解析】【分析】由椭圆的定义可列出m 满足的不等式组,从而求出m 的取值范围,再结合选项选出必要不充分条件.【详解】 因为方程22175x y m m +=--的曲线是椭圆, 则由椭圆的定义可知:705075m m m m ->⎧⎪->⎨⎪-≠-⎩,解得:57m <<且6m ≠,所以“方程22175x y m m +=--的曲线是椭圆”的充要条件为“57m <<且6m ≠”, Q “57m <<”推不出“57m <<且6m ≠”,反之可推出,所以“57m <<”是方程“22175x y m m +=--的曲线是椭圆”的必要不充分条件.所以“方程22175x y m m +=--的曲线是椭圆”的必要不充分条件是:“57m <<”. 故选:C .【点睛】本题考查必要不充分条件的判断,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意利用集合的关系进行解题.13.设全集{}0,1,2,3,4U =,集合{}0,1,2A =,集合{}2,3B =,则()C A B ⋃⋃=( )A .∅B .{}1,2,3,4C .{}2,3,4D .{}0,1,2,3,4【答案】C【解析】【分析】先求C A ⋃,再根据并集定义求结果.【详解】因为{}3,4C A ⋃=,所以(){}2,3,4C A B ⋃⋃=,选C.【点睛】本题考查集合的补集与并集,考查基本分析求解能力,属基本题.14.给出下列说法:①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30;③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+>R ”. 其中错误说法的个数为( ) A .0B .1C .2D .3 【答案】C【解析】【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果.【详解】对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确; 对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2.故选:C.【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..15.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件.16.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.17.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)【答案】C【解析】【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解.【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1),∴A ∩B =(-1,1).【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.18.下列四个命题中真命题的个数是①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则; ②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>③命题“(,0)x ∃∈-∞,23x x <”是假命题.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,则p q ∨为真命题 A .1B .2C .3D .4 【答案】D【解析】【分析】根据四种命题的关系进行判断.【详解】①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则,正确;②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>,正确;③命题“(),0x ∃∈-∞,23x x <”是假命题,正确.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,p 是真命题, 则p q ∨为真命题,正确.因此4个命题均正确.故选D .【点睛】本题考查四种命题及其关系,解题时可根据四种命题的关系进行判断①②,同指数函数的性质判断③,由或命题的真值表判断④,是解此类题的一般方法,本题属于基础题.19.“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据直线与圆相切,求得1c =或3c =,结合充分条件和必要条件的判定,即可求解.【详解】由题意,圆()()22212x y -++=的圆心坐标为(2,1)-,当直线0x y c ++=与圆()()22212x y -++=相切,可得d r =,即d ==12c +=,解得1c =或3c =,所以“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的充分不必要条件.故选:B.【点睛】本题主要考查了直线与圆的位置关系,以及充分条件、必要条件的判定,其中解答中熟练应用直线与圆的位置关系,列出方程求解是解答的关键,着重考查了推理与计算能力,属于基础题.20.设命题p:n ∃>1,n 2>2n ,则⌝p 为( )A .21,2n n n ∀>>B .21,2n n n ∃≤≤C .21,2n n n ∀>≤D .21,2n n n ∃>≤【答案】C【解析】根据命题的否定,可以写出p ⌝:21,2n n n ∀>≤,所以选C.。
集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)-备战24年高考数学(原卷版)
专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。
其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。
方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。
易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.例已知集合{}A x x π=<,(){},2B x y y =>,则集合A B = ()A .∅B .()2,πC .(),2-∞D .(),π-∞变式1:已知集合()(){}{}21402A x x x B y y x =--<==-,,则A B = ()A .∅B .{}14x x <<C .{}12x x <≤D .{}24x x ≤<变式2:已知集合{}22(,)1,,A x y x y x y =+=∈R ∣,{1,,}B x x y x y =+=∈R ∣,则()A .{0,1}AB = B .{(0,1),(1,0)}A B ⋂=C .A B=D .A B ⋂=∅变式3:已知集合(){}2|log 10A x x =-<,{||2|2}B x x =-<,则A B = ()A .{|12}x x <<B .{|14}x x <<C .{|04}x x <<D .{|4}x x <1.集合(){},32A x y y x ==-,(){},4B x y y x ==+,则A B = ()A .{}3,7B .(){}3,7C .{}7,3D .{}3,7x y ==2.已知集合{}220|A x x x =-<,集合(){}22log 2|B y y x ==-,则A B = ()A .(]0,1B .(,1)-∞C .(,2)-∞D .()0,23.设全集U =R ,集合{|3,10}P y y x x ==-<<,|02x Q x x ⎧⎫=≥⎨⎬+⎩⎭,则U P Q ⋂ð等于()A .()2,0-B .[)2,0-C .()3,2--D .(]3,2--4.已知集合{}N 14A x x =∈-≤<,(){}2lg 23B x y x x ==-++,则A B = ()A .{}1,2B .{}0,1,2C .[)1,3-D .()1,3-5.已知集合{|12},{|ln }M x x N x y x =-≤≤==,则M N ⋂=()A .{|12}x x -≤≤B .{|12}x x -<≤C .{|02}x x <≤D .{|1x x <-或2}x ≥1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A满足A⊆B或A⊂B,则对集合A分两种情中的含参问题况讨论:(1)当A=∅时,若集合A是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。
备战高考数学纠错笔记系列专题01集合与常用逻辑用语文(2021年整理)
专题01 集合与常用逻辑用语易错点1 忽略集合中元素的互异性设集合,若,则实数的值为 A .B .C .D .或或【错解】由得或,解得或或,所以选D.【参考答案】B集合中元素的特性:(1)确定性. 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合; (2)互异性.2{},,,1,{,}A x x x y B x y ==A B =,x y 1x y =⎧⎨∈⎩R 1x y =-⎧⎨=⎩11x y =⎧⎨=⎩1x y =⎧⎨∈⎩R 10x y =-⎧⎨=⎩11x y =⎧⎨=⎩A B=21x xy y ⎧=⎨=⎩21x y xy ⎧=⎨=⎩1x y =⎧⎨∈⎩R 10x y =-⎧⎨=⎩11x y =⎧⎨=⎩集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素(3)无序性. 集合与其中元素的排列顺序无关,如a ,b ,c 组成的集合与b ,c ,a 组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系1.已知集合,若,则的值为________.【解析】由题意得或,则或。
当时,且,根据集合中元素的互异性可知不满足题意; 当时,,而,故。
【答案】易错点2 误解集合间的关系致错已知集合,则下列关于集合A 与B 的关系正确的是 A .B .C .D .【错解】因为,所以,所以,故选B 。
2{2,2}Am m m =++3A Îm 23m+=223m m +=1m =32m =-1m =23m+=223m m +=32m =-122m +=223m m +=32m =-32-{}{|0,1}AB x xA ==⊆,A B ⊆A ⊂≠BB ⊂≠AA B∈x A⊆{}{}{}01{0,1}B=∅,,,A ⊂≠B【参考答案】D(1)元素与集合之间有且仅有“属于()”和“不属于()"两种关系,且两者必居其一。
高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》真题汇编附答案解析
【最新】高中数学《集合与常用逻辑用语》专题解析一、选择题1.“a b >”是“a a b b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】C【解析】【分析】 首先判断y x x =的单调性,再根据单调性判断充分必要条件.【详解】 22,0,0x x y x x x x ⎧≥==⎨-<⎩,函数是奇函数,并且在R 上单调递增, 所以a b >时,a a b b >, 反过来,若满足a a b b >时,根据函数y x x =是单调递增函数,所以a b >, 所以a b >”是“a a b b >”的充要条件.故选:C【点睛】本题考查充分必要条件,重点考查函数单调性的判断方法,转化与化归的思想,属于基础题型.2.下列三个命题中,真命题的个数为( )①命题p :0(1,)x ∃∈+∞,0002x x >-,则p ⌝:(1,)x ∀∈+∞,02x x ≤-; ②p q ∧为真命题是p q ∨为真命题的充分不必要条件;③若22ac bc >,则a b >的逆命题为真命题;A .3B .2C .1D .0【答案】C【解析】【分析】对三个命题逐一判断即可.【详解】 ①中p ⌝:()1x ∀∈+∞,,02x x ≤-或2x =,所以①为假命题; ②为真命题; ③中逆命题为:若a b >,则22ac bc >,若c 为0,则③错误,即③为假命题. 故选:C .本题考查命题的真假,属于基础题.3.“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据直线与圆相切,求得1c =或3c =,结合充分条件和必要条件的判定,即可求解.【详解】由题意,圆()()22212x y -++=的圆心坐标为(2,1)-,半径为2, 当直线0x y c ++=与圆()()22212x y -++=相切,可得d r =,即122cd -+==,整理得12c +=,解得1c =或3c =,所以“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的充分不必要条件.故选:B.【点睛】本题主要考查了直线与圆的位置关系,以及充分条件、必要条件的判定,其中解答中熟练应用直线与圆的位置关系,列出方程求解是解答的关键,着重考查了推理与计算能力,属于基础题.4.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45o其中所有正确结论的编号是( )A .①③B .①②④C .③④D .②③④【答案】B【解析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④.【详解】Q 截面PQMN 是正方形,PQ MN ∴//,又MN ⊂Q 平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂Q 平面ABC ,平面ABC I 平面ADC AC =PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确;由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN ,得AC //平面PQMN ,则②正确;由PQ AC //,PQ MN //,得AC MN //, 所以AC AD MN DN=, 同理可证BD AD PN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等, 则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角,由正方形PQMN 知45MPN ∠=︒,则④正确.故选:B.【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.5.给出下列命题,则假命题的个数是( )①若,,a b c ∈R ,则“a b >”的充要条件是“22ac bc >”;②给定两个命题p ,q ,p ⌝是q 的必要不充分条件,则p 是q ⌝的充分不必要条件; ③设,x y R ∈,若7x y +≠,则3x ≠或4y ≠;④命题“若0m >,则方程2230x x m +-=有实数根”的否命题.( )A .0B .1C .2D .3【答案】C【解析】【分析】当0c =时,22ac bc >不成立,反过来,若22ac bc >,则可得a b >,即可判断①;利用原命题与逆否命题的关系可判断②③,写出否命题即可判断④.若a b >,当0c =时,22ac bc >不成立,反过来,若22ac bc >,则可得a b >,故 22ac bc >是a b >的充分不必要条件,故①错误;若p ⌝是q 的必要不充分条件,由原命题与逆否命题的等价性可知,q ⌝是p 的必要不充分条件,即p 是q ⌝的充分不必要条件,故②正确;若7x y +≠,则3x ≠或4y ≠的逆否命题为若3x =且4x =,则7x y +=,显然逆否命 题为真命题,则原命题也为真命题,故③正确;若0m >,则方程2230x x m +-=有实数根的否命题为若0m ≤,则方程2230x x m +-=无实根,显然是假命题,因为0m =时,方程就有实根,故④错误.故选:C【点睛】本题考查判断命题的真假,涉及到充分条件、必要条件、四种命题之间的关系,考查学生的逻辑推理能力,是一道中档题.6.已知集合{}2log 1A x x =>,{}1B x x =≥,则A B =U ()A .(]1,2B .()1,+∞C .()1,2D .[)1,+∞ 【答案】D【解析】【分析】解出对数不等式可得集合A ,根据并集的运算即可得结果.【详解】 由{}{}2log 12A x x x x =>=>,{}1B x x =≥,则[)1,A B ∞=+U ,故选D.【点睛】本题主要考查了对数不等式的解法,并集的概念,属于基础题.7.给出如下四个命题:①“250x x -<”是“|1|1x -<”的充分而不必要条件;②命题“若1a =-,则函数2()21f x ax x =+-有一个零点”的逆命题为真命题; ③若p 是q 的必要条件,则p ⌝是q ⌝的充分条件;④在ABC V 中,“A B >”是“sin sin A B >”的既不充分也不必要条件.其中正确的命题的个数是( )A .1B .2C .3D .4【答案】A【解析】利用四种命题的关系,充要条件,复合命题的真假,逐一判断即可得到结论.【详解】①由250x x -<,解得05x <<;由|1|1x -<,解得02x <<;所以,“250x x -<”是“|1|1x -<”的必要不充分条件,故命题①错误;②由函数()221f x ax x =+-有一个零点,当0a =时,函数()21f x x =-有一个零点,符合题意;当0a ≠时,由440a D =+?,解得1a ≥-,此时函数有一个零点; 所以,函数()221f x ax x =+-有一个零点的等价条件为1a ≥-, 故命题“若1a =-,则函数()221f x ax x =+-有一个零点”的逆命题为“函数()221f x ax x =+-有一个零点,则1a =-”此命题为假命题,故命题②错误; ③若p 是q 的必要条件,可得q p ⇒,则p q ⌝⇒⌝,所以p ⌝是q ⌝的充分条件,故命题③正确;④在ABC ∆中,若A B >,由于A B π+<,必有B A π<-,若A ,B 都是锐角,有sin sin A B >成立;若A ,B 之一为锐角,必是B 为锐角,此时有A π-不是钝角,由于A B π+<,必有2B A ππ<-≤,此时有()sin sin sin A A B π-=>; 若sin sin A B >,当A 不是锐角时,有A B >,当A 为锐角时,仍可得到A B >; 故“A B >”是“sin sin A B >”的充要条件,故命题④错误.综上,命题③正确.故选:A.【点睛】本题以命题的真假判断为载体,考查了充要条件,复合命题等知识,难度不大,属于基础题.8.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( )A .当8n =时,该命题不成立B .当8n =时,该命题成立C .当6n =时,该命题不成立D .当6n =时,该命题成立 【答案】C【解析】【分析】写出命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】 由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N*=+∈时该命题不成立,则当n k =时该命题也不成立”, 由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.9.已知a ,b 为实数,则01b a <<<,是log log a b b a >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】【分析】通过正向与反向推导来验证充分与必要条件是否成立即可【详解】若01b a <<<,则lg lg b a <,lg lg 1,1lg lg b a a b >> ,lg lg log log lg lg a b b a b a a b >⇔>, 显然o 0l g lo 1g a b b a b a <><<⇒,充分条件成立但log log a b b a >时,比如说2,3a b ==时,却推不出01b a <<<,必要条件不成立 所以01b a <<<是log log a b b a >的充分不必要条件【点睛】本题考查充分与必要条件的判断,推理能力与计算能力,由于参数的不确定性,故需要对参数进行讨论10.设x ∈R ,则“03x <<”是“12x -<” 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【分析】 解绝对值不等式12x -<求得x 的取值范围.然后根据两者的范围判断正确选项.【详解】 由12x -<,得212x -<-<,解得13x -<<,()0,3是()1,3-的子集,故“03x <<”是“12x -<”的充分而不必要条件.故选A.【点睛】本小题主要考查绝对值不等式的解法,考查充分、必要条件的判断,属于基础题.11.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.12.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)【答案】C【解析】【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解.【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1),∴A ∩B =(-1,1).【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.13.已知集合{|21}A x x =->,2{|lg(2)}B x y x x ==-,则()R C A B =I ( ) A .(1,2)B .[1,2)C .(2,3)D .(0,1]【答案】B【解析】【分析】 由绝对值不等式的解法和对数函数的性质,求得{3,1}A x x x =<或,{|02}B x x =<<,再根据集合的运算,即可求解.【详解】 由题意,可求得{3,1}A x x x =<或,{|02}B x x =<<,则[]1,3R C A =, 所以()[)1,2R C A B ⋂=.故选B.【点睛】本题主要考查了对数的混合运算,其中解答中涉及到绝对值不等式的求解,以及对数函数的性质,正确求解集合,A B 是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知集合{}260A x x x =--≤,(){}lg 2B x y x ==-,则A B =I ( ) A .[)2,2-B .[]2,3C .(]2,3D .()3,+∞【答案】C【解析】【分析】 根据一元二次不等式的解答和对数函数的性质,求得,A B ,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}{}26023A x x x x x =--≤=-≤≤,(){}{}lg 22B x y x x x ==-=>,所以(]2,3A B =I .故选:C .【点睛】本题主要考查了集合运算及性质,其中解答中熟记集合交集的概念及运算是解答的关键,着重考查数学运算能力.15.给出下列四个结论:①若()f x 是奇函数,则()2f x 也是奇函数;②若()f x 不是正弦函数,则()f x 不是周期函数;③“若3πθ=,则sin 2θ=.”的否命题是“若3πθ≠,则sin 2θ≠.”; ④若p :11x≤;q :ln 0x ≥,则p 是q 的充分不必要条件. 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B【解析】【分析】根据题意,逐一分析,即可判断得出结论.【详解】解:①若()f x 是奇函数,有()()f x f x -=-,则()()22f x f x -=-,所以()2f x 也是奇函数,①正确;②若()f x 不是正弦函数,而()f x 可以是余弦函数,是周期函数,所以②错误; ③根据否命题的定义可知:对原命题的条件和结论都否定,可知③正确;④中,由p :11x≤,解得0x <或1x ≥;由q :ln 0x ≥,解得1x ≥, 则p 是q 的必要不充分条件,故④错误.综上可知,正确结论的个数为2个.故答案为:B.【点睛】 本题考查命题真假的判断,涉及定义法判断函数的奇偶性、周期函数、否命题以及充分必要条件的定义等知识.16.“1a <-”是“直线30ax y +-=的倾斜角大于4π”的() A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】【分析】设直线30ax y +-=的倾斜角为θ,则tan a θ=-,由“1a <-”,可得4πθ>,再举特例34πθ=,可得由“直线30ax y +-=的倾斜角大于4π” 不能得到“1a <-”,即可得解.【详解】解:设直线30ax y +-=的倾斜角为θ,则tan a θ=-,若“1a <-”,则tan 1a θ=->,即4πθ>,即由“1a <-”能推出“直线30ax y +-=的倾斜角大于4π”, 若“直线30ax y +-=的倾斜角大于4π”,不妨令34πθ=, 则3tan 14a π=-=,则不能得到“1a <-”, 即“1a <-”是“直线30ax y +-=的倾斜角大于4π”的充分而不必要条件, 故选A.【点睛】 本题考查了直线的斜率与倾斜角、充分必要条件,重点考查了逻辑推理能力,属基础题.17.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.定义在R 上的函数()y f x =满足()555,0222f x f x x f x ⎛⎫⎛⎫⎛⎫+=--> ⎪ '⎪ ⎪⎝⎭⎝⎭⎝⎭,任意的12x x <都有()()12f x f x >是125x x +<的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】【详解】 因为()5,02x f x '>>; ()5,02x f x '<<,且()f x 关于52x =对称,所以12x x <时, ()()12f x f x > ()212212125555,555222f x x x x x x x x <>=-⇒⇒-<∴<-⇒+< 反之也成立: 12x x <时,()()()1212121225555,,55222x x x x x x f x f x f x +<⇒<⇒>-<-=<>,所以选C. 点睛:充分、必要条件的三种判断方法.19.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞ 【答案】B【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞本题选择B 选项.20.已知命题0:(0,)p x ∃∈+∞20x >;命题1:,2q x ⎛⎫∀∈+∞ ⎪⎝⎭,122x x -+>下列命题中是真命题的为( )A .q ⌝B .()p q ∧⌝C .p q ∧D .()()p q ⌝∨⌝ 【答案】C【解析】【分析】分别判断命题p 为真,命题q 为真,得到答案.【详解】取012x =212⎛⎫> ⎪⎝⎭,故命题p 为真;因为122x x -+≥=12x =时等号成立,故命题q 为真; 故p q ∧为真,故选:C .【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.。
高考数学压轴专题2020-2021备战高考《集合与常用逻辑用语》易错题汇编及答案解析
新高考数学《集合与常用逻辑用语》专题解析一、选择题1.已知集合*4xM x N ⎧=∈⎨⎩且*10x N ⎫∈⎬⎭,集合40x N xZ ⎧⎫=∈⎨⎬⎩⎭,则( ) A .M N = B .N M ⊆ C .20x M N xZ ⎧⎫⋃=∈⎨⎬⎩⎭D .*40x M N xN ⎧⎫⋂=∈⎨⎬⎩⎭【答案】D 【解析】 【分析】 【详解】由题意可得:集合M 表示能被20整除的正整数, 而集合N 表示能被40整除的整数,据此可得,集合N 与集合M 的公共元素为能被40整除的正整数, 即*40x M N xN ⎧⎫⋂=∈⎨⎬⎩⎭, 本题选择D 选项.2.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据直线平行的等价条件,求出m 的值,结合充分条件和必要条件的定义进行判断即可. 【详解】当m=1时,两直线方程分别为直线l 1:x+y ﹣1=0,l 2:x+y ﹣2=0满足l 1∥l 2,即充分性成立,当m=0时,两直线方程分别为y ﹣1=0,和﹣2x ﹣2=0,不满足条件. 当m≠0时,则l 1∥l 2⇒32211m m m --=≠-, 由321m mm -=得m 2﹣3m+2=0得m=1或m=2, 由211m -≠-得m≠2,则m=1, 即“m=1”是“l 1∥l 2”的充要条件,故答案为:A 【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线1110a x b y c ++=和直线2220a x b y c ++=平行,则12210a b a b -=且两直线不重合,求出参数的值后要代入检验看两直线是否重合.3.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假【答案】D 【解析】 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.4.下列命题是真命题的是( )A .若平面α,β,γ,满足αγ⊥,βγ⊥,则//αβ;B .命题p :x R ∀∈,211x -≤,则p ⌝:0x R ∃∈,2011x -≤;C .“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;D .命题“若()110xx e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”.【答案】D 【解析】 【分析】根据面面关系判断A ;根据否定的定义判断B ;根据充分条件,必要条件的定义判断C ;根据逆否命题的定义判断D. 【详解】若平面α,β,γ,满足αγ⊥,βγ⊥,则,αβ可能相交,故A 错误; 命题“p :x R ∀∈,211x -≤”的否定为p ⌝:0x R ∃∈,2011x ->,故B 错误;p q ∨为真,说明,p q 至少一个为真命题,则不能推出p q ∧为真;p q ∧为真,说明,p q都为真命题,则p q ∨为真,所以“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件,故C 错误;命题“若()110xx e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”,故D 正确; 故选D 【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.5.已知命题:p “关于x 的方程240x x a -+=无实根”,若p 为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是( ) A .[1,)+∞ B .(1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】【分析】求出p 为真命题时,a 的取值,由充分不必要条件的性质,得出314m +>,即可得出答案.【详解】当p 为真命题时,1640a ∆=-<,即4a > 令{|4}A a a =>,{|31}B a a m =>+因为p 为真命题的充分不必要条件为31a m >+,所以B A即314m +>,解得1m > 故选:B 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.6.已知集合,则( )A .B .C .D .【答案】C【解析】 【分析】 由题意,集合,,再根据集合的运算,即可求解.【详解】由题意,集合,,所以,故选C.【点睛】本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.7.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】222x y x y ++≥Q 且224x y+≤ ,224222x y x y x y ++∴≤≤⇒+≤ , 等号成立的条件是x y =,又2x y xy +≥Q ,0,0x y >>221xy xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.8.若数列{}n a 的前n 项和为n S ,则“()12n n n a a S +=”是“数列{}n a 是等差数列”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】必要性显然成立;由()12n n n a a S +=,()111(1)2n n n a a S ---+=,得11(1)(2)n n n a a n a --=+-①,同理可得211(2)(3)n n n a a n a ---=+-②,综合①,②,得122n n n a a a --=+,充分性得证,即可得到本题答案. 【详解】必要性显然成立;下面来证明充分性, 若()12n n n a a S +=,所以当2n …时,()111(1)2n n n a a S ---+=, 所以()()1112(1)n n n a n a a n a a -=+--+,化简得11(1)(2)n n n a a n a --=+-①,所以当3n …时,211(2)(3)n n n a a n a ---=+-②, ①-②得()122(2)(2)n n n n a n a a ---=-+,所以122n n n a a a --=+,即数列{}n a 是等差数列,充分性得证,所以“()12n n n a a S +=”是“数列{}n a 是等差数列”的充要条件. 故选:C. 【点睛】本题主要考查等差数列的判断与证明的问题,考查推理能力,属于中等题.9.下列有关命题的说法正确的是( )A .函数1()f x x=在其定义域上是减函数 B .命题“若x y =,则sin sin x y =”的逆否命题为真命题C .“1x =-”是“2560x x --=”的必要不充分条件D .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠” 【答案】B 【解析】 【分析】对于选项A :利用反比例函数的图象与性质判断即可;对于选项B :利用原命题与它的逆否命题同真假,判断原命题的真假即可; 对于选项C :根据充分条件与必要条件的定义即可判断; 对于选项D :根据原命题的否命题的定义判断即可; 【详解】对于选项A :由反比例函数的图象与性质知,函数1()f x x=在区间()(),0,0,-∞+∞上单调递减,故选项A 错误;对于选项B :由题意知,当x y =时,sin sin x y =显然成立,故原命题为真命题,根据原命题与其逆否命题同真假可知,其逆否命题亦为真命题,故选项B 正确;对于选项C :当1x =-时,有2560x x --=成立,反过来,当2560x x --=时,可得6x =或1x =-,所以“1x =-”是“2560x x --=”的充分不必要条件,故选项C 错误;对于选项D :根据原命题的否命题的定义知,命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,故选项D 错误;故选:B 【点睛】本题考查反比例函数的单调性、四种命题之间的关系及真假判断和充分条件与必要条件的判断;熟练掌握四种命题之间的关系及真假判断的方法是求解本题的关键;属于中档题、常考题型.10.已知集合1|,42k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,24k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .M N = B .M N C .N M D .M N ⋂=∅【答案】C 【解析】 【分析】化简集合2|,4k M x x k Z +⎧⎫==∈⎨⎬⎩⎭,21|,4k N x x k Z +⎧⎫==∈⎨⎬⎩⎭,结合2()k k Z +∈为和22()k k Z +∈的关系,即可求解. 【详解】由题意,集合12|,|,424k k M x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 121|,|,244k k N x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,因为2()k k Z +∈为所有的整数,而22()k k Z +∈为奇数, 所以集合,M N 的关系为N M .故选:C . 【点睛】本题主要考查了集合与集合的关系的判定,其中解答准确合理化简集合的形式是解答的关键,着重考查了推理与运算能力.11.下面说法正确的是( )A .命题“若0α=,则cos 1α=”的逆否命题为真命题B .实数x y >是22x y >成立的充要条件C .设p ,q 为简单命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”也为假命题D .命题“0x R ∃∈,使得20010x x ++≥”的否定是“x R ∀∈,使得210x x ++≥”【答案】A 【解析】【分析】对每一个选项逐一分析判断得解. 【详解】A. 命题“若0α=,则cos 1α=”是真命题,所以它的逆否命题为真命题,所以该选项正确;B. 由22x y >得x y >或x y <-,所以实数x y >是22x y >成立的充分不必要条件,所以该选项错误;C. 设p ,q 为简单命题,若“p q ∨”为假命题,则,p q 都是假命题,则“p q ⌝∧⌝”为真命题,所以该选项错误;D. 命题“0x R ∃∈,使得20010x x ++≥”的否定是“x R ∀∈,使得210x x ++<”,所以该选项错误. 故选:A 【点睛】本题主要考查四种命题及其关系,考查充要条件的判断,考查复合命题的真假的判断,考查特称命题的否定,意在考查学生对这些知识的理解掌握水平.12.已知实数a b 、满足0ab >,则“11a b<成立”是“a b >成立”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .非充分非必要条件【答案】C 【解析】 【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可. 【详解】 由11b a a b ab--=, 0ab >Q ,∴若11a b< 成立, 则0b a -< ,即a b >成立,反之若a b >, 0ab >Q ,110b a a b ab-∴-=<, 即11a b<成立, ∴“11a b <成立”是“a b > 成立”充要条件,故选C. 【点睛】本题主要考查不等式的性质以及充分条件和必要条件的应用,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.13.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.14.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.15.已知全集,U R =2{|2}M x x x =-≥则U C M =( ). A .{|20}x x -<< B .{|20}x x -≤≤ C .{|20}x x x <->或 D .{|20}x x x ≤-≥或【答案】C 【解析】 【分析】解二次不等式求出集合M ,进而根据集合补集运算的定义,可得答案.【详解】∵全集U=R ,2{|2}={|20}M x x x x x =-≥-≤≤∴∁U M={x|x<-2或x>0}, 故选C . 【点睛】本题考查的知识点是集合的交集,并集,补集运算,熟练掌握并正确理解集合运算的定义是解答的关键.16.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.17.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)2【答案】D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.18.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,)+∞C .(,2]-∞D .[2,)-+∞【答案】B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.19.已知命题:p 函数()20.5log 2y x x a =++的定义域为R ,命题:q 函数()52xy a =--是减函数.若p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,则实数a 的取值范围是( ) A .1a ≤ B .12a <<C .2a <D .1a ≤或2a ≥【答案】A 【解析】 【分析】由题意知p 为假命题,q 为真命题.由p 为假命题,即:220x x a ++>不恒成立,故4401a a ∆=-≥⇒≤ .q 为真命题,即: 5212a a ->⇒<.由此便可得出答案.【详解】由p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,得p 为假命题,q 为真命题. 由p :函数()20.5log 2y x x a =++为假命题得,220x x a ++>在R 上不恒成立.即4401a a ∆=-≥⇒≤.由:q 函数()52xy a =--是减函数,即:()52xy a =-是增函数,即5212a a ->⇒<. 两者取交集得:1a ≤. 故选:A 【点睛】本题主要考查逻辑联结词“或”、“且”、“非”,属于中档题目.20.已知命题0:(0,)p x ∃∈+∞20x >;命题1:,2q x ⎛⎫∀∈+∞ ⎪⎝⎭,122x x -+>下列命题中是真命题的为( )A .q ⌝B .()p q ∧⌝C .p q ∧D .()()p q ⌝∨⌝【答案】C【解析】【分析】 分别判断命题p 为真,命题q 为真,得到答案.【详解】取012x =212⎛⎫> ⎪⎝⎭,故命题p 为真;因为122x x -+≥=12x =时等号成立,故命题q 为真; 故p q ∧为真,故选:C .【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.。
高考数学压轴专题人教版备战高考《集合与常用逻辑用语》易错题汇编附答案解析
高中数学《集合与常用逻辑用语》复习知识点一、选择题1.“x <﹣1”是“x 2﹣1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】试题分析:由x <﹣1,知x 2﹣1>0,由x 2﹣1>0知x <﹣1或x >1.由此知“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.解:∵“x <﹣1”⇒“x 2﹣1>0”,“x 2﹣1>0”⇒“x <﹣1或x >1”.∴“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.故选A .点评:本题考查充分条件、必要条件和充要条件的应用,解题时要注意基本不等式的合理运用.2.已知集合(){}2log 1,0A y y x x ==+≥,{}0.5,1x B y y x ==>,则A B =U ( ) A .()0.5,+∞B .[)0,+∞C .()0,0.5D .[)0,0.5【答案】B【解析】【分析】 根据指数函数和对数函数的性质,化简集合,A B ,再求并集即可.【详解】0x ≥Q ,11x ∴+≥,2log (1)0x ∴+≥,故{|0}A y y =≥1111,0,|0222xx B y y ⎛⎫⎧⎫>∴<<∴=<<⎨⎬ ⎪⎝⎭⎩⎭Q 1{|0}0{|0}2A B y y y y y y ⎧⎫∴⋃=≥⋃<<=≥⎨⎬⎩⎭ 故选B【点睛】本题主要考查了集合并集的运算,属于中档题.3.记全集{1,2,3,4,5,6,7,8},U =集合{1,2,3,5},{2,4,6},A=B =则图中阴影部分所表示的集合是( )A .{4,6,7,8}B .{2}C .{7,8}D .{1,2,3,4,5,6}【答案】C【解析】【分析】根据图像可知,阴影部分表示的是()U C A B ⋃,由此求得正确结论.【详解】根据图像可知,阴影部分表示的是()U C A B ⋃,{}1,2,3,4,5,6A B =U ,故(){}7,8U C A B ⋃=,故选C.【点睛】本小题主要考查集合的并集和补集的概念即运算,考查图像所表示集合的识别,属于基础题.4.已知p ,q 是两个命题,那么“p q ∧是真命题”是“p ⌝是假命题”的( ) A .既不充分也不必要条件B .充分必要条件C .充分不必要条件D .必要不充分条件【答案】C【解析】【分析】由充分必要条件及命题的真假可得:“p q ∧是真命题”是“p ⌝是假命题”的充分不必要条件,得解.【详解】解:因为“p q ∧是真命题”则命题p ,q 均为真命题,所以p ⌝是假命题,由“p ⌝是假命题”,可得p 为真命题,但不能推出“p q ∧是真命题”,即“p q ∧是真命题”是“p ⌝是假命题”的充分不必要条件,故选:C .【点睛】本题考查了充分必要条件及命题的真假,属于基础题.5.14a =-是函数2()1f x ax x =--有且仅有一个零点的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 将14a =-代入函数证明充分性,取0a =得到不必要,得到答案. 【详解】 当14a =-时,2211()11042f x x x x ⎛⎫=---=-+= ⎪⎝⎭,2x =-,充分性; 当0a =时,()10f x x =--=,1x =-,一个零点,故不必要.故选:A .【点睛】本题考查了充分不必要条件,函数零点,意在考查学生的推断能力.6.已知命题:p m ∃∈R ,10+<m ,命题:q x ∀∈R ,210x mx ++>恒成立,若p ,q 至少有一个是假命题,则实数m 的取值范围是( )A .[)2,1--B .(],2-∞-C .[]2,1--D .[)1,-+∞【答案】B【解析】【分析】根据题意可判断命题p 为真命题,所以可得命题q 必定为假命题,进而得到参数的取值范围;【详解】因为p ,q 中至少有一个为假命题,而命题:p m ∃∈R ,10+<m 为真命题; 所以命题q 必定为假命题,所以2410m ∆=-⨯≥,解得2m ≤-或2m ≥.又命题:p m ∃∈R ,10+<m 为真命题,所以1m <-,于是2m ≤-.故选:B.【点睛】本题考查全称命题真假性的判断、复合命题真假性求参数取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.7.已知集合(){}2||lg 4A x y x==-,{|B x y ==,则A B =I ( ) A .{}|12x x << B .{}|12x x ≤<C .{}|13x x 剟D .{}|23x x -<… 【答案】B【解析】【分析】根据对数函数和二次函数的性质,求得集合,A B ,再结合集合交集的运算,即可求解.【详解】由题意,集合(){}22|lg 4(2,2),{|43}[1,3]A x y xB x y x x ==-=-==-+-=,所以{|12}A B x x =≤<I .故选:B .【点睛】 本题主要考查了集合的交集的概念及运算,其中解答中根据函数的定义域的定义,正确求解集合,A B 是解答的关键,着重考查了推理与计算能力.8.设,则"是""的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】根据题意得到充分性,验证得出不必要,得到答案. 【详解】,当时,,充分性; 当,取,验证成立,故不必要.故选:.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( )A .{|3}x x >-B .{|3}x x <-C .{|3}x x ≤-D .{|23}x x ≤<【答案】C【解析】【分析】化简集合,根据集合的并集补集运算即可.【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-,所以A B U {|3}x x =>-, ()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.10.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45o其中所有正确结论的编号是( )A .①③B .①②④C .③④D .②③④【答案】B【解析】【分析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④.【详解】 Q 截面PQMN 是正方形,PQ MN ∴//,又MN ⊂Q 平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂Q 平面ABC ,平面ABC I 平面ADC AC =PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确;由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN ,得AC //平面PQMN ,则②正确;由PQ AC //,PQ MN //,得AC MN //, 所以AC AD MN DN=, 同理可证BD AD PN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等, 则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角,由正方形PQMN 知45MPN ∠=︒,则④正确.故选:B.【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.11.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】C【解析】 由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.12.下面说法正确的是( )A .命题“若0α=,则cos 1α=”的逆否命题为真命题B .实数x y >是22x y >成立的充要条件C .设p ,q 为简单命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”也为假命题D .命题“0x R ∃∈,使得20010x x ++≥”的否定是“x R ∀∈,使得210x x ++≥”【答案】A【解析】【分析】对每一个选项逐一分析判断得解.【详解】A. 命题“若0α=,则cos 1α=”是真命题,所以它的逆否命题为真命题,所以该选项正确;B. 由22x y >得x y >或x y <-,所以实数x y >是22x y >成立的充分不必要条件,所以该选项错误;C. 设p ,q 为简单命题,若“p q ∨”为假命题,则,p q 都是假命题,则“p q ⌝∧⌝”为真命题,所以该选项错误;D. 命题“0x R ∃∈,使得20010x x ++≥”的否定是“x R ∀∈,使得210x x ++<”,所以该选项错误.故选:A【点睛】本题主要考查四种命题及其关系,考查充要条件的判断,考查复合命题的真假的判断,考查特称命题的否定,意在考查学生对这些知识的理解掌握水平.13.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331*********D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件. 【详解】由题意可知:()()221210p p p p -+-+= ,且()2011p <-<,()0211p p <-<,201p << 解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小,所以当E ξ减小时,不能推出D ξ增加;设()2880,2D p p t ξ=-+=∈, 21822p t ⎛⎫--+= ⎪⎝⎭,21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件.故选:D【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.14.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3B .(),1-∞-C .()1,1-D .()3,1- 【答案】C【解析】【分析】解一元二次不等式求得M ,然后求两个集合的交集.【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.15.已知命题2000:,10p x R x x ∃∈-+≥;命题:q 若a b <,则11a b>,则下列为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 【答案】B【解析】 因为222131331()44244x x x x x -+=-++=-+≥,所以命题p 为真;1122,22--∴Q 命题q 为假,所以p q ∧⌝为真,选B.16.已知全集,U R =2{|2}M x x x =-≥则U C M =( ).A .{|20}x x -<<B .{|20}x x -≤≤C .{|20}x x x <->或D .{|20}x x x ≤-≥或【答案】C【解析】【分析】解二次不等式求出集合M ,进而根据集合补集运算的定义,可得答案.【详解】∵全集U=R ,2{|2}={|20}M x x x x x =-≥-≤≤∴∁U M={x|x<-2或x>0}, 故选C .【点睛】本题考查的知识点是集合的交集,并集,补集运算,熟练掌握并正确理解集合运算的定义是解答的关键.17.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.18.若实数a 、b 满足0a ≥,0b ≥且0ab =,则称a 与b 互补,记(),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】C【解析】【分析】首先根据(),0a b ϕ=,证明0a ≥,0b ≥且0ab = ,再证明0a ≥,0b ≥且0ab =时,(),0a b ϕ= .【详解】若(),0a b ϕ=,0a b -=a b =+两边平方后可得20ab =,即0a =或0b =当0a =0b b b =-= ,0b ∴≥ ,即a 与b 互补,同理0b =时,a 与b 互补,反过来,当0ab =时,0a b -= ,即(),0a b ϕ= ,故(),0a b ϕ=是a 与b 互补的充要条件.故选:C.【点睛】本题考查充分必要条件的判断和证明,意在考查逻辑推理和分析证明的能力,属于中档题型,本题的关键需根据充要条件的判断证明(),0a b a ϕ=⇒与b 互补,a 与b 互补(),0a b ϕ⇒=.19.“1a <-”是“直线30ax y +-=的倾斜角大于4π”的() A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】【分析】设直线30ax y +-=的倾斜角为θ,则tan a θ=-,由“1a <-”,可得4πθ>,再举特例34πθ=,可得由“直线30ax y +-=的倾斜角大于4π” 不能得到“1a <-”,即可得解.【详解】解:设直线30ax y +-=的倾斜角为θ,则tan a θ=-,若“1a <-”,则tan 1a θ=->,即4πθ>,即由“1a <-”能推出“直线30ax y +-=的倾斜角大于4π”, 若“直线30ax y +-=的倾斜角大于4π”,不妨令34πθ=, 则3tan 14a π=-=,则不能得到“1a <-”, 即“1a <-”是“直线30ax y +-=的倾斜角大于4π”的充分而不必要条件, 故选A.【点睛】 本题考查了直线的斜率与倾斜角、充分必要条件,重点考查了逻辑推理能力,属基础题.20.定义在R 上的函数()y f x =满足()555,0222f x f x x f x ⎛⎫⎛⎫⎛⎫+=--> ⎪ '⎪ ⎪⎝⎭⎝⎭⎝⎭,任意的12x x <都有()()12f x f x >是125x x +<的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】【详解】 因为()5,02x f x '>>; ()5,02x f x '<<,且()f x 关于52x =对称,所以12x x <时, ()()12f x f x > ()212212125555,555222f x x x x x x x x <>=-⇒⇒-<∴<-⇒+< 反之也成立: 12x x <时,()()()1212121225555,,55222x x x x x x f x f x f x +<⇒<⇒>-<-=<>,所以选C. 点睛:充分、必要条件的三种判断方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与常用逻辑用语学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知集合A={x|x=2n —l ,n∈Z},B={x|x 2一4x<0},则A ∩B=( )A .}1{B .}41{<<x xC .{}13,D .{1,2,3,4}2.已知全集I ={大于3-且小于10的整数},集合{0,1,2,3}A =,{4,2,0,2,4,6,8}B =--,则集合B A C I )(的元素个数有 ( )A.3个B.4个C.5个D.6个3.已知集合M={y|y =x 2+1,x∈R},N={y|y =x +1,x∈R},则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}4.设,a b R ∈,集合,则b a -=( ) A .1 B .2-5.已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是( )A .10><a a 或 B. 10≥≤a a 或 C. 10≤≤a D. 10<<a 6.已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件二、填空题7.已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .8.若}1log |{},822|{2>∈=≤≤∈=x R x B Z x A x,则B A ⋂=9.2{|3100}A x x x =-->,{|121}B x a x a =+≤≤-,U R =,且A C B U ⊆,求实数a 的取值范围10.(1(211.已知直线2121//,023)2(:6:l l a y x a l ay x l 则和=++-=++的充要条件是a = .12.下列说法:①当2ln 1ln 10≥+≠>xx x x 时,有且;②∆ABC 中,A B >是sin sin A B > 成立的充要条件;③函数x y a =的图象可以由函数2x y a =(其中01a a >≠且)平移得到;④已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >.;⑤函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称。
其中正确的命题的序号为 .13.给出下列命题① 向量 a b 、满足a b a b ==-,则与a a b +的夹角为030; ② ∙>0,是 a b 、的夹角为锐角的充要条件; ③ 将函数y =1-x 的图象按向量=(-1,0)平移,得到的图象对应的函数表达式为y =x ;④ 若)(→-→-+AC AB 0)(=-⋅∙→-→-AC AB ,则ABC ∆为等腰三角形;以上命题正确的是 (注:把你认为正确的命题的序号都填上)三、解答题14.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?15.已知集合A={1,2},B={x∣x ⊆A},问集合A 和B 的关系。
16.已知A={x|x 2-3x +2=0},B={x|ax -2=0}且A∪B=A,求实数a 组成的集合C .17.已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p -1}.若BA ,求实数p 的取值范围.18,若Φ=+R A ,求p 的取值范围。
19.设集合A={a |a =12+n ,n ∈N +},集合B={b |b =542+-k k ,k ∈N +},试证:A B .20.把命题“全等三角形一定相似”写成“若p 则q”的形式,并写出它的逆命题、否命题与逆否命题。
21.已知命题p:方程x2+mx+1=0有两个不等的负根;命题q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.参考答案1.C【解析】【错解分析】此题容易错选为B ,错误原因是对集合元素的误解。
【正解】由题意知集合A 表示奇数集,集合B={1,2,3,4}.所以A ∩B {}13,,故选C 。
2.B【解析】【错解分析】此题容易错选为C ,错误原因是看清全集I ={大于3-且小于10的整数},而不是大于等于3-。
【正解】{2,1,0,,8,9}I =--,{}9,8,7,6,5,4,1,2--=A C U ,{},8,6,4,2-=⋂B A C U ,故集合B A C U ⋂的元素个数有4个,故选B 。
3.D【解析】【错解分析】求M∩N 及解方程组⎩⎨⎧+=+=112x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B 【正解】M={y|y=x 2+1,x∈R}={y|y ≥1}, N={y|y=x +1,x∈R }={y|y∈R}.∴M∩N={y|y ≥1}∩{y|(y∈R)}={y|y ≥1}, ∴应选D .【点评】集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x 2+1}、{y|y=x2+1,x ∈R}、{(x,y)|y=x 2+1,x ∈R},这三个集合是不同的.4.C【解析】【错解分析】根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.【正解】先看数字0.只有a+b=0或 a=0(a 为分母,不合题意,舍去).则只有a=-b.再看第二个集合中的b,只有对应第一个集合中的1,b-a=2.【点评】要求,a b 值,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.5.D【解析】【错解分析】此题容易错选为B ,错误的原因是没有很好的利用原命题与其否命题的关系。
【正解】命题p 是假命题⇔┓p 是真命题⇔对任意x R ∈,220x ax a ++>恒成立244001a a a ⇔∆=-<⇔<<,故选D 。
6.B 【解析】因为11a h b h⎧-⎪⎨-⎪⎩<<,所以11h a h h b h --⎧⎨--⎩<<<<两式相减得22h a b h --<<,故2a b h -<即由命题乙成立推出命题甲成立,所以甲是乙的必要条件 由于22a h b h⎧-⎪⎨-⎪⎩<<,同理也可得2a b h -<因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B 。
【点评】本题易错点有两种情况(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误7.既不充分也不必要条件【解析】【错解分析】由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.【正解】当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.【点评】本题易错点为对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.8.{}3【解析】【错解分析】此题容易错填为(]13,,错误原因是没有看清楚A 中的元素要是整数。
【正解】由题意知{}{}2,3,2,1>==x x B A ,所以B A ⋂={}3【点评】牢记一些常用数集的符号是解答本题的关键。
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q(5)全体实数的集合通常简称实数集,记作R(6)复数集合计作C9.(,3]-∞【解析】【错解分析】此题容易错填[]3,3-,错误原因是漏掉考虑A 为空集的情况。
【正解】2{3100}{25}U C A x x x x x =--≤=-≤≤121U B C A a a ⊆⇔+>-或21215a a -≤+≤-≤3a ⇔≤10.(1){=/1M N t t -≤≤∩ (2)()(){}1122A B =∩,,【解析】【错解分析】对集合的元素到底是什么没有判断清楚容易出错。
【正解】(1){{}/,/1M x x N y y =≤≤=≥-{/1M N t t ∴=-≤≤∩ (2)解方程组222y x y x x =⎧⎨=-+⎩得:11x y =⎧⎨=⎩,22x y =⎧⎨=⎩ ()(){}1122A B ∴=∩,,【点评】代表元与字母的表示无关,题(1)的代表元是数,M是函数y 的定义域,N 是函数21y x =-的值域;题(2)的代表元是点,A 表示直线y x =上点的集合,B 表示抛物线222y x x =-+上点的集合。
求交集,前者是求两数集的公共元素的集合,后者则是求二曲线公共点的集合。
11.1a =-【解析】【错解分析】此题容易错填为-1,3,主要是没有注意到两直线重合的情况。
【正解】21//l l 的充要条件是01221=-B A B A 且01221≠-C A C A . ()()132012260a a a a ⨯--=⎧⎪⎨--≠⎪⎩解得,1a =- 12.②③④【解析】【错解分析】此题容易错选为①⑤,而漏掉③。
错选①主要是对均值不等式要是正数的前提条件理解不好,漏掉③主要是对指数的化简没有考虑到。
【正解】①中只有当01x <<时不成立 ③中将2x y a =可变形为2log 2log a a x x a a a y +=⋅=,④中07657>+=-a a S S 所以0)(37698765439>+=+++++=-a a a a a a a a S S13.③④【解析】【错解分析】此题容易错选为①②,错误原因是对一些特殊情况考虑不周到。
【正解】利用向量的有关概念,逐个进行判断切入,对于 ① 取特值零向量错误,若前提为非零向量由向量加减法的平行四边形法则与夹角的概念正确; 对②取特值夹角为直角错,认识数量积和夹角的关系,命题应为∙>0,是 a b 、的夹角为锐角的必要条件;对于③,注意按向量平移的意义,就是图象向左移1个单位,结论正确;对于④;向量的数量积满足分配率运算,结论正确.14.8个【解析】【错解分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成思维不全面,从而求解满足条件的a 值产生漏解现象。